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order (NNLO) QCD correction to the total inclusive top-pair production cross-section at

hadron colliders. In this paper we calculate the reaction qq̄ → tt̄+ qq̄ which was not con-

sidered in our previous work on qq̄ → tt̄ +X [1] due to its phenomenologically negligible

size. We also calculate all remaining fermion-pair-initiated partonic channels qq′, qq̄′ and

qq that contribute to top-pair production starting from NNLO. The contributions of these

reactions to the total cross-section for top-pair production at the Tevatron and LHC are

small, at the permil level. The most interesting feature of these reactions is their charac-

teristic logarithmic rise in the high energy limit. We compute the constant term in the

leading power behavior in this limit, and achieve precision that is an order of magnitude

better than the precision of a recent theoretical prediction for this constant. All four par-

tonic reactions computed in this paper are included in our numerical program Top++. The

calculation of the NNLO corrections to the two remaining partonic reactions, qg → tt̄+X

and gg → tt̄+X, is ongoing.
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1 Introduction

Until very recently top-pair production at hadron colliders was analyzed in improved next-

to-leading order (NLO) QCD. Broadly speaking, one can identify two such approaches,

usually referred to in the literature as resummed and approximate NNLO, the latter simply

being the truncation of the former to order O(α4
S).

The improved-NLO approximation to the NNLO cross-section is based on the next-

to-next-to-leading log (NNLL) threshold approximation [2, 3] and also includes Coulombic

terms [4] through NNLO. This approach is valid close to absolute threshold and the approx-

imate results are added to the well known NLO [5–7] and NLL [8] results. Alternatively,

in refs. [9–11] the resummed NNLL (and, by truncation, the approximate NNLO) total

inclusive cross-section was derived from the resummed differential one.

A number of phenomenological studies have been presented in the literature [9–17].

Critical comparisons of the various approaches can be found in refs. [15, 17, 18].

As was demonstrated in ref. [17], a true improvement in the theoretical precision in

top-pair production at both Tevatron and LHC can be expected only upon inclusion of the

full NNLO correction to the partonic cross-section. In our recent paper [1] we computed the

dominant correction to top-pair production at the Tevatron confirming the expectations

set in ref. [17].

At present theory agrees with data from the Tevatron and LHC [19–31] and the NNLO

theoretical prediction for the Tevatron [1] has significantly smaller uncertainty than the

existing experimental measurements. Theoretical predictions [32] based on the so-called

BLM/PMC approach [33–35] have recently appeared and they, too, exhibit very small
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theoretical uncertainty. A detailed comparison with the exact NNLO result is of interest

and will be performed elsewhere.

In ref. [1] we argued that the purely fermionic channels that were not included there

were phenomenologically negligible. Nevertheless, these reactions exhibit a logarithmic rise

at high energy which could make them relevant for the description of lighter quarks, like

charm or bottom, or for top-pair production at future higher energy hadron colliders. To

that end, in this work we complete the calculation of all fermion-pair initiated contributions

to top-pair production at hadron colliders through NNLO. Specifically, we calculate the

reactions qq → tt̄ + X, qq′ → tt̄ + X and qq̄′ → tt̄ + X, with q′ 6= q. We also complete

the computation of the qq̄ initiated reaction [1] by deriving the result for the numerically

subdominant reaction qq̄ → tt̄+qq̄ which was not considered in ref. [1]. The results derived

in this paper fully confirm our expectations [1] about the size of these reactions. Within

the numerical accuracy of our calculation, we confirm the exactly predicted [36] leading

high-energy logarithmic term of these reactions. Moreover, we are able to extract the

subleading constant term in the high-energy expansion of the cross-sections. Our result is

consistent with a very recent prediction [37] for this constant and improves the precision

with which this constant is known by one order of magnitude.

The paper is organized as follows: in section 2 we specify the reactions that we compute

in the present work. Our calculational approach is explained in section 3. Factorization of

collinear singularities is worked out in section 4, while in section 5 the scale dependence is

derived. The explicit results are given in section 6. We conclude with section 7, where we

discuss the phenomenological significance of the results computed in this work.

2 Notation

Following the notation of ref. [1], the total inclusive top-pair production cross-section reads:

σtot =
∑

i,j

∫ βmax

0
dβ Φij(β, µ

2) σ̂ij(β,m
2, µ2) , (2.1)

where i, j run over all possible initial state partons, βmax ≡
√

1− 4m2/S with
√
S the c.m.

energy of the hadron collider and β =
√

1− 4m2/s is the relative velocity of the final state

top quarks having pole mass m and produced at partonic c.m. energy
√
s.

