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1 Introduction

The asymptotic structure of gravitating systems has been of interest for many reasons

since the advent of relativity. The original aim is to understand the basic properties of the

space-time in terms of its relationship to global quantities like total energy, momentum, and

angular momentum. Another reason arises in numerical relativity, whose main purpose is
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to study time evolution of gravitational systems; hence setting proper boundary conditions

and imposing initial data are of crucial import. Related to the former, one knows that a

system is described and characterized by locally defined tensor fields. In special relativity,

it is easy to figure out the global characteristics of the system, because vector addition holds

on the manifold. However, if curvature exists then it is problematic to collect together all

local contributions of a given quantity. One approach for addressing this problem in general

relativity is to study a given region far away from the source. In that asymptotic region,

the curvature becomes much weaker (assuming cosmological effects are subdominant) and

the spacetime is very close to Minkowski space. One could then expect to define global

quantities for the whole system. However there still exists a serious ambiguity in exploring

the asymptotic structure because of various ways of approaching infinity, and defining or

classifying the notion of asymptotically flat spacetimes.

Early work associated with an asymptotic geometry originated with from Arnowitt,

Deser and Misner (ADM), who produced an integral expression for an asymptotically

flat spacetime’s energy-momentum and angular momentum via a 3 + 1 decomposition,

which slices the spacetime into space and time [1–4]. This approach yielded conserved

(ADM) quantities at spatial infinity, r → ∞. Geroch later reformulated and extended

this work by providing a definition of asymptotic flatness at ”spatial infinity” [6]. These

(3 + 1) frameworks, however, have difficulties encompassing the concept of an asymptotic

spacetime and its symmetry group at near infinity [9].

Shortly after ADM, Bondi et al. [5] considered an isolated body emitting radiation

such as a scalar field, an electromagnetic wave, or a gravitational wave propagating to null

infinity instead of spatial infinity and obtained the Bondi-Sachs mass. For a stationary

spacetime, it was proved that the ADM 4-momentum at spatial infinity is the past limit

of the Bondi-Sachs 4 momentum [8]. Based on this work, Penrose elegantly formulated

a definition of an asymptotically flat spacetime by introducing the concept of future and

past “null infinity” (I+, I−), using a conformal completion method [10]. In this picture, for

Minkowski space, I+ and I
− meet at spacelike infinity (r → ∞ at fixed t), which can be

described by a point I0 in the conformal extension of Minkowski space. For a curved static

spacetime, e.g. the Schwarzschild metric, all points at spatial infinity are squeezed down to

a single point, so the point I0 loses some essential properties that it has in the flat case [20].

These two notions of asymptotic flatness at null and spatial infinity were unified into

a single notion by Ashtekar and Hansen in [7]. They formulated asymptotic conditions

that treated spacetime as a whole rather than splitting space and time and forged a link

between the asymptotic symmetry group and conserved quantities.

The importance of considering a spacetime boundary has also been of interest in terms

of the gravitational action. From the existing Einstein-Hilbert action, Gibbons and Hawk-

ing pointed out that variations of metric derivatives at the boundary must not be ignored,

and introduced the Gibbons-Hawking boundary term to fix this problem,

SEH+GH =
1

16πG

∫

M

√
−gR+

1

8πG

∫

∂M

√
−hK (1.1)

where g is a trace of the metric on the spacetime, R is a Ricci scalar with respected to gab,
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h is the trace of the induced metric on the boundary, and K is the trace of its extrinsic

curvature. While this new boundary term is well defined for spatially compact spacetimes,

it diverges for noncompact ones. Remedies for this problem have involved adding a non-

dynamical term into the action. Two main ideas on how to characterize this term have

been suggested.

The first idea is the reference background method, originally suggested by Brown and

York [11] for asymptotically flat spacetimes and extended to asymptotically anti de Sitter

spacetimes by Brown, Creighton and Mann [12]. The basic idea is to introduce a reference

background (g0, φ0) (required to be a static solution to the field equations [13]), and to

write the physical action as

Ip(g, φ) ≡ I(g, φ)− I(g0, φ0) (1.2)

where Ip is zero for the reference background, and is finite provided that the fields (g, φ)

match the corresponding fields (g0, φ0) on a proper boundary, i.e. near infinity. For an

asymptotically flat spacetime with no matter fields, the gravitational action becomes

SEH+GH plus the additional term

I(g0) = S0 = − 1

8πG

∫

∂M

√
−hK0 (1.3)

where K0 is the trace of the extrinsic curvature of the boundary (∂M, h), and is determined

by taking an appropriate limit and then matching the boundary metric with the reference

metric (M0, g0) embedded in the flat reference spacetime. The more general form I(g0, φ0)

may have to be used for certain matter fields [14]. However such a proper reference space-

time in general does not exist for dimensions larger than 3. This is because an embedding

is required not just for a particular boundary spacetime, but instead for an open set of

boundary spacetimes associated with arbitrary small metric/matter variations. For d > 3,

given any embeddable boundary spacetime, there are spacetimes arbitrarily nearby that

are not embeddable [15].

The second idea is the counterterm method, whose form

SCT = − 1

8πG

∫

∂M

√
−hK̂CT(h) (1.4)

is added to the action (1.1). The counterterm K̂CT is defined to be a functional only of

geometric invariants of the induced metric hab, chosen to cancel the divergences in (1.1).

Construction of conserved quantities associated with the counterterm method via the renor-

malized boundary stress tensor was originally developed for an asymptotically anti-de Sitter

spacetime [16–18]. Motivated by this success, Mann and Marolf extended this method to

asymptotically flat spacetime, in which the covariant counterterm K̂ab is computed from

the relation

Rab = K̂abK̂ − K̂ c
a K̂cb (1.5)

where Rab is the Ricci tensor of hab induced on ∂M and K̂ is a trace of K̂ab contracted

with hab. The motivation behind eq. (1.5) is from the Gauss-Codazzi relation

Rabcd = RRef
abcd +KacKbd −KadKbc (1.6)
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where Rabcd and RRef
abcd are respectively the Riemann tensor on ∂M and on the bulk space-

timeM. For an asymptotically flat spacetime RRef
abcd obviously vanishes. ReplacingKab with

a tensor K̂ab and contracting (1.6) with hcd yields (1.5). It has been proven that including

the counter term (1.4) leads an action that is finite on asymptotically flat spacetime and

stationary under metric variations for two standard asymptotic hypersurfaces, respectively

referred to as “cylindrical” and “hyperbolic” boundary spacetimes (∂M, h) in [15].

The boundary stress tensor is defined as the functional derivative of the on-shell action

with respect to hab, which takes the form

T π
ab = − 2√

−h

δS

δhab
=

1

8πG

(
πab − π̂ab

)
(1.7)

where hab is a induced metric on the asymptotic boundary, πab = Kab − Khab is the

conjugate momentum of the gravitational field, and π̂ab is an analogous contribution from

the counterterm K̂CT. Then the conserved charge associated with the Killing vector ξa

via (1.7) in the cylindrical coordinates is

Q[ξ] =

∮

Cr

dn+1x
√
γCr

uaCr

T π
abξ

a (1.8)

in (n+3) dimensions, where γ is the trace of the induced metric on the r = const. boundary

at t = const., and Cr is a Cauchy surface within a constant r hypersurface Hr such that

C = limr→∞Cr is a Cauchy surface in the cylindrical boundary H, and ua is a timelike

unit vector normal to C in Hr.

In practice, however, the variation of the action has additional terms as a consequence

of the definition (1.5); these are represented by ∆ab and must be added to eq. (1.7). Despite

this, we shall demonstrate that the quantities ∆ab do not modify either conserved quantities

as given by (1.8) or the conservation of the boundary stress-energy for cylindrical boundary

conditions. Investigation of the connection between the boundary stress energy in (1.7) with

the counter term definition (1.5) indicated that the extra term ∆ab vanishes for higher than

4-dimensional spacetime and makes no contribution to conserved charges for 4-dimensional

spacetime [19]. These computations were carried out using hyperboloid coordinates for the

boundary of the asymptotically flat spacetime, compatible with previous studies [20, 21],

and [7]. Specifically the conserved charges were shown to agree [19] with those defined by

Ashtekar and Hansen [7].

Here we investigate the boundary stress tensor method (1.7) associated with Mann-

Marolf counterterm for cylindrical boundary conditions. As the structure of the boundary

and the falloff rates of the metric components differ from those in the hyperbolic case, our

aim is to understand the role played by ∆ab in the context of defining a boundary stress-

energy and conserved charges. As many spacetimes are commonly described in coordinates

that asymptote to cylindrical ones, using the cylindrical boundary condition thus has great

practical advantages for computation. By contrast, hyperboloid coordinates are rather

impractical insofar as they require a non-trivial transformation of the coordinates of most

asymptotically flat metrics.

With the same purpose, Astefanesei, Mann, and Stelea made some preliminary inves-

tigations using cylindrical coordinates, but considered only leading order fall-off conditions
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on components of the metric [22]. This is not sufficient for understanding the role played

by ∆ab in the asymptotically flat boundary counterterm approach using (1.5).

