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1 Introduction

There has been a considerable progress in the knowledge of static black holes in supergrav-

ity, both from the point of view of finding solutions and of their classification [1–5], in four

and higher dimensions.

A relevant role in these developments was played by the use of a first order formalism,

corresponding to the introduction of a fake-superpotential [6–15] that was recognized to

be strictly related to the Hamilton characteristic function in a mechanical problem where

the evolution is in the radial variable τ [8, 10, 14]. The latter approach naturally applies

to both extremal and non-extremal static, single center black holes.

As far as more general solutions, such as stationary and/or multicenter black holes [16–

21], are concerned, a similar comprehensive study is still missing. In particular, the use of

a first order formalism has not been much exploited except in very particular cases [22–24].

A peculiarity of static, spherically symmetric solutions is that one can exploit the sym-

metries to reduce the Lagrangian to a one-dimensional effective one, where the evolution

variable is the radial one [25, 26]. However, when considering four dimensional solutions
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with less symmetries, in particular stationary solutions where only the time-like Killing

vector ∂t is present, an effective three-dimensional Lagrangian can be obtained upon com-

pactification along the time coordinate [27–36]. The fields in the effective Lagrangian now

depend on the three space variables xi, (i = 1, 2, 3). In particular, for stationary axisym-

metric solutions, the presence of an angular Killing vector ∂ϕ allows a further dimensional

reduction to two dimensions.

The problem of extending the Hamilton-Jacobi (in the following, HJ) formalism from

mechanical models, whose degrees of freedom depend on just one variable, to field theories

where the degrees of freedom depend on two or more variables, was addressed and developed

in generality from several points of view (a useful review is given by [37]).

Our main aim in the present paper is to apply such extended formalism to the study

of black holes. We will adhere to the so-called De Donder-Weyl-Hamilton-Jacobi theory,

hereafter referred to as DWHJ, which is the simplest extension of the classical HJ approach

in mechanics. One important difference with respect to the case of classical mechanics

consists in the replacement of the Hamilton principal function S (directly related to the

fake-superpotential of static black holes) with a Hamilton principal 1-form, that is with a

covariant vector Si.

As it is usual in the three dimensional approach, by using Hodge-duality in three

dimensions all the fields of the parent four dimensional theory are described by three

dimensional scalars [27] and their interaction is given by gravity coupled to a σ-model.

Correspondingly, the equations of motion give a set of conserved currents. A particularly

interesting case is when the σ-model is a symmetric space G(3)/H
∗ (where H∗ denotes

a suitable non-compact maximal subgroup of G(3) [27]). Note that the effective geodesic

Lagrangian is invariant under the three-dimensional isometry group G(3) (we will also refer

to it as the three-dimensional duality group). One of the main results of our paper is to

give a manifestly duality invariant expression for the Hamilton principal vector Si, thus

extending the results obtained for the Hamilton characteristic function W in the static

case [10].

For pure Einstein-Maxwell stationary configurations, the three-dimensional σ-model

turns out to be SU(1, 2)/U(1, 1). As is well known in General Relativity, in the presence of

a time-like Killing vector Einstein-Maxwell theory is very efficiently described in terms of

the so-called Ernst potentials E , Ψ (see for example [38, 39]), which are complex functions of

the SU(1, 2) complex triplet of fields U = (W,V,U). We found particularly useful, outside

the ergosphere, to parametrize the coset SU(1, 2)/U(1, 1) with the homogeneous fields

U, V,W , or more precisely with their inhomogeneous counterpart (u = U/W, v = V/W ),

corresponding to four real scalar degrees of freedom.

In the present paper we will give general results on stationary axisymmetric solutions

of four dimensional supergravity and then focus on the first-order formulation of the Kerr-

Newman solution and its extension in the presence of a NUT charge. Besides finding a

duality invariant Si, we will also express the conserved charges of the black hole [40] in

terms of the conserved charges of the σ-model G(3)/H
∗. Actually, the Nöther charges

associated with G(3) global symmetry do not include the angular momentum Mϕ. The

latter can nevertheless be expressed in terms of quantities which are intrinsic to the σ-
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model. This is achieved by introducing a new G(3)-covariant constant matrix, besides the

Nöther charge one Q, defined as follows:

Qψ = − 3

8π

∫

S∞
2

ψ[i Jj] dx
i ∧ dxj , (1.1)

Ji being the Nöther current with value in the algebra of G(3) and ψ = ∂ϕ the angular Killing

vector. From straightforward application of the general four-dimensional expression for the

angular momentum one finds that its squared value can be written in terms of the ratio

of two G(3) invariants Tr(Q2
ψ) and Tr(Q2), and thus can be given a description which is

invariant with respect to the global symmetry of the σ-model and is straightforwardly

generalizable to more general models with D = 4 scalar fields. This analysis also provides

a G(3)-invariant characterization of the extremality parameter (and thus of the extremality

condition), see eq.s (3.40), (3.41), so that the cosmic-censor condition for Kerr black holes,

M4
ADM ≥ M2

ϕ, can be recast for the generic regular axisymmetric solution, in a G(3)-

invariant way as

[Tr(Q2)]2 ≥ 2

k
Tr(Q2

ψ) ,

k being a representation-dependent constant. In particular we show that in the extremal

“ergo-free” solutions [20, 41–44], both matrices Q, Qψ are nilpotent, the former having a

larger degree of nilpotency of the latter. The first-order formalism and the functions Sm
for for under-rotating solutions were derived in [23].

A description of the global symmetry properties of axisymmetric solutions should then

include at least the two independent, mutually orthogonal matrices Q, Qψ belonging to the

Lie algebra of the global symmetry group.

The paper is organized as follows.

In section 2 we present the extension of the HJ theory to field theory, following the

DWHJ approach, and give a general formula to find the Hamilton principal 1-form.

In section 3 we focus on stationary axisymmetric black holes, whose description, follow-

ing [27], is two dimensional. We review the construction of the two-dimensional effective

Lagrangian and the expression of the characteristic physical quantities associated with

the four-dimensional solution in terms of Nöther currents of the sigma-model. We also

write the angular momentum in terms of the sigma-model Nöther currents and introduce,

besides Q, the matrix Qψ, which allows to describe in a G(3)-invariant fashion the rota-

tional properties of the solution. We also discuss the under-rotating extremal limit of a

non-extremal solution in the G(3)-orbit of the Kerr-black hole. Then we find a manifestly

(three-dimensional) duality invariant expression for the principal functions Si (i = 1, 2, 3).

In section 4 we restrict our attention to the KN-Taub-NUT solution, making use of

the Ernst potentials written in terms of the inhomogeneous fields (u, v) to parametrize the

SU(1, 2)/U(1, 1) coset and give the explicit form of the principal functions Sm (m = 1, 2)

in terms of fields and two-dimensional coordinates.

We end in section 5 with some concluding remarks. Appendix A contains the explicit

form of the algebra SU(1, 2), while appendix B, extending the procedure of [45, 46] to

the case where a NUT charge is present, shows how one can retrieve the KN-Taub-NUT
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solution from Schwarzschild by use of duality and general coordinate transformations. In

particular, appendix B.1 contains a manifestly H∗-invariant expression for the W-function

describing the RN-Taub-NUT solution in the universal model, which, to our knowledge,

was not known so far, and then applies a known procedure [45, 46] to generate from it the

KN-Taub-NUT solution by a set of duality and general coordinate transformations.

2 Hamilton-Jacobi formalism for field theory

In a previous work a formalism was developed to interpret the first-order description of

static black holes in terms of Hamilton-Jacobi theory. In particular, the Hamilton charac-

teristic function W was shown to be related, for extremal solutions, to the “fake” superpo-

tential: W = 2 e2UW [8, 10]. The above construction works well in the static, spherically

symmetric case where the metric only depends in a non-trivial way on the evolution radial

variable τ so that the Einstein Lagrangian can be reduced to an effective one-dimensional

Lagrangian. For more general black holes, with a lower number of isometries, we have to

extend the Hamilton-Jacobi formalism to a more general setting. In particular, for sta-

tionary black holes corresponding to the existence of a Killing vector associated with time

translations ∂
∂t , the metric can be reduced to the following general form

ds2 = e2U (dt+ ω)2 − e−2Ugijdx
idxj (2.1)

where the fields U , ω = ωidx
i and the 3D metric tensor gij depend on the space coordinates

xi, i = 1, 2, 3.

