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1 Introduction

Equations of motion of a given field theory can be represented as a free differential algebra

(FDA) through the inclusion of (usually infinite number of) auxiliary and Stüeckelberg

fields. Such form is referred to as unfolded and has been proved especially useful in the

context of higher spin gauge theories. In particular, the interacting theory of higher spin

fields on AdS background has been constructed [1–3] in this framework. The unfolded

approach [4, 5] is also a powerful tool in studying gauge field theories invariant under one

or another space-time symmetry algebras [6, 7].

As far as general gauge theories are concerned the well-established framework is pro-

vided by the Batalin-Vilkovisky (BV) formalism [8, 9]. In the context of local gauge theories

the formalism operates in terms of the appropriate jet-bundles [10–12] (see also [13–17] for

the general mathematical introduction to jet-bundles and partial differential equations). In

this approach basic objects such as the BRST differential, horizontal differential, conserved

currents, etc. become geometric objects on the jet-bundle. The BV approach provides an ef-

ficient homological technique for studying renormalziation, consistent deformations, global

symmetries etc. [12, 18, 19].
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Although there are definite similarities between the jet-space BV and the unfolded

approach the detailed relationship is not so obvious. At the level of equations of motion

the relation between the BV formalism and the unfolded approach was established in [20]

(see also [21, 22]) for linear systems and in [23] in the general case by constructing the

so-called parent formulation such that both the BV and the unfolded formulation can be

arrived through different reductions of the parent one. In particular, this construction gives

a systematic way to derive the unfolded form of a given gauge theory.

The Lagrangian counterpart of the parent formulation is also known by now. It has

the form of an AKSZ sigma model [24] (see also [25–31] for more recent developments

and [32–34] for related constructions) whose target space is an appropriate graded cotangent

bundle over the supermanifold equipped with the nilpotent differential γ̃ and the γ̃-invariant

Lagrange potential. For a given theory the supermanifold is the jet-space associated to

fields, ghosts, ghosts-for-ghosts etc. but the antifields. The genuine BV antifields are present

among AKSZ sigma model fields whose space carries the BV antibracket induced by the

target space (odd) symplectic structure.

The parent approach can be used as a tool to study hidden geometry of the theory

and to derive formulations which manifest one or another structure or symmetry. For

instance, starting with a parent formulation of a given theory and eliminating a certain

subset of generalized auxiliary fields one identifies generalized connections and curvatures

of [35, 36] and reformulates the theory in their terms. Note that these structures were also

independently identified within the unfolded approach from a slightly different perspec-

tive. Further reduction typically results in a frame-like formulation. In particular, it was

demonstrated in [23, 37] that starting from the usual metric-like formulation of gravity one

systematically derives its Cartan-Weyl formulation in terms of the frame field and Lorentz

connection along with the familiar frame-like Lagrangian. Similar analysis reproduces the

well-known first-order formulations for scalar and Yang-Mills fields.

Instead of using parent formulation to derive unfolded or other forms of an already

given theory one can look for new systems and analyze them using the parent-like formu-

lation as a starting point. In this way this becomes a powerful framework unifying the

ideas and methods of both jet-space BV and the unfolded approach. This strategy has

proved fruitful in studying general gauge fields on constant curvature spaces [38–40]. In

this context the equations of motion version of the parent approach has been used from

the very beginning to derive the equations of motion and gauge symmetries in the con-

cise and tractable form. One or another version of the parent Lagrangian approach seem

inevitable at the quantum level because it contains all the relevant structures of the BV for-

malism (and, in fact, its Hamiltonian analog known as Batalin-Fradkin-Vilkovisky (BFV)

quantization [41–43]) and hence provides a natural setup for quantization.

The paper is organized as follows. Relevant information on jet-spaces, generalized

auxiliary fields and AKSZ sigma models is collected in section 2. Then in section 3 we

recall the construction of the Lagrangian parent formulation for a given gauge theory.

In contrast to [37] we immediately start with the parametrized version which makes the

exposition more compact and geometrical. We then propose the precise specification for

the space of allowed field configurations which guarantees the equivalence without the
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artificial truncation originally employed in [37]. The relation to the conventional unfolded

approach is discussed in section 4. We then show that the recently proposed canonical

Lagrange structure for the unfolded equations [44] can be systematically obtained from

the respective parent Lagrangian. As a byproduct this gives a systematic way to explicitly

construct canonical Lagrange structures for the unfolded equations. We complete the

discussion by studying various subtleties emerging if the number of generalized auxiliary

fields is infinite.