The partonic flux appearing in eq. (2.1) reads

Φij(β, µ
2) =

2β

1− β2
Lij

(

1− β2
max

1− β2
, µ2

)

, (2.2)

where, as usual, the partonic luminosity is

Lij(x, µ
2) = x (fi ⊗ fj) (x, µ

2) = x

∫ 1

0
dy

∫ 1

0
dz δ(x− yz)fi(y)fj(z) . (2.3)

The scale µ in eq. (2.1) stands for both the renormalization (µR) and factorization

scales (µF ). For µF = µR = µ the NNLO partonic cross-section for the reaction ij → tt̄+X
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reads

σ̂ij
(

β,m2, µ2
)

=
α2
S

m2

{

σ
(0)
ij +αS

[

σ
(1)
ij + Lσ

(1,1)
ij

]

+α2
S

[

σ
(2)
ij + Lσ

(2,1)
ij + L2σ

(2,2)
ij

]

}

, (2.4)

where L = ln
(

µ2/m2
)

and αS is the MS coupling renormalized with NL = 5 active flavors

at scale µ2. The functions σ
(n(,m))
ij depend only on β.

The partonic cross-sections are known exactly [5–7] through NLO. The scale con-

trolling functions σ
(2,1)
ij and σ

(2,2)
ij can be easily computed from the NLO results σ

(1)
ij , see

section 5. The dependence on µR 6= µF can be trivially restored in eq. (2.4) by re-expressing

αS(µF ) in powers of αS(µR); see for example ref. [12].

The dominant, phenomenologically relevant part of the reaction qq̄ → tt̄ + X was

computed through NNLO in ref. [1]. In this paper we compute the NNLO corrections

to the remaining part of this reaction as well as the three new fermionic reactions qq →
tt̄+X, qq′ → tt̄+X, qq̄′ → tt̄+X, with q′ 6= q:

qq̄ → tt̄+ qq̄
∣

∣

NS
, (2.5)

qq̄′ → tt̄+ qq̄′ , (2.6)

qq′ → tt̄+ qq′ , (2.7)

qq → tt̄+ qq . (2.8)

The label NS in eq. (2.5) implies that we consider only those squared diagrams where

the qq̄ final state is not produced by a pure gluon splitting. Such (singlet) contributions

are equal for all massless flavors, contribute with a power of NL, and have been included

in the calculation of ref. [1].

The currently unknown contributions to tt̄ production at NNLO are the qg and gg

initiated reactions. They will be the subject of a future publication.

3 The calculation

All four partonic reactions (2.5), (2.6), (2.7), (2.8) considered in this paper are of the so-

called Double-Real type, i.e. they all have four-particle final states. They are computed

with the STRIPPER approach of refs. [38, 39].1 We organize the calculation of the bare

diagrams in the following way: we directly compute the bare contributions

σ̃ε(qq̄
′ → tt̄+ qq̄′) and σ̃ε(qq

′ → tt̄+ qq′) (3.1)

to the reactions (2.6), (2.7) while the two remaining partonic reactions (2.5), (2.8) are

computed as differences with respect to the reactions (2.6), (2.7)

σdiff
ε (qq̄) = σ̃ε(qq̄ → tt̄+ qq̄

∣

∣

NS
)− σ̃ε(qq̄

′ → tt̄+ qq̄′) , (3.2)

σdiff
ε (qq) = σ̃ε(qq → tt̄+ qq)− σ̃ε(qq

′ → tt̄+ qq′) . (3.3)

1Methods for computing the double real radiation for this process have also been developed in ref. [40].
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The differences σdiff
ε are derived from pure interference2 diagrams and vanish both at

threshold β = 0 and in the high-energy limit β = 1.

The subscript ε appearing in eqs. (3.1), (3.2), (3.3) emphasizes that these are bare

cross-sections, containing collinear singularities starting from 1/ε2. To subtract these sin-

gularities and obtain the finite partonic cross-sections σ̂, one needs to perform collinear

factorization, which we describe next.

4 Collinear factorization

The description of the collinear factorization deserves some attention since for the reactions

considered in this paper it has not been spelled out in the literature. Moreover, the collinear

factorization for the reaction (2.5) represents a nonstandard contribution to the reaction

qq̄ → tt̄ +X and, for consistency, was suppressed in ref. [1]. We take the opportunity to

describe it in this work.

In the notation of eq. (2.4), and setting µ = m, the bare partonic cross-sections read

σ̃ij(ǫ, ρ) =
α2
S

m2

{

σ̃
(0)
ij (ǫ, ρ) + αS σ̃

(1)
ij (ǫ, ρ) + α2

S σ̃
(2)
ij (ǫ, ρ) + . . .