We begin with defining an (n+3)-dimensional asymptotically flat and static spacetime

in cylindrical coordinates, whose metric functions fall off at least as fast as r−(n+2). We then

compute ∆ab as a power series in 1/r up to the relevant fall off levels that could potentially

affect the conserved charges. We find that i) to leading order, ∆ab is manifestly zero for

arbitrary dimensions, ii) the first sub-leading order of ∆ab for n = 1 is zero, iii) ∆ab does not

vanish for n > 1, but iv) its non-vanishing does not affect conserved quantities. In addition,

we find that for n ≥ 2 manifestly DaTab = 0, but for n = 1 satisfying DaTab = 0 requires a

condition between higher-order coefficients in the metric, and this calculation is described in

appendix F. Finally, we show explicitly how the conserved quantity formula (1.8) associated

with the counterterm (1.5) works in (n+ 3)-dimensional static spacetime.

Our paper proceeds as follows. In section 2, we review a variation of the action and the

boundary stress tensor demonstrated already in [15, 19], and introduce our definition of

asymptotic flatness in the cylindrical coordinates. Section 3 explains the process of deriv-

ing ∆ab and exhibits its explicit form: first the extrinsic curvature, Kab, of the asymptotic

boundary (with normal vector, nα) is calculated, and the result is inserted into the decom-

posed Einstein equations. Once the boundary surface Ricci tensor, Rab, is obtained, the

counterterm K̂ab via (1.5) can be found. From this ∆ab is eventually computed in terms of

K̂ab. As it turns out that ∆ab is not zero, we investigate the how it is related to the con-

served quantity formula (1.8), and show that DaT
ab = 0. In section 4, we provide explicit

examples of how to compute conserved charges in (n+ 3)-dimensional static spacetime.

2 Preliminaries

2.1 A variation of the action and the boundary stress tensor

The action we start with is

S =
1

16πG

∫

M

√
−gR+

1

8πG

∫

∂M

√
−h(K − K̂) (2.1)

where the first and second term are the Einstein-Hilbert and Gibbons-Hawking term, and

the third term is Mann and Marolf counterterm (MM-counterterm, henceforth) defined

from (1.5). The fact that the on-shell action (2.1) is finite and the variation of the action

vanishes on-shell was proved in [15] for both cases of cylindrical cut-off and hyperbolic

cut-off. In this section, we compute the variation of the action (2.1) with respect to hab
and the form of the boundary stress tensor.

Taking a variation of the action with respect to the metric and eliminating the equation

of the motion, we get

δS =
1

16πG

∫

∂M

√
−h

(
− πab + π̂ab +∆ab

)
δhab (2.2)
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where πab = Kab − Khab, π̂ab = K̂ab − K̂hab, and ∆ab represents extra terms that arise

from the definition (1.5). Explicitly [19]

∆ab = K̂ab − 2L̃cd
(
K̂cdK̂

ab − K̂a
c K̂

b
d

)
+D2L̃ab + habDkDlL̃

kl −Dk

(
DaL̃kb +DbL̃ka

)
(2.3)

where Da is a covariant derivative compatible with hab defined on an n + 2 dimensional

hypersurface, and L̃ab indicates

L ab
cd = habK̂cd + δac δ

b
dK̂ − δac K̂

b
d − δbcK̂

a
d , (2.4)

L̃ab = hcd(L−1) ab
cd . (2.5)

The detailed procedures are described in appendices A and D. Equation (2.2) directly leads

to the boundary stress tensor, which is defined as the functional derivative of the on-shell

action with respect to hab, associated with the MM-counterterm, and is

Tab := − 2√
−h

δS

δhab
=

1

8πG

(
πab − π̂ab +∆ab

)
(2.6)

where only T π
ab, which indicates the first two terms in the right side, is expected to yield

conserved charges. The explicit form of ∆ab will be obtained in section 3.

2.2 Asymptotic flatness

Adopting an approach to defining asymptotic flatness similar to that in hyperbolic coordi-

nates [20, 21], we define a spacetime (M, g) in cylindrical coordinates and confine ourselves

to this spacetime throughout this paper. Assuming that a static spacetime (M, g) is ra-

dially smooth of order m at spatial infinity in (n + 3) dimensions, the components of the

metric take the asymptotic form

gµν = ηµν +
m∑

k=1

l
(k)
µν (ηA/r)

rn+k−1
+ f (m+1)

µν (r, ηA) (2.7)

where n ≥ 1, r is a radial coordinate, and ηA are angular coordinates associated with the

metric µ
(0)
AB on the unit sphere Sn+1, and l

(k)
µν is C∞ in ηA/r and f (k) = O(1/rm). Defining

functions wa(ηA) at t = const. such that

xa

r
= wa(ηA), dxa = wadr + rwa

,Adη
A, (2.8)

eq. (2.7) transforms into

ηµνdx
µdxν = −dt2 + dr2 + r2µ

(0)
ABdη

AdηB,

γ̃(k) = −l
(k)
tt , α̃(k) = l

(k)
ab w

awb, J
(k)
A = l

(k)
ab w

awb
,A, µ

(k)
AB = l

(k)
ab w

a
,Aw

b
,B (2.9)
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in turn yielding the explicit form

ds2 =−
(
1 +

m∑

k=1

γ̃(k)(ηA)

rn+k−1
+O

(
1

rm+1

))
dt2 +

(
1 +

m∑

k=1

α̃(k)(ηA)

rn+k−1
+O

(
1

rm+1

))
dr2

+ 2

( m∑

k=1

J
(k)
A (ηA)

rn+k−1
+O

(
1

rm+1

))
rdrdηA

+ r2
(
µ
(0)
AB +

m∑

k=1

µ
(k)
AB(η

A)

rn+k−1
+O

(
1

rm+1

))
dηAdηB (2.10)

where γ̃(k), α̃(k) are smooth functions, and J
(k)
A are smooth vector fields, and µ

(1)
AB, µ

(2)
AB are

smooth tensor fields on Sn+1. The symbols O(r−(m+1)) refer to terms that fall-off at least

as fast as r−(m+1) as one approaches spacelike infinity, i.e., r → +∞ with fixed η. Without

loss of generality, we find it convenient to substitute

(
1 +

m∑

k=1

α̃(k)

rn+k−1

)
=

(
1 +

m∑

k=1

α(k)

rn+k−1

)2

+O
(

1

rm+1

)
(2.11)

in (2.10), and likewise for the gtt-component ( γ̃ changes to γ ). In order to simplify the

metric, we first try to remove J
(1)
A in (2.10) by using a coordinate transformation

ηA = η̄A +
1

rn
G(1)A(η̄B), r = r̄, t = t,

dηA = dη̄A +
1

rn
G

(1)A
,B dη̄B − n

rn+1
G(1)Adr. (2.12)

Applying (2.12) into (2.10), the leading term of the grA-component is eliminated by

choosing

J
(1)
A = nG(1)Bµ

(0)
AB, (2.13)

and this allows us to set J
(1)
A = 0 in (2.10). Subsequently we get rid of α(2) via the

additional coordinate transformation:

r = r̄ +
1

r̄n
F (2)(ηA),

dr = dr̄ − n
1

r̄n+1
F (2)dr̄ +

1

r̄n
F

(2)
,B dηB. (2.14)

Plugging these to (2.10), the 1/r̄n+1-term in dr̄2 can be set to zero via

α(2) = nF (2) (2.15)

where the leading term in rdrdηA is not affected. Generalizing these coordinate

transformations to include higher orders of 1/r yields

ηA = η̄A +
1

r̄n+k−1
G(k)A, r = r̄ +

1

r̄n+k−1
F (k+1) (2.16)
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where these transformations are sequentially applied to the above metric. We can then

show that

J
(1)
A = J

(2)
A = · · · = J

(m)
A = 0,

α(2) = α(3) = · · · = α(m) = 0. (2.17)

We finally obtain the simplified form of the metric

ds2 =

(
1 +

α

rn

)2

dr2 −
(
1 +

γ(1)

rn
+

γ(2)

rn+1
+O

(
1

rn+2

))2

dt2

+ r2
(
µ
(0)
AB +

1

rn
µ
(1)
AB +

1

rn+1
µ
(2)
AB +O

(
1

rn+2

))
dηAdηB,

which we rewrite as

ds2 =N2dr2 + habdx
adxb

=

(
1 +

α

rn

)2

dr2 +

(
h
(0)
ab +

1

rn
h
(1)
ab +

1

rn+1
h
(2)
ab + · · ·

)
dxadxb (2.18)

where xa = (t, ηA) are coordinates on the (n + 2)-dimensional hypersurface compatible

with the metric hab, whose expansion is

habdx
adxb =−

(
1 +

γ(1)

rn
+

γ(2)

rn+1
+O

(
1

rn+2

))2

dt2

+ r2
(
µ
(0)
AB +

1

rn
µ
(1)
AB +

1

rn+1
µ
(2)
AB +O

(
1

rn+2

))
dηAdηB (2.19)

where a = t, A.

