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1 Introduction

Electrically charged particles in a quark gluon plasma (QGP) emit photons. An analysis

of these photons can lead to very valuable information about the medium in which they

are produced. On the one hand, transport coefficients related to the electric charge such

as electrical conductivity and charge diffusion constant characterize the dynamics of long

wavelength, low frequency fluctuations in a plasma. They are effectively related to ultra-

soft photons, i.e. those with momentum much smaller than the equilibrium temperature

of the medium, T . Ultra-soft photons eventually probe the hydrodynamical regime of the

plasma, with momentum k ≤ λ2T , where λ is the ’t Hooft coupling defined as λ ≡ g2YMN ,

where gYM is the SYM theory coupling and N the rank of its gauge group, SU(N) in

the present case. On the other hand, it is possible to scrutinize a thermally equilibrated

plasma for a long range of emitted photon wavelengths. This precisely gives shape to the

photoemission rate from a plasma as a function of the energy of the photons. It includes

ultra-soft, soft and hard photons, thus providing extremely useful information about the

dynamical structure of the medium.

For a weakly coupled QCD plasma, transport coefficients and photoemission rates

have been calculated using perturbative quantum field theory in [3–8] and references
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therein. These references are particularly important since Arnold, Moore and Yaffe have

obtained the first complete leading order results for the photoemission rates in QCD [5].

They conclude that, in addition to well known 2 ←→ 2 particle processes, near-collinear

Bremsstrahlung and inelastic pair annihilation also make leading order contributions. The

Landau-Pomeranchuk-Migdal (LPM) suppression, which is the effect produced by multiple

soft scatterings, may occur during the emission of the photon and has important implica-

tions on the consistent treatment of the above mentioned processes. The LPM effect leads

to an O(1) suppression of these near-collinear processes.

There are indications, however, that the QGPs produced at the Relativistic Heavy

Ion Collider (RHIC) and at the Large Hadron Collider (LHC) are in the strongly-coupled

regime of QCD [9–17]. This is where the gauge/string duality enters. This duality allows

us to compute properties of a strongly coupled gauge theory in terms of a weakly coupled

holographic dual string theory description [18–20]. We ought to admit that at present

there is no complete or exact holographic string theory dual model which accounts for all

the relevant properties of real QCD, not even in the planar limit of the gauge theory. For

reasons which shall be explained below, the holographic string theory dual model which

has been considered so far for these investigations is in fact dual to the large N limit of

the strongly-coupled SU(N) N = 4 supersymmetric Yang-Mills (SYM) plasma.

The holographic dual model of the planar limit of the strongly-coupled SU(N) N = 4

SYM plasma is defined in terms of a type IIB supergravity background given by a direct

product of an Anti-de Sitter-Schwarzschild black hole in five dimensions (AdS5 BH) times

a five sphere S5. There is a number of considerations to take into account at the moment

of extrapolating this dual description of the large N limit of N = 4 SYM theory in order to

make contact with QCD. Firstly, as it is well known at zero temperature these theories are

very different. Indeed, the field content is different: while QCD has three colour degrees

of freedom and three flavours, matter is in the fundamental representation of the gauge

group SU(3), it shows colour confinement, has explicit and spontaneous chiral symmetry

breaking, and displays a discrete spectrum; on the other hand, in the N = 4 SYM theory all

their fields transform in the adjoint representation of SU(N), it is not a confining theory,

conformal symmetry is preserved at quantum level, and it is a supersymmetric theory

with the maximal number of supersymmetries in four dimensions. At finite equilibrium

temperature, T , above the critical temperature of QCD, Tc, where hadrons become a

deconfined QGP, there are two regimes. For T ≫ Tc, again the two types of plasmas

related to these two theories behave very differently too: while in QCD the coupling runs

to weak coupling, leading to a free gas of quarks and gluons; in the case of the N = 4 SYM

plasma, the coupling, which remains constant, is strong. Thus, it leads to a strongly coupled

plasma. However, in the intermediate region where T is just above Tc, both plasmas behave

somewhat similarly. In this case QCD behaves as a strongly coupled plasma of gluons and

fundamental matter. These degrees of freedom are deconfined, there is screening and

the correlation lengths are finite. Interestingly, the N = 4 SYM plasma shares those

properties because it is a strongly coupled plasma of gluons and adjoint matter fields, it

is also deconfined, shows screening, and has finite correlation lengths. Moreover, quantum

field theories lattice calculations indicate that for certain properties the similarities can be
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made even quantitatively (see for instance [21] and references therein). Therefore, one may

assume that for T > Tc but not T ≫ Tc, there is a parametric region where one can focus

on in order to describe the rates for the emission of photons from a thermally equilibrated

SYM plasma using the gauge/string duality at finite yet strong ’t Hooft coupling.

A very important step towards the understanding of the photoemission process and

electric charge transport coefficients of QGP in terms of the N = 4 SYM plasma has been

done in a very nice paper by Caron-Huot, Kovtun, Moore, Starinets and Yaffe [22]. They

consider the two limiting situations: for very large and very small ’t Hooft coupling. In

the strongly coupled case they consider the pure type IIB supergravity description of the

large N limit of the N = 4 SYM plasma, which we summarize in section 3. In the opposite

limit they consider a perturbative quantum field theory description of the N = 4 SYM

plasma, using similar ideas as in [5]. In section 5 we shall briefly review some perturbative

results of [22].

In the light of the new experimental findings suggesting that the QGP plasma at

RHIC and LHC is in the strongly coupled regime of QCD, a more realistic outlook requires

a consideration of the ’t Hooft coupling expansion around the infinitely strongly-coupled

regime of the plasma. On the string theory side, we must therefore consider the full O(α′3)

type IIB string theory corrections to the supergravity action. It includes a number of

terms which arise from the supersymmetric completion to the standard power-four ten-

dimensional Weyl-tensor. These new terms are constructed from a rank-6 tensor which

contains the Ramond-Ramond five-form field strength. This is indeed a very complicated

task from the technical point of view. However, it is worth carrying out since it yields the

precise structure of the ’t Hooft coupling corrections to the strong coupling regime. Using

this procedure we have obtained very interesting results, which we briefly describe here

and present in full detail in section 4.

Our results show the following features. Firstly, the slopes of the photoemission rates,

which at zero light-like momentum give the electrical conductivity as a function of the

’t Hooft coupling, are in full agreement with our previous results of [2]: the electrical con-

ductivity increases as the ’t Hooft coupling decreases. This concerns the hydrodynamic

regime of the plasma. Secondly, for higher momentum, the height of the peaks decrease

as the ’t Hooft coupling increases (i.e. as we approach the limit of infinite coupling), their

maxima are shifted towards the ultraviolet and the photoemission rate curves cross down-

wards the limiting strongly coupled curve for momentum around 3 times the equilibrium

temperature. Another important feature which comes from our results is that the number

of emitted photons increases as the ’t Hooft coupling weakens. These features show an

interpolating trend from the supergravity calculation of the strongly coupled gauge theory

towards the perturbative quantum field theory calculation in the weakly coupled N = 4

supersymmetric Yang-Mills plasma. In addition to describing these effects in more detail

in the general discussion and conclusions section below, we will also consider the effect of

including non-planar perturbative 1/N corrections from higher derivative terms in the type

IIB action as well as non-perturbative contributions due to D-instanton effects.

In section 2 we briefly describe generalities about the formalism behind the calculation

of plasma photoemission rates based on the computation of two-point correlators of elec-
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tromagnetic currents. A review of strongly coupled N = 4 SYM plasma results entirely

obtained within pure type IIB supergravity, i.e. with no string theory corrections, is pre-

sented in section 3. In section 4, which is the longest section of the paper, we introduce

details of the formalism and results from our calculations of the leading ’t Hooft coupling

corrections to the photoemission rate of a strongly-coupled N = 4 SYM plasma using the

gauge/string duality. Section 5 is devoted to a very brief review of results in the weakly

coupled regime. The material of this section is used in the last section of the article in

order to carry out a general discussion of our results.

2 Derivation of photoemission rates in SYM plasmas

In this section we very briefly review the formalism needed in order to derive the photoe-

mission rate in plasmas from thermal field theory. Since we expect to be able to compare

our results with those of reference [22], when possible we mainly follow its notation through

this paper. Also, the same assumptions as in [22] are considered here: the plasma is in

thermal equilibrium; we do not include prompt photons produced by the initial scatter-

ing of partons from the colliding nuclei; and, the electromagnetic coupling constant, e, is

considered small enough in order to ensure that photons are not to be re-scattered.