In section 5 we demonstrate how the formalism works using free totally symmetric

gauge fields [45] as an example. Starting with the Fronsdal Lagrangian we construct a

version of the parent formulation where the Lagrangian potential is relatively simple thanks

to the parent version of the gauge where the field is traceless and the gauge parameter is

transverse [46–48]. A remarkable feature is that in contrast to the usual treatment this

gauge is purely algebraic in the parent setting. We then explicitly show that eliminating

further auxiliary fields results in the familiar frame like Lagrangian of [49]. We hope that

understanding the structures underlying the Lagrangian formulation of higher spin fields

will be helpful at the nonlinear level as well where despite of interesting developments [50,

51] the problem of proper Lagrangian formulation of Vasiliev system [3] is still open.

As a next illustration of the parent approach in section 5.3 we present a concise form

of the nonlinear off-shell constraints and gauge symmetries for AdS higher spins where

the familiar sp(2)-symmetry and local AdS symmetry are manifestly realized. Using the

parent formalism is essential in this context because the target space involves negative

degree coordinates and hence the equations of motion are not of the FDA form. This

formulation is deeply related to a quantized particle model for which the HS fields form

a background [52, 53] and can be seen as a generalization of the remarkable flat-space

system [5] or its AdS space version [53].

2 Preliminaries

2.1 Generalized auxiliary fields

Let us briefly recall the jet space language for local gauge field theories defined in the BRST

theory terms. More detailed account of the jet-bundle approach can be found in e.g. [19] (see

also [13–17] for the general mathematical introduction to jet-bundles and partial differential

equations). Let ψA denote fields of the theory including ghosts, antifields etc. and za denote

space-time coordinates a = 0, 1, . . . , n− 1. Fields carry an integer ghost degree denoted by

gh(). Physical fields are found at vanishing ghost degree while fields of nonzero degree are

interpreted as ghosts and antifields associated to gauge symmetries, equations of motion,

and their reducibilty relations. The Grassmann parity of ψA is denoted by |ψA|. For all

the objects we need in the paper |F | is always gh(F )mod 2 as for simplicity we do not

explicitly consider systems with physical fermions.

The jet space associated to the space of fields is a supermanifold with coordinates

za, ξa ≡ dza, ψA and all derivatives ∂(b)ψ
A ≡ {∂b1 . . . ∂bkψ

A} considered as independent

coordinates ψA
(b). The ghost degree is assigned as follows gh(za) = 0, gh(ξa) = 1 and
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gh(ψA
(b)) = gh(ψA). On the jet space one defines the total derivative ∂Ta by

∂Ta =
∂

∂za
+ ψA

a
∂

∂ψA
+ ψA

ab
∂

∂ψA
b

+ . . . . (2.1)

Once the set of fields is chosen all the remaining information, including equations of motion,

gauge transformations, and their (higher) reducibilty relations, is encoded in the BRST

differential s which is an odd nilpotent vector filed s on the jet space with gh(s) = 1. It

is assumed evolutionary i.e. [∂Ta , s] = 0. Note that this requirement uniquely determines

s in terms of sA[ψ] = sψA. If the theory is Lagrangian s can be assumed canonically

generated by the master action SBV as s =
(
·, SBV

)
, where

(
·, ·

)
is the Batalin-Vilkovisky

antibracket.

We need to recall the concept of generalized auxiliary fields. Suppose that for the

Lagrangian theory described by the BV master-action SBV [ψ] there is an invertible change

of variables (possibly involving derivatives) ψA → φi, ua, u∗a such that ua, u∗b are conjugate in

the antibracket. Fields ua, u∗a are said generalized auxiliary if the equations
δSBV

δua

∣∣
u∗

a=0
= 0

are algebraically solvable with respect to ua. This notion was introduced in [54]. The

reduced master-action is then obtained by substituting ua = ua[φ], u∗a = 0 into SBV .

Generalized auxiliary fields comprise both usual auxiliary fields and Stüeckelberg variables

as well as their associated ghosts and antifields.

At the level of equations of motion the respective generalization was proposed in [20].