}

. (4.1)

They are defined in d = 4 − 2ε dimensions and expressed in terms of the dimensionless

variable ρ = 4m2/s = 1 − β2. To obtain the finite MS-subtracted partonic cross-sections

σ̂ij(ρ) one has to factor out the initial state collinear singularities:3

σ̃ij(ǫ, ρ)

ρ
=

∑

k,l

[

σ̂kl(x)

x
⊗ Γki ⊗ Γlj

]

(ρ) . (4.2)

The MS collinear counterterms Γ are expressed through the space-like splitting func-

tions P
(n)
ij , defined as an expansion in (αS/(2π))

n. Through NNLO we have:

Γij(ǫ, x) = δijδ(1− x) + αSΓ
(1)
ij (ǫ, x) + α2

SΓ
(2)
ij (ǫ, x) , (4.3)

Γ
(1)
ij (ǫ, x) = − 1

2π

P
(0)
ij (x)

ǫ
,

Γ
(2)
ij (ǫ, x) =

(

1

2π

)2
{

1

2ǫ2

[

P
(0)
ik ⊗ P

(0)
kj (x) + β0P

(0)
ij (x)

]

− 1

2ǫ
P

(1)
ij (x)

}

,

with β0 = 11CA/6−NL/3 and αS the renormalized coupling at scale µR.

It is more convenient to introduce the functions s̃
(n)
ij and s

(n)
ij defined as s̃

(n)
ij (ε, ρ) ≡

σ̃
(n)
ij (ε, ρ)/ρ and s

(n)
ij (ρ) ≡ σ

(n)
ij (ρ)/ρ. In terms of these functions the finite cross-sections

2 By interference diagrams we mean squared diagrams where a final state parton connects not to itself

but to a different parton in the complex conjugate diagram. Clearly this is only possible if there are at

least two identical partons in the final state.
3We note a typo in eq. (7) of ref. [7], where σ and σ̂ have been exchanged. This typo does not affect the

rest of ref. [7].
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read:

s
(0)
ij = s̃

(0)
ij , (4.4)

s
(1)
ij = s̃

(1)
ij − Γ

(1)
ki ⊗ s̃

(0)
kj − s̃

(0)
ik ⊗ Γ

(1)
kj ,

s
(2)
ij = s̃

(2)
ij −

(

Γ
(2)
ki − Γ

(1)
kl ⊗ Γ

(1)
li

)

⊗ s̃
(0)
kj − s̃

(0)
ik ⊗

(

Γ
(2)
kj − Γ

(1)
kl ⊗ Γ

(1)
lj

)

+ Γ
(1)
ki ⊗ s̃

(0)
kl ⊗ Γ

(1)
lj

− s̃
(1)
ik ⊗ Γ

(1)
kj − Γ

(1)
ki ⊗ s̃

(1)
kj .

For brevity, above we have suppressed the dependence on ǫ and x.

Next we consider the qq, qq′ and qq̄′ initiated reactions with q′ 6= q. Introducing the

notation q̃ = (q, q′, q̄′), we get:

s
(2)
qq̃ = s̃

(2)
qq̃ +

(

1

2π

)2

s̃
(0)
qq̄ ⊗

{

1

ǫ2
P (0)
qg ⊗ P (0)

gq +
1

ǫ
P

(1)

qq̃

}

+
1

ǫ2

(

1

2π

)2

s̃(0)gg ⊗ P (0)
gq ⊗ P (0)

gq +
2

ǫ

(

1

2π

)

s̃(1)gq ⊗ P (0)
gq . (4.5)

The function P
(1)

qq̃
reads:

P
(1)

qq̃
=

{

P
(1),S
qq + P

(1),V
qq̄ if q̃ = q ,

P
(1),S
qq if q̃ = (q′, q̄′) ,

(4.6)

where P (1),S , P (1),V are the singlet and (qq̄) valence NLO splitting functions in the notation

of ref. [41]. The NLO functions s̃
(1)
ij appearing in this section are needed through order

O(ε1). We have derived the subleading O(ε1) terms by extending the results of ref. [7]. For

the manipulations involving harmonic polylogarithms [42] we have used our own software,

as well as the program HPL [43, 44]. All integral convolutions are computed numerically.