In the static, spherically symmetric case, the HJ equations arise in a classical mechan-

ical effective model where the evolution variable τ plays the role of time. A first-order

formulation for a more general black-hole solution requires the extension of the Hamilton-

Jacobi description from classical mechanics to a field theory depending on two or more

variables (see, for example, [37] and references therein). In this setting the Hamilton-

Jacobi description has to be generalized to the so-called De Donder-Weyl-Hamilton-Jacobi

theory, hereafter referred to as DWHJ, which amounts to the following. Let L(za, vai , xi) be
the Lagrangian density of the system, where za (a = 1, · · · , n) are the field variables which

become functions of the xi, za = ξa(x), on the extremals, while vai = ∂iz
a. The canonical

momenta are defined by πia =
∂L
∂vai

, and the invariant Hamilton density function is

H = πiav
a
i − L . (2.2)

The DWHJ equation is a first-order partial differential equation for the functions Si(z, x):

∂iS
i(z, x) +H(z, x, π) = 0 , (2.3)

where

πia = ∂aS
i(z, x) . (2.4)
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The functions Si =
1√
ggijS

j may be thought of as the components of a one-form S(1) ≡
Sidx

i.1

In the field-theory case the issue of integrability is more involved than in mechanics

since, even if a complete integral Si can be found, solutions to the Euler-Lagrange equations

can be constructed if the integrability conditions (which are trivial in mechanics):

∂[iv
a
j] = 0 (2.5)

are satisfied. Taking into account that vai (π, z, x) = vai
(

∂S
∂z , z, x

)

, this imposes severe con-

straints on the solutions Si(z, x). From now on we will mainly focus on the two dimensional

case, which is relevant when discussing axisymmetric black holes for which two Killing vec-

tors exist, associated with time translations ∂
∂t and rotations about an axis ψ = ∂

∂ϕ . Note

however that the extension of the formalism from systems depending on two independent

variables to systems with three or more independent variables is straightforward and does

not bring anything conceptually new [37]. We will denote the independent variables for

the two-dimensional case by xm, m = 1, 2. The 3D metric in this case takes the form:

gijdx
idxj = γmndx

mdxn + ρ̂2dϕ2, where ϕ denotes the angle about the rotation axis, and

the fields γmn, ρ̂ depend on xm.

If one introduces the two-form Lagrangian

Ω0 = −Hdxm ∧ dxn + πma dz
a ∧ dxnǫmn (2.6)

then the Hamilton-Jacobi equations are given by the condition

dΩ0 = 0 (2.7)

which implies that, locally, there exist two functions Sm in terms of which Ω0 can be

written in the following form:

Ω0 = dSm ∧ dxnǫmn , (2.8)

so that2

∂mS
m = −H , (2.10)

∂Sm

∂za
= πma . (2.11)

1We observe that, in the presence of a gravitational field, which is the case we will deal with, (2.3)

should be modified to contain the covariant divergence ∇iS
i. However, defining the contravariant vector

density Si ≡ √
ggijSj , Sj being a true covariant vector, makes it possible to trade the covariant derivatives

for ordinary ones, so that the equations are formally the same as in flat space. In this case, however, by H
we mean the hamiltonian density including the factor

√

|g|.
2We denote with ∂m the derivative with respect to explicit xm dependence, while total derivative with

respect to xm is denoted by d
dxm

:

d

dxm
f(ξ, x) ≡ ∂mξa

∂f

∂ξa
+ ∂mf (2.9)
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2.1 Solving DWHJ equations

In the present section we discuss in a general setting a possible way to solve the DWHJ

equations. Then, in the next sections we will apply this procedure to the study of axisym-

metric black holes and their Taub-NUT extensions. We will give here a constructive recipe

to find solutions to the field equations by solving the DWHJ equations, following a general

procedure given in the literature (see for example [37] and references therein).

As already anticipated, in field theory the expression for Sm is strongly restricted

by the integrability constraints (2.5). In particular, as opposed to the one-dimensional

classical-mechanics case, it is not always possible to find an expression for Sm valid in

an open neighborhood of the extremals za = ξa(x) in the space of fields and coordinates.

When this is possible, one says that the extremals za = ξa(x) are strongly embedded in

the wave fronts Sm(z, x). In many cases, however, the solution Sm satisfies eqs. (2.10)

and (2.11) only on the extremals za = ξa(x). One then says that the extremals are weakly

embedded in Sm(z, x).

A possible solution which is weakly embedded in Sm is found by choosing one of the

xm, say x1, as the evolution variable:

Sm = (za − ξa(x))πma (ξ, x) + δm1

∫ x1

dx1
′L(ξ(x′), ∂mξ, x′) +O[(za − ξa(x))2] (2.12)

Indeed, from (2.12) we find, using (2.2)

∂Sm

∂za

∣

∣

∣

∣

z=ξ

= πma (ξ, x) (2.13)

∂mS
m|z=ξ = −∂mξaπma + L (ξ(x), ∂mξ, x) = −H (ξ(x), ∂mξ, x) . (2.14)

Eq. (2.12) can be understood as a linear approximation of the Taylor expansion of Sm in

the neighborhood of the extremal.

3 The 2D effective Lagrangian and its field-theoretical DWHJ descrip-

tion

In the presence of a time-like Killing vector ∂t, the vielbein V
a (a = 0, 1, 2, 3) of space-time

can be put in the form

V 0 = eU (dt+ ω) = eUD0 ; V i = e−UDi (3.1)

where Di (i = 1, 2, 3) are 3D vielbein. The time-reduced 3-dimensional Lagrangian de-

scribing a stationary 4D black hole in the presence of a given number of scalars φr and

– 6 –
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gauge fields AΛ has the following form3

1
√
g(3)

L(3) =
1

2
R− 1

2
Gab(z)∂iz

a∂izb =

=
1

2
R−

[

∂iU∂iU +
1

2
Grs ∂iφ

r ∂iφs +
1

2
ǫ−2U ∂iZ

T M(4) ∂
iZ+

+
1

4
ǫ−4U (∂ia+ ZTC∂iZ)(∂

ia+ ZTC∂iZ)

]

, (3.2)

where g(3) ≡ det(g(3)). Here, all the propagating degrees of freedom have been reduced to

scalars by 3D Hodge-dualization [27]. In particular, the scalars Z = (ZΛ,ZΛ) = {ZM}
include the electric components AΛ

0 of the 4D vector fields together with the Hodge dual

of their magnetic components AΛ
i (i = 1, 2, 3) and a is related to the Hodge-dual of the 3D

graviphoton ωi. More precisely,

AΛ
(4) = AΛ

0D
0 +AΛ

(3) , AΛ
(3) ≡ AΛ

i D
i , (3.3)

FM(4) =

(

FΛ
(4)

GΛ(4)

)

= dZM ∧D0 + e−2U
C
MNM(4)NP

∗dZP , (3.4)

da = −e4U∗dω − ZTCdZ , (3.5)

where FΛ
(4) = dAΛ

(4), GΛ(4) = −1
2
∗
(

∂L
∂FΛ

(4)

)

, and M(4)(φ) is the negative-definite symmetric,

symplectic matrix depending on 4D scalar fields introduced in [47, 48].

The isometry group G(3) of the σ-model metricGab(z) contains as non trivial subgroups

the 4-dimensional U-duality group G(4) times the group SL(2,R) (the Ehlers group) under

which the degrees of freedom of the 4d metric transform. The simplest 3D model is the

one originating form a pure 4D Einstein-Maxwell gravitational theory with a single time-

like Killing vector. In this case G(4) = U(1) and the 3D σ-model has the homogeneous-

symmetric target space SU(1,2)
U(1)×SU(1,1) . Its field content consists of four scalars belonging to a

pseudo-Riemannian version of the universal hypermultiplet, dubbed the universal pseudo-

hypermultiplet. We will discuss in more detail the properties of this theory in the following

section 4.