According to the definition of [20] fields wa, va are called generalized auxiliary if there is

an invertible change of variables (possibly involving derivatives) ψA → φi, va, wa such that

equations swa = 0, wa = 0 can be solved algebraically as va = V a[φ].1

Vector field s restricts to the surface swa = 0, wa = 0, giving the reduced theory

whose fields are φi and sRφ
i = (sφi)|swa=0,wa=0. Following [20] one shows that there is an

invertible change of coordinates to φiR, u
a = swa, ta = wa, such that sφiR = SR(φR). If in

addition this change of coordinates is local (i.e. involves derivatives of finite order only)

the generalized auxiliary fields are called local [23]. In this case it is legitimate to rewrite

s in the new coordinates as

s = Si
R[φR]

∂

∂φi
+ ua

∂

∂ta
+ . . . (2.2)

where dots denote the prolongation. If the number of fields wa, va is finite it is clear that

the cohomology of s and sR in the space of local function(al)s are isomorphic [20]. This

is because the prolongation of the second term has trivial cohomology and the two pieces

do not see each other (the detailed discussion can be found in [20, 55]). The same is

true for functional multivectors. For instance, for the cohomology of [s, ·] in the space of

(evolutionary) vector fields [20].

If two theories are related through the elimination of auxiliary field of this type they

are equivalent in a rather strict sense. If the number of auxiliary fields becomes infinite

or the inverse change of variables is not strictly local two theories are usually regarded

1More precisely, the prolongation of swa = 0, wa = 0 is equivalent to the prolongation of va =

V a[φ], wa = 0 as algebraic equations in the jet space.
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as equivalent but in this case the precise equivalence has to be analyzed more carefully.

In particular, various isomorphisms generally hold only for representatives satisfying some

extra conditions. Equivalence of this type relates for instance the parametrized and non-

parametrized form of the same system or the conventional and the unfolded form. The

parent formulations of [20, 23, 37] also belong to this class. The subtleties arising when

the number of auxiliary fields becomes infinite are discussed in some details in section 4.2.

2.2 AKSZ sigma models

Consider two Q manifolds, i.e., supermanifolds equipped with an odd nilpotent vector

field [56]. The first, called the base manifold, is denoted by X. It is equipped with a

grading ghX and an odd nilpotent vector field d, ghX(d) = 1. We also assume that X is

equipped with the volume form compatible with d. For our purpose it is enough to restrict

to X of the form ΠTX0, i.e. to an odd tangent bundle over a manifold X0 which plays a

role of space-time.

If xµ and θµ are coordinates on X0 and the fibers of ΠTX0 respectively, the differential

and the volume form are given explicitly by

d = θµ
∂

∂xµ
, dx0 . . . dxn−1dθn−1 . . . dθ0 ≡ dnxdnθ , n = dimX . (2.3)

The second supermanifold, called the target manifold, is denoted by M and is equipped

with another degree ghM, the degree n− 1 symplectic 2-form σ and the function SM with

ghM(SM) = n satisfying the master equation

{SM, SM} = 0 (2.4)

where { · , · } denotes the (odd) Poisson bracket determined by σ. In what follows we

always assume that the dimension of M is countable and typically equipped with extra

structures like e.g. suitable filtration. Although generalizations where either σ or { · , · }

can be degenerate are of substantial interest we do not discuss them here. Moreover, we

restrict ourselves to the case where σ is exact i.e. σ = dχ for some χ = χA(ψ)dΨ
A, where

ΨA are local coordinates on M.

Given the above data the Batalin-Vilkovisky master-action determining the AKSZ

sigma model is given by

SBV [Ψ,Λ] =

∫
dnxdnθ

(
χA(Ψ(x, θ))dΨA(x, θ) + SM(Ψ(x, θ)

)
. (2.5)

By construction it satisfies the master equation
(
SBV , SBV

)
= 0 with respect to the func-

tional antibracket induced by the target space bracket { · , · }
M
. More precisely, for two

functionals F,G one has (see e.g. [26, 31] for more details)

(
F,G

)
= (−1)(|G|+n)n

∫
dnxdnθ

(
δRF

δΨA(x, θ)
EAB(Ψ(x, θ))

δG

δΨB(x, θ)

)
, (2.6)

where EAB(Ψ) =
{
ΨA,ΨB

}
are coefficients of the Poisson bivector.
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The space of fields is equipped with a total ghost degree gh(A) = ghM(A) + ghX(A).