The boundary spacetime (∂M, h) is actually a one-parameter family (MΩ, gΩ) where

MΩ ⊂ M and MΩ converges to M with increasing Ω. The boundary of a region (MΩ, gΩ)

for a certain value of Ω is described by (∂MΩ, hΩ). As Ω is varied, we get a family

of boundaries that provide a specific way of ‘cutting-off’ the space-time M, with the

asymptotic boundary obtained as Ω → ∞. In this paper, our interest is in the class

“cylindrical cut-offs”, for which

Ωcyl = r +O(r0). (2.20)

Note that the metric (2.18) takes the same form as the metric in hyperbolic coordi-

nates [19] except that hab is further decomposed into a tt-component and angular com-

ponents. Naively one might expect that our result is easily derived from the hyperbolic

case in ref. [19] where Ω is taken to be

Ωhyp = ρ+O(ρ0). (2.21)

and the coordinate ρ is defined by ρ2 = r2− t2. However this is not true since in hyperbolic

coordinates the boundary metric (parametrized by a surface ρ = constant) is manifestly

covariant under a variation, whereas in cylindrical coordinates the boundary metric defined

at r = constant does not change fully covariantly. In particular, the tt-component and

– 8 –
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angular components in the induced metric hab are have expansions in different orders of

r. For example, taking a variation with respect to each surface parameter, i.e. ρ or r, in

hyperbolic coordinates
∂

∂ρ

(
ρh

(0)
ab

)
= h

(0)
ab , (2.22)

whereas in cylindrical coordinates

∂

∂r

(
rh

(0)
ab

)
= h

(0)
ab + 2r2µ

(0)
ab . (2.23)

In (2.23) only the angular components transform covariantly in the (n+1) dimensional sub-

space, whereas in (2.22), all components transform covariantly. This distinction introduces

new features and subtleties in cylindrical coordinates that are rather more complicated

than the hyperbolic case.

3 Boundary stress tensor T ab

With the definition of asymptotic flatness in (2.18), we investigate ∆ab by finding its definite

form. Note that ∆ab is a remnant term, obtained from subtracting π̂ab from the variation

of the MM-counterterm in the action, and so is totally expressed by the MM-counterterm

solution K̂ab and its covariant derivatives. Consequently, we shall see that ∆ab does not

vanish entirely. We next consider the role that the non-vanishing ∆ab play with respect to

conserved quantities.

3.1 Calculation of ∆ab

We start with setting up the spacelike normal vector nα on a cylindrical hypersurface on

r =constant, where asymptotically r → ∞, and calculate its extrinsic curvature Kab. At

the boundary the decomposed Einstein equations are

⊥ (Rab) = Rab +Daab − aaab −£nKab −KKab + 2Kc
aKcb, (3.1)

⊥ (Racn
c) = DbKab −DaK = −Dbπab, (3.2)

Rabn
anb = −£nK −KabKab + (Dba

b − abab), (3.3)

where ab and Kab are defined by

ab = na∇an
b, Kab = ∇anb − naab, (3.4)

and the last equation can be rewritten as

R−K2 +KabKab = 0. (3.5)

For asymptotically flat spacetimes, the left-hand sides of (3.1)–(3.3) become zero as r → ∞.

Equation (3.1) yieldsRab. The remaining equations yield constraint conditions between the

coefficients in the metric, e.g. α, γ(1) or γ(2). We solve the decomposed Einstein equation

in powers of 1/r, i.e. Rab = R(0)
ab + 1

rnR
(1)
ab + 1

rn+1R(2)
ab + · · · , where for n = 1 the sub-sub-

leading term must be separately dealt with from the n ≥ 2 cases. This is because when

– 9 –
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n = 1 the product of two sub-leading terms has the same order as the sub-sub-leading term

(both of order of 1/r2), whereas for n ≥ 2 this product is of order of 1/r2n and falls off

faster than the sub-sub-leading term (of order 1/rn+1) and so does not contribute at that

order. The solutions and process are described in appendix B.

Now, for convenience we redefine K̂ab in terms of Q̂ab

K̂ab = rQ̂ab = rQ̂
(0)
ab +

1

rn−1
Q̂

(1)
ab +

1

rn
Q̂

(2)
ab + · · · , (3.6)

and then expand relation (1.5):

R(0)
ab =nµ

(0)
ab , (3.7)

R(1)
ab = r2Q̂(1)µ

(0)
ab + (n− 1)Q̂

(1)
ab − 2u(0)a u

(0)cQ̂
(1)
cb − µ(1)µ

(0)
ab + µ

(1)
ab , (3.8)

(n ≥ 2), R(2)
ab = r2Q̂(2)µ

(0)
ab + (n− 1)Q̂

(2)
ab − 2u(0)a u

(0)cQ̂
(2)
cb − µ(2)µ

(0)
ab + µ

(2)
ab , (3.9)

(n = 1), R(2)
ab = r2Q̂(2)µ

(0)
ab − µ(2)µ

(0)
ab + µ

(2)
ab − 2u(0)a u

(0)cQ̂
(2)
bc +

r2

4
R(1)R(1)

ab +
r2

4
R(1)µ

(1)
ab

− 1

4
µ(1)R(1)

ab −
r2

2
R(1)

cd h
(1)cdµ

(0)
ab −

r2

4
R(1)c

a R(1)
cb +

1

4
R(1)

ae µ
(1)e
b +

1

4
µ(1)e

a R(1)
eb

− 1

4
µ(1)µ

(1)
ab +

1

2
µ
(1)
cd µ

(1)cdµ
(0)
ab − 1

4
µ(1)c

a µ
(1)
cb (3.10)

where the sub-sub-leading order is separately treated as noted above and Q̂(i) is the trace

of Q̂
(i)
ab . After some rearrangement and insertion of the asymptotic expansion of the metric

(with details given in appendix C) we obtain Q̂ab explicitly for n ≥ 2:

Q̂
(0)
ab =µ

(0)
ab , (3.11)

Q̂
(1)
ab =

1

(n− 1)

[
(n− 1)µ

(1)
ab + αµ

(0)
ab + γ(1)µ

(0)
ab +DaDbα

]
, (3.12)

Q̂
(2)
ab =

1

(n− 1)

[
(n− 1)

2r2
h
(2)
ab +

(n+ 2)

n
γ(2)µ

(0)
ab + nµ

(2)
ab

]
. (3.13)

For n = 1 it is clear from equations (3.8) and (3.10) that Q̂
(i)
ab for i = 1, 2 cannot be uniquely

determined. As shown in appendix C, we can determine Q̂
(i)
ab up certain ambiguities;

explicitly we find

Q̂
(1)
ab = β1R(1)

ab + r2β2R(1)µ
(0)
ab + λ1µ

(1)
ab + λ2µ

(1)µ
(0)
ab

where β1 + 2β2 = 1
2 , λ1 + 2λ2 = 1

2 . The ambiguities can be eliminated by applying

µ
(1)
ab = −2αµ

(0)
ab , which is the condition for fixing asymptotic supertranslation symmetry,

and using DaDbα = −αµ
(0)
ab − γ(1)µ

(0)
ab as shown in appendix C. As a result, we obtain

Q̂
(1)
ab =

1

2
µ
(1)
ab +DaDbα (3.14)

The expression for Q̂
(2)
ab is somewhat more complicated (see eq. (C.11)) and is deter-

mined up to terms of the form λ3µ
(2)
ab + λ4µ

(2)µ
(0)
ab where λ3 +2λ4 =

1
2 . We can choose the

– 10 –



J
H
E
P
1
2
(
2
0
1
2
)
0
9
8

remaining coefficients by demanding that the relation (1.8) holds; as shown in appendix C,

this gives λ3 = −3
2 and λ4 =

1
2 , thereby yielding

Q̂
(2)
ab = −1

2
µ
(2)
ab +

1

2
µ(2)µ

(0)
ab − 3

2
γ(2)µ(0)ab − 1

r2
γ(2)u(0)a u

(0)
b − 5

2
α2µ

(0)
ab +

2

r2
αγ(1)u(0)au(0)b.

(3.15)

Next, the form of L̃ab in (2.3) can be found by using (2.4) and (2.5); we find for n ≥ 2

L̃(0)ab =
r

n(n+ 1)

[
(n+ 1)

2r2
µ(0)ab − (n− 1)

2
u(0)au(0)b

]
, (3.16)

L̃(1)ab =
r

n(n− 1)

[
r2

(n−1)
DaDbα−(n−1)

2r2
µ(1)ab +

(n2 + 1)

2(n−1)r2
αµ(0)ab +

(n2 + 1)

2(n−1)r2
γ(1)µ(0)ab

+
n

4r2
µ(1)µ

(0)
ab − (n− 1)2

2(n+ 1)
αu(0)au(0)b +

(n− 1)2

2(n+ 1)
γ(1)u(0)au(0)b

− n(n− 1)2

4(n+ 1)2
µ(1)u(0)au(0)b

]
, (3.17)

L̃(2)ab =
r

n(n− 1)

[
(2n2 − 5n+ 3)

2(n+ 1)
γ(2)u(0)au(0)b−(n3 − 4n2 − 5n− 4)

2n(n− 1)(n+ 1)r2
γ(2)µ(0)ab

− n(n− 3)

2(n− 1)r2
µ(2)ab

]
, (3.18)

and for n = 1

L̃(0)ab =
1

2r
µ(0)ab, L̃(1)ab =

1

r
αµ(0)ab +

1

2r
γ(1)µ(0)ab, (3.19)

L̃(2)ab = − 1

4r
µ(2)ab +

1

2r
γ(2)µ(0)ab − r

4
γ(2)u(0)au(0)b +

13

4r
α2µ(0)ab

+
5

2r
αγ(1)µ(0)ab +

1

2r
(γ(1))2µ(0)ab +

r

2
αγ(1)u(0)au(0)b. (3.20)

This process is described in appendix D.