We will mainly focus our attention on stationary axisymmetric solutions admitting the

two Killing vectors ∂t and ∂ϕ. In this case, as pointed out earlier, one may further reduce

the 3D Lagrangian to two dimensions by compactification along ϕ. The fields now depend

on the space coordinates xm, m = 1, 2, and we assume that the three-dimensional space

metric can be expressed in block-diagonal form as:

g(3) =

(

λ2hmn 0

0 ρ̂2

)

. (3.6)

The resulting 2D Lagrangian takes the form [27]

L(2) =
√
h ρ̂

(R(2)

2
− 1

2
Gab(z)∂mz

a∂mzb +
∂mρ̂ ∂

mλ

λρ̂

)

, (3.7)

3For the D = 4 supergravity theory we use the units ~ = c = 8πG = 1 and the normalization of the

vector fields as in [5].
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with h ≡ det(hmn). As shown in [27], the dynamics of the fields za is totally captured by

the σ-model effective action:

Seff =

∫

d2x
√
h
ρ̂

2
Gab(z)∂mz

a∂mzb , (3.8)

where ρ̂(xm) is a harmonic function in the subspace spanned by xm.4 The metric on this

space can be made conformally flat by a suitable choice of the xm and the conformal factor

absorbed in the definition of λ, so that the equations for za and ρ̂ can be written in a flat

2D space (with R(2) = 0) spanned by xm, with metric hmn. As we shall show in section 4.1,

in suitable coordinates,
√
h ρ̂ = sin θ.

The equation for λ can then be solved once the solutions to the σ-model are known [27].

We shall restrict our analysis to symmetric supergravities in which the scalar manifold

Mscal of the D = 3 theory, spanned by the za, is homogeneous symmetric, i.e. of the form

Mscal =
G(3)

H∗ . (3.9)

We shall use for this manifold the solvable Lie algebra parametrization by identifying the

scalar fields za with parameters of a suitable solvable Lie algebra. Let us recall the main

points [32]. The isometry group G(3) of the target space is the global symmetry group of

the Seff and H∗ is a suitable non-compact semisimple maximal subgroup of it. The scalars

za = {U , a, φr, Z} correspond to a local solvable parametrization, i.e. the corresponding

patch, to be dubbed physical patch U , is isometric to a solvable Lie group generated by a

solvable Lie algebra Solv:

Mscal ⊃ U ≡ eSolv , (3.10)

Solv is defined by the Iwasawa decomposition of the Lie algebra g of G(3) with respect to

its maximal compact subalgebra H. The solvable parametrization za can be defined by the

following exponential map:

L(za) = exp(−aT•) exp(
√
2ZM TM ) exp(φr Tr) exp(2UT0) , (3.11)

where the generators T0, T•, Tr, TM satisfy the following commutation relations:

[T0, TM ] =
1

2
TM ; [T0, T•] = T• ; [TM TN ] = CMN T• ,

[T0, Tr] = [T•, Tr] = 0 ; [Tr, TM ] = Tr
N
M TN ; [Tr, Ts] = −Trss

′

Ts′ , (3.12)

Tr
N
M representing the symplectic representation of Tr on contravariant symplectic vectors

dZM . We can use for the generators of g a representation in which the generators of H∗, the
Lie algebra of H∗, are invariant under the involution σ :M → −ηM †η, where η ≡ (−1)2T0 .

The vielbein P and connection W 1-forms on the manifold are computed as the odd and

even components, respectively, of the left-invariant one-form with respect to σ:

L
−1dL = P + W , (3.13)

4According to a general procedure in General Relativity one can perform a coordinate transformation

such that the field ρ̂ is chosen as one of the new harmonic coordinates, the second coordinate z being defined

by dz = −⋆dρ̂. Here ⋆ denotes Hodge-dualization in two dimensions. In these new variables xm = (ρ̂, z),

named Weyl-coordinates, the 2D metric is conformally flat γmn = λ2δmn [27, 38].
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P = ηP †η = −σ(P ), W = −ηW †η = σ(W ). In terms of P the metric on the manifold

reads:

dS2
(3) = Gab(z)dz

a dzb = kTr(P 2) , (3.14)

where k = 1/(2Tr(T 2
0 )) is a representation-dependent constant. It is also useful to introduce

the hermitian, H∗-invariant matrix M:

M(z) ≡ LηL† = M† , (3.15)

in terms of which we can write the geodesic Lagrangian as:

L(2)eff =
1

2
ρ̂
√
hGab(z)∂mz

a ∂mzb =
k

8
ρ̂
√
hTr

[

M−1∂mMM−1∂mM
]

, (3.16)

with a canonically conjugate momentum

πma =
∂L

∂∂mza
=
k

4
ρ̂
√
hTr

[

M−1(z)∂aM(z)M−1(z)∂bM(z)
]

∂mzb . (3.17)

The corresponding equations of motion are:

∂m

(√
h ρ̂hmnJn

)

= 0 , (3.18)

where

Jm ≡ 1

2
∂mξ

aM−1∂aM . (3.19)

3.1 Conserved quantities

Note that the quantity ρ̂J = ρ̂Jm dx
m is a 1-form Nöther current of the two-dimensional

effective theory with value in g implying that the integral:

Q =
1

4π

∫

S2

∗3J =
1

2

∫ √
hhrrρ̂Jrdθ , (3.20)

on a radius r sphere S2 is an r-independent matrix in g.

From it we may derive the set of Nöther currents JAm and the corresponding constants

of motion QA characterizing the solution at radial infinity:

JAm ≡ kTr
(

T †
A Jm

)

, QA = kTr
(

T †
AQ

)

=
1

4π

∫

S2

∗3JA =
1

2

∫ √
h ρhrr JArdθ , (3.21)

which consist in the ADM mass m (TA = T0), the NUT charge ℓ (TA = T•), the D = 4

scalar charges Σr (TA = Tr) and the electric-magnetic charges ΓM (TA = TM ). The

currents JAm read:

J•m =
k

2
Tr(T †

•M−1∂mM) = −1

2
e−4U (∂ma+ ZTC∂mZ) ,

J0m =
k

2
Tr(T †

0M−1∂mM) = ∂mU +
1

2
e−2U ZTM∂mZ− a J•m ,

JMm =
k

2
Tr(T †

MM−1∂mM) =
1√
2
e−2U M(4)MN ∂mZN +

√
2CMN ZN J•m ,

Jsm =
k

2
Tr(T †

sM−1∂mM) =
1√
2
L4 s

ŝ′ V4 s′′
ŝ′∂mφ

s′′ + e−2U ZTTsM(4) ∂mZ−

− TsMNZMZN J•m , (3.22)
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where L4 s
ŝ′ is the coset representative of the symmetric scalar manifold in four-dimensions

in the solvable parametrization, as a matrix in the adjoint representation of the solvable

group, V4 s
ŝ′ is the vielbein of the same manifold and the hat denotes rigid indices.

The conserved quantities are then obtained as the flux of the currents across the 2-

sphere at infinity, according to eq. (3.21):

m =
1

4π

∫

S2

∗3J0 ; ℓ = − 1

4π

∫

S2

∗3J• ; ΓM =

√
2

4π
C
MN

∫

S2

∗3JN ,

Σs =
1

4π

∫

S2

∗3Js . (3.23)

The other conserved quantity characterizing the axisymmetric solution is the angular mo-

mentum Mϕ along the rotation axis Z. The expression of the angular momentum in terms

of a conserved current can be found in standard textbooks (see for instance [40] and [49]).