In particular gh(SBV ) = 0. It is useful to identify component fields as

ΨA(x, θ) =
0
ΨA(x, θ) + θµ

1
ΨA

µ (x) +
1

2
θµθν

2
ΨA

νµ(x) + . . .+
1

n!
θµn . . . θµ1

n

ΨA
µ1...µn

(x) . (2.7)

Note that gh(
k

ΨA
µ1...µk

) = ghM(ΨA) − k. As usual, fields of vanishing degree are physical

ones, those of positive degree are ghost fields while negative degree ones are antifields. The

Lagrangian, generators of gauge symmetries, and higher structures of gauge algebra are

encoded in SBV in a standard way.

The AKSZ sigma model BRST differential is canonicallly generated by SBV canonically

to be

sΨA(x, θ) = (−1)n
(
ΨA(x, θ), SBV

)
= dΨA(x, θ) +QA(ΨA(x, θ)) , (2.8)

where QA(Ψ) =
{
ΨA, SM

}
and the extra sign-factor (−1)n has been introduced for future

convenience.

As the BRST differential can be defined just in terms of d and an odd nilpotent vector

filed Q on the target space one can consider the equations of motion version of AKSZ

sigma model. In this case X is the same while on target space one only assumes existence

of a nilpotent vector field Q, gh(Q) = 1. This data is enough to equip the space of fields

ΨA(x, θ) with the nilpotent BRST differential using (2.8).

To conclude the discussion of AKSZ sigma models let us discuss their general properties.

– If the space-time dimension n > 1 and the dimension of M is finite (so that the

number of fields is finite as well) AKSZ sigma model is necessarily topological. See

e.g. [57] for a recent review of AKSZ approach to topological theories.

– In contrast to the Lagrangian case where the degree of SM equals the space-time

dimension in this case there is no such dependence as ghost degree of Q is always

one. In particular, given M one can consider a family of models by taking one or

another X. In particular, this gives a natural way to restrict a gauge system to a

submanifold or a boundary [6, 21, 39, 58] (see also [59] for a recent applications in

the context of AdS/CFT correspondence).

– It was observed in [22] that if gh(ΨA)> 0 for all coordinates then each ΨA gives rise

to a pA-form physical field with pA = gh(ΨA) and the equations of motion determined

by s take the form of a free differential algebra. In this case the AKSZ sigma model at

the level of equation of motion is simply a BRST extension of the unfolded form. In

the general case equations of motion combine both the algebraic constraints and the

FDA relations. Moreover, both the FDA relations and the constraints are encoded

in one and the same odd nilpotent vector field Q.

– If one restricts to an appropriate neighborhoods in the space-time and the target

space the local BRST cohomology of the AKSZ sigma model i.e. cohomology of s in

the space of local functionals, is isomorphic to the cohomology of the target space
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differential Q in the space of functions on the target space [22]. If M is infinite-

dimensional the isomorphism in general requires extra assumptions (see [23] and the

discussion in section 4.2).

– Although in the Lagrangian setting AKSZ sigma model is formulated within the

Lagrangian BV formalism the respective Hamiltonian formulation is also built in.

More precisely decomposing the space time manifold X0 into spatial part X
s
0 with

coordinates xi and the time-line x0 the BRST charge and the BFV Poisson bracket

are given by the same expressions (2.5) and (2.6) with X0 replaced with X
s
0. In

particular, the BRST charge reads as

Ω =

∫
dn−1xdn−1θ(χA(Ψ(x, θ))dsΨ

A(x, θ) + SM(Ψ(x, θ)) . (2.9)

where ds = θi ∂
∂xi denotes the de Rham differential of Xs

0. This fact was originally

observed in [26, 60].