Recalling from (2.3) the form of ∆ab

∆ab = K̂ab − 2L̃cd
(
K̂cdK̂

ab − K̂a
c K̂

b
d

)
+D2L̃ab + habDkDlL̃

kl −Dk

(
DaL̃kb +DbL̃ka

)
,

and expanding

∆ab = [∆ab](0) +
1

rn
[∆ab](1) +

1

rn+1
[∆ab](2) + · · · , (3.21)

we find for n > 1 the leading order and the sub-leading orders to be

[∆ab](0) =0, (3.22)

[∆ab](1) =
r

n(n−1)

[
DaDbγ(1) +

n2

(n+1)2
D2µ(1)u(0)au(0)b +

2n

(n+1)
D2αu(0)au(0)b

]
(3.23)

Indeed, that [∆ab](1) is non-zero is quite obvious, because from (2.3) the indices of the first

three terms in ∆ab contain only angular components (note K̂
(1)
ab = rQ̂

(1)
ab ), whereas the last

four terms (beginning with L̃
(1)
ab in (2.3)) have both angular components and tt-components.

– 11 –
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As a result, in the summation, the angular parts are canceled out except DaDbγ(1), but

tt-component terms remain.

At sub-sub-leading order we obtain

[∆ab](2) =
r

n(n− 1)2

[
(n3 − 2n2 − n− 2)

n(n+ 1)
DaDbγ(2)

− (n3 + 8n2 + 5n+ 2)

n(n+ 1)r4
γ(2)µ(0)ab − n(n+ 1)

r4
µ(2)ab

]
. (3.24)

In contrast to the sub-leading case, in the sub-sub-leading term both K̂
(2)
ab (= rQ̂

(2)
ab , given

in (3.13)) and L̃
(2)
ab (given in (3.18)) carry both tt and angular components. Here we

see similarities with the hyperbolic case [19], for which K̂
(2)
ab = ρh

(2)
ab and h(2) = 0 were

respectively obtained from the MM-relation and the decomposed Einstein equations. These

require R(2) = 0, and yield [∆ab](2) = 0. For the cylindrical case we are considering, we

find that the terms associated with h
(2)
ab in K̂

(2)
ab and in L̃

(2)
ab cancel out in [∆ab](2), as shown

in appendix E. However, unlike the hyperbolic case, in the cylindrical case, h(2) breaks up

into µ(2) and γ(2) (explicitly h(2) = µ(2) + 2γ(2)); consequently the decomposed Einstein

equations imply R(2) is non-vanishing and contributes to K̂
(2)
ab . Indeed from eq. (B.10) we

see that R(2) can be expressed in terms of any one of h(2), µ(2), or γ(2); we have expressed

the result in terms of γ(2) in (3.13). The quantity γ(2) does not vanish, but remains in (3.24).

For n = 1 up to sub-leading order we find

[∆ab](0) = 0, and [∆ab](1) = 0, (3.25)

where we have used DaDbα = −αµ
(0)
ab − γ(1)µ

(0)
ab , which can be inferred from D2α =

− 2
r2
α− 2

r2
γ(1). The sub-sub-leading term is

[∆ab](2) =− 2

r3
µ(2)ab − 2

r3
γ(2)µ(0)ab − 4

r3
α2µ(0)ab − 6

r3
αγ(1)µ(0)ab − 4

r3
(γ(1))2µ(0)ab

+
9

2r
DeαDeαµ

(0)ab + rDaDbγ(2) − 5rDaαDbα− 3r

2
D2α2u(0)au(0)a

− 5r

4
D2(αγ(1))u(0)au(0)b. (3.26)

These results for n = 1 are commensurate with the hyperbolic case [19], which has mani-

festly vanishing [∆ab](0) and [∆ab](1), but non-vanishing [∆ab](2).

That we find ∆ab non-vanishing implies that the boundary stress tensor in cylindrical

coordinates generally takes the form Tab in (2.6) and not T π
ab in (1.7).

3.2 Conserved quantities and ∆ab

Since the boundary stress tensor is described not by T π
ab but by Tab (due ∆

ab 6= 0), we now

consider how ∆ab is related to conserved quantities as given in equation (1.8). Plugging

Tab = T π
ab −∆ab into (1.8), we see that ∆ab will contribute to conserved quantities via

Q∆[ξ] = − 1

8πG

∮
dn+1x

√
γua∆abξ

b. (3.27)
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For n ≥ 2 we find that Q∆[ξ] = 0. The sub-leading term contributes

[Q∆](1) = − 1

8πG

∮
dn+1x

√
γu(0)a[∆ab]

(1)ξ(0)b,

=
r

8πG

1

(n− 1)(n+ 1)

∮
dn+1x

√
γ

(
n

(n+ 1)
D2µ(1) + 2D2α

)
,

= 0, (3.28)

where u(0)a = −δat and ξ(0)t = 1 has been used, and the total derivative on the closed surface

becomes zero. The sub-sub-leading order also makes no contribution, since from (3.24) we

see that [∆ab]
(2) contracted with the timelike normal vector u(0)a vanishes and so [Q∆](2)

obviously becomes zero.

For n = 1 [∆ab](1) = 0 and so only the sub-sub-leading term could possibly contribute.

Carrying out similar manipulations to the previous case, we get

[Q∆](2) = − 1

8πG

∮
d2x

√
γu(0)a[∆ab]

(2)ξ(0)b,

= − 1

8πG

∮
d2x

√
γ

(
3r

2
D2α2 +

5r

4
D2(αγ(1))

)
,

= 0, (3.29)

where u(0)a = −δat and ξ(0)t = 1 has been used, and the total derivative on the closed

surface becomes zero at the end. Indeed, this result is expected, because we required that

Q̂
(2)
ab not contribute to conserved charges.

Hence Q∆ = 0 even though ∆ab 6= 0. As a result the conserved quantity formula is of

the form (1.8) and is given only in terms of T π
ab.

4 (n + 3)-dimensional static spacetime

In this section, we apply the boundary stress tensor method to (n+ 3)-dimensional static

spacetime. We show that ∆ab makes no contribution with respect to the conserved quan-

tities and obtain the conserved charges by using (1.8).

We examine the boundary stress tensor method associated with the MM-counterterm

in (n + 3)-dimensional static spacetime. In this spacetime, we check that ∆ab = 0, and

prove that the boundary stress tensor yields conserved charges agreed with the usual defi-

nition [1–4, 23].

From the Myers-Perry static black hole solution [23], the metric is

ds2 = −
(
1− µ

rn+2

)
dt2 +

(
1− µ

rn+2

)−1

dr2 + r2dΩ2
n+1, (4.1)

where µ is related to the mass M

M =
(n+ 2)An+1

16πG
µ, An+1 =

2π(n+2)/2

Γ((n+ 2)/2)
, (4.2)
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and comparing (4.1) with our metric (2.18), they are related to

γ(1) = −1

2
µ, α =

1

2
µ, γ(2) = 0, µ

(1)
AB = µ

(2)
AB = 0. (4.3)

Substituting these values in the results (3.23)–(3.24) for n > 1 and (3.26) for n = 1, it is

straightforwardly proved that [∆ab](i) = 0 for i = 1, 2 for a general n. Since ∆ab vanishes

for n > 1, the boundary stress tensor becomes

Tab=− 1

8πG

1

rn−1

(
n

2r2
h
(1)
ab +

1

r2
γ(1)h

(0)
ab +

n

(n−1)
αµ

(0)
ab +

1

(n−1)
γ(1)µ

(0)
ab +

1

(n−1)
DaDbα

)
,

(4.4)

and the conserved charge is directly obtained

Q[ξt] =
1

8πG

∫
dn+1x

√
γ(0)u(0)tT

(1)
tt ξ(0)t,

=
1

8πG
rn+1An+1(−1)

(
− (n+ 1)

2rn+1
µ

)
,

=
(n+ 1)

(n+ 2)
M. (4.5)

For n = 1 the boundary stress tensor has the form

Tab = − 1

8πG

(
1

2r2
h
(1)
ab − 1

2
µ
(1)
ab

)
, (4.6)

and the conserved charge is

Q[ξt] =
1

8πG

∫ 2π

0
dϕ

∫ π

0
dθ r2 sin θ(−1)

(
− 1

r2
µ

)
= M, (4.7)

which corresponds to [23].

5 Discussion

We have computed the boundary stress tensor in (n + 3) dimensions associated with the

MM-counterterm in asymptotically flat static spacetime for cylindrical boundary surfaces

as r → ∞. We began with defining the most general form of the asymptotically static

metric and then solved the decomposed Einstein equations and the MM-relation. We

found the MM-counterterm solution K̂ab to be uniquely determined for n ≥ 2, but had

ambiguities for n = 1.

For n = 1, at sub-leading order these ambiguities can be nullified by choosing µ
(1)
ab =

−2αµ
(0)
ab and DaDbα = −αµ

(0)
ab − γ(1)µ

(0)
ab . The quantity ∆ab consequently vanishes. At

sub-sub-leading order we found that while these ambiguities in K̂ab cannot ensure that the

resultant contribution to ∆ab vanishes, as displayed in (3.25)–(3.26), they can be chosen

to ensure that ∆ab does not contribute to the conserved charge. These results are similar

to those obtained for the hyperbolic case [19], which has manifestly vanishing [∆ab](0) and

– 14 –
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[∆ab](1), but non-vanishing [∆ab](2). The stress-energy tensor is conserved provided (F.7)

holds, which can be obtained by applying (B.24)–(B.26).