Here we would like to give an expression of it in terms of quantities which are intrinsic to

the D = 3 effective action: the Killing vector field ψ = ∂ϕ and J•. To this end we start

from the representation of Mϕ as the integral over the sphere at infinity S∞
2 of a suitable

2-form, as given in [40]:

Mϕ =
1

16π

∫

S∞
2

J (2) ; J (2) ≡ √
g ǫµνρσ∇ρψσ dxµ ∧ dxν . (3.24)

The above integral can also be written in the form:

Mϕ =
1

8π

∫

S∞
2

√
g gµ [t Γr]µϕ dθdϕ =

1

8π

∫

S∞
2

√
g gµ [t gr]ν∂[µgν]ϕ dθdϕ = ,

=
1

8π

∫

S∞
2

√

g(3)

[

1

2
grr(3)g

ϕϕ
(3)

(

∂rωϕg
(3)
ϕϕ − ωϕ ∂rg

(3)
ϕϕ + e4U ω2

ϕ∂rωϕ+

+4ωϕ g
(3)
ϕϕ ∂rU

)]

dθdϕ . (3.25)

Using the asymptotic behavior of the metric for axisymmetric solutions [49]:

ωϕ =
2Mϕ

r
sin2(θ) +O

(

1

r2

)

; g(3)rr = 1 +O

(

1

r2

)

; g
(3)
θθ = r2

(

1 +O

(

1

r

))

,

g(3)ϕϕ = r2 sin2(θ)

(

1 +O

(

1

r

))

; e2U = 1− 2m

r
+O

(

1

r2

)

, (3.26)

we see that only the first two terms in the integral (3.25) survive the asymptotic limit and

yield contributions which are both proportional to Mϕ, the second term contributing twice

the first to the asymptotic limit. The first contribution in particular can be expressed in

terms of ψ, J•, so that we can write:

Mϕ = − 3

8π

∫

S∞
2

ψ[i J•j] dx
i ∧ dxj = − 3

4π

∫

S∞
2

ψ[θ J•ϕ] dθ dϕ =

=
3

8π

∫

S∞
2

ψϕ J•θ dθ dϕ , (3.27)

where ψϕ = g
(3)
ϕϕ.
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3.1.1 G(3)-invariant characterization of the angular momentum

Let us define a new constant g-matrix as follows:

Qψ = − 3

8π

∫

S∞
2

ψ[i Jj] dx
i ∧ dxj = 3

8π

∫

S∞
2

ψϕ Jθ dθ dϕ ∈ g . (3.28)

In the asymptotic limit r → ∞ the components of Jm have the following behavior:

Jr =
Q

r2
+O

(

1

r3

)

; Jθ =
Qψ
r2

sin θ +O

(

1

r3

)

. (3.29)

According to the general formula (3.27), the angular momentum can be written as:

Mϕ = kTr(T †
• Qψ) . (3.30)

As pointed out earlier, G(3) is the global symmetry group of the three-dimensional effective

theory. As an isometry group, its elements have a non-linear action on the coordinates:

g ∈ G(3) : za −→ zag = zag (z) , (3.31)

where zag (z) are non-linear functions of the za, depending on the parameters of the trans-

formation g. The same transformation, being a global symmetry, maps a solution ξa(x)

into an other one of the same theory ξag (x). The asymptotic limit r → ∞, for the scalar

fields, defines a single point ξ0 = (ξa0) on the scalar manifold:

lim
r→∞

ξa(x) = ξa0 . (3.32)

Since the action of G(3) on the scalar manifold is transitive, we can always map the point

at infinity to the origin O(ξa0 ≡ 0). Once we fix ξ0 = O, we can only act on the solutions

by means of the stability group H∗ of the origin.

From the definition (3.15) we deduce the transformation property of the matrix M(z)

under an isometry g:

M(z) −→ M(zg) = gM(z) g† , (3.33)

where, with an abuse of notation, we have used the same symbol g to denote the matrix

form of g in the representation of M. The g-valued current Jm = Jm(ξ(x)) therefore

transforms under an isometry g by conjugation:

Jm(ξ) −→ Jm(ξg) = (g†)−1 Jm(ξ) g
† , (3.34)

and so do the g-valued constant matrices Q and Qψ:

Q(ξ) −→ Q(ξg) = (g†)−1Q(ξ) g† ; Qψ(ξ) −→ Qψ(ξg) = (g†)−1Qψ(ξ) g
† . (3.35)

Generic axisymmetric stationary solutions are distinguished from the static ones by the

following G(3)-invariant property:

axisymmetric solutions ⇒ Qψ 6= 0. (3.36)
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In particular for solutions in the same G(3)-orbit as the KN-Taub-NUT one, Tr(Q2
ψ) 6= 0.

In the universal model originating from Einstein-Maxwell supergravity in four dimensions,

see section 4, G(3) = SU(1, 2), and we can evaluate on the KN-Taub-NUT solutions Q and

Qψ explicitly. Using the covariant expression for the matrix M in terms of U, V,W , given

in appendix A and eq.s (4.21) introduced in section 4 we find:

Q =







0 0 (m− i ℓ)

0 0 − q+ip√
2

(m+ i ℓ) q−ip√
2

0






,

Qψ = α







0 0 (ℓ+ im)

0 0 −i (q + ip)/
√
2

(ℓ− im) −i (q − ip)/
√
2 0






. (3.37)

Then:

Tr(Q2) =
2

k

(

m2 + ℓ2 − p2 + q2

2

)

, Tr(Q2
ψ) =

2α2

k

(

m2 + ℓ2 − p2 + q2

2

)

, (3.38)

where α ≡Mϕ/m and k = 1 in the fundamental representation of SU(1, 2), so that

(

Mϕ

m

)2

= α2 =
Tr(Q2

ψ)

Tr(Q2)
. (3.39)

We wish to stress here that the above formula, although derived in the universal model,

holds in all supergravity theories admitting the KN-Taub-NUT solution. This is a G(3)-

invariant characterization of the angular momentum, which holds for all solutions in the

same G(3)-orbit as the KN-Taub-NUT one. Using this result, we can write the extremality

parameter in a G(3)-invariant fashion:

c2 = m2 + ℓ2 − p2 + q2

2
− α2 =

k

2
Tr(Q2)−

Tr(Q2
ψ)

Tr(Q2)
, (3.40)

so that the extremality condition becomes:

c2 = 0 ⇔ Tr(Q2) =
2

k

Tr(Q2
ψ)

Tr(Q2)
, (3.41)

from which it is apparent that, as opposed to the static case, extremality does not imply

nilpotency of Q, as noted in [36]. Eq. (3.41) provides a G(3)-invariant characterization

of extremality. There is a class of extremal rotating solutions for which both sides of

this equation vanish separately. These are the “ergo-free” (under-rotating) solutions con-

structed in [42–44] and further generalized in [20] within cubic supergravity models. Below

we shall comment on some general G(3)-invariant properties of these solutions in terms of

the matrices Q and Qψ.
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3.1.2 Under-rotating solutions.

In [42–44] under-rotating solutions were constructed within the Kaluza-Klein theory origi-

nating from pure gravity in D = 5, as a limit of a dilatonic rotating black hole. In order to

perform a similar limit in the context of supergravity, we need to consider a model which

is larger than the universal one, but which contains it as a consistent truncation. The

simplest choice is the N = 2 t3-model in four dimensions, which consists of supergravity

coupled to one vector multiplet, whose complex scalar field t parametrizes a special Kähler

manifold with prepotential F(t) = t3. Upon time-like reduction to D = 3 we end up with

an Euclidean sigma-model with target space G2(2)/[SL(2) × SL(2)] and global symmetry

group G(3) = G2(2). Extremal solutions to this model were studied in [29, 36, 50].

We shall not enter into the mathematical details of the model but limit ourselves to

illustrate the procedure for generating an extremal under-rotating solution from a non-

extremal rotating one. The scalar fields originating from the D = 4 vector fields are four

(ZM ) = (Z0, Z1, Z0, Z1), parametrizing the solvable generators (TM ) = (T0, T1, T
0, T 1).