– The previous property can be understood from a more general perspective. Consider

the integrand LAKSZ of the AKSZ action as an inhomogeneous differential form (in

the sense of identification θµ ≡ dxµ) on X0 extended by the space of fields and their

derivatives. Given a submanifold Z0 ⊂ X0 of dimension k one can integrate over Z0

the k-form component of LAKSZ . This results in “higher BRST charges” of ghost

degree n − k. By construction these again satisfy the master equation with respect

to the bracket of degree k − n + 1 determined by (2.6) with X0 replaced by Z0. Of

a special interest is the case where Z0 is a boundary (this was recently discussed

in [61]). If Z0 is a spatial slice X
s
0, k = n− 1 one clearly reproduces (2.9) and other

BFV structures. Analogous charges [5] can be defined by integrating over Z0 various

Q-invariant functions on M pulled back by ΨA(x, θ).

– For an AKSZ sigma model one can identify a special class of generalized auxiliary

fields whose elimination can be performed entirely in the target space. For as AKSZ

model at the level of equation of motion these were proposed in [22] and are simply

coordinates wa, va on M such that Qwa = va can be solved with respect to va at

wa = 0. This is just a version of a general definition for a 0-dimensional field theory.

In the Lagrangian setting one again repeats the definition from section 2.1 treating M

as a space of fields of 0-dimensional theory and using SM in place of the master-action.

3 Parent formulation

3.1 Parent Lagrangian

Given a Lagrangian gauge field theory on space-time manifold X0 one can embed it into

the Batalin-Vilkovisky description by adding ghost fields and antifields so that the action

is promoted to the BV master-action of the form

S[ψ, ψ∗] = S0[ψ] +

∫
dnxψ∗

Aγψ
A + . . . (3.1)

– 7 –
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where S0 is the starting point classical action, γ the gauge part of the BRST differential,

and dots denote higher order terms in antifields ψ∗
A needed if the gauge algebra does not

close off-shell. In what follows we assume that the algebra is closed and hence γ2 = 0

off-shell so that S can be taken linear in antifields ψ∗
A. On the space of fields and antifields

there is a canonical odd 1-form χ = ψ∗
Adψ

A. It gives rise to the canonical antisymplectic

structure σ = dχ = dψ∗
A ∧ dψA and the respective odd Poisson bracket (antibracket).

The parent formulation is constructed as follows: if za denote particular space-time

coordinates consider the jet space associated with fields ψA. This is a supermanifold N with

coordinates za, ξa ≡ dza, ψA and all the derivatives ψA
(b) = ∂(b)ψ

A considered as independent

coordinates. In addition to the ghost degree N is equipped with an odd nilpotent vector

field called the total de Rham differential dH = ξa∂Ta , where ∂
T
a is a total derivative (2.1).

Furthermore, in these terms gauge BRST differential γ is promoted to an odd nilpotent

vector field on N satisfying [dH , γ] = 0 and gh(γ) = 1. A useful object which plays an

important role in the formalism is the total differential γ̃ = −dH +γ. It is nilpotent thanks

to d2H = 0, γ2 = 0, and [dH , γ] = 0.

As a next step to each coordinate on N (collectively denoted by Ψα) one associates a

conjugated coordinate Λα with gh(Λα) = −gh(Ψα) + n− 1. More precisely one extends N

to (odd) cotangent bundle M = T ∗[n− 1]N with the degree of the fiber coordinates shifted

by n− 1. M is equipped with a canonical 1-form χ = ΛαdΨ
α of ghost degree n− 1. This

defines a canonical (odd) Poisson bracket on M with

{
Ψβ ,Λα

}
M

= δβα , gh({ · , · }
M
) = −n+ 1 . (3.2)

The parent formulation is then given by a certain infinite-dimensional version of the

AKSZ sigma model with the target space being M and the source space ΠTX0 with coor-

dinates xµ, θµ. The target space BRST potential is given by

SM = Λ∗
αγ̃Ψ

α + L̂(Ψ) , gh(SM) = n, |SM| = n mod 2 (3.3)

where L̂ denotes a representative of the starting point Lagrangian in the cohomology of

γ̃, i.e. if Ln = ξ0 . . . ξn−1L[Ψ, y] is a Lagrangian density then L̂ = Ln + Ln−1 + . . . is its

γ̃-invariant completion by terms of homogeneity n−1, n−2, . . . in ξa. Thanks to nilpotency

of γ̃ and γ̃L̂ = 0 BRST potential SM satisfies the master equation {SM, SM}
M

= 0. Finally,

the BV master-action has the standard AKSZ form (2.5). Explicitly, one has

SP =

∫
dnxdnθ

[
Λα(x, θ)(d+ γ̃)Ψα(x, θ) + L̂(Ψ(x, θ))

]
. (3.4)

It satisfies master equation
(
S, S

)
= 0 in terms of the antibracket

(
· , ·

)
on the space of

fields and antifields, which is determined by the target space bracket { · , · }
M

through (2.6).