For n ≥ 2 we find at both sub-leading and sub-sub-leading orders that K̂ab is deter-

mined. The quantity ∆ab turns out to be non-zero, as shown in (3.22)–(3.24). This result

indicates that the boundary stress tensor should be Tab in (2.6) not T π
ab in (1.7). How-

ever we find that the contribution from ∆ab does not contribute to the conserved charge

(see (3.28), (3.29)); only T π
ab produces conserved charges and so the form of the conserved

quantity formula (1.8) is still valid. We also investigated the divergence of the boundary

stress tensor, and found that DaTab = 0 in appendix F.

We demonstrated for a static black hole in (n + 3)-dimensional static spacetime that

∆ab manifestly is zero, and obtained the conserved charge from the boundary stress tensor.

This agrees with the ADM mass, demonstrating that the boundary stress tensor with

MM-counterterm is also applicable using cylindrical boundary conditions.

As mentioned in section 2.2, there are some distinguishing properties between the

hyperbolic boundary case and the cylindrical boundary case. In the hyperbolic case, all

components of the induced metric hab can be expanded to the same order in r, and so

are covariant under the variation. However in the cylindrical case the induced metric hab
is again decomposed into tt- and angular components; these components have expansions

to different orders in r. They do not covariantly transform, thereby not permitting infer-

ence of results from the hyperbolic case to the cylindrical case. Furthermore, these two

boundary conditions yield different solutions from the decomposed Einstein equations. In

the hyperbolic case, the sub-sub-leading order of the Ricci tensor and the trace of the sub-

sub-leading order of hab become zero, so they in turn affect the sub-sub-leading order of

K̂ab and subsequently imply that the sub-sub-leading order of ∆ab is zero. By contrast, in

the cylindrical case the sub-sub-leading order of the Ricci tensor and the trace of the sub-

sub-leading order of hab are not zero; they partly contribute to the sub-sub-leading order

of ∆ab, rendering it nonzero. Despite these differing properties between the two boundary

conditions, we found that the MM-counterterm is still valid yielding different descriptions

of the boundary stress tensor in more than 4 dimensions for the respective cases.
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A Variation of the action and the form of ∆ab

The variation of the action (2.2) with respect to hab is

δS =
1

16πG

∫

∂M

√
−h

[(
−πab − habK̂ + 2K̂ab

)
δhab − 2habδK̂ab

]
(A.1)

and to express δK̂ab as a form of δhab, we take a derivation of (1.5) with respect to hab

δRcd = δK̂abL
ab

cd +
(
K̂cdK̂mn − K̂cmK̂nd

)
δhmn (A.2)
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where L ab
cd implies

L ab
cd = habK̂cd + δac δ

b
dK̂ − δac K̂

b
d − δbcK̂

a
d . (A.3)

Using the identity

(L−1) mn
ab (L) cd

mn = δcaδ
d
b , (A.4)

eq. (A.2) is changed to

δK̂ab = (L−1) cd
ab

[
δRcd +

(
K̂cdK̂

kl − K̂k
c K̂

l
d

)
δhkl

]
, (A.5)

and then (A.1) is rearranged to

δS =
1

16πG

∫

∂M

√
−h

[(
− πab + π̂ab+ K̂ab − 2L̃cd

(
K̂cdK̂

ab − K̂a
c K̂

b
d

))
δhab − 2L̃abδRab

]

(A.6)

where π̂ab = K̂ab − habK̂, and L̃ab is defined in (2.5). Using the fact that

δRab = −1

2
hklDaDbδhkl −

1

2
hklDkDlδhab + hklDkD(aδhb)l (A.7)

and doing integration by parts, (A.6) becomes

δS =
1

16πG

∫

∂M

√
−h

[
− πab + π̂ab + K̂ab − 2L̃cd

(
K̂cdK̂

ab − K̂a
c K̂

b
d

)

+D2L̃ab + habDkDlL̃
kl −Dk

(
DaL̃kb +DbL̃ka

)]
δhab. (A.8)

From the definition of the boundary stress tensor for the asymptotically flat spacetimes,

Tab in (2.6) is derived

T ab = − 2√
−h

δS

δhab
=

1

8πG

(
πab − π̂ab −∆ab

)
,

and ∆ab indicates

∆ab = K̂ab − 2L̃cd
(
K̂cdK̂

ab − K̂a
c K̂

b
d

)
+D2L̃ab + habDkDlL̃

kl −Dk

(
DaL̃kb +DbL̃ka

)
.

B Decomposed Einstein equations

B.1 n ≥ 2 case

In the asymptotically flat spacetime, which is described by the metric (2.18), the extrinsic

curvature is calculated

Kab = rµ
(0)
ab +

1

rn−1

(
µ
(1)
ab −αµ

(0)
ab − n

2r2
h
(1)
ab

)
+

1

rn

(
µ
(2)
ab − (n+ 1)

2r2
h
(2)
ab

)
+O

(
1

rn+3

)
, (B.1)

and taking the trace of it yields

K =
(n+ 1)

r
− 1

rn+1

(
α(n+ 1) +

n

2
h(1)

)
− 1

rn+2

(n+ 1)

2
h(2) +O

(
1

rn+3

)
(B.2)
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where K = Kabh
ab and h(m) = h

(m)
ab h(0)ab for m = 1, 2. The acceleration becomes

aa =

(
0,− 1

rn
Daα

)
. (B.3)

The first decomposed Einstein equation (3.1) is expanded

0 =R(0)
ab − nµ

(0)
ab +

1

rn

[
R(1)

ab −
(
nµ

(1)
ab − nαµ

(0)
ab − n

2
h(1)µ

(0)
ab +DaDbα

)]

+
1

rn+1

[
R(2)

ab −
(
nµ

(2)
ab − (n+ 1)

2
h(2)µ

(0)
ab +

(n+ 1)

2r2
h
(2)
ab

)]
+O

(
1

rn+3

)
, (B.4)

the second one (3.2) takes

0 =
1

rn+1

[
Daγ

(1) + nDaα− n

2

(
Dbh

(1)
ab −Dah

(1)
)]

+
1

rn+2

[
Daγ

(2) − (n+ 1)

2

(
Dbh

(2)
ab −Dah

(2)

)]
+O

(
1

rn+3

)
, (B.5)

and the last (3.3) gives

0 =R(0) − n(n+ 1)

r2
+

1

rn

[
R(1) −

(
− 2n(n+ 1)

r2
α− n(n+ 1)

r2
h(1) +

2n

r2
µ(1)

)]

+
1

rn+1

[
R(2) −

(
(2n+ 1)

r2
µ(2) − (n+ 1)2

r2
h(2)

)]
+O

(
1

rn+3

)
. (B.6)

Note that the asymptotic expansion of R(m)
ab is defined as

R(m)
ab =

1

2

(
DcDah

(m)
cb +DcDbh

(m)
ac −DcDch

(m)
ab −DaDbh

(m)
)

(B.7)

where m = 1, 2, and R(m) is a trace of (B.7)

R(m) = h(0)abR(m)
ab . (B.8)

As the solutions to the decomposed Einstein equations have to be consistent each other, we

first compare R’s, one from contracting Rab in (B.4) with h(0)ab and the other from (B.6),

then we get

R(1) = 2D2α =
2n

r2
µ(1) − 2n(n+ 1)

r2
α− n(n+ 1)

r2
h(1), (B.9)

R(2) =
n

2r2
h(2) =

n

(n+ 2)r2
µ(2) = − 2

r2
γ(2). (B.10)

Now, taking the covariant derivative Da to (B.5) leads the expression for Ricci scalar

via (B.7)–(B.8) and this Ricci scalar satisfies with (B.9)–(B.10) if

D2γ(1) = 0, (B.11)

D2γ(2) = −(n+ 1)

r2
γ(2), D2µ(2) = −(n+ 1)

r2
µ(2), D2h(2) = −(n+ 1)

r2
h(2). (B.12)
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B.2 n = 1 case

As mentioned in section 3, the n = 1 case needs to be separately dealt with from the case

with general n, because the sub-sub-leading order is expressed not only by the sub-sub-

leading order quantities, but also by a combination of the sub-leading order values.

With the metric (2.18) having n = 1, the extrinsic curvature at the boundary of the

spacetime yields

Kab = rµ
(0)
ab +

(
µ
(1)
ab −αµ

(0)
ab −

1

2r2
h
(1)
ab

)
+
1

r

(
µ
(2)
ab −αµ

(1)
ab +

α

2r2
h
(1)
ab −

1

r2
h
(2)
ab

)
+O

(
1

r2

)
, (B.13)

and its trace is

K =
2

r
− 1

r2

(
2α+

1

2
h(1)

)
+

1

r3

(
− h(2) +

α

2
h(1) +

1

2
h
(1)
ab h

(1)ab

)
+O

(
1

r4

)
. (B.14)

The acceleration aa becomes

aa =

(
0,−1

r
Daα+

1

r2
αDaα

)
. (B.15)

Solving the decomposed Einstein equations as the previous section, (3.1) yields

0 =R(0)
ab − µ

(0)
ab +

1

r

[
R(1)

ab −
(
µ
(1)
ab − αµ

(0)
ab − 1

2
h(1)µ

(0)
ab +DaDbα

)]

+
1

r2

[
R(2)

ab −
(
µ
(2)
ab +

1

r2
h
(2)
ab − h(2)µ

(0)
ab − αµ

(1)
ab − α

r2
h
(1)
ab + αh(1)µ

(0)
ab

− 1

2
h(1)µ

(1)
ab +

1

4r2
h(1)h

(1)
ab +

1

2
h
(1)
cd h

(1)cdµ
(0)
ab − 1

2r2
h(1)ea h

(1)
eb − αDaDbα

− 1

2
(Dah

(1)
bd +Dbh

(1)
ad −Ddh

(1)
ab )D

dα

)]
+O

(
1

r3

)
, (B.16)

eq. (3.2) takes the form

0 =
1

r2

[
Daγ

(1) +Daα− 1

2

(
Dbh

(1)
ab −Dah

(1)
)]