Adopting a suitable representation of G2(2) for the generators (for example the fundamental

real 7 representation), we can consider two commuting generators of Harrison transforma-

tions:

K0 ≡
1

2
(T0 + T †

0 ) ; K1 ≡
1

2
(T 1 + T 1 †) , (3.42)

and “boost” the Kerr solution with parameters m, α using the Harrison transformation:

O ≡ elog(β1m)K0+log(β2m)K1 , (3.43)

The resulting solution is a non-extremal axion-dilaton rotating black hole with ADM-

mass, electric-magnetic and scalar charges and angular momentum depending on the Kerr

parameters m, α and encoded in the g2(2)-valued matrices:

Q = O−1Q(K)O ; Qψ = O−1Q
(K)
ψ O , (3.44)

Q(K) and Q
(K)
ψ being the matrices corresponding to the original Kerr solution. We shall

give the complete solution elsewhere, focussing here only on the characteristic quantities

at radial infinity. Redefining α = Ωm =Mϕ/m, these quantities read:

MADM =
1

8

(

m2(β1 + 3β2) +
1

β1
+

3

β2

)

; p1 =
√
3
m2β22 − 1

2
√
2β2

; q0 = −m
2β21 − 1

2
√
2β1

,

Σ = i

√
3
(

−m2β2β
2
1+m

2β22β1+β1 − β2
)

8β1β2
; Mϕ =

(

β1β
3
2m

4+3β2(β1 + β2)m
2+1

)

Ω

8
√
β1β

3/2
2

,

(3.45)

while p0 = q1 = ℓ = 0. Taking the m→ 0 limit while keeping β1, β2 and Ω fixed, the above

quantities remain finite:

MADM =
1

8

(

1

β1
+

3

β2

)

; p1 = −
√
3

2
√
2β2

; q0 =
1

2
√
2β1

; Σ = i

√
3 (β1 − β2)

8β1β2
;

Mϕ =
Ω

8
√
β1β

3/2
2

. (3.46)
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Inspection of the full solution shows that, as m → 0, the ergo-sphere disappears and the

three dimensional spatial part of the metric becomes conformally flat.

This limit corresponds to taking a singular Harrison transformation O
(log(β1m), log(β2m) → −∞) and at the same time a singular limit of the Kerr

parameters (m, α → 0). As a result the matrices Q, Qψ remain finite but become

nilpotent. In particular Q is a step-3 nilpotent matrix while Qψ is step 2. The fact that

Qψ has a lower degree of nilpotency than Q is consistent with the fact that:

lim
m→0

Tr(Q2) = 0 ; lim
m→0

Tr(Q2
ψ)

Tr(Q2)
= 0 , (3.47)

and the extremality condition (3.41) is satisfied. This is consistent with the classification

of extremal solutions of [34, 36] in terms of suitable nilpotent subalgebras N of g. In this

case the matrices Q and Qψ would correspond to characteristic generators of N.

3.2 A duality invariant expression for the DWHJ vector Sm

Let us now apply the construction of section 2 to our specific effective Lagrangian (3.16).

The direct application of eq. (2.12) to our specific geodesic model is possible but lacks the

property of being manifestly invariant under the isometry group G(3). However, the use of

the G(3)-valued matrix M introduced in (3.15) makes it possible to write an alternative

expression for Sm which does exhibit manifest duality invariance (provided we transform

both the off-shell fields za and their on-shell expression on a given background ξa(x)). The

expression is the following:

Sm = −k
4
ρ̂
√
hTr

[

M−1(z)∂mM(ξ)
]

+ δmr

∫ r

dr′L(ξ(x′), ∂mξ, x′) . (3.48)

Indeed, from (3.48) we find:

∂Sm

∂za
=
k

4
ρ̂
√
hTr

[

M−1(z)
∂M
∂za

M−1(z)∂mM(ξ)

]

, (3.49)

so that, for a weakly embedded solution z = ξ, we reproduce the on-shell expression of the

conjugate momentum (3.17). Correspondingly we also find, using the field equations:

∂mS
m|z=ξ =

(

L − k

4
ρ̂
√
hTr

[

M−1(z)∂mM(ξ)M−1(ξ)∂mM(ξ)
]

)

z=ξ

= −H|z=ξ . (3.50)

One may ask what the relation between the solution (3.48) and the general relation (2.12)

is. The answer can be found by realizing that a Taylor-expansion of Sm given in (3.48)

in powers of z − ξ, taking into account (3.11) and (3.15), exactly reproduces (2.12). It

is important to stress that Sm, as defined above, is G(3)-invariant provided we simulta-

neously transform za and ξa(x) in its expression, as it follows from the transformation

property (3.33) of the matrix M:

g ∈ G(3) : Sm(z, ξ) −→ Sm(zg, ξg) = Sm(z, ξ) , (3.51)
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An important property of the DWHJ construction is that one can compute the conserved

currents of the theory by varying Sm with respect to the parameters which it depends

on [37]. In particular, we can reproduce the conserved Nöther currents ρ̂Jm of (3.19) by

performing an infinitesimal isometry transformation on Sm, at fixed background ξa(x), and

then by varying Sm with the corresponding symmetry parameters. If we set:

g = 1+ ǫαTα (3.52)

the isometry transformed matrix is

M(zg) = g · M(z) · g† ≃ 1+ ǫα
(

Tα · M+M ·T†
α

)

. (3.53)

On the g-transformed Sm we get:

∂Sm(zg)

∂ǫα

∣

∣

∣

∣

z=ξ

= −k
4
ρ̂
√
h
[

(

M−1(z)∂mM(ξ)
)

i
j(Tα)j

i +

+
(

M−1(z)∂mM(ξ)
)j

i(Tα)
i
j

]

= −2 ρ̂
√
h Tr[T †

α · Jm] . (3.54)

4 Application to Einstein-Maxwell axisymmetric solutions

In the absence of four dimensional scalar fields (∂iφ = 0, M(4) → −II), the geodesic part

of the Lagrangian (3.2) reduces to

1
√
g(3)

L(3) = ∂iU∂iU − 1

2
ǫ−2U ∂iZ

T ∂iZ+
1

4
ǫ−4U (∂ia+ ZTC∂iZ)(∂

ia+ ZTC∂iZ)

=
1

2
Gab(z)∂iz

a ∂izb . (4.1)

where Gab(z) is now the metric of the manifold:

SU(1, 2)

U(1)× SU(1, 1)
, (4.2)

which is a pseudo-Kähler manifold, that is a non compact version of the Kähler manifold

CP (2).

As it is well known in General Relativity, a very simple and useful way to describe

such theory is the use of the so-called Ernst potentials E , Ψ [38, 39] defined as:

E = e2U − |Ψ|2 + i a ; Ψ =
1√
2
(Z0 + iZ0) , (4.3)

In terms of the Ernst potentials the metric (3.14) reads:

dS2
(3) =

e−4U

2
|dE + 2 Ψ̄dΨ|2 − 2 e−2U |dΨ|2 . (4.4)

The group SU(1, 2) acts non-linearly on the potentials E ,Ψ. However, one can introduce

homogeneous complex coordinate fields (W,V,U) transforming in the 3 of SU(1, 2), in

terms of which the Ernst potentials can be written as follows:

E =
U −W

U +W
; Ψ =

V

U +W
(4.5)
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Going to inhomogeneous variables u = U/W, v = V/W , they take the form

E =
u− 1

u+ 1
; Ψ =

v

u+ 1
. (4.6)

The scalar manifold SU(1,2)
U(1)×SU(1,1) can then be described in terms of the complex fields

za = (u, v) (where a = 1, 2).

We notice that the manifold (4.2) is a non-compact version of the minimal model
SU(1,2)

U(1)×SU(2) , which describes a particular case of a symmetric space of N = 2 special ge-

ometry in four dimensional supergravity. Accordingly, we can say that the variables (u, v)

are “special coordinates” in terms of which the upper components of the corresponding

holomorphic symplectic section (XΛ, FΛ) read:

XΛ =







W

V

U






=W







1

v

u






, (4.7)

while the lower components FΛ are given in terms of the holomorphic homogeneous degree

two prepotential F (XΛ), as FΛ = ∂F
∂XΛ . The holomorphic prepotential in terms of the

inhomogeneous coordinates reads:

F =
1

W 2
F (XΛ) =

i

4
(1− u2 − v2) , (4.8)

and the Kähler potential K has the following form:

K = − log
[

i
(

2 (F − F̄)− (za − z̄a)(Fa + F̄a)
)]

= − log
[

|u|2 + |v|2 − 1
]

. (4.9)

The coordinate patch u, v is defined by the condition:

|u|2 + |v|2 > 1. (4.10)

whose physical meaning will be given in the next subsection.