Consider the minimal coupling of a photon to the electromagnetic current Jem
µ of the

SYM plasma. Recall that the SU(N) N = 4 gauge supermultiplet is {Aa
µ, ψp, φpq}, where

a is the SU(N) colour index, p, q = 1, · · · , 4, and all the fields transform in the adjoint

representation of the gauge group. They are SU(N) gauge bosons, 4 Weyl fermions and

6 real scalars, respectively. Furthermore, since there is an anomaly free global SU(4) R-

symmetry, there is an associated global R-symmetry current, Jµ. The way to consider the

electromagnetic coupling is by adding a U(1) gauge field Aµ which couples to the conserved

current of a U(1) subgroup of the full SU(4) R-symmetry group [22], under the assumption

that, to leading order in e, Jem
µ ≡ Jµ. Thus, the Lagrangian can be written as

L = LSYM + e Jem
µ Aµ − 1

4
F 2
U(1) , (2.1)

where LSYM is the Lagrangian of the N = 4 SYM theory and F 2
U(1) is the kinetic term of

the photon field.

We denote the photon four-momentum as K ≡ (k0,~k), which is a null four-vector

having its time component fixed by the on-shell condition k0 = |~k|. We use the mostly

plus signature for the Minkowski metric in four dimensions, denoted by ηµν = (−,+,+,+).

First, let us consider the Wightman function of electromagnetic currents defined as

C<
µν(K) =

∫

d4X e−iK·X < Jem
µ (0)Jem

ν (X) > , (2.2)

which in thermal equilibrium is related to the spectral density χµν(K) by

C<
µν(K) = nb(k

0)χµν(K) , (2.3)
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with the Bose-Einstein distribution function nb(k
0) = 1/(eβk

0−1). In addition, the spectral

density is given by the imaginary part of the retarded current-current correlation function

χµν(K) = −2 ImCret
µν (K) . (2.4)

The number of photons which are produced per unit time per unit volume is denoted by

Γγ . At leading order in e the photoemission rate is given by

dΓγ =
e2

2|~k|
ηµν C<

µν(K) |
k0=|~k|

d3k

(2π)3
. (2.5)

Notice that this formula for the photoemission rate holds to leading order in the electro-

magnetic coupling e. On the other hand, and very importantly for our purposes, it is valid

non-perturbatively in all other interactions, i.e. the strong interaction [22].

It is worth mentioning that the slope of the photoemission rate in the zero-frequency

limit is proportional to the electrical conductivity of the plasma, σ, which can also be

determined by the current-current correlator using the Kubo formula:

σ = lim
k0→0

e2

6T
ηµν C<

µν(k0,~k = 0) . (2.6)

In the next section we describe the computation of the plasma photoemission rate in

infinitely strongly-coupled plasma.

3 Review of photoemission rates at strong ’t Hooft coupling

The AdS5 BH×S5 background, which is an exact solution of type IIB supergravity, is

given by

ds2 =

(

r0
R

)2 1

u

(

− f(u) dt2 + d~x2
)

+
R2

4u2f(u)
du2 +R2 dΩ2

5 , (3.1)

where f(u) = 1 − u2, and R is the radius of the AdS5 and the five-sphere. The AdS-

boundary is at u = 0 and the black hole horizon is at u = 1. For the AdS5 coordinates

we use indices m = {(µ = 0, 1, 2, 3), 5}. It is well known that this is the holographic dual

background to the large N limit of the SU(N) N = 4 SYM theory at finite temperature T .

As mentioned, the purpose of the present work is to investigate the O(λ−3/2) ’t Hooft

coupling corrections to the photoemission rate of a SU(N) N = 4 SYM plasma produced

by the leading order α′3 corrections to the pure type IIB supergravity calculation. In

this section we briefly review some of the calculations of [22], which are applicable for the

λ→∞ limit. The idea is to obtain the correlation functions of two R-symmetry currents

using the methods developed in references [23, 24].

The general form of the correlator at finite temperature is obtained by taking into

account rotation and gauge invariance:

Cret
µν (K) = ΠT(k0, k)PT

µν(K) + ΠL(k0, k)PL
µν(K) , (3.2)

where the transverse and longitudinal projectors are defined such that PT
0µ(K)=0, PT

ij (K)=

δij − kikj/k2, and PL
µν(K) = Pµν(K)− PT

µν(K), with Pµν = ηµν −KµKν/K
2. We use the
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notation for the photon light-like momentum defined in the previous section and k = |~k|.
The trace of the spectral function is

χµ
µ(k0, k) = −4 Im ΠT(k0, k)− 2 Im ΠL(k0, k) . (3.3)

For light-like momentum only ΠT contributes. Therefore, it is the only relevant part for

the computation of the photoemission rate.

The gauge/string duality establishes a precise prescription to compute a two-point

correlator of conserved currents in a strongly coupled SYM theory. The idea is the following:

the insertion of an operator of the SYM theory at the AdS-boundary induces a fluctuation

of a certain ten-dimensional background field. Specifically, using the gauge/string duality

prescription, a global U(1) symmetry current in the SYM theory couples to a U(1) gauge

field in the bulk, Am. From the SYM theory point of view the U(1) group is a subgroup

of the SU(4) R-symmetry group of the N = 4 SYM theory. Recall that the SU(4) group

is isomorphic to the SO(6) group, which obviously is the global symmetry which generates

rotations among the 6 real scalars of the vector supermultiplet of the gauge theory. On

the other hand, from the supergravity side, the isometry group of the five sphere is SO(6).

Thus, there is a U(1) subgroup, which is related to vector fluctuations of the metric, whose

gauge field is precisely the Aµ Abelian gauge field. Therefore, the point is to solve the

linearised equations of motion for the vector perturbations of the metric. The definition of

the two-form field strength is Fmn = ∂mAn − ∂nAm. With the identification Ei ≡ F0i one

can write down the EOMs for the vector fluctuation by splitting them into the transverse

(x, y), and longitudinal (z) components as follows:

E′′x,y −
2u

f(u)
E′x,y +

̟2
0 − κ20f(u)

uf2(u)
Ex,y = 0 , (3.4)

E′′z −
2̟2

0u

f(u)(̟2
0 − κ20f(u))

E′z +
̟2

0 − κ20f(u)

uf2(u)
Ez = 0 , (3.5)

where primes denote derivatives with respect to the radial coordinate u, and one defines

̟0 ≡ k0/(2πT ) and κ0 ≡ k/(2πT ). The solution of these EOMs have been discussed

in [22], so here we just quote their results in the following equations. First, notice that the

correlators are determined by the boundary term of the five-dimensional on-shell Maxwell

action

SB =
N2T 2

16
lim
u→0

∫

d4K

(2π)4

[

f(u)

κ20f(u)−̟2
0

E′z(u,K)Ez(u,−K)− f(u)

̟2
0

E′x,y(u,K) ·Ex,y(u,−K)

]

(3.6)

and by applying the Lorentzian AdS/CFT prescription [23] it turns out that the transverse

component which is the only one actually needed for the computation of the photoemission

rate is given by [22]

ΠT (k0, k) = −N
2T 2

8
lim
u→0

E′x(u,K)

Ex(u,K)
. (3.7)

For light-like momenta there is an analytical solution to the EOM above which can be

written in terms of a hypergeometric function

Ex(u)=(1−u)−i̟0/2(1+u)−̟0/2
2F1

(

1−1

2
(1+i)̟0, −

1

2
(1+i)̟0; 1−i̟0;

1

2
(1−u)

)

. (3.8)
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Thus, the trace of the spectral function for light-like momenta is

χµ
µ(k0 = k) =

N2T 2̟0

8
| 2F1

(

1− 1

2
(1+i)̟0, 1+

1

2
(1−i)̟0; 1−i̟0; −1

)

|−2 . (3.9)

In addition, the electrical conductivity is given by

σ = e2
N2T

16π
, (3.10)

which has been obtained from the Kubo formula quoted in the previous section.

Finally, the photoemission rate is given by

dΓγ

dk
=
αemN

2T 3

16π2
(k/T )2

ek/T − 1
| 2F1

(

1− (1+i)k

4πT
, 1+

(1−i)k
4πT

; 1− ik

2πT
; −1

)

|−2, (3.11)

which holds in the large N limit and for large λ (where the supergravity approximation is

valid, 1≪ λ≪ N), and is valid for the whole range of photon energies.

Now, we proceed to investigate the leading ’t Hooft coupling corrections to these

expressions and analyse their physical implications.

4 ’t Hooft coupling corrections to photoemission rates

In this section we present the general corrections to type IIB supergravity action at leading

order in α′. Firstly, in subsection 4.1 we describe the formalism needed to account for

higher derivative corrections to the effective IIB action. Then, we focus on O(α′3) string

theory corrections and develop the vector perturbations we need for the computation of

the current-current correlators. In subsection 4.2 we carry out the computation of ’t Hooft

coupling corrections to photoemission rates, whose results we show in subsection 4.3. Our

results concerning the effects of leading 1/N corrections and non-perturbative instanton

contributions are restricted to the electrical conductivity of the plasma, and are presented

in the discussion and conclusions, in the last section of the paper.