Next we consider the qq̄ initiated reaction. The NLO coefficient function s
(1)
qq̄ can be

found in ref. [7]. The complete NNLO cross-section s
(2)
qq̄ reads:

s
(2)
qq̄ = s̃

(2)
qq̄ +

(

1

2π

)2

s̃
(0)
qq̄ ⊗

{

1

ǫ2

[

2P (0)
qq ⊗ P (0)

qq + P (0)
qg ⊗ P (0)

gq − β0P
(0)
qq

]

+
1

ǫ
P (1)
qq

}

+
1

ǫ2

(

1

2π

)2

s̃(0)gg ⊗ P (0)
gq ⊗ P (0)

gq +
2

ǫ

(

1

2π

)

s̃
(1)
qq̄ ⊗ P (0)

qq +
2

ǫ

(

1

2π

)

s̃(1)qg ⊗ P (0)
gq , (4.7)

where the NLO splitting function reads P
(1)
qq = P

(1),S
qq + P

(1),V
qq .

We recall that in ref. [1] a subset of the Double-Real diagrams corresponding to the

partonic process (2.5) were neglected due to their small size. Despite its phenomeno-

logical insignificance, however, the reaction (2.5) generates collinear singularities starting

from 1/ε2 which, in ref. [1], were excluded from eq. (4.7) in order to ensure consistent

collinear subtraction.
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The contribution to eq. (4.7) that was excluded from ref. [1] reads:

∆s̃
(2)
qq̄,NS =

(

1

2π

)2

s̃
(0)
qq̄ ⊗

{

1

ǫ2
P (0)
qg ⊗ P (0)

gq +
1

ǫ

[

P (1),S
qq + S(1)

qq

]

}

+
1

ǫ2

(

1

2π

)2

s̃(0)gg ⊗ P (0)
gq ⊗ P (0)

gq +
2

ǫ

(

1

2π

)

s̃(1)qg ⊗ P (0)
gq , (4.8)

i.e. the above result needs to be subtracted from the r.h.s. of eq. (4.7) to arrive at the result

of ref. [1].

The origin of the terms involving P
(0)
gq , P

(0)
qg and P

(1),S
qq in eq. (4.8) is easy to understand:

they involve iterated emissions that are consistent with the initial and final states of the

reaction (2.5). The only subtle contribution to eq. (4.8) is the function S
(1)
qq that reads

S(1)
qq =

(

C2
F − CFCA

2

)[

8− 7x+
5− 2x2

1− x
ln(x)

+
1 + x2

1− x

(

π2

3
− 2 ln(1− x) ln(x) + ln2(x)− 2Li2(x)

)]

. (4.9)

The function S
(1)
qq is a partial contribution to the space-like splitting function P

(1),V
qq

and originates in the interference (in the sense of footnote 2) of the splitting process q →
q + q + q̄. This interference term cannot be extracted from P

(1),V
qq based on its color

factor CF (CF − CA/2) which is shared by a number of gluon emission diagrams that also

contribute to P
(1),V
qq . We derive the function S

(1)
qq with the help of two independent direct

calculations, which we describe next.

First, by extending the results of ref. [45], we compute directly the time-like (fragmen-

tation) analogue T
(1)
qq of the function S

(1)
qq . Then, following ref. [46], we analytically continue

T
(1)
qq to space-like kinematics. For this particular contribution the analytical continuation

is trivial and is just the usual replacement f(x) → −xf(1/x) supplemented by standard

analytical continuation across branch points for the involved logarithmic and polylogarith-

mic functions. Second, we identify the function S
(1)
qq as the second diagram from the class

C in figure 7 of ref. [47]. Since the result for this diagram is not available in that reference,

we have directly computed it, following the methods of ref. [47]. Both calculations lead to

eq. (4.9).

Finally, as a by-product of our calculation, we present for the first time the time-like

function T
(1)
qq :

T (1)
qq = −S(1)

qq +

(

C2
F − CFCA

2

)[

15(1− x) + 7(1 + x) ln(x) +
1 + x2

1− x
ln2(x)

]

. (4.10)

which has been discussed in the literature on heavy flavor fragmentation [48, 49].

To derive the partonic reaction (2.5) we use the collinear subtraction term eq. (4.8)

s
(2)
qq̄,NS = s̃

(2)
qq̄,NS +∆s̃

(2)
qq̄,NS . (4.11)

Adding the result eq. (4.11) derived in the present paper to the one derived in ref. [1]

we obtain the complete contribution to the qq̄ initiated reaction qq̄ → tt̄ + X at NNLO.
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Since the contribution from the counterterm ∆s̃
(2)
qq̄,NS (4.8) cancels in the complete qq̄ →

tt̄+X result, the point-wise cancellation of the collinear singularities (within the numerical

precision) observed both in this paper and in ref. [1] serves as an additional check of

our setup.