The σ-model metric in the special coordinates has the form:

dS2
(3) = 2Gab̄ dz

a dz̄b ; (4.11)

Gab̄ = ∂a∂b̄K = e2K
(

(1− |v|2) ū v

v̄ u (1− |u|2)

)

= e2K (δab̄ − zaz̄b̄) , (4.12)

Gāb = −e−K (δāb − z̄āzb) .

where za ≡ ǫab z
b The eigenvalues of gab̄ are: −1/(|u|2 + |v|2 − 1) , 1/(|u|2 + |v|2 − 1)2 and,

if |u|2 + |v|2 > 1, gab̄ has the correct signature (−,−,+,+).

4.1 Relation to known black-hole solutions

For stationary, axisymmetric, asymptotically flat solutions admitting the two Killing vec-

tors ∂t and ∂ϕ, the most general case of complex scalar fields u, v corresponds to a Kerr-

Newman solution with NUT-charge, whose metric reads [39]:

ds2 =
∆̃

|ρ|2 (dt+ ω)2 − |ρ|2
∆̃

(

∆̃

∆
dr2 + ∆̃dθ2 +∆sin2 θdϕ2

)

(4.13)
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where

∆ = (r −m)2 − c2 , (4.14)

∆̃ = ∆− α2 sin2 θ , (4.15)

ρ = r + i (α cos θ + ℓ) , (4.16)

ω =

(

α sin2 θ
|ρ|2 − ∆̃

∆̃
+ 2ℓ cos(θ)

)

dϕ , (4.17)

A0 = [−qr + p(ℓ+ α cos θ)]
dt

|ρ|2 +

+{−p[(α2 + r2 − ℓ2) cos θ + αℓ sin2 θ] + q[αr sin2 θ − 2ℓr cos θ]} dϕ|ρ|2 ,

where c2 = m2 + ℓ2 − 1
2(q

2 + p2) − α2 as given in (3.40), in terms of the Boyer-Lindquist

coordinates (r, θ), of the electric and magnetic charges (q, p) and of the ADM-mass and

NUT charge (m, ℓ). The parameter α, as before, is related to the angular momentum Mϕ

of the solution by α =Mϕ/m. Here the metric field U(r, θ) is given by e2U = ∆̃
|ρ|2 . For this

solution the fields λ, ρ̂ and the flat 2D metric hmn read:

λ2 = ∆̃ ; ρ̂ =
√
∆ sin θ ; hmn

(

1/∆ 0

0 1

)

, (4.18)

so that
√
h ρ̂ = sin(θ). The latter expression holds, in suitable coordinates, for all axisym-

metric solutions. The Ernst potentials are then:

E =
r − 2m+ i(α cos θ − ℓ)

r + i(α cos θ + ℓ)
(4.19)

Ψ =
−q + ip√

2[r + i(α cos θ + ℓ)]
. (4.20)

and the corresponding homogeneous coordinates can be chosen as:

U = r −m+ iα cos θ

V =
1√
2
(−q + ip)

W = m+ iℓ (4.21)

Let us observe that only an SU(1, 1) subset of the SU(1, 2) invariance is realized on the four

dimensional fields, under which the “charges” (W,V ) form a doublet while U is a singlet.

The KN solution is retrieved by setting ℓ = 0 in eq.s (4.19), (4.20), the RN electric-magnetic

solution by further setting α = 0 and finally the Schwarzschild solution is obtained from

RN when q = p = 0.

Let us relate the explicit expressions for the Ernst potentials here with the σ-model

description given above. The metric function ∆̃ in (4.15) appears to be related to the

SU(1, 2)-invariant Kähler potential K in (4.9):

∆̃ = |U |2 + |V |2 − |W |2 = |W |2e−K (4.22)
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According to the identification (4.21) the condition (4.10) acquires a precise physical mean-

ing. In the static solutions (α = 0) condition (4.10) is guaranteed as long as r > r+, r+
being the outer horizon

r+ = m+

√

m2 + ℓ2 − p2 + q2

2
. (4.23)

On the other hand, in the KN case (ℓ = 0) it gives

r > m+

√

m2 − q2 + p2

2
− α2 cos2 θ ≡ re (4.24)

where re > r+ defines the external boundary of the ergosphere, where the component g00

of the metric vanishes, while r+ = m+
√

m2 − q2+p2

2 − α2 is the radius of the outer event

horizon. Then we see that the special-coordinate patch described by u, v is only valid

outside the ergosphere.

If we cross the ergosphere surface ∆̃ = 0 we are bound to change the coordinate

patch. The new patch can be described by the CP(2) riemannian space SU(1, 2)/U(2),

with Kaehler potential K = − log(1− |u|2 − |v|2).
The universal model considered here, and the KN-Taub-NUT solution thereof, can

be embedded in more general supergravity models (for instance in all N = 2 symmetric

supergravity models, dimensionally reduced to D = 3) and thus it is interesting to consider

the G(3)-invariant properties of this solution. In light of the discussion at the end of Sect 3,

the description of such properties should take into account, aside from the Nöther charge

matrix Q, also the constant matrix Qψ.

4.2 The DWHJ principal 1-form for the KN solution

Let us explicitly compute here the DWHJ principal functions Sr, Sθ for the KN solution.

We have:5

∂aS
m = πma = sin θ Gab̄(z)h

mn ∂nz̄
b̄ (4.26)

that is:

πra = sin θ Gab̄(z)∆∂rz̄
b̄ (4.27)

πθa = sin θ Gab̄(z)∂̄θz̄
b̄ . (4.28)

Eq. (4.26), recalling (2.12), admits the (weakly embedded) solution:

Sm = 2ℜ [(za − ξa(x))πma (x)] + δmr

∫ r

dr̂L(ξ, ∂ξ, x̂) (4.29)

5We recall, from section 4.1, that the two-dimensional metric is

hmn =

(

1/∆ 0

0 1

)

(4.25)
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Using (4.12), if we denote by ξu, ξv the on-shell values of the fields u, v:

ξu =
r −m+ iα cos θ

m+ iℓ

ξv =
−q + ip√
2(m+ iℓ)

(4.30)

we find

Sr(z, x) = 2 sin θ (m2 + ℓ2)2
∆(x)

∆̃2(x)
ℜ
[

(u− ξu)(1− |ξv)|2) + (v − ξv)ξuξ̄v
]

+

+

∫ r

dr̂L(ξ, ∂ξ, x̂) (4.31)

Sθ(z, x) = −2α sin2 θ
(m2 + ℓ2)2

∆̃2(x)
ℑ
[

(u− ξu)(1− |ξv)|2) + (v − ξv)ξuξ̄v
]

(4.32)

5 Conclusions

In this paper we have addressed the issue of the first order description of generic (not

necessarily extremal) axisymmetric solutions. This was done by working out the general

form of the principal functions Sm associated with the corresponding effective 2D sigma-

model in the DWHJ setting. We have also given a characterization of the general properties

of such solutions with respect to the global symmetry group of the effective 2D sigma-model

which describes them. This was done by introducing, aside from the Nöther charge matrix,

a further characteristic constant matrix Qψ, in the Lie algebra of G(3), associated with the

rotational motion of the black hole.