4.1 Higher derivative corrections to the effective IIB action and vector per-

turbations

To begin with, we consider the leading type IIB string theory corrections to the supergravity

action SSUGRA
IIB which are given in the term S3

R4 . The total action that we shall consider is

SIIB = SSUGRA
IIB + S3

R4 . (4.1)

At the strong ’t Hooft coupling limit the holographic dual model is derived from type IIB

supergravity, i.e. for α′ → 0. This contains the Einstein-Hilbert action coupled to the

dilaton and the Ramond-Ramond five-form field strength

SSUGRA
IIB =

1

2κ210

∫

d10x
√
−G

[

R10 −
1

2
(∂φ)2 − 1

4.5!
(F5)

2

]

. (4.2)

Effects of higher curvature terms which includes O(α′3), perturbative 1/N corrections as

well as instanton corrections were considered in the presence of D3-branes in type IIB string
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theory by Green and Stahn in [25]. This reference proposes a supersymmetric completion

of the C4 term, where C is the ten-dimensional Weyl tensor, leading to the following

correction:

S3
R4 =

α′3g
3/2
s

32πG

∫

d10x

∫

d16θ
√−g f (0,0)(τ, τ̄)

[

(θΓmnpθ)(θΓqrsθ)Rmnpqrs

]4
+ c.c. , (4.3)

where τ is the complex scalar field given by τ1 + iτ2 ≡ a+ ie−φ, with a being the axion and

eφ = gs the string coupling. The function f (0,0)(τ, τ̄) is the so-called modular form. The

tensor R tensor is defined in terms of the Weyl tensor and

F+ = (1 + ∗)F5/2 , (4.4)

as given in [25–28]

Rmnpqrs =
1

8
gpsCmnqr +

i

48
DmF

+
npqrs +

1

384
F+
mnpklF

+ kl
qrs . (4.5)

The action (4.3) was arrived at using the fact that the physical content of type IIB su-

pergravity can be arranged in a scalar superfield Φ(x, θ), where θa, with a = 1, · · · 16, is a

complex Weyl spinor of SO(1, 9). The matrices Γ have the usual definitions [27].

The modular form is presented in [29] and is given by the following expression

f (0,0)(τ, τ̄) = 2ζ(3)τ
3/2
2 +

2π2

3
τ
−1/2
2 + 8πτ

1/2
2

∑

m 6=0,n≥0

|m|
|n| e

2πi|mn|τ1K1(2π|mn|τ2) , (4.6)

whereK1 is the modified Bessel function of second kind which comes from the non-perturba-

tive D-instantons contributions. Recall that the zeta function ζ(3) is the coefficient of the

first perturbative correction in the Eisenstein series of the modular form. Note that in the

background we consider with N coincident parallel D3 branes, the axion vanishes, thus

τ1 = 0, while τ2 = g−1s . Therefore, for small values of gs the modular form becomes

f (0,0)(τ, τ̄) = 2(4πN)3/2
(

ζ(3)

λ3/2
+

λ1/2

48N2
+

e−8π
2N/λ

2π1/2N3/2

)

. (4.7)

It is interesting to mention that Green and Stahn also have shown that the D3-brane solu-

tion in supergravity does not get renormalised by higher derivative terms [25]. Previously

Banks and Green had shown that AdS5 × S5 is a solution to all orders in α′ [30].

Now, we focus on the large N limit of the dual SU(N) N = 4 SYM theory. Later on,

in the conclusions, we shall return to the consequences of the general corrections to the

electrical conductivity.

The finite leading ’t Hooft coupling corrections are accounted for by the following

action [28]

Sα′

IIB =
R6

2κ210

∫

d10x
√
−G

[

γe−
3

2
φ(C4 + C3T + C2T 2 + CT 3 + T 4)

]

, (4.8)

obtained from the action (4.3) in the large N limit, where γ ≡ 1
8 ζ(3) (α′/R2)3, where

R4 = 4πgsNα
′2. Since λ = g2YMN ≡ 4πgsN , we get γ = 1

8 ζ(3) 1
λ3/2 . This action was

computed in [27], using the methods of [31].
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The C4 term is a dimension-eight operator, defined as follows:

C4 = Chmnk Cpmnq C
rsp

h Cq
rsk +

1

2
ChkmnCpqmnC

rsp
h Cq

rsk , (4.9)

where Cq
rsk is the Weyl tensor. The tensor T is defined by

Tabcdef = i∇aF
+
bcdef +

1

16

(

F+
abcmnF

+
def

mn − 3F+
abfmnF

+
dec

mn
)

, (4.10)

where the indices [a, b, c] and [d, e, f ] are antisymmetrized in each squared brackets, and

symmetrized with respect to interchange of abc↔ def [27].

At finite temperature the metric only gets corrections from the C4 term. This is so

because the tensor T vanishes on the uncorrected supergravity solution [28]. The solution to

the Einstein equations derived from the pure supergravity action (4.2) is an AdS5 BH×S5

background. There are N units of flux of F5 through the sphere, and the volume form of

S5 is denoted by ǫ. On the field theory side, N is the rank of the gauge group, and it

corresponds to the number of parallel D3-branes whose back-reaction deforms the space-

time leading to the above metric in the near horizon limit. The current operator Jµ(x) is

dual to the s-wave mode of the vectorial fluctuation on this background.

Next, we have to obtain the Lagrangian for the vectorial perturbation in this back-

ground. Thus, we must construct a consistent perturbed Ansatz for both the metric and

the Ramond-Ramond five-form field strength, such that a U(1) subgroup of the SU(4)

R-symmetry group is obtained [32–34]. Then, by plugging this consistent perturbation

Ansatz into the full action (up to O(α′3)) and integrating out the five-sphere, one obtains

the desired action for the U(1) gauge field in the AdS5 BH. Therefore, by studying the

bulk solutions of the Maxwell equations in the AdS5 BH with certain boundary conditions

we can obtain the retarded correlation functions [22–24] of the operator Jµ(x).

Higher-curvature corrections to the type IIB supergravity action correspond to finite

’t Hooft coupling corrections in the field theory. Suppose that we are interested in a certain

observable of the gauge theory, O. If one carries out a series expansion of it in inverse

powers of the ’t Hooft coupling one schematically can write it as: O0 + O1/λ
n1 + · · · .

The power n1 is a positive number corresponding to the leading α′3 correction to the

type IIB supergravity action. In the present case, we consider that O is the product

of two electromagnetic currents. Thus, we obtain the leading correction in λ using the

gauge/string duality. The leading order corrections come from terms O(α′3) in the ten-

dimensional action. It is important to recall that these corrections dot no modify the metric

at zero temperature [30]. At finite temperature things are different as shown in [35, 36]

where corrections to the metric were obtained, and then further improved in [26, 37, 38].

Higher curvature corrections on the spin-2 sector of the fluctuations have been inves-

tigated in [39–42], among other references. They are relevant to the computation of the

viscosity and mass-diffusion constants of the plasma.

In our case, we investigate vector fluctuations of the background. The method to carry

out the calculation consists of two steps. Firstly, we have to obtain the minimal gauge-field

kinetic term using the vector-perturbed metric including the α′3 corrections to it, and the
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same for the five-form field strength. Then, the corrections to the gauge field Lagrangian

coming directly from the higher-derivative operators have to be computed. The reason why

these two steps are different is that the first one will require insertion of the corrected per-

turbation Ansätze into the minimal ten-dimensional type IIB supergravity two-derivative

part eq. (4.2). The second step requires insertion of the uncorrected perturbation Ansätze

into the higher-curvature terms in ten dimensions.

Our plan here is to start from the corrected metric and F5 solutions, then proposing

an Ansätze for the perturbations that may be inserted into eq. (4.2).

As mentioned before, the only piece of the O(α′3)-action which affects the metric is

the C4 term. This induces the following corrected metric [35–37]

ds2 =

(

r0
R

)2 1

u

(

− f(u)K2(u) dt2 + d~x2
)

+
R2

4u2f(u)
P 2(u) du2 +R2L2(u) dΩ2

5 , (4.11)

where we have used similar notation as for eq. (3.1). The functions of u in the above

metric are

K(u) = exp
[

γ
(

a(u) + 4b(u)
)]

, P (u) = exp [γ b(u)] , L(u) = exp [γ c(u)] , (4.12)

where there are the following exponents, which are functions of the radial coordinate

a(u) = −1625

8
u2 − 175u4 +

10005

16
u6,

b(u) =
325

8
u2 +

1075

32
u4 − 4835

32
u6,

c(u) =
15

32
(1 + u2)u4. (4.13)

In addition, the radius of the black hole horizon gets corrections given by

r0 =
πTR2

(

1 + 265
16 γ

) . (4.14)

T has been already identified as the physical equilibrium temperature of the plasma. Thus,

having obtained the corrected metric eq. (4.11), we have to focus upon the appropriate

perturbation Ansätze. The vectorial perturbation we are interested in enters the metric and

the F5 solution, in contrast to the metric tensor perturbations — needed for mass-transport

phenomena in the hydrodynamical regime of the plasma — the latter only enter the metric

Ansatz, but not the F5 Ansatz. This observation obviously makes the computation of the

corrections to the mass-transport coefficients much more straightforward compared with

the electric charge-transport coefficients as well as other plasma properties beyond the

hydrodynamical domain.