+
1

r3

[(
Daγ

(2) +
α

2
(Dbh

(1)
ab −Dah

(1))

+
1

2
h(1)ca Dcα− 1

2
h(1)Daα− αDaγ

(1) − 2γ(1)Daγ
(1) − 3

4
h(1)cdDah

(1)
cd +

1

2
h(1)ea Dbh

(1)be

+
1

2
h(1)bcDch

(1)
ab − 1

4
h(1)ea D

eh(1)
)
−
(
Dbh

(2)
ab −Dah

(2)
)]

+O
(

1

r4

)
, (B.17)

and (3.3) becomes

0 =R(0) − 2

r2
+

1

r

[
R(1) − 1

r2

(
−4α− 2h(1) + 2µ(1)

)]

+
1

r2

[
R(2) − 1

r2

(
3µ(2) − 4h(2) − 3αµ(1) + 4αh(1) + 2α2 − 1

2
h(1)µ(1)

+
1

4
(h(1))2 +

7

4
h
(1)
ab h

(1)ab − r2µ
(1)
ab h

(1)ab + r2h(1)abDaDbα

)]
+O

(
1

r4

)
. (B.18)
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For the sub-leading order, we require the same consistency conditions (B.9) and (B.11)

with n = 1 from (B.16)–(B.18), but (B.9) in particular is

R(2) = 2D2α = − 4

r2
α− 4

r2
γ(1), (B.19)

and from this, we can infer that

DaDbα = −αµ
(0)
ab − γ(1)µ

(0)
ab (B.20)

which is useful later in calculating ∆ab. In addition, we have

µ
(1)
ab = −2αµ

(0)
ab , Daγ

(1) = 0, (B.21)

by disposing of the supertranslation which requires that the magnetic part of the four

dimensional Weyl tensor to be zero

kab = h
(1)
ab + 2αr2µ

(0)
ab − 2γ(1)u(0)a u

(0)
b , (B.22)

tab = ǫ cd
a Dckbd = 0. (B.23)

Applying (B.9) and (B.21) to the sub-sub-leading order of (B.16)–(B.18), we obtain

− 1

r2
µ(2) − 6

r2
γ(2) +

2

r2
α2 +

8

r2
αγ(1) +

2

r2
(γ(1))2 = 0, (B.24)

− 1

r2
µ(2) − 8

r2
γ(2) +

6

r2
αγ(1) +

2

r2
(γ(1))2 −D2γ(2) + 2DaαD

aα = 0, (B.25)

D2γ(2) +
2

r2
γ(2) +

2

r2
αγ(1) +

2

r2
α2 − 2DaαD

aα = 0. (B.26)

C Exact solution of Q̂ab

The MM-counterterm K̂ab is changed to Q̂ab in (3.6), and then the relation (1.5) is rewrit-

ten as

r2(Q̂abQ̂− hcdQ̂acQ̂bc) = Rab. (C.1)

C.1 n ≥ 2 case

In order to solve the MM-relation, we need to rearrange (3.7)–(3.9) on Q̂ab; then for n ≥ 2

case, Q̂ab is uniquely determined as follows

Q̂
(0)
ab = µ

(0)
ab , (C.2)

Q̂
(1)
ab =

1

(n− 1)

[
R(1)

ab − r2

2n
R(1)µ

(0)
ab − r2

n(n+ 1)
R(1)

cd u
(0)cu(0)dµ

(0)
ab

+
2

(n+ 1)
u(0)a u(0)cR(1)

cb +
1

2
µ(1)µ

(0)
ab − µ

(1)
ab

]
, (C.3)

Q̂
(2)
ab =

1

(n− 1)

[
R(2)

ab − r2

2n
R(2)µ

(0)
ab − r2

n(n+ 1)
R(2)

cd u
(0)cu(0)dµ

(0)
ab

+
2

(n+ 1)
u(0)a u(0)cR(2)

cb +
1

2
µ(2)µ

(0)
ab − µ

(2)
ab

]
(C.4)
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where ua is the timelike normal vector and µab is the pull-back metric of µAB for

A,B = θ1, . . . , θn+1 on the (n + 1)-dimensional spacelike hypersurface, and Q̂
(m)
ab , R(m)

ab ,

u
(m)
a or µ

(m)
ab for m = 0, 1, and 2 are lowered and raised by h

(0)
ab . As R(1)

ab is constituted

of the pull-back metric components µ
(0)
ab and µ

(1)
ab , the first sub-leading order Q̂

(1)
ab has just

angular components, since α is independent of time, t. Since R(2)
ab has tt-component and

angular components, Q̂
(2)
ab also is expressed by tt- and angular components. Plugging (B.4)

and (B.5) into (C.3) and (C.4), we finally obtain (3.12) and (3.13) in section 3.

C.2 n = 1 case

As seen in (3.8) and (3.10), when n = 1, as the Q̂ab does not show up in the MM-relation,

it is not directly obtainable. However, we can still derive the trace, Q̂(i), which is

Q̂(1) =
1

2
R(1) +

1

2r2
µ(1), (C.5)

Q̂(2) =
1

2
R(2) +

1

2
R(2)

cd u
(0)cu(0)d +

1

2r2
µ(2) − r2

8
(R(1))2 +

1

2
R(1)

cd h
(1)cd +

r2

8
R(1)cdR(1)

cd

− 1

r2
µ(1)cdR(1)

cd +
1

8r2
(µ(1))2 − 3

8r2
µ
(1)
cd µ

(1)cd, (C.6)

where Q̂(i) = Q̂
(i)
abh

(0)ab for i = 1, 2, and the contracted with the timelike normal vectors,

Q̂
(i)
abu

(0)au(0)b, which is

Q̂
(1)
tt = 0, (C.7)

Q̂
(2)
tt =

1

2
R(2)

tt = − 1

r2
γ(2) +

2

r2
αγ(1). (C.8)

From these values, the forms of Q̂
(1)
ab can be inferred as follows

Q̂
(1)
ab =β1R(1)

ab + r2β2R(1)µ
(0)
ab + λ1 µ

(1)
ab + λ2 µ

(1)µ
(0)
ab , (C.9)

where β1, β2, λ1 and λ2 are ambiguities, which are not fixed from (C.5) and (C.7), and

restricted to β1 + 2β2 = 1
2 , and λ1 + 2λ2 = 1

2 . If applying (B.20) and (B.21) into (C.9),

we have

Q̂
(1)
ab = β1(−αµ

(0)
ab − γ(1)µ

(0)
ab +DaDbα) + 2β2(−2α− 2γ(1))µ

(0)
ab − 2αλ1µ

(0)
ab − 4αλ2µ

(0)
ab ,

= β1(−2α− 2γ(1))µ
(0)
ab + 2β2(−2α− 2γ(1))µ

(0)
ab − 2α(λ1 + 2λ2)µ

(0)
ab ,

= (β1 + 2β2)(−2α− 2γ(1))µ
(0)
ab − 2α(λ1 + 2λ2)µ

(0)
ab ,

= −2αµ
(0)
ab − γ(1)µ

(0)
ab . (C.10)

As shown the above, regardless of the ambiguities we become to have the same expression

for Q̂
(1)
ab , and so we randomly fixed β1 = 1

2 , β2 = 0, λ1 = 1
2 and λ2 = 0 in (3.14). For the
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sub-sub-leading term, we guess a general form of Q̂
(2)
ab from (C.6) and (C.8)

Q̂
(2)
ab =κ1R(2)

ab + r2κ2R(2)µ
(0)
ab + κ3R(2)

cd u
(0)cu(0)du(0)a u

(0)
b + r2κ4R(2)

cd u
(0)cu(0)dµ

(0)
ab

+ χ1 µ
(2)
ab + χ2 µ

(0)µ
(0)
ab − r2

8
R(1)R(1)

ab +
r2

8
R(1)

ac R
(1)c
b − 1

2
R(1)

ac µ
(1)c
b

+
1

8
µ(1)µ

(1)
ab − 3

8
µ(1)
ac µ

(1)c
b . (C.11)

where κi for i = 1, . . . , 4 and χj for j = 1, 2 are ambiguities, which are related to

κ1 + 2κ2 =
1

2
, −κ3 + 2κ4 =

1

2
, κ1 + κ3 =

1

2
, χ1 + 2χ2 =

1

2
, (C.12)

and as we have seen, the ambiguities for the multiplication of the first orders are nullified

due to (B.20) and (B.21). Expanding (C.11), it yields

Q̂
(2)
ab = λ3µ

(2)
ab +λ4µ

(2)µ
(0)
ab − 3

2
γ(2)µ

(0)
ab − 1

r2
γ(2)u(0)a u

(0)
b − 5

2
α2µ

(0)
ab +

2

r2
αγ(1)u(0)a u

(0)
b (C.13)

where redefined λ3 = 2κ1+χ1 and λ4 = χ2−κ1. The ambiguities λ3 and λ4 are determined

at the end of the calculation of [∆ab](2) so that [∆ab](2) does not contribute to the conserved

quantities, and it turns out λ3 = −1
2 and λ4 =

1
2 . Our solution for Q̂

(2)
ab is displayed in (3.15).