5 Scale dependence

The scale dependent terms σ
(1,1)
ij , σ

(2,1)
ij and σ

(2,2)
ij in eq. (2.4) can be derived from: a) the

requirement that the measured hadronic cross-section σtot in eq. (2.1) be independent of

the factorization scale µ through NNLO, b) the parton distribution functions fi satisfy the

DGLAP evolution equations, and, c) the known running of the strong coupling constant.

It is again natural to work in terms of the functions s
(n(,m))
ij (ρ) ≡ σ

(n(,m))
ij (ρ)/ρ:

s
(1,1)
ij =

1

2π

[

2β0s
(0)
ij − P

(0)
ki ⊗ s

(0)
kj − s

(0)
ik ⊗ P

(0)
kj

]

, (5.1)

s
(2,2)
ij =

1

(2π)2

[

3β2
0s

(0)
ij − 5

2
β0P

(0)
ki ⊗ s

(0)
kj − 5

2
β0s

(0)
ik ⊗ P

(0)
kj

+
1

2
P

(0)
ki ⊗ P

(0)
lk ⊗ s

(0)
lj +

1

2
s
(0)
il ⊗ P

(0)
lk ⊗ P

(0)
kj + P

(0)
ki ⊗ s

(0)
kl ⊗ P

(0)
lj

]

,

s
(2,1)
ij =

1

(2π)2

[

2β1s
(0)
ij −P

(1)
ki ⊗ s

(0)
kj −s

(0)
ik ⊗ P

(1)
kj

]

+
1

2π

[

3β0s
(1)
ij −P

(0)
ki ⊗ s

(1)
kj −s

(1)
ik ⊗ P

(0)
kj

]

.

The powers of 1/(2π) appearing in the above equations originate in the somewhat

unconventional choice of αn
S as the expansion parameter in eq. (2.4). The expansion of the

splitting functions is as in eq. (4.3) where β0 is also defined. The two-loop beta-function

coefficient reads β1 = 17C2
A/6− 5CANL/6− CFNL/2.

The scale dependence for any specific reaction can be easily derived from the above

equations. The expression for the qq̄ reaction has been given in ref. [12]. The scale-

dependent terms for the reaction qq̃ are not available in the literature and we give them here:

s
(2,2)
qq̃ =

1

(2π)2

[

s
(0)
qq̄ ⊗ P (0)

qg ⊗ P (0)
gq + s(0)gg ⊗ P (0)

gq ⊗ P (0)
gq

]

,

s
(2,1)
qq̃ = − 2

(2π)2
s
(0)
qq̄ ⊗ P

(1)

qq̃
− 2

2π
s(1)gq ⊗ P (0)

gq , (5.2)

where the splitting function P
(1)

qq̃
is given in eq. (4.6) and s

(n)
ij , n = 0, 1 are the finite LO

and NLO coefficient functions available in analytical form [7].

We have computed all convolutions numerically and produced our own fits for all

scaling functions. We have implemented them in the program Top++ [50]: the ones for

the complete qq̄ reaction in version 1.2 and the ones for the qq, qq′ and qq̄′ reactions in

version 1.3.

6 Results

We calculate the coefficient functions σ
(2)
ij for the reactions (2.5), (2.6), (2.7), (2.8) numer-

ically in a number of points on the interval β ∈ (0, 1). For short, we will sometimes refer
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to the set of computed points and their numerical uncertainties as “data”. Specifically, the

qq′ and qq̄′ initiated reactions are computed in 80 points, with β80 = 0.999, as was also

done in ref. [1]. For the qq̄ initiated reaction (2.5) we have added the point β = 0.9999,

while for the qq-initiated reaction (2.8) we have added two more points β = 0.99375 and

β = 0.9999.

The reason for including these additional points is to more accurately constrain the

high-energy β → 1 behavior of the numerically extracted partonic cross-sections. As is well

known [5, 51–55], the partonic reactions considered in this paper exhibit logarithmic rise

at high energy due to diagrams where two gluons, one each radiated from an initial quark

or anti-quark, fuse into a tt̄-pair via gg → tt̄ tree-level diagrams. The leading behavior in

the limit β → 1 (or, equivalently, in the limit ρ → 0) of the partonic cross-sections for all

four reactions (2.5), (2.6), (2.7), (2.8) is

σ
(2)
f1f2→tt̄f1f2

∣

∣

∣

ρ→0
≈ c1 ln(ρ) + c0 +O(ρ) . (6.1)

The constant c1 has been predicted exactly in ref. [36]. Its numerical value is

c1 = −0.4768323995789214 . (6.2)

We have verified that for all four reactions (2.5), (2.6), (2.7), (2.8) our numerical

calculations (with unconstraint fits) return values for c1 that are within 2% from the exact

result (6.2). Therefore, having verified the consistency of our calculation with the exactly

predicted leading logarithmic term, in all subsequent fits we impose the exact value for

the leading logarithmic term. This allows us to extract the constant c0 with maximum

precision, which turns out to be high enough to significantly improve the approximate

prediction that has recently appeared in the literature [37], and to derive fits that are

highly accurate even in the limit β → 1.