We first obtain the kinetic term for the gauge fields. For this purpose we plug

the corrected Ansatz into the two-derivative supergravity action eq. (4.2). The metric

Ansatz reads

ds2 =

[

gmn +
4

3
R2L(u)2AmAn

]

dxmdxn +R2L(u)2 dΩ2
5 +

4√
3
R2L(u)2

×(sin2 y1 dy3 + cos2 y1 sin2 y2 dy4 + cos2 y1 cos2 y2 dy5)Am dx
m, (4.15)

– 10 –
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where the metric of the unit five-sphere is given by

dΩ2
5 = dy21 + cos2 y1 dy

2
2 + sin2 y1 dy

2
3 + cos2 y1 sin2 y2 dy

2
4 + cos2 y1 cos2 y2 dy

2
5 .

Notice that since we are only interested in the terms which are quadratic in the gauge-field

perturbations we can write the F5 Ansatz as follows

G5 = − 4

R
ǫ+

R3L(u)3√
3

( 3
∑

i=1

dµ2i ∧ dφi
)

∧ ∗F2 , (4.16)

where F2 = dA is the Abelian field strength and ǫ is a deformation of the volume form

of the metric of the AdS5-Schwarzschild black hole. We should mention that we are not

interested in the part of G5 which does not contain the vector perturbations because it

only contributes to the potential of the metric, and is thus accounted for by the use of the

corrected metric in the computation. The Hodge dual ∗ is taken with respect to the ten-

dimensional metric, while ∗ denotes the Hodge dual with respect to the five-dimensional

metric piece of the black hole. In addition, we have the usual definitions for the coordinates

on the S5

µ1 = sin y1 , µ2 = cos y1 sin y2 , µ3 = cos y1 cos y2 ,

φ1 = y3 , φ2 = y4 , φ3 = y5 . (4.17)

By inserting these Ansätze into eq. (4.2), and discarding all the higher (massive) Kaluza-

Klein harmonics of the five-sphere, we get the following action for the zero-mode Abelian

gauge field Am

SSUGRA
IIB = − Ñ2

64π2R

∫

d4x du
√−g L7(u) gmp gnq Fmn Fpq . (4.18)

Above we have written the Abelian field strength, defined as Fmn = ∂mAn − ∂nAm, the

partial derivatives are ∂m = ∂/∂xm, while xm = (t, ~x, u), with t and ~x = (x1, x2, x3), are

the Minkowski coordinates, and g ≡ det(gmn), which only involves the metric of AdS5-

Schwarzschild black hole. Also notice that L(u) straightforwardly comes from the dimen-

sional reduction [43]. The volume of the five-sphere has been included in Ñ .

Now, we should get the effect of the eight-derivative corrections of eq. (4.8). In order to

achieve this we must determine the five-dimensional operators that arise once the perturbed

metric and five-form field strength Ansätze are inserted into eq. (4.8). As in [44], we use the

uncorrected Ansätze at this point. Indeed, we can do it because using the corrected ones

generates terms of even higher order in γ. Clearly, the uncorrected Ansätze are derived

from the ones displayed here by taking L(u),K(u), P (u)→ 1 and ǫ→ ǫ. Next, we explain

how to calculate the explicit contributions from the ten-dimensional operators, leading to

the photoemission rates.

4.2 ’t Hooft coupling corrections to photoemission rates

In order to calculate the ’t Hooft coupling corrections to photoemission rates we now

perform the explicit dimensional reduction on S5, including the leading type IIB string
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theory corrections discussed in the previous subsection. This is done along the lines of our

previous work [2].1 For this purpose it is necessary to write explicitly all the terms of the

full set of higher derivative ten-dimensional operators which come from the supersymmetric

completion obtained in [25]. We use the definitions introduced in [27]

C4 + C3T + C2T 2 + CT 3 + T 4 ≡ 1

86016

∑

i

niMi . (4.19)

Thus, we can write the two contributions to the C4 term as follows

C4 = −43008

86016
CabcdCabefCceghCdgfh + CabcdCaecfCbgehCdgfh . (4.20)

Repeated indices means usual Lorentz contractions. In order to extract the quadratic terms

in the vectorial fluctuations of the metric we should notice that they can straightforwardly

be computed by expanding the ten-dimensional Weyl tensor as C = C0 + C1 + C2, where

the sub-indices label the number of times that the Abelian gauge field occurs. Obviously,

a similar expansion can be made for the T tensor: T = T0 + T1 + T2. In addition, from

a straightforward explicit calculation on the present background it can be shown that all

the components of T2 are zero. This fact is responsible of an important simplification of

the actual computations. Also, T0 is zero for any compactification which contains a five-

dimensional Einstein manifold [28], and therefore it vanishes in the case we consider here.

Now, let us look at terms of the form C3 T ;

C3T =
3

2
CabcdCaefgCbfhiTcdeghi . (4.21)

Their only possible contributions comes in fact from terms like C1C
2
0T1, C0C1C0T1 and

C2
0C1T1.

Then, let us study operators like C2T 2. We find a few contractions which can be

collected in the following terms

C2T 2 =
1

86016

(

30240CabcdCabceTdfghijTefhgij + 7392CabcdCabefTcdghijTefghij
− 4032CabcdCaecfTbeghijTdfghij − 4032CabcdCaecfTbghdijTeghfij
− 118272CabcdCaefgTbcehijTdfhgij − 26880CabcdCaefgTbcehijTdhifgj
+ 112896CabcdCaefgTbcfhijTdehgij − 96768CabcdCaefgTbcheijTdfhgij

)

.

(4.22)

The vanishing result of T0 implies that terms like C0C1T0T1 also vanish. Then, the only

possible type of contribution from these terms is of the form C2
0T 2

1 . Making use of the

same arguments all the terms like CT 3 and T 4 include a factor T0 and, therefore, are not

present in a reduction upon a generic five-dimensional Einstein manifold [44].

1The main difference with respect to our previous calculation of the electrical conductivity of plasma in [2]

is that while for the conductivity it is only needed to consider the dependence Am(u), for the photoemission

rate it is necessary to consider the dependence Am(t, z, u) which is not a trivial extension of our former

calculations in [2]. Thus, having the Am(t, z, u) dependence implies actually a much more complicated

calculation.
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Now, we proceed to explicitly calculate the operators above. Firstly, we must calculate

the ten-dimensional Weyl tensor with and without vector fluctuations. Secondly, we need

to obtain T1, and by its definition it can be separated into one piece which contains the

covariant derivative, defined by

(∇F5)abcdef = i∇aF
+
bcdef , (4.23)

and a second piece which does not contain covariant derivatives which reads

T̄abcdef =
1

16

(

F+
abcmnF

+
def

mn − 3F+
abfmnF

+
dec

mn
)

. (4.24)

So, we can write this tensor as T1 = ∇F5 + T̄ .

Let us define F+ = F(e) + F(m). Thus, with the obvious meaning of the electric and

magnetic contribution, for the electric part we have

F(e) = − 4

R
ǫ+

R3

√
3

( 3
∑

i=1

dµ2i ∧ dφi
)

∧ ∗F2 , (4.25)

where ∗ indicates the Hodge dual operation with respect to the AdS5-Schwarzschild black

hole metric. It is convenient to split the electric part into the background plus a fluctuation,

F(e) = F
(0)
(e) + F

(f)
(e) , (4.26)

and similarly for the magnetic terms. Therefore, in components we have

(F
(0)
(e) )µνρσδ = − 4

R

√−g ǫµνρσδ , (4.27)

where g is the determinant of the AdS piece of the metric, in fact g = det gAdS =

−r40/(2u3R3). The Hodge dual gives

(F
(0)
(m))abcde = − 4

R
R5
√

detS5ǫabcde . (4.28)

Let us focus on the fluctuation. Actually, for this calculation we only need the U(1) gauge

component Ax(t, z, u), where in this notation t = x1 and z = x4. Notice that if we were

interested in the electrical conductivity it is enough to consider the Ax(u) dependence,

which largely simplifies the calculation [2] in comparison with the actual calculation of

the photoemission rates that we make in this work. Therefore, we have to deal with the

following non-vanishing components of the two-form field strength: Ftx, Fzx and Fux, all

of them with the full dependence on t, z and u AdS-coordinates. We use the following

definition: F = dA = 1
2!Fµν/

√
3 dxµ ∧ dxν .