D Explicit form of L̃ab

L cd
ab is defined in (A.3) and is a shorthand expression for convenience to deal with terms

constituted of K̂ab’s. Our goal is to get L̃ab which is defined in (2.5). Firstly, we expand

L cd
mn and (L−1) mn

ab in order of r

L cd
mn = L(0) cd

mn +
1

rn
L(1) cd

mn +
1

rn+1
L(2) cd

mn + · · · , (D.1)

(L−1)
mn

ab = (L−1)(0)
mn

ab +
1

rn
(L−1)(1)

mn

ab +
1

rn+1
(L−1)(2)

mn

ab + · · · . (D.2)

Plugging them into the identity relation (A.4), the relation is satisfied if

(L−1)
(0) kl
ij L(0) mn

kl = δmi δnj (D.3)

and

(L−1)
(1) pq
ij =− (L−1)

(0) kl
ij L(1) mn

kl (L−1)
(0) pq
mn , (D.4)

(n ≥ 2), (L−1)
(2) pq
ij =− (L−1)

(0) kl
ij L(2) mn

kl (L−1)
(0) pq
mn , (D.5)

(n = 1), (L−1)
(2) pq
ij =− (L−1)

(0) kl
ij L(2) mn

kl (L−1)
(0) pq
mn − (L−1)

(1) kl
ij L(1) mn

kl (L−1)
(0) pq
mn ,

(D.6)
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where L(i) mn
kl can be directly read from (A.3)

L(0) kl

ij = rh(0)klµ
(0)
ij +

(n+ 1)

r
δki δ

l
j −

2

r
δk(iµ

(0)l
j) , (D.7)

L(1) kl

ij = r

(
h(0)klQ̂

(1)
ij + Q̂(1)δki δ

l
j − 2δk(iQ̂

(1)l
j) − h(1)klµ

(0)
ij

)

+
1

r

(
2δk(iµ

(1)l
j) − µ(1)δki δ

l
j

)
, (D.8)

(n ≥ 2), L(2) kl

ij = r

(
h(0)klQ̂

(2)
ij + Q̂(2)δki δ

l
j − 2δk(iQ̂

(2)l
j) − h(2)klµ

(0)
ij

)

+
1

r

(
2δk(iµ

(2)l
j) − µ(2)δki δ

l
j

)
, (D.9)

(n = 1), L(2) kl

ij = r

(
h(0)klQ̂

(2)
ij + Q̂(2)δki δ

l
j − 2δk(iQ̂

(2)l
j) − h(2)klµ

(0)
ij − h(1)klQ̂

(1)
ij

+ 2δk(iQ̂
(1)
j)mh(1)ml − Q̂

(1)
ab h

(1)abδki δ
l
j + h(1)kmh(1)lmµ

(0)
ij

)

+
1

r

(
2δk(iµ

(2)l
j) − µ(2)δki δ

l
j + µ(1)abµ

(1)
ab δ

k
i δ

l
j − 2δk(iµ

(1)
j)mµ(1)ml

)
. (D.10)

When n = 1 the sub-sub-leading order term is separately considered from that of general

n, because a combination of the sub-leading order terms contributes to the sub-sub-leading

order. From the definition (2.5), L̃ab is expanded

L̃ab =

(
h(0)mn − 1

rn
h(1)mn − 1

rn+1
h(2)mn + · · ·

)

×
(
(L−1)(0)

ab

mn +
1

rn
(L−1)(1)

ab

mn +
1

rn+1
(L−1)(2)

ab

mn + · · ·
)

= L̃(0)ab +
1

rn
L̃(1)ab +

1

rn+1
L̃(2)ab + · · · , (D.11)

where each order becomes

L̃(0)ab = h(0)mn(L−1)(0) abmn , (D.12)

L̃(1)ab = h(0)mn(L−1)(1) abmn − h(1)mn(L−1)(0) abmn , (D.13)

(n ≥ 2), L̃(2)ab = h(0)mn(L−1)(2) abmn − h(2)mn(L−1)(0) abmn , (D.14)

(n = 1), L̃(2)ab = h(0)mn(L−1)(2) abmn − h(2)mn(L−1)(0) abmn

− h(1)mn(L−1)(1) abmn + h(1)mlh
(1)n
l (L−1)(0) abmn . (D.15)

D.1 n ≥ 2 case

The inverse of (L)(0)
cd

mn is

(L−1)
(0) ab
ij =

r

(n+ 1)

(
δai δ

b
j −

r2

2n
µ
(0)
ij h(0)ab +

1

n
δai µ

(0)b
j +

1

n
δbiµ

(0)a
j

+
1

n(n− 1)
µ
(0)b
i µ

(0)a
j +

1

n(n− 1)
µ
(0)a
i µ

(0)b
j − 1

n(n− 1)
µ
(0)
ij µ(0)ab

)
, (D.16)
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and contracting (L)(0)
cd

mn with h(0)ij , we simply get

(L−1)(0)ab = L̃(0)ab =
r

n(n+ 1)

(
(n− 1)

2
h(0)ab +

1

r2
µ(0)ab

)
. (D.17)

Once (L−1)
(0) ab
ij is calculated, we can subsequently obtain (L−1)

(1) pq
ij and (L−1)

(2) pq
ij from

the relation (D.4)–(D.5). Contracting them with h(0)ij and plugging into (D.13)–(D.14),

we have

L̃(1)ab =
r

n(n− 1)

(
r2Q̂(1)ab − r2

2
Q̂(1)h(0)ab − 2nr2

(n+ 1)2
Q̂(1)u(0)au(0)b +

1

2
µ(1)h(0)ab

+
2n

(n+ 1)2
µ(1)u(0)au(0)b − (n− 1)2

2(n+ 1)
h(1)ab − 2n

(n+ 1)r2
µ(1)ab

)
, (D.18)

and

L̃(2)ab =
r

n(n− 1)

(
r2Q̂(2)ab − r2

2
Q̂(2)h(0)ab − 2nr2

(n+ 1)2
Q̂(2)u(0)au(0)b − r2

(n+ 1)
Q̂(2)tth(0)ab

+
2r2

n(n+1)2
Q̂(2)ttu(0)au(0)b − (2n2+n+1)r2

n(n+ 1)2
u(0)aQ̂

(2)b
t − (2n2+n+1)r2

n(n+ 1)2
Q̂

(2)a
t u(0)b

+
1

2
µ(2)h(0)ab +

2n

(n+1)2
µ(2)u(0)au(0)b − (n−1)2

2(n+1)
h(2)ab − 2n

(n+1)r2
µ(2)ab

)
. (D.19)

D.2 n = 1 case

In 4-dimensional spacetime, the identity relation (D.3) with L(0) kl
ij in (D.7) gives

(L−1)(0)ab = L̃(0)ab =
1

2r
µ(0)ab, (D.20)

and from this we can find

(L−1)
(0)ab
ij =

r

2

(
δai δ

b
j +

r2

2
µ
(0)
ij u(0)au(0)b

)
. (D.21)

Then, L̃(i)ab for i = 1, 2 are expanded as

L̃(1)ab =(L−1)(1)ab − h(1)mn(L−1)(0)abmn

=
r

2

(
r2Q̂(1)ab − Q̂(1)µ(0)ab +

1

2r2
µ(1)µ(0)ab − 1

r2
µ(1)ab

)
, (D.22)

L̃(2)ab =(L−1)(2)ab − h(1)mn(L−1)(1)abmn − h(2)mn(L−1)(0)abmn + h(1)mlh
(1)n
l (L−1)(0)abmn

=− r

4

(
2Q̂(2)µ(0)ab + r2Q̂

(2)
tt h(0)ab − 2r2Q̂(2)ab + 2r2u(0)aQ̂

(2)b
t − 1

r2
µ(2)µ(0)ab

+
2

r2
µ(2)ab − 2Q̂(1)

mnµ
(1)mnh(0)ab − 2r4(Q̂(1))2h(0)ab + r4Q̂(1)mnQ̂(1)

mnh
(0)ab

+ 2Q̂(1)µ(1)µ(0)ab + 3r4Q̂(1)Q̂(1)ab − 3Q̂(1)µ(1)ab − 2r4Q̂(1)acQ̂(1)b
c + 6Q̂(1)a

c µ(1)bc

− 2r2µ(1)Q̂(1)ab − 3r4

2
(Q̂(1))2u(0)au(0)b − r2Q̂(1)µ(1)u(0)au(0)b +

2

r2
µ(1)µ(1)ab

− 1

2
(µ(1))2h(0)ab + µ(1)mnµ(1)

mnh
(0)ab − 4

r2
µ(1)acµ(1)b

c

)
. (D.23)

– 23 –



J
H
E
P
1
2
(
2
0
1
2
)
0
9
8

E Calculation of ∆ab

Finally, in order to calculate ∆ab, we need to expand the covariant derivative as

DaL̃
kl =D(0)

a L̃(0)kl +
1

rn

(
D(0)

a L̃(1)kl +D(1)
a L̃(0)kl

)
+

1

rn+1

(
D(0)

a L̃(2)kl +D(2)
a L̃(0)kl

)

+
1

r2n
D(1)

a L̃(1)kl +O
(

1

rn+2

)
(E.1)

where D
(0)
a is a covariant derivative compatible with h

(0)
ab , and D

(0)
a and D

(i)
a for i = 1, 2

are denoted as

D(0)
a L̃(i)kl = ∂L̃(i)kl + Γ(0)k

amL̃(i)ml + Γ(0)l
amL̃(i)mk (E.2)

D(i)
a L̃(0)kl = Γ(i)k

amL̃(0)ml + Γ(i)l
amL̃(0)mk (E.3)

D(1)
a L̃(1)kl = Γ(1)k

amL̃(1)ml + Γ(1)l
amL̃(1)mk. (E.4)

The connection is written as

Γ
(i)a

bc =
1

2
h(0)ae

(
Dbh

(i)
ce +Dch

(i)
be −Deh

(i)
bc

)
(E.5)

where D
(0)
a is simply denoted as Da.