Note that thanks to the manifest coordinate-independence of the construction the action

is written in terms of generic space-time coordinates xµ.

Strictly speaking BV master-action (3.4) corresponds to the parametrized form of the

starting point theory. If the starting point theory is diffeomorphism invariant then one can

consistently eliminate component fields entering za(x, θ), ξa(x, θ) along with their conjugate

– 8 –



J
H
E
P
1
2
(
2
0
1
2
)
0
4
8

antifields [23, 37]. In general, the parent description of non-parametrized theory is achieved

by imposing the gauge condition za(x, θ) = Za(x), with Za(x) defining an admissible

coordinate system. More precisely, component fields entering za(x, θ)−Za(x), ξa(x, θ) and

their conjugate antifields are generalized auxiliary and can be eliminated. The elimination

simply results in putting za(x, θ) = Za(x) and ξa(x, θ) = θµ∂µZ
a inside the BV action.

Instead of the minimal γ encoding just the gauge symmetry one can start with the

non-minimal γ and the extended manifold N. If the extended system is equivalent to the

minimal one through the elimination of generalized auxiliary fields then the respective

parent formulations are also equivalent. In particular, all the considerations including

the equivalence proof etc. remain valid in the nonminimal setting as well. This type of

generalization is suitable if, for instance, one wants to take into account off-shell constraints

of the starting point theory implicitly through the appropriately extended γ. In this setting

one naturally has negative ghost degree variables among coordinates on N. Note that in this

way one cannot handle differential constraints because the respective Lagrange multipliers

(present among components of Λα) can become dynamical.

As the target space is infinite-dimensional the theory is not completely defined just

by specifying the set of fields and the BV master-action even if we disregard (as we do in

any case) the subtle issues of boundary conditions, global geometry etc. As we are going

to see in the next section it crucially depends on the choice of the space of allowed field

configurations.

A simple way to avoid these subtleties is to truncate the theory by hands to a finite one

as was originally proposed in [37]. Another option we are going to describe next is to keep

infinite amount of fields but specify the space of allowed field configuration in such a way

that the parent formulation is indeed equivalent through the elimination of the generalized

auxiliary fields to the starting point theory without any artificial truncation.

3.2 Space of allowed field configurations: a simple example

The proper definition of the space of allowed configuration is in fact not model specific.

A good strategy is then to start with the simplest example to illustrate the idea. To

this end consider the parent formulation of a mechanical system with regular Lagrangian

L(q0, ∂q0). To keep notations uniform with the field theory generalization we use ∂a to

denote ȧ = d
dt
a.2

The non-parametrized version of the parent formulation has the following fields: q(l), p(l)
l = 0, 1, . . . and their conjugate antifields. In this example antifields are completely passive

because they don’t enter the BV action and we systematically disregard them. Parent

action for mechanics is known in the literature and is given by

S =

∫
dt

[
p0(∂q0 − q1) +

∞∑

i=1

pi(∂qi − qi+1) + L(q0, q1)

]
. (3.5)

2Although we restrict Lagrangian not to depend on higher order derivatives the formalism is perfectly

suited for higher derivative theories. In the case of mechanics it essentially reproduces the familiar Ostro-

gradsky construction.
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As the space of allowed field configurations let us chose arbitrary3 configurations for ql.

As for the configurations for pl we take those where only finite number of pl are nonvan-

ishing.

This choice has a simple explanation: pl are coordinates on the space dual to the

infinite dimensional space with coordinates ql. As ql are coordinates on the infinite jet

space and hence an infinite number of ql can be nonvanishing simultaneously the standard

choice of the dual space is to take functionals for which only finite number of components

pl can be nonvanishing.

In this way one reformulates the restriction in terms of the target space rather than a

field configuration space. Indeed the target space is a version of a cotangent bundle over

the jet space such that it consists of points where only finite number of fiber coordinates

(i.e. momenta pl) are nonvanishing. In this form this choice is immediately extended to

the general parent formulation. Indeed, as the target space of the AKSZ representation is

an (odd) cotangent bundle over the BRST extended jet space one again requires that only

finite number of fiber coordinates can be nonzero.