As we already anticipated in ref. [1], and confirm in this paper, the contributions from

the all-fermionic reactions to the total inclusive top-pair production cross-section at present

hadron colliders are negligible. A more detailed analysis will be performed in section 7.

6.1 qq′ and qq̄′ initiated reactions

The results for the partonic cross-sections for these two reactions read:

σ
(2)
qq̄′ = c1 ln(ρ)− β2 exp

(

fqq̄′
)

, (6.3)

fqq̄′ = −0.740572− 31.2117β2 − 0.31495β3 + 15.8601β4 − 1.64639β5 + 18.9767β6

+ ln2(ρ)
(

−3.16565ρ+ 12.3828ρ2
)

+ ln(ρ)
(

−19.6977ρ− 16.1386ρ2 + 4.17707ρ3
)

,

σ
(2)
qq′ = c1 ln(ρ)− β2 exp

(

fqq′
)

, (6.4)

fqq′ = −0.740558− 23.4518β2 − 0.193073β3 − 5.97215β4 − 0.541402β5 + 31.8227β6

+ ln2(ρ)
(

−3.29162ρ+ 15.9932ρ2
)

+ ln(ρ)
(

−21.3725ρ− 11.1642ρ2 + 8.64746ρ3
)

.

The constant c1 is given in eq. (6.2). The analytical expressions in eqs. (6.3), (6.4) are

derived as global fits of the set of 80 points we compute numerically. The data, and the

corresponding fits, are plotted on figure 1.
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Figure 1. The computed results, including numerical uncertainties, for the partonic cross-sections

σ
(2)
qq̄′ (blue) and σ

(2)
qq′ (red). The discrete results, computed in 80 points, are overlaid with the corre-

sponding analytical fits (see text). Both cross-sections diverge logarithmically in the limit β → 1.

As is evident from figure 1 these partonic cross-sections vanish at threshold β = 0 and

diverge logarithmically in the high-energy limit β → 1. The quality of the fits (6.3), (6.4)

is very high for intermediate and large values of β, i.e. in this region the precision of the

results is restricted by the numerical precision of our numerical evaluation. Fitting in the

region of small β turns out to be more problematic, however, since the two functions are

as small as O(10−10) over a sizable range of β. In this range the distance between the

fits (6.3), (6.4) and the data is large compared to the size of the numerical uncertainty.

However, the absolute size of the deviation data−fit is below O(10−6), i.e. the inaccuracy

of the fits is completely immaterial for any foreseeable phenomenological application of

these results. We find the simplicity of the analytical expressions in eqs. (6.3), (6.4) very

appealing. Because of their very high absolute accuracy we have implemented them in the

program Top++ [50].

From the fits we extract the following values for the constant c0:

c0 (from eqs. (6.3), (6.4)) =

{

−2.5173 from σ
(2)
qq̄′ ,

−2.5186 from σ
(2)
qq′ .

(6.5)

We note that the values of c0 extracted from both reactions are compatible within the

numerical uncertainty. In the following we turn to the estimation of the uncertainty in the

extracted value for c0.
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Due to the global nature of the fitting procedure, one might wonder how the quality

of the fit at low β affects the quality of the fits in the phenomenologically more relevant

region of large β and, in particular, the extraction of the divergent behavior at β → 1. To

estimate the robustness of the extracted high-energy behavior of the partonic cross-sections

we derive second set of fits, with the aim of fitting both the small- and large-β regions.

These alternative fits fit the data within the numerical uncertainties, except for the first few

points, where they deviate from data within about 10 times the size of the numerical error.

The absolute size of this deviation is O(10−10). The analytical form of these fits is much

more cumbersome and the values of their parameters are highly tuned. For this reason we

do not present this set of fits explicitly. Moreover, the phenomenological implication of the

differences between the two sets of fits is completely immaterial.

The only place where the difference between the two rather extreme fits plays a role

is in the very large β behavior of the partonic cross-sections and in the extraction of the

constant c0. Indeed, from this alternative set of fits we obtain

c0(alternative fits) =

{

−2.4134 from σ
(2)
qq̄′ ,

−2.4037 from σ
(2)
qq′ ,

(6.6)

Again, the extracted values of c0 from the two reactions are compatible. We take the differ-

ence between the two types of fits, eq. (6.5) and eq. (6.6), as a measure of the uncertainty

in the extraction of the constant c0 from our calculation, which we estimate around 5%.