So, the fluctuations of the electric part induce fluctuations in the F5 Ramond-Ramond

field strength which are given by

(F
(f)
(e) )yiyjtyz = Feux(t, z, u) bij ǫyiyjtyz , (4.29)

(F
(f)
(e) )yiyjyzu = Fetx(t, z, u) bij ǫyiyjyzu , (4.30)

(F
(f)
(e) )yiyjtyu = Fezx(t, z, u) bij ǫyiyjtyu , (4.31)
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where

Feux(t, z, u) = −R
3

√
3

1

2

√−g (2FuxG
xxGuu) , (4.32)

Fetx(t, z, u) =
R3

√
3

1

2

√−g (2FtxG
ttGxx) , (4.33)

Fezx(t, z, u) =
R3

√
3

1

2

√−g (2FzxG
zzGxx) , (4.34)

where the pairs (ij) are (13), (14), (15), (24) and (25). The indices i, j run over the coordi-

nates of S5, and correspond to the coordinates x6, x7, x8, x9 and x10. The bij functions are:

b13 = 2 sin y1 cos y1 , b14 = −2 sin2 y2 sin y1 cos y1 , b15 = −2 cos2 y2 sin y1 cos y1 ,

b24 = 2 cos2 y1 sin y2 cos y2 , b25 = −2 cos2 y1 sin y2 cos y2 . (4.35)

The fluctuations on the magnetic part are obtained after performing the ten-dimensional

Hodge dual operation on the corresponding electrical fluctuations above. We present the

full expression in the appendix.

The kinetic term of the gauge field coming from the Ramond-Ramond five-form field

strength becomes

− 1

4 · 5!
F 2
5 = −2

3
R2 F 2 − 8

R2
, (4.36)

which is exactly what is expected. Recall that the scalar curvature piece R10 of the action

gives −1/3R2 F 2, where F 2 denotes FµνF
µν .

As we have seen in our previous paper [44], the eight-derivative O(α′3) corrections

introduce a large number of higher-derivative operators after the compactification on a

general five-dimensional Einstein manifold is done. We must take account of them prop-

erly to solve the equation of motion within perturbation theory. The situation is entirely

analogous to that studied in [39], where the authors were concerned with the tensor per-

turbations of the metric, but the rationale is the same. We have discussed this for vectorial

perturbations of the metric in [2, 44]. Lagrangian for the transverse mode Ax reads

Stotal =− Ñ2r20
16π2R4

∫

d4k

(2π)4

∫ 1

0
du

[

γAWA
′′
kA−k + (B1+γBW )A′kA

′
−k

+γCWA
′
kA−k+(D1+γDW )AkA−k+γEWA

′′
kA
′′
−k+γFWA

′′
kA
′
−k

]

, (4.37)

where we have introduced the following Fourier transform of the field Ax,

Ax(t, ~x, u) =

∫

d4k

(2π)4
e−iωt+iqz Ak(u) . (4.38)

There are also a number of boundary terms that must be included for this higher-derivative

Lagrangian to make sense, and this is discussed in detail in [39, 45]. The coefficients B1 and

D1 arise directly from the minimal kinetic term F 2. The subscript W indicates that the

particular coefficient comes directly from the eight-derivative corrections, and the functions

AW → FW are written below. Moreover, B1 and D1 contain some γ-dependence, but they
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are non-vanishing in the γ → 0 limit, while every other coefficient vanishes in that limit.

The equation of motion is given by

A′′x + p1A
′
x + p0Ax = γ

1

2f(u)
G(Ax) , (4.39)

where

G(Ax) = AW A′′x + CWA
′
x + 2(δD1 +DW )Ax − ∂u(2δB1A

′
x + 2BWA

′
x + CWAx + FWA

′′
x)

+∂2u(AWAx + 2EWA
′′
x + FWA

′
x) , (4.40)

where B1 −B1|γ→0 = δB1 and D1 −D1|γ→0 = δD1. First we have the coefficients with no

γ-dependence p0 and p1, given by

p0 =
̟2

0 − f(u)κ20
uf2(u)

and p1 =
f ′(u)

f(u)
, (4.41)

where ̟0 = k0/(2πT ) and κ0 = k/(2πT ). For the coefficients originating from the F 2 term

in the action of the gauge field, we obtain

B1 =
K(u)f(u)L7(u)

P (u)
,

D1 = −K(u)P (u)L7(u)

[

̟2 − f(u)K2(u)κ2

uf(u)K2(u)

]

, (4.42)

where ̟ = k0R
2/(2r0) and κ = kR2/(2r0). At this stage it is convenient to reduce the

equation to a second-order differential equation using a simple trick [48]. The idea is that

γA′′x = −γ(p1A
′
x + p0Ax) + O(γ2). Thus, we may reduce the entire r.h.s. of the equation

of motion to terms which are first or zeroth order in derivatives. The resulting equation is

given by

A′′x+

[

p1−
γ

2f(u)
[θ1(u)−p1θ2(u)]

]

A′x+

[

p0−
γ

2f(u)
[θ0(u)−p0θ2(u)]

]

Ax = O(γ2) , (4.43)

where

θ0(u) = 2 (δD1 +DW )− C ′W +A′′W − 4E′W p′0 + 2EW (p1p
′
0 − p′′0) ,

θ1(u) = 2A′W − 2 (δB1 +BW )′ + F ′′W − 4E′W (p′1 + p0) + 2EW [p1(p
′
1 + p0)− p′′1 − 2p′0] ,

θ2(u) = 2AW − 2 (δB1 +BW ) + F ′W + 2E′′W − 4E′W p1 + 2EW [p21 − 2p′1 − p0] . (4.44)

In order to solve eq. (4.43), the first step is to examine the singularity structure of the

equation at the horizon u = 1. As usual, we change variables to x = 1 − u, so that the

singularity is at x = 0, then insert the functional form Ax = xβ . We obtain the indicial

equation:

β2 +

(

ω

4πT

)2

= 0 . (4.45)

This is of course the same indicial equation that would have been obtained in the infinite

’t Hooft coupling limit. Thus, as long as the Lagrangian originates from a gauge-invariant
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series of operators, then the indicial equation is unchanged. The fact that the indicial

equation is unchanged is a consequence of the gauge-invariance in five dimensions, which

is in turn a consequence of the U(1) isometry of the internal manifold S5, but it is not

a consequence of supersymmetry. This behaviour is expected [40, 46–48] for scalar and

tensor fluctuations of the metric.

At this point, we have to solve the equation of motion for Ax. First, we have to specify

the functions AW , BW , CW , DW , EW and FW in the action eq. (4.37). We have computed

them explicitly and obtained the following expressions:

AW (t, z, u) =
4γ

9
u5

[

157(u2−1)κ20 + 275̟2
0

]

, (4.46)

BW (t, z, u) =
γ

9
u4

[

u
(

− 26214u3 + 29423u+ 8844̟2
0 + 6012κ20(u

2−1)
)

− 9853
]

, (4.47)

CW (t, z, u) =
4γ

9
u4

[

κ20(3360u2 − 3046)− (1543u2+4540)̟2
0

u2−1

]

, (4.48)

DW (t, z, u) =
γu3

9(u2−1)2
[

− 3872u̟4
0 +

(

1191u4 + 3857u2 − 5384κ20(u
2−1)u+ 3796

)

̟2
0

+ κ20(u
2−1)2(−1512uκ20 + 5241u2 − 2332)

]

, (4.49)

EW (t, z, u) = −3872γ

9
u6[u2−1]2, (4.50)

FW (t, z, u) = −2γ

9
u5(u2−1)[9719u2 − 6397] . (4.51)

Finally, to enable us to carry out analytic computations of the photoemission spectrum

in the high-momentum limit, and as an aide to the understanding of the physics behind

the corrected equation of motion, we can rewrite the EOM in the Schrödinger basis. We

transform the field variable as follows:

Ax(u) = Σ(u)Ψ(u) ,

Σ(u) =
1

288

√

f(u)
(

u2γ
(

u2(37760κ20u− 87539u2 + 343897)− 11700
)

+ 288
)

, (4.52)

giving us the Schrödinger-like equation:

Ψ′′(u) = V (u)Ψ(u)

V (u) = − 1

144(u2 − 1)2
[

144(uκ20 + 1) + γ(u2 − 1)
(

1838319u6 − 4752055u4

+ 2098482u2 + κ20(1011173u4 + 245442u2 − 16470)u− 11700
)]

.