To simplify the expression for ∆ab, we use the commutation relation on the derivative

as follows

DkDl

(
DkDlα

)
=DkD

2(Dkα) = Dk[D
2, Dk]α+D2D2α

= −Dk

(
R(0)km l

mDlα
)
+D2D2α

=
n

r2
D2α+D2D2α (E.6)

D2
(
DaDbα

)
=[D2, Da]Dbα+Da[D2, Db]α+DaDb(D2α)

=−R(0)e ca
c DeD

bα−R(0)eb a
c DcDeα−Dc

(
R(0)eb a

c Deα

)

−Da
(
R(0)e cb

c Deα
)
+DaDb(D2α)

= 2R(0)caebDcDe +
2n

r2
DaDbα+DaDbD2α (E.7)

DkD
a(DkDbα) = [Dk, D

a](DkDbα) +Da[D2, Db]α+DaDb(D2α)

=−R(0)e ca
c DeD

bα−R(0)ebcaDcDeα−Da
(
R(0)e ca

c Deα
)
+DaDb(D2α)

=R(0)caebDcDeα+
2n

r2
DaDbα+DaDbD2α (E.8)

where the commutation of two covariant derivatives acting on wc and tab is

[Da, Db]wc = R(0) d
abc wd

[Da, Db]t
d
c = R(0) e

abc t de +R(0) d
ab et

e
c . (E.9)
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E.1 n ≥ 2

[
K̂ab − 2L̃cd(K̂cdK̂

ab − K̂a
c K̂

b
d)

](1)
= (E.10)

r

n(n− 1)

[
n(n+ 1)

(n− 1)r4
αµ(0)ab +

n(n+ 1)

(n− 1)r4
γ(1)µ(0)ab +

n

2r4
µ(1)µ(0)ab +

(n+ 1)

(n− 1)
DaDbα

]
,

[
D2L̃ab + habDkDlL̃

kl −Dk(DaL̃kb +DbL̃ka)

](1)
=

r

n(n− 1)

[
− n(n+ 1)

(n− 1)r4
αµ(0)ab − n(n+ 1)

(n− 1)r4
γ(1)µ(0)ab − n

2r4
µ(1)µ(0)ab − (n+ 1)

(n− 1)
DaDbα

+DaDbγ(1) +
n2

(n+ 1)2
D2µ(1)u(0)au(0)b +

2n

(n+ 1)
D2αu(0)au(0)b

]
, (E.11)

[
K̂ab − 2L̃cd(K̂cdK̂

ab − K̂a
c K̂

b
d)

](2)
=

r

n(n− 1)

[
− (n− 1)

2r2
h(2)ab +

(n2 + 1)

(n− 1)
µ(2)ab +

2(n3 + n2 + 3n+ 1)

n(n− 1)(n+ 1)r4
γ(2)µ(0)ab

]
, (E.12)

[
D2L̃ab + habDkDlL̃

kl −Dk(DaL̃kb +DbL̃ka)

](2)
=

r

n(n− 1)

[
(n− 1)

2r2
h(2)ab − (2n2 + n+ 1)

(n− 1)r4
µ(2)ab − (3r2 + 7n+ 4)

n(n− 1)r4
γ(2)µ(0)ab

+
(n3 − 2n2 − n− 2)

n(n− 1)(n+ 1)
DaDbγ(2)

]
(E.13)

E.2 n = 1

[
K̂ab − 2L̃cd(K̂cdK̂

ab − K̂a
c K̂

b
d)

](1)
= 2r

(
1

r4
αµ(0)ab +

1

r4
γ(1)µ(0)ab +DaDbα

)
, (E.14)

[
D2L̃ab + habDkDlL̃

kl −Dk(DaL̃kb +DbL̃ka)

](1)

=
3r

2

(
− 1

r4
αµ(0)ab − 1

r4
γ(1)µ(0)ab −DaDbα

)
(E.15)

[
K̂ab − 2L̃cd(K̂cdK̂

ab − K̂a
c K̂

b
d)

](2)
=

1

r

(
γ(2)u(0)au(0)a − 2αγ(1)u(0)au(0)b − 3

r4
µ(2)ab

+
1

r4
µ(2)µ(0)ab +

1

2r4
γ(2)µ(0)ab − 1

r4
αγ(1)µ(0)ab

)
, (E.16)

[
D2L̃ab + habDkDlL̃

kl −Dk(DaL̃kb +DbL̃ka)

](2)

=
1

r

(
− γ(2)u(0)au(0)a + 2αγ(1)u(0)au(0)b +

1

r4
µ(2)ab − 1

2r4
µ(2)µ(0)ab − 1

r4
γ(2)µ(0)ab
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+
2

r4
αγ(1)µ(0)ab +

1

2r4
α2µ(0)ab +

1

2r4
(γ(1))2µ(0)ab − r2

4
DaDbµ(2) − r2

2
DaDbγ(2)

+
1

4
D2µ(2)µ(0)ab +

3

4
D2γ(2)µ(0)ab − 4r2DaαDbα− 5r2αDaDbα− 3r2γ(1)DaDbα

− 1

2
DeαDeαµ

(0)ab +
11

4
D2α2µ(0)ab +

13

4
D2(αγ(1))µ(0)ab − 3r2

2
D2α2u(0)au(0)b

− 5r2

4
γ(1)D2αu(0)au(0)b

)
(E.17)

F Divergence of the boundary stress tensor, DaTab

In [15], it was argued that the full boundary stress tensor is conserved in that DaTab = 0.

We reconsider this relation in view of the fact that ∆ab 6= 0.

Recall that the full boundary stress tensor, Tab, is

Tab = T π
ab −

1

8πG
∆ab. (F.1)

Expanding its divergence in a power series yields

DaTab =[DaTab]
(0) +

1

rn
[DaTab]

(1) +
1

rn+1
[DaTab]

(2) + · · ·

=

(
[DaT π

ab]
(0) − 1

8πG
[Da∆ab]

(0)

)
+

1

rn

(
[DaT π

ab]
(1) − 1

8πG
[Da∆ab]

(1)

)

+
1

rn+1

(
[DaT π

ab]
(2) − 1

8πG
[Da∆ab]

(2)

)
+ · · · (F.2)

where Da is the covariant derivative associated with hab.

For n ≥ 2, we have

T π
ab =− r

8πG

[
1

rn

(
n

2r2
h
(1)
ab +

1

r2
γ(1)h

(0)
ab +

n

(n−1)
α(1)µ

(0)
ab (F.3)

+
1

(n− 1)
γ(1)µ

(0)
ab +

1

(n− 1)
DaDbα

)

+
1

rn+1

(
n(n+ 1)

2(n− 1)r2
h
(2)
ab +

(n+ 1)(n+ 2)

n(n− 1)
γ(2)µ

(0)
ab − (n+ 1)

(n− 1)r2
γ(2)u(0)a u

(0)
b

)
+ · · ·

]
,

and plugging this and (3.22)–(3.24) into (F.2), we get

DaTab =
1

rn

(
1

8πG

1

(n− 1)r
Dbγ

(1) − 1

8πG

1

(n− 1)r
Dbγ

(1)

)
+

1

rn+1

(
0− 0

)
+ · · · ,

= 0. (F.4)

where Da is associated with h
(0)
ab . This verifies that the full boundary stress tensor, Tab,

is conserved.
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For n = 1, we take

T π
ab =− r

8πG

[
1

r

(
− 2

r2
γ(1)u(0)a u

(0)
b

)
+

1

r2

(
1

2
µ
(2)
ab +

3

2
γ(2)µ

(0)
ab − 23

2
α2µ

(0)
ab

− 5αγ(1)µ
(0)
ab − (γ(1))2µ

(0)
ab − 1

2r2
µ(2)u(0)au(0)b +

3

r2
γ(2)u(0)au(0)b

+
4

r2
αγ(1)u(0)au(0)b +

15

r2
α2u(0)au(0)b +

4

r2
(γ(1))2u(0)au(0)b

)
+ · · ·

]
. (F.5)

and substituting this with (3.26) into (F.2), it yields

DaTab =
1

r

(
0− 0

)
+

1

r2

[
1

8πG

(
− 22

r
αDbα− 3

2r
γ(1)Dbα

)

− 1

8πG

(
3

r
Dbγ

(2) − 14

r
αDbα− 20

r
γ(1)Dbα

)]
+ · · · ,

=
1

8πG

1

r2

(
− 3

r
Dbγ

(2) − 8

r
αDbα+

37

2r
γ(1)Dbα

)
(F.6)

where the second sub-leading order does not vanish. To be conserved, we require

Db

(
3γ(2) + 4α2 − 37

2
αγ(1)

)
= 0 (F.7)

and this relation can be satisfied by applying (B.24)–(B.26).
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