Next we compare our result for the constant c0 with the corresponding prediction of

ref. [37]. The value for c0 predicted in ref. [37] has substantial uncertainty, slightly above

50%, and is predicted in the range (−1.4305,−2.43185). We see that our value for c0 is

consistent with the prediction of ref. [37], albeit at the end of the uncertainty range quoted

in that reference, and has an order of magnitude better precision. Overall, the agreement we

find with the prediction of ref. [37] (which was derived with completely different methods)

is a non-trivial check for both setups.

Finally, we would like to point out that the knowledge of the high-energy behavior (6.1)

of the partonic cross-sections alone is insufficient for meaningful collider phenomenology.

The reason for this is that the high-energy expansion of the partonic cross-sections is not

well converging and thus not a good approximation outside the range of β ≈ 1; it is only

relevant for the description of heavy pair production at very large β which is not the case

for top-pair production at the Tevatron and LHC.

To visualize this better, on figure 2 we plot the cross-section σ
(2)
qq̄′ and its high-energy

leading-power approximation (6.1), (6.5). It is easy to see that the behavior of the two

functions is dramatically different, by three orders of magnitude or more, outside the

narrow range β ≈ 1. We note that figure 2 looks similarly for any one of the reac-

tions (2.5), (2.6), (2.7), (2.8).

6.2 qq and qq̄(NS) initiated reactions

As emphasized in section 3, we compute the contributions to the reactions qq and qq̄(NS)

as differences with respect to, respectively, the qq′ and qq̄′ processes. These differences,
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Figure 2. Comparison of the partonic cross-sections σ
(2)
qq̄′ (blue) and its leading power behavior

in the high-energy limit eq. (6.1), (6.5) (red). The blue curve, same as the blue cure on figure 1,

appears to be zero on the scale of the red curve outside the narrow range β ≈ 1.

∆σ
(2)
qq̄,NS and ∆σ

(2)
qq ≡ σ

(2)
qq − σ

(2)
qq′ , vanish in both the threshold and high-energy limits

and read:

σ
(2)
qq̄,NS = σ

(2)
qq̄′+∆σ

(2)
qq̄,NS , (6.7)

∆σ
(2)
qq̄,NS =

(

1.53647β3+10.7411β4
)

ρ− 24.3298β4ρ2+
(

−4.50719β3+15.4975β4
)

ρ3

+
(

2.90068β3 − 4.98808β4
)

ρ4 − 1.26644β20 ln(β)

+ ln2(ρ)
(

0.327143ρ− 10.7669ρ2
)

+ln(ρ)
(

3.86236ρ− 21.332ρ2+17.4705ρ3
)

,

σ(2)
qq = c1 ln(ρ)− β2 exp (fqq) , (6.8)

fqq = −0.740558− 22.8129β2 − 0.191648β3 − 6.58031β4 − 0.537669β5+31.7872β6

+ ln2(ρ)
(

−3.25313ρ+15.8988ρ2
)

+ln(ρ)
(

−21.0783ρ− 10.8176ρ2+8.64557ρ3
)

.

The constant c1 is defined in eq. (6.2). The data and the fits for the functions ∆σ
(2)
qq̄,NS and

∆σ
(2)
qq are plotted on figure 3.

The results for the functions ∆σ
(2)
qq̄,NS and ∆σ

(2)
qq demonstrate that these functions van-

ish in both limits β = 0, 1. Therefore, the high-energy behavior of the complete reactions

σ
(2)
qq̄,NS and σ

(2)
qq is determined by the functions σ

(2)
qq̄′ and σ

(2)
qq′ discussed in detail in section 6.1.

The quality of the fits in eqs. (6.7), (6.8) is similar to the ones in section 6.1. The

absolute quality of eq. (6.7) is quite good, with absolute difference data−fit below O(10−7)
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Figure 3. The computed results, including numerical uncertainties, for the interference partonic

cross-sections ∆σ
(2)
qq̄,NS (blue) and ∆σ

(2)
qq (red). The discrete results, computed in respectively 81

and 82 points, are overlaid with the corresponding analytical fits (see text). Both results vanish in

the limit β → 1.

for small β. The quality of the fit of ∆σ
(2)
qq̄,NS beyond the first seven lowest-β points is

dominated by the uncertainty in the numerical evaluation.