(4.53)

We can study the structure of the relative difference between this γ-corrected potential and

the uncorrected one (for γ = 0 which corresponds to ’t Hooft coupling going to infinity).

Figure 1 shows the difference between the numerical potential minus the analytical one

for λ → ∞, divided by the analytical one for large λ → ∞, as a function of the radial

coordinate of the black hole, u. Long-dashed, dashed, small-dashed, tiny-dashed, and

dotted lines correspond to decreasing values of λ = 200, 150, 100, 50 and 35, respectively.

Notice the smooth behaviour of the corrected potential as a function of λ and also the fact
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Figure 1. Difference between the numerical potential minus the analytical one for λ→∞, divided

by the analytical one for λ→∞, as a function of the radial coordinate of the black hole u. Long-

dashed, dashed, small-dashed, tiny-dashed, and dotted lines correspond to decreasing values of

λ = 200, 150, 100, 50 and 35, respectively.

that they coincide exactly at u = 1. This is behind the fact that the indicial equation is

unchanged from the uncorrected case. Notice also that there is an exact cancelation of all κ4

as well as κ40 terms in the potential, which is consequence of the supersymmetric structure

of the higher derivative corrections in the ten-dimensional action.2 As a consequence, the

plasma structure functions show a slight enhancement (at ultra-high momenta) from their

values at λ → ∞ as the coupling decreases, as has been shown in our previous work [45].

The next step is to actually solve the EOM for Ax. We do this by a numerical solution of

eq. (4.53). With this numerical solution we compute the trace of the spectral function and

the photoemission rate for any value of the ’t Hooft coupling at finite yet strong coupling.

We show our results in the next subsection.

4.3 Results of photoemission with ’t Hooft coupling corrections

First, let us describe our results for the trace of the spectral function. Its asymptotic

behaviour can be evaluated analytically for low- and high-momentum, and numerically for

the remaining momentum domain. This gives [1, 22]

χµ
µ(κ0)

1
2N

2T 2
=



















(

1 +
14993

9
γ

)

κ0 +O(k3) κ0 ≪ 1

35/6

2

Γ(23)

Γ(13)
(1 + 5γ)κ

2/3
0 +O(1) κ0 ≫ 1

. (4.54)

The coefficient of κ0 in the low-momentum regime of eq. (4.54) means that the electrical

conductivity of the strongly-coupled plasma is enhanced by a factor
(

1 + 14993
9 γ

)

due to

2Notice that although in eq. (4.53) we have set the light-like momenta condition, the validity of the

statement about the power four-momentum and frequency terms cancelation is quite general, and we have

explicitly checked that.
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Figure 2. Trace of the spectral function χµ
µ divided by κ0 as a function of k for the cases when

λ is large. Solid, long-dashed, dashed and small-dashed lines correspond to decreasing values of

λ =∞, 200, 150, and 100, respectively.

the finite λ corrections [44]. This is as expected from the perturbative computations in [22]

since the weakly-coupled plasma has a larger mean-free-path per collision, allowing more

efficient diffusion of electric charge, and hence a higher electrical conductivity. On other

hand, for the higher momentum, the results of [22] imply that the spectral function at

weak coupling should go like κ
1/2
0 in the ultraviolet. Given the fact that the spectral

function at λ → ∞ goes like κ
2/3
0 , in that regime one would have expected our result in

eq. (4.54) to display some smooth interpolation between κ
1/2
0 and κ

2/3
0 . We do not obtain

such an interpolation, finding instead that the finite coupling corrections do not change

the momentum-dependence for large momentum. Moreover, we find an enhancement by

a factor (1 + 5γ) in that regime (see also [45]). The fact that the leading κ0 behaviour

is unchanged by the corrections could have been seen from the Schrödinger-like potential

above: the only κ0-dependence is κ20, identically to the λ→∞ case. Terms like κ40, which

could have changed the high-momentum functional dependence of χµ
µ(κ0), vanish. Figure 2

shows the trace of the spectral function χµ
µ divided by κ0 as a function of the light-like

momentum k for the cases when λ is large. Solid, long-dashed, dashed and small-dashed

lines correspond to decreasing values of λ =∞, 200, 150, and 100, respectively.

In figure 3 we show the photoemission rates of a strongly-coupled N = 4 supersym-

metric Yang-Mills plasma as a function of photon momentum divided by the equilibrium

temperature, k/T . In fact the curves show dΓγ/dk divided by αem(N2 − 1)T 3. Different

curves correspond to different large values of the ’t Hooft coupling: solid, long-dashed,

dashed, small-dashed, tiny-dashed, and dotted lines correspond to decreasing values of λ

from λ = ∞ (in fact it is the analytical expression from supergravity with no string the-

ory corrections), and then λ = 200, 150, 100, 50 and 35, respectively. These curves have

been obtained using the gauge/strings duality, considering the full O(α′3) type IIB string

theory corrections to the supergravity action. It is evident that the behaviour of the pho-

toemission rates depend upon the values of the ’t Hooft coupling. Their slopes at zero
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Figure 3. Photoemission spectrum for different values of λ, as a function of the light-like momen-

tum of the emitted photon divided by the equilibrium temperature, k/T . Notice that in fact we

show the curves for dΓγ/dk divided by αem(N2 − 1)T 3. Solid, long-dashed, dashed, small-dashed,

tiny-dashed, and dotted lines correspond to decreasing values of λ, from λ = ∞ (in fact it is the

analytical expression from supergravity with no string theory corrections), and 200, 150, 100, 50 and

35, respectively.

momentum give the electrical conductivity as a function of the ’t Hooft coupling in full

agreement with our previous results of [2]. The height of the peaks decrease as the ’t Hooft

coupling increases, their maxima are shifted towards the ultraviolet and the photoemis-

sion rate curves cross downwards the limiting strongly coupled (pure supergravity) curve

for momentum around three times the equilibrium temperature. These features are ex-

pected from perturbative quantum field theory calculations in the weakly coupled N = 4

supersymmetric Yang-Mills plasma and from the supergravity calculation of the large N

strongly coupled theory. However, at much higher momentum, all these curves cross up-

wards the extreme strongly coupled one. This behaviour is exemplified in figure 4 for the

large ’t Hooft coupling case (solid line) compared with λ = 50 (tiny-dashed line), for a

relatively large photon frequency in comparison with the equilibrium temperature, actu-

ally the crossing occurs around k ≈ 17.4T . For larger values of the momentum all curves

approach the solid one. This result is in agreement with our former results on deep in-

elastic scattering structure functions from N = 4 supersymmetric Yang-Mills plasma with

string theory corrections [45]. The reason for such a behaviour comes from the fact that

at O(α′3) in string theory, the Schrödinger-like potential describing the dynamics of the

photo-production gets no corrections like the fourth power of momentum and frequency.

This is caused by an exact cancelation of this power of momentum contributions from the

C4-term and its supersymmetric completion at O(α′3) in the string theory type IIB action.

5 Weakly coupled SYM plasma photoemission rates

In this section we very briefly describe the results for the weakly coupled regime of SYM

obtained by [22]. We include this in order to be able to compare our results in the previous
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Figure 4. Photoemission spectrum as a function of the light-like momentum of the emitted photon

divided by the equilibrium temperature, k/T . As before we show the curves for dΓγ/dk divided by

αem(N2−1)T 3. Solid and tiny-dashed lines correspond to values of λ =∞ and 50, respectively. This

figure shows the typical large photon momentum behaviour having a crossing around k/T ≈ 17.4,

for larger momentum the tiny-dashed curve approaches the solid line.

section for large values of λ and see how they help to understand a broader picture of the

plasma structure in terms of the ’t Hooft coupling.

The computations of the spectral function in the weakly coupled regime has been

done using perturbative SYM theory [22], also previous results for perturbative QCD were

obtained in [4, 5]. For light-like momenta the contribution to the trace of the spectral func-

tion appears at two-loop level. The key point is that in a thermal system the expansion

of physical quantities in powers of the ’t Hooft coupling is not the same as the diagram-

matic expansion in loops. Basically, what happens is that there is sensitivity to energy

and momentum scales which are parametrically small in comparison with the equilibrium

temperature. In the situation where one considers light-like momentum this complication

already arises at the first non-trivial order. To deal with this, it is necessary to carry out an

infinite resummation of diagrams in order to find the leading order weak-coupling photon

production rate. This rate can be split into a contribution from a Compton-like 2 ↔ 2

scattering process and near-collinear Bremsstrahlung and pair-annihilation processes, which

are further corrected due to the Lipatov-Pomeranchuk-Migdal suppression effect. The com-

plete presentation of all these processes and effects for QCD is given in [4, 5] and references

therein. Also in [22] is presented a detailed comparison between QCD and SYM in the

pertubative domain of both theories. Here we just quote some of their results relevant for

our discussion.