As a direction for further investigation it would be interesting to generalize this analysis

to more general stationary solutions, including (non necessarily extremal) multicenter black

holes. In this respect, as emphasized earlier, there is virtually no conceptual obstruction

in generalizing the DWHJ construction and the general formula for Sm, which we have

mainly used here within a 2D effective sigma-model, to the full 3D effective description

of stationary solutions. It would moreover be interesting to analyze the axisymmetric

solutions to symmetric supergravities from the point of view of the integrability of the

corresponding effective 2D sigma-model, which we have not exploited here. This latter

property being related to the presence in a gravity/supergravity theory, once dimensionally

reduced to D = 2, of an infinite dimensional global symmetry group, generalizing the

Geroch group of pure Einstein gravity (see for instance [51, 52]).
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A The su(1, 2)-Algebra

Let us choose the SU(1, 2)-invariant and the H∗ = U(1, 1)-invariant metrics η and η̄,

respectively, to be:

η = diag(−1, 1, 1) ; η̄ = diag(−1, 1,−1) , (A.1)

where the latter defines the coset generators. The solvable Lie algebra Solv defining the

Iwasawa decomposition of su(1, 2) with respect to u(2) is generated by:

Solv = span(H0, T1, T2, T•) ,

H0 =







0 0 1
2

0 0 0
1
2 0 0






; T1 =







0 −1
2 0

−1
2 0 1

2

0 −1
2 0






; T2 =







0 − i
2 0

i
2 0 − i

2

0 − i
2 0






,

T• =







− i
2 0 i

2

0 0 0

− i
2 0 i

2






. (A.2)

The H∗ algebra u(1, 1) is generated by the compact component K• of T•, the non-compact

components K1, K2 of T1, T2, respectively, and the compact D = 4 duality generator K:

u(1, 1) = span(K1,K2,K•,K) ,

K• = T• − T †
• =







−i 0 0

0 0 0

0 0 i






; K1 = T1 + T †

1 =







0 −1 0

−1 0 0

0 0 0






,

K2 = T2 + T †
2 =







0 −i 0
i 0 0

0 0 0






; K =







−i 0 0

0 2i 0

0 0 −i






. (A.3)

The SU(1, 2)/U(1, 1)-coset representative describing the physical patch of the manifold is:

L = e−aT• e
√
2(Z0 T1+Z0 T2) e2UH0 . (A.4)

The matrix M = Lη̄L† has the following simple form:

M = Lη̄L† = η − 2

I2
ηUU

T η , (A.5)

where

U ≡







W

V

U






, I2 ≡ U

T ηU = |U |2 + |V |2 − |W |2 . (A.6)

B KN solution from Schwarzschild

In this appendix we give an alternative way to generate the Hamilton principal 1-form

S(1) corresponding to the KN solution. It makes use of duality symmetry and general

coordinate transformations starting from the Schwarzschild solution.
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We will proceed in two steps. We first need an explicitly SU(1, 2)-duality invariant

expression for theW3 of the RN solution in 3D. This can be achieved by using the generating

technique of SU(1, 2) to generate solutions in 3D. In particular, starting from Schwarzschild

field variables

U = r −m

V = 0

W = m, (B.1)

the action of the SU(1, 2) Harrison and Ehlers transformations generate electric, magnetic

and in general also a NUT charge, thus leading to a RN-NUT solution. Next, as a second

step we use a procedure first introduced by Clément [45, 46] allowing the generation of a KN

solution from RN by an appropriate sequence of SU(1, 2) and coordinate transformations.

B.1 W3 for the RN-NUT solution

Let us recall that in the static case the prepotential W3 provides a first order description

of D = 3 static solutions [10]:
dz̄ā

dτ
= gāb ∂bW3 (B.2)

satisfying the HJ equation

∂āW3 g
āb ∂bW3 = c2 (B.3)

c being the extremality parameter.

Quite generally a static solution is completely defined by a point P of the scalar

manifold representing the values of the scalars at radial infinity τ = 0, and the tangent

vector to the geodesic, which is an object transforming under H∗. Here H∗ is the isotropy

group of the coset G/H∗, G being the 3D isometry group. Since the action of G/H∗ on

P is transitive over the scalar manifold, we can always fix P to be the origin O at which

all fields vanish, and study the geodesic solutions corresponding to various choices of the

velocity vector at infinity. In this way we break G to the little group H∗ of the origin and

we expect the W3 describing the family of solutions with P = O to be an H∗-invariant
function.

In our case we haveG/H∗ = SU(1,2)
U(1)×SU(1,1) and we shall prove that the RN-NUT solutions

are described by a solution to the HJ equation of the form:

W3 = −c log
(

|U |+
√

|W |2 − |V |2
|U | −

√

|W |2 − |V |2

)

= −c log
(

|u|+
√

1− |v|2
|u| −

√

1− |v|2

)

. (B.4)

The above function is clearly H∗ = U(1, 1)-invariant since both |U | and |W |2 − |V |2 are.

Let us recover the expression (B.4) for the W3 describing the most general static (non-

extremal) black hole in our model, from the one-parameter W(S)
3 of the Schwarzschild

solution by a duality (isometric) continuation of it on the whole σ-model. By duality

continuation we mean defining the value of W3 out of the one-dimensional submanifold
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on which W(S)
3 is defined by means of an isometry transformation on the σ-model. Of

course here we are restricting to H∗ transformations only and the resulting prepotential

will be, by construction, H∗-invariant and still a solution to (B.3) being the latter duality

invariant.

The geodesic corresponding to the Schwarzschild black hole is defined by the following

prepotential:

W(S)
3 (s) = −c log

(

s+ 1

s− 1

)

, (B.5)

defined on the submanifold:

u = ū = s ; v = 0 . (B.6)

It is straightforward to check that W(S)
3 (s) satisfies the HJ equation:

∂sW(S)
3

∂s

∂z̄ā
gāb

∂s

∂zb
∂sW(S)

3 =
(s2 − 1)2

4

(

∂sW(S)
3

)2
= c2 , (B.7)

where we have written s = (u+ ū)/2 and za = (u, v). Next we apply to the Schwarzschild

fields a generic H∗-transformation h∗. The latter can be written as the product of a

Harrison transformation, a Ehlers U(1)E-transformation and a second U(1)-transformation

(which corresponds to the D = 4 duality group). Referring to the notations of appendix A

we have:

h∗ = Harrison · hE · h

Harrison = ea1K1+a2K2 =







cosh(a) −eiσ sinh(a) 0

−e−iσ sinh(a) cosh(a) 0

0 0 1






,

hE = eαK• = diag(e−iα, 1, eiα) ; h = eβ K = diag(e−iβ , e2iβ , e−iβ) , (B.8)

where we have written a1+i a2 = a eiσ. If we apply h∗ to the Schwarzschild fields described

by (W (s), V (s), U(s)) = (1, 0, s) we find:






W

V

U






= h∗







1

0

s






, (B.9)

that is:

u =
U

W
= e2iα

s

cosh(a)
; v =

U

W
= −e−iσ tanh(a) . (B.10)

From the above relations we find s in terms of the duality-transformed variables u, v:

s =
|u|

√

1− |v|2
. (B.11)

Then we define W3 by duality continuation of W(S)
3 :

W(RN)
3 (u, v, ū, v̄) = W(S)

3 (s(u, v, ū, v̄)) = −c log
(

|u|+
√

1− |v|2
|u| −

√

1− |v|2

)

, (B.12)

thus obtaining (B.4).
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We may explicitly check our result by solving the corresponding first order equa-

tions (B.2)

dū

dτ
= cū

|u2| − k2

|u| k ; k2 = 1− |v|2 > 0 ,

dv

dτ
= 0 . (B.13)

From the first we derive:

d|u|
dτ

= c
|u2| − k2

k
⇒ |u| = k

A e2cτ + 1

1−Ae2cτ
, (B.14)

where A is an arbitrary constant that we take equal to 1. The second equation is telling

us that v also is an arbitrary complex constant which we can set to:

v = −q − ip√
2m

eiα ⇒ k = c/m . (B.15)

Being the phase of u a constant, the general solution can be written as follows:

u = k
e2cτ + 1

1− e2cτ
e2iα . (B.16)

Setting the arbitrary constant A = 0 and using the relation between τ and r:

τ =
1

2c
log

(

r −m− c

r −m+ c

)

, (B.17)

we find:

u =
r −m

m
e2iα ; v = −q − ip√

2m
eiα , (B.18)

which defines the RN-Taub-NUT solution wherem, p, q are the parameters of a RN solution

and α is the effect of a Ehlers U(1)-transformation. The Nöther charge matrix reads:

Q =
1

2
M−1 d

dτ
M =







0 0 e2iαm

0 0 −ieiα p−iq√
2

e−2iαm e−iα q−ip√
2

0






. (B.19)

The fields are obtained by the general formulas:

U =
1

2
log

( |u|2 + |v|2 − 1

|1 + u|2
)

; Ψ =
v

1 + u
; a = −i u− ū

|1 + u|2 . (B.20)

Using the generators of the solvable algebra of SU(1,2)
U(1)×SU(1,1) ( see appendix) we can compute

the physical charges in terms of the parameters of the solution. The ADM mass m̂ and

NUT charge read:

m̂ = Tr(H†
0 Q) = m cos(2α) ; ℓ = −Tr(G†Q) = −m sin(2α) . (B.21)
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while the complex charge q̂+i p̂√
2

is:

q̂ + i p̂√
2

= −Tr((T1 + iT2)
†Q) =

q + i p√
2

eiα . (B.22)

Using the above identifications, the matrix Q in (B.19) reduces to the Nöther charge matrix

in the first of eq.s (3.37), identifying hatted with un-hatted quantities. This represents the

fact that the Nöther charge matrix Q is the same for the KN-Taub-NUT and the RN-

Taub-NUT solutions. The difference resides in the matrix Qψ which vanishes in the latter

solution.

Since the Maxwell-Einstein theory is a consistent truncation of a generic N = 2 model,

the above procedure for constructing a manifestly H∗-invariant W3 for the generic solution

in the same G(3)-orbit as the Schwarzschild one, from a duality completion of W(S)
3 , applies

to a generic N = 2, D = 4 supergravity. In this case the Nöther charge Q of a generic rep-

resentative of the Schwarzschild orbit, is a diagonalizable matrix in the space K, orthogonal

complement of H∗ in g (the point at infinity ξ0 is always set to coincide with the origin

O), and transforms under the adjoint action of H∗ in a characteristic H∗-representation.
In particular Q can be diagonalized using an H∗-transformation. The modulus s in W(S)

3

is a function of the eigenvalues of Q, and thus is an H∗-invariant function of the param-

eters QA of Q: s = f(QA). These parameters also provide a parametrization of the coset

G(3)/H
∗ ≡ eK and, in the physical patch U , can be expressed in terms of the scalar fields za,

so that we can locally express s as a H∗-invariant function of za: s = f(QA(z
a)) = s(za).

A duality completion procedure, analogous to the one illustrated above, allows then to

determine the following H∗-invariant expression for W3 for the Schwarzschild orbit:

W3 = −c log
(

s(za) + 1

s(za)− 1

)

. (B.23)

In the case of the universal model s(za) was given in eq. (B.11).

B.2 The Clément generating technique

Having at our disposal a duality invariant W3 for the RN solution, we may now apply

a procedure, introduced in [45, 46], to relate static and rotating black-hole solutions. In

this way we shall arrive at the explicit expression of the U, V,W variables (4.21) of the

KN(-NUT) solution. We shall apply to the RN set of homogeneous variables associated

to (B.18), which for definiteness we choose to be

U = r −m, V = − 1√
2
(q − ip) , W = m+ iℓ (B.24)

the transformation Π ·R ·Π, where:

Π : {U → V, V → U,W → −W} (B.25)

is a SU(1, 2) involution, and R is the following 4D space-time coordinate transformation:

R :

{

dϕ = dϕ′ + γΩdt′

dt = γdt′
, (B.26)
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relating the original reference frame to one rotating with constant angular velocity Ω.

The constant time-rescaling factor γ will be fixed in the following to have the standard

expression for the Ernst potentials of the KN solution.

The first involution Π gives rise to the following new potentials:

E ′ =
U ′ −W ′

U ′ +W ′ =
− 1√

2
(q − ip) +m− iℓ

− 1√
2
(q − ip)−m+ iℓ

,

Ψ′ =
V ′

U ′ +W ′ =
r −m

− 1√
2
(q − ip)−m+ iℓ

(B.27)

One can readily see that the new solution corresponds to a Bertotti-Robinson space-time,

with radius RBR ≡ |V −W | =
√

( q√
2
+m)2 + ( p√

2
+ ℓ)2 [45, 46].

The coordinate transformation R induces the following transformation of the 4D static

metric and gauge fields:

R :















e2Ũ
′

= γ2
(

e2U
′ − e−2U ′

ρ̂2Ω2
)

ω̃ = ρ̂2Ω

γ(e4U′−ρ̂2Ω2)
˜̂ρ = γρ̂

(B.28)

where

e2U
′

=
|U |2 + |V |2 − |W |2

R2
BR

≡ ∆

R2
BR

(B.29)

ã′ = a′ =
(V̄ W − V W̄ )

R2
BR

=

√
2 (q ℓ− pm)

R2
BR

(B.30)

We have introduced here the SU(1, 2) invariant ∆̃, which, in the coordinates (B.24), is:

∆̃ = (r −m)2 − c2RT (B.31)

where c2RT ≡ |W |2−|V |2 = m2+ ℓ2− 1
2(q

2+p2) is the extremality parameter of the dyonic

RN-NUT solution. Note that c2RT = k
2 Tr[Q

2] (see eq. (3.38)).

The redefinition of the metric implies a transformation of the gauge field-strengths,

that corresponds to the following transformation on the gradient of the Ernst potential Ψ

(here xm = (r, θ)):

∂mΨ̃
′ = γ

[

∂mΨ
′ − ρ̂Ωe−2U ′

(⋆(2)∂mΨ′)
]

. (B.32)

The integration of eq. (B.32) is easily performed by observing that ⋆(2)∂rΨ′ = 0 since

Ψ′ = Ψ′(r) is only function of the radial variable. Further observing that ∂rΨ
′ =

− γ√
2R2

BR

[

(q +
√
2m) + i (

√
2 ℓ+ p)

]

, the final result is

Ψ̃′ = γ{Ψ′(r) + i(V −W )Ω cos θ}
=

γ

R2
BR

{

(r −m)(V̄ − W̄ ) + iα cos θ
}

(B.33)
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together with

Ẽ ′ = e2Ũ
′ − |Ψ̃′|2 + iã′

= − γ2

R2
BR

(

c2RT + α2
)

+
i (V̄ W − V W̄ )

R2
BR

(B.34)

where we have defined α ≡ (ΩR2
BR).

We may give a simpler expression to the Ernst potentials by fixing the time rescaling

γ as

γ2 =
c2RT

c2RT + α2
. (B.35)

With this redefinition we obtain

Ẽ ′ =
Ũ ′ − W̃ ′

Ũ ′ + W̃ ′ =
V +W

V −W
(B.36)

Ψ̃′ =
Ṽ ′

Ũ ′ + W̃ ′ =
γ(U + iα cos θ)

V −W
. (B.37)

implying the following transformation on the homogeneous variables:

R ·Π :











Ũ ′ = V

Ṽ ′ = γ(U + iα cos θ)

W̃ ′ = −W
(B.38)

Performing again the transformation Π as given in (B.25), we finally obtain the KN (Taub-

NUT) fields in terms of the corresponding variables of the RN (TaubNUT) solution:

Π ·R ·Π :











Ũ ′′ = γ(U + iα cos θ)

Ṽ ′′ = V

W̃ ′′ = W

(B.39)

corresponding to the potentials

Ẽ ′′ =
γ(U + iα cos θ)−W

γ(U + iα cos θ) +W
(B.40)

Ψ̃′′ =
V

γ(U + iα cos θ) +W
. (B.41)

They coincide with the standard KN potentials (see, for example, [39], Chapter 21)

EKN = 1− 2m

r + iα cos θ
(B.42)

ΨKN =
− 1√

2
(q − ip)

r + iα cos θ
. (B.43)

if we set, besides ℓ = 0:

r → γ(r −m) +m, α→ γα . (B.44)

For the KN solution, the field a appearing in (3.2) is given by the imaginary part of E ,

a = 2
mα cos θ

|ρ|2 (B.45)
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