For the qq-initiated reaction we have performed two fits. The fit in eq. (6.8) is per-

formed for the total contribution σ
(2)
qq . Its absolute quality is also high, with absolute

difference data− fit below O(10−8) for small β. The quality of the fit of σ
(2)
qq beyond the

first ten lowest-β points is dominated by the uncertainty in the numerical evaluation. From

this fit we extract the following value for the constant c0:

c0 (from eq. (6.8)) = −2.5196 , (6.9)

which is consistent with the ones extracted from eqs. (6.3), (6.4).

Finally we have performed a tighter, higher quality fit for the difference ∆σ
(2)
qq . We do

not present it explicitly here for the same reasons explained in section 6.1.

7 Discussion

In the present paper we calculate the NNLO corrections to total inclusive top-pair produc-

tion at hadron colliders from the six-fermion partonic reactions (2.5), (2.6), (2.7), (2.8).

The results in this work, in particular, complete the calculation of the NNLO correction to
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Tevatron LHC 7 TeV LHC 8 TeV LHC 14 TeV

∆σqq̄,(NS) [pb] -0.0020 -0.0097 -0.0124 -0.0299

σqq̄,(NS) [pb] -0.0009 -0.0001 0.0021 0.0464

σall [pb] 0.0003 0.0970 0.1504 0.7885

σtot [pb] 7.0056 154.779 220.761 852.177

Table 1. Contribution to the total top-pair inclusive cross-section due to the reactions computed

in this work: due to the reaction (2.5) alone, ∆σqq̄,(NS) and σqq̄,(NS), and due to all four reac-

tions (2.5), (2.6), (2.7), (2.8) combined, σall. As a reference point, our pure fixed order prediction

for σtot is also given.

the reaction qq̄ → tt̄+X [1]. The contributions from these reactions have been discussed

in the recent literature [37, 56, 57].

As we already anticipated in ref. [1], and confirm with our present calculation, the con-

tributions from the all-fermionic reactions are phenomenologically insignificant for top-pair

production at present hadron colliders like Tevatron and LHC. The numerical contribution

of all four reactions (2.5), (2.6), (2.7), (2.8) to the top-pair production cross-section at the

Tevatron and LHC is presented in table 1. Specifically, we present separately the results

for ∆σqq̄,(NS) and σqq̄,(NS) due to the reaction (2.5) as well as the combined effect σall due

to all four reactions considered in this paper. As a point of reference we also present in

table 1 the pure fixed order NNLO prediction σtot for the total inclusive cross-section.

The contributions from the reactions (2.5), (2.6), (2.7), (2.8) are in the sub-permil

range, both for central values and scale variation, for Tevatron and LHC at 7,8 and 14TeV.

The numbers in table 1 are computed in fixed order QCD with version 1.3 of the program

Top++ [50] with default precision, mt = 173.3 GeV, central scales and MSTW2008nnlo68cl

pdf set [58].

The results of the present paper might potentially be of interest for the description of

lighter quark production (b or c) or for top-pair production at possible future high-energy

hadron colliders. Only in such cases, due to the partonic flux being peaked towards larger

values of β, the high-energy rise of the reactions (2.5), (2.6), (2.7), (2.8) might become

phenomenologically relevant.

We derive high-quality analytical fits for the partonic cross-sections in all four reac-

tions (2.5), (2.6), (2.7), (2.8). Our fits have the exact leading logarithmic behavior [36] in

the high-energy limit. Therefore, any numerical difference in this limit due to the impre-

cision of our fits behaves no worse than a constant at large β, i.e. as cexact0 − cfit0 + O(ρ).

Based on our findings in section 6.1 we estimate

∣

∣cexact0 − cfit0
∣

∣ ≤ O(10−1) . (7.1)

On the other hand, up to the point β80 = 0.999, our fits are quite accurate, typically

much better than 1%, and thus a very good representation of the exact result. Therefore,

it is only in the region beyond the point β80 = 0.999 where the difference (7.1) might

start accumulating error. Barring extreme cases, however, we believe that all NNLO par-
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tonic cross-section fits derived by us so far are under good theoretical control in the full

kinematical range.

Finally, we would like to stress that the knowledge of the high-energy behavior (6.1)

of the partonic cross-sections alone is insufficient for meaningful phenomenology. The

reason for this is that the high-energy expansion of the partonic cross-sections is not well

converging; see figure 2. The high-energy expansion is only relevant for the description of

heavy pair production at very large β which is not the case of top-pair production at the

Tevatron and LHC.

Work on the calculation of the NNLO corrections to the two remaining partonic re-

actions qg → tt̄ +X and gg → tt̄ +X is ongoing and will be presented in a forthcoming

publication.
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