Firstly, notice that the differential photoemission rate can be recast into the emission

rate per unit volume as a function of the photon momentum

dΓγ

dk
=
αem

π
k ηµν C<

µν(K) . (5.1)

At low frequencies the trace of the spectral function approaches a constant which is pro-
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Figure 5. Photoemission spectrum for different values of λ, as a function of the light-like momen-

tum of the emitted photon divided by the equilibrium temperature, k/T . Notice that in fact we

show the curves for dΓγ/dk divided by αem(N2 − 1)T 3. Solid, long-dashed, dashed, small-dashed,

tiny-dashed, and dotted lines correspond to decreasing values of λ = very large (in fact it is the

analytical expression from supergravity with no string theory corrections), to 200, 150, 100, 50 and

35, respectively. On the other hand, we show two additional curves corresponding to the weakly

coupled SYM obtained in [22]: a small-dashed line and a long-dashed line, which represent the

perturbative SYM plasma for λ = 0.2 and 0.5, respectively.

portional to the electrical conductivity of the plasma:

dΓγ

dk
=
σT

π2
k . (5.2)

In figure 5 we show the photoemission rates per unit volume per unit time, divided

by αem(N2 − 1)T 3, both in the non-perturbative and perturbative regimes. The non-

pertubative case is the same as before in figure 3 in the previous section, and we repeat it

here for comparison with the weakly coupled regime of the SYM theory.

It is very interesting the fact that for weakly coupled N = 4 supersymmetric Yang-

Mills plasma the hydrodynamical regime in which eq. (5.2) holds is as narrow as k/T ≤ λ2,
with λ small. Its slope σT/π2 is parametrically large and the photoemission rate has a

maximum. For larger photon momentum we take the expression from [22]

dΓγ

dk
=

(N2 − 1)αem

4π2
k nf (k)m2

∞ [ln(T/m∞) + Ctot(k/T )] , (5.3)

being nf (k) the fermion statistical factor (with a minus sign), while the thermal correction

to the hard fermion propagation in the medium is given by m2
∞ = λT 2. The integral called

Ctot(k/T ) was numerically solved in [22] and also can be written in the following form:

Ctot(k/T ) =
1

2
ln(2k/T ) + C2←→2(k/T ) + Cbrem(k/T ) + Cpair(k/T ) . (5.4)

The numerical results from [22] are reproduced quite accurately by the expressions:

C2←→2(k/T ) ≃ 2.01T/k − 0.158− 0.615 e−0.187k/T ,

Cbrem(k/T ) + Cpair(k/T ) ≃ 0.954 (T/k)3/2 ln(2.36 + T/k) + 0.069 + 0.0289 k/T , (5.5)
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which hold in the range 0.2 < k/T < 20. In figure 5 we have also shown a small-dashed stiff

curve which corresponds to the value of λ = 0.2 and a long-dashed curve for λ = 0.5, both

obtained using the combined expressions eq. (5.4) and eq. (5.5). For weak coupling, it can

be seen that the photoemission rates decrease as the coupling decreases, except for very low

frequencies, where they are very much enhanced compared to the strongly coupled regime.

On the other hand, for large photon momentum the strongly coupled plasma displays larger

photo-production rate. This effect is due to the suppression which is produced by the m∞
factor, proportional to the ’t Hooft coupling, in the weakly coupled expression.

6 General discussion and conclusions

In this work we have investigated ’t Hooft coupling corrections to the photoemission rate

of a strongly-coupled N = 4 supersymmetric Yang-Mills plasma by the means of the

gauge/string duality. We consider the full O(α′3) type IIB string theory corrections to the

supergravity action. The behaviour of the photoemission rates depend upon the values of

the ’t Hooft coupling. Their slopes at zero momentum give the electrical conductivity as

a function of the ’t Hooft coupling. Beyond the hydrodynamical regime of the plasma, as

discussed before, the peak of the photoemission is enhanced by the corrections, and the

momentum of maximal emission shifts towards the infrared, taking the corrected curves

closer to the weakly coupled result. Simple numerical analysis on the light-like spectral

function yields that the maximal rate is given by

dΓγ

dk

∣

∣

∣

∣

max

≃ 0.0156695

(

1 +

[

1115.3− 265

8

]

γ

)

+O(γ2) , (6.1)

in units of αemN
2T 3, where we have made explicit the factor −265/8γ coming from the

overall normalization of the action. For the peak displacement we estimate the position of

the peak kmax as

kmax ≃ 1.48469(1− 842.425γ)T +O(γ2) , (6.2)

which turns out to be independent of the overall normalization of the action, making it an

excellent candidate for comparing disparate gauge theories. Furthermore, we obtain the

total number of photons emitted, given by the area under the curves in figure 3. This is

enhanced by a factor

Ntotal(γ)

Ntotal(0)
≃ 1 +

[

461.941− 265

8

]

γ +O(γ2) , (6.3)

due to the fact that the weakly-coupled theory dominates in the infrared, where Bose-

suppression (due to nb(k)) is small.

These features are expected from perturbative quantum field theory calculations in

the weakly coupled N = 4 supersymmetric Yang-Mills plasma and from the supergrav-

ity calculation of the large N strongly coupled theory [22]. There is a (λ-independent)

crossover point around k/T ∼ 2.92, where the corrected curves dip below the λ → ∞
result. However, at much higher momentum, all these curves cross upwards the extreme

strongly coupled one, leading to that the asymptotic values of the λ-corrected curves for
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large k/T are given by (1+5γ) times the infinite coupling result, as in eq. (4.54). Although

the range of momentum of figure 3 does not extend to cover this asymptotic behaviour,

we show this behaviour in figure 4. This means that the finite-λ corrections enhance the

photoemission rate in the deep ultraviolet domain, contrary to the expectations of [22].

Obviously, we are not guaranteed that the weakly-coupled result should be approached

by strongly-coupled corrections computed in perturbation theory, especially not for a sit-

uation where the functional dependence on momenta is expected to be different, so we

are not unduly concerned by this apparent discrepancy [1]. It would be very revealing to

understand these cross-over points, as well as their scaling with λ.

The overall picture which emerges from our calculations is the following: the peaks of

the photoemission rates are displaced towards low frequencies as λ decreases. It implies

that soft photons are produced more efficiently at weaker values of the ’t Hooft coupling,

in the strong coupling regime. On the other hand, for harder photons the emission is

dominated by stronger values of the coupling. But then, due to the effect described in

the previous paragraph, the ’t Hooft coupling corrected curves dominate for much larger

values of the ratio k/T . Still there is a notorious separation of the behaviour at the weak

and strong coupling regimes: for the asymptotic behaviour of the weak coupling regime

the fall off goes proportional to k3/2e−k/T , while for all the strongly coupled curves it falls

down as k5/2e−k/T .

Let us consider very briefly what happens if we consider finite N corrections. Using

the modular form introduced in subsection 4.1, since it factorises out from the Green-

Stahn action (4.3) we obtain the corrections to the plasma conductivity (recall that this is

proportional to the slope of the photoemission rate at zero frequency)

σ = σ0 +
14993

72
σ0

(

ζ(3)

λ3/2
+

λ1/2

48N2
+

e−8π
2N/λ

2π1/2N3/2

)

, (6.4)

where as we have seen σ0 = e2TN2/16π. At this point one may wonder whether this

result can be compared with those obtained from lattice QCD. Obviously, any statement

in the context of the present work has to be considered with several caveats, coming from

differences between QCD and the N = 4 SYM theory. Said that, it is possible to make

contact with lattice QCD at some extent. We must take into account that in lattice QCD

calculation N = 3 typically, and there are other differences with respect to the planar

limit of the SYM plasma. In a recent estimation of the electrical conductivity it was

found σ ≃ 0.4e2T , above Tc of quenched lattice QCD [49]. A more recent calculation [50]

shows that 1/3e2T ≤ σ ≤ e2T from the vector current correlation function from lattice

computations at temperatures about 1.5 to 2Tc, the values of αs = g2YM/4π are between

0.3 and 0.4, where these values were obtained by matching the Debye mass screening in

QCD and in N = 4 SYM at finite T . If we use the parametrization σ = ρe2T and extract

ρ from our equation (6.4), using naively N = 3, and evaluating the electrical conductivity

for λ = 11.3, 15.08 and 6π, which lead to αs =0.3, 0.4 and 0.5, respectively, we obtain

ρ = 1.64, 1.28 and 1.101, respectively. So, we can see how close is the lowest value 1.101

to the upper value of the conductivity obtained from lattice QCD in [50].
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The studies and results of photoemission and electrical conductivity presented in this

work exclusively concern the N = 4 SYM plasma in thermal equilibrium. Beyond ther-

mal equilibrium it is possible to carry out very interesting computations such as the one

presented in [51], where the authors consider production of prompt photons from an out-

of-equilibrium N = 4 SYM plasma, including O(α′3) string theory corrections. The work

of [51] merges the formalism introduced in [52] about the photo-production from a out-of-

equilibrium strongly coupled plasma with the one corresponding to O(α′3) string theory

corrections to photo-production [1]. The AdS/CFT description of dilepton production

from an out-of-equilibrium plasma has also been considered [53]. Papers [51–53] are based

on a model of holographic thermalisation which involves the gravitational collapse of a

thin shell in AdS5 in a quasi-static approximation as in [54, 55]. On the other hand, one

can also consider other approach to holographic thermalisation with a dynamical shell as

in [56, 57]. Based on [56, 57], thermal and electromagnetic quenches for the specific case

of AdS4 have been studied [58]. More recently, a systematic study of holographic ther-

malisation from a collapsing shell of charged pressureless dust has been considered in [59],

which allows one to consider a chemical potential effect on the thermalisation time scale

of the plasma.

There are very interesting directions for further extensions of the work presented here.

One is to look for similar strong coupling corrections to the electrical diffusion constant,

with the idea of discussing about the possibility of a universal bound for electrical charge

transport coefficients [43, 46]. Also, effects of leading ’t Hooft coupling corrections to

dilepton production from a strongly coupled plasma would be interesting to study in this

context. Another interesting situation is the boost invariant plasma. In that case correc-

tions coming from F5 could have modified the ratio of shear viscosity over entropy density,

however in [28] it was concluded that corrections from F5 do not modify the results in

this case. However, likely the situation would be different if one refers to electric charge

transport properties. In addition, the inclusion of an R-charged black hole allows to study

the plasma at finite chemical potential. In this case, as Paulos has shown [27], the EOM

are modified by the F5 corrections. However, while the analysis using only C4-term is

prohibitively complicated, Paulos has shown that the inclusion of its supersymmetric com-

pletion gives a simple result. It would be interesting to see if something similar happens

for properties related to electric charge in the same background.

It would also be very interesting to carry out similar calculation as for the corrections

to electrical conductivity and photoemission rates for other backgrounds with deformations

from the conformal ones [60, 61] and with no conformal symmetry [62, 63]. It would also

be very interesting to be able to compute higher-order corrections to the photoemission

rate for plasmas with fundamental quarks. In that case there are at least two different and

very interesting possibilities. One is the case for a D3D7 plasma which basically consists

of the embedding of D7 branes in the background of a large number of D3 branes [64, 65]

at finite temperature. There are two possible embeddings for this: the Minkowski and the

black hole ones, and there is a Hawking-Page transition which is associated with glueball

to deconfined gluons transition and at higher temperature there is a second transition

temperature at which mesons melt down giving a QGP [66]. Another very different system
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which actually is closer to QCD than the D3D7 brane system is the D4D8-anti D8-brane

system proposed by Sakai and Sugimoto [67], which can also be heated up in order to

obtain a QGP [68]. α′ corrections to D-brane solutions have been investigated in [37].
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A The magnetic part of F5 for vector fluctuations

A.1 The vector fluctuation Fux

Let us first consider the vector fluctuation Fux. The magnetic part is a ten-dimensional

Hodge dual of the electric one. In components we can write

F f
(m)uxyν1yν2yν3

=
√

| detG10|F f
(e)yiyjtyz

Gyiyi Gyjyj GttGyy Gzz ǫyiyjtyzxuν1ν2ν3 . (A.1)

Note that this component as a form reads:

F f
(m)=

√

| detG10|
5!5!

F f
(e)yiyjtyz

Gyiyi Gyjyj GttGyy Gzz ǫyiyjtyzxuν1ν2ν3 du∧dx∧dyν1∧dyν2∧dyν3 ,
(A.2)

ǫyiyjtyzxuν1ν2ν3 determines the sign of each piece of the magnetic components as follows.

So, let us label the magnetic components by the indices of the vector fluctuation in

the metric, i.e. ux in this case we have

F f
(m)ux =

√

| det gAdS|F f
(e)uxG

ttGyy Gzz (mux
13 +mux

14 +mux
15 +mux

24 +mux
25 ) . (A.3)

Then

mux
13 = ǫ13tyzxu245

√
detS5 b13G

y1y1 Gy3y3 = −
√

detS5 b13G
y1y1 Gy3y3 ,

mux
14 = ǫ14tyzxu235

√
detS5 b14G

y1y1 Gy4y4 = +
√

detS5 b14G
y1y1 Gy4y4 ,

mux
15 = ǫ15tyzxu234

√
detS5 b15G

y1y1 Gy5y5 = −
√

detS5 b15G
y1y1 Gy5y5 ,

mux
24 = ǫ24tyzxu135

√
detS5 b24G

y2y2 Gy4y4 = −
√

detS5 b24G
y2y2 Gy4y4 ,

mux
25 = ǫ25tyzxu134

√
detS5 b25G

y2y2 Gy5y5 = +
√

detS5 b25G
y2y2 Gy5y5 . (A.4)

A.2 The vector fluctuation Ftx

As before, the magnetic part is a 10d Hodge dual of the electric one. In components we have

F f
(m)txyν1yν2yν3

=
√

| detG10|F f
(e)yiyjyzu

Gyiyi Gyjyj GuuGyy Gzz ǫyiyjyzutxν1ν2ν3 . (A.5)
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As a form it reads:

F f
(m)=

√

| detG10|
5!5!

F f
(e)yiyjyzu

Gyiyi Gyjyj GuuGyy Gzz ǫyiyjyzutxν1ν2ν3 dt∧dx∧dyν1∧dyν2∧dyν3 .
(A.6)

Again, let us label the magnetic components by the indices of the vector fluctuation in the

metric, i.e. tx

F f
(m)tx =

√

| det gAdS|F f
(e)txG

uuGyy Gzz (mtx
13 +mtx

14 +mtx
15 +mtx

24 +mtx
25) . (A.7)

Then we have,

mtx
13 = ǫ13yzutx245

√
detS5 b13G

y1y1 Gy3y3 = −
√

detS5 b13G
y1y1 Gy3y3 ,

mtx
14 = ǫ14yzutx235

√
detS5 b14G

y1y1 Gy4y4 = +
√

detS5 b14G
y1y1 Gy4y4 ,

mtx
15 = ǫ15yzutx234

√
detS5 b15G

y1y1 Gy5y5 = −
√

detS5 b15G
y1y1 Gy5y5 ,

mtx
24 = ǫ24yzutx135

√
detS5 b24G

y2y2 Gy4y4 = −
√

detS5 b24G
y2y2 Gy4y4 ,

mtx
25 = ǫ25yzutx134

√
detS5 b25G

y2y2 Gy5y5 = +
√

detS5 b25G
y2y2 Gy5y5 . (A.8)

A.3 The vector fluctuation Fzx

Similarly with the two previous cases the ten-dimensional Hodge dual of electrical part of

F5 induced by the vector fluctuation Fzx in components is given by

F f
(m)zxyν1yν2yν3

=
√

| detG10|F f
(e)yiyjtyu

Gyiyi Gyjyj GttGyy Guu ǫyiyjtyuxzν1ν2ν3 . (A.9)

This component as a form reads:

F f
(m)=

√

| detG10|
5!5!

F f
(e)yiyjtyu

Gyiyi Gyjyj GttGyy Guu ǫyiyjtyuxzν1ν2ν3 dx∧dz∧dyν1∧dyν2∧dyν3 .
(A.10)

Now, let us label the magnetic components by the indices of the vector fluctuation in the

metric, i.e. zx

F f
(m)zx =

√

| det gAdS|F f
(e)uxG

ttGyy Guu (mzx
13 +mzx

14 +mzx
15 +mzx

24 +mzx
25) . (A.11)

Then

mzx
13 = ǫ13tyuxz245

√
detS5 b13G

y1y1 Gy3y3 = −
√

detS5 b13G
y1y1 Gy3y3 (−1) ,

mzx
14 = ǫ14tyuxz235

√
detS5 b14G

y1y1 Gy4y4 = +
√

detS5 b14G
y1y1 Gy4y4 (−1) ,

mzx
15 = ǫ15tyuxz234

√
detS5 b15G

y1y1 Gy5y5 = −
√

detS5 b15G
y1y1 Gy5y5 (−1) ,

mzx
24 = ǫ24tyuxz135

√
detS5 b24G

y2y2 Gy4y4 = −
√

detS5 b24G
y2y2 Gy4y4 (−1) ,

mzx
25 = ǫ25tyuxz134

√
detS5 b25G

y2y2 Gy5y5 = +
√

detS5 b25G
y2y2 Gy5y5 (−1) . (A.12)
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