Let us show that under the above condition all the variables qi+1, pi with i = 0, 1, . . .

are auxiliary fields. The equations of motion derived from (3.5) by varying with respect to

pi, qi with i = 0, 1, . . . read as

qi+1 = ∂qi i> 0 , pi−1 = −∂pi + δ1i
∂L

∂q1
+ δ0i

∂L

∂q0
(3.6)

where i = 0, 1, . . . and pi = 0 for i < 0.

Even without the above condition on the allowed field configurations the first equation

is algebraically solved with respect to qi with i > 0 by qi = (∂)iq. The second equation

can not be solved algebraically for pi if all pl can be nonzero. However, in the space where

only finite number of pl can be nonvanishing the second equation with i > 0 is equivalent

to p0 = ∂
∂q1
L and pi = 0 for i > 0. One then concludes that for such a field configuration

space variables pl, ql+1 with l > 0 are auxiliary fields so that together with their conjugate

antifields they are generalized auxiliary fields (see section 2.1). Moreover, their elimination

brings back the starting point system with Lagrangian L(q, q(1)). Note that one can choose

not to eliminate p0 if
∂L

∂q1
= p0 can be solved with respect to q1. This possibility results in

the Hamiltonian formulation of the system (see [37] for more details).

3.3 General case

In the general case consider a non-parametrized version of the parent formulation which is

obtained by imposing the gauge za = δaµx
µ and hence ξa = δaµθ

µ. It is convenient to pack

all the fields into the generating functions

ψ̃A =
∑

p,k> 0

1

p!k!
θµp . . . θµ1yνk . . . yν1ψA

ν1...νk|µ1...µp
, (3.7)

where in addition to θµ we have introduced extra variables yµ.

3The irrelevant in this context choice of smoothness class and the boundary conditions is not explicitly

discussed.
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In the general case the space of allowed field configuration is specified as follows: no

extra restrictions for ψA
µ1...µp|ν1...νk

but for their conjugate antifields (i.e. component fields

entering ΛA
(ν)(x, θ)) only finite number are allowed to be nonzero. Note that this reproduces

the restriction in the example of the previous section.

Let fα, gα be homogeneous monomials in y, θ such that together with 1 they form

a basis in polynomials in y, θ and σfα = gα where σ = θµ ∂
∂yµ

. We have the following

decomposition ψ̃A = ψA + vAα f
α + wA

α g
α. We use the following collective notations va for

vAα and wa for wA
α so that the entire set of fields is given by ψA, va, wa and their conjugate

antifields ψ∗
A, w

∗
a, v

∗
a. The parent master-action takes the form (see [37] for more details):

∫
dnx

[(∫
dnθΛ

(ν)
A (x, θ)dψA

(ν)(x, θ)

)
+ w∗

av
a + w∗

aγ̄w
a

]
, (3.8)

where γ̄ denotes the extension of γ to component fields entering ψA(x, θ).

Let us show that variables w∗
a, v

a and wa, v∗a are generalized auxiliary fields. We need

to show that equations
δSp

δw∗

a

= 0 and
δSp

δva
= 0 can be algebraically solved for w∗

a, v
a at

wa = v∗a = 0. Under the resolvability we assume resolvability in terms of homogeneity

expansions in fields (one can actually require less) so that it is enough to consider the

linearized system. The proof that
δSp

δw∗

a

= 0 can be solved with respect to va was given

in [37]. It is unaffected as the dual variables are not involved in the relevant equations.

As for the
δSp

δva
= 0 it amounts to showing that w∗

a −
δ

δva
(w∗

b (d
F + γ)wb)|w=0 = 0

can be solved for w∗
a. Here, dF is a vector field in the space of fields ψA

µ1...µp|ν1...νk
and

their x-derivatives that represents the action of d = θµ∂µ. More precisely, dF is defined

through dF ψ̃A = dψ̃A where dF and ∂µ acts on component fields and their derivatives

while θµ entering d in the space of auxiliary variables. For instance one gets dFψA
()|µ =

(−1)|A|∂µψ
A
()|[].

Using the degree defined by degψA
νk...νk|µ1...µp

= p+k− (N +1)gh(ψA), where N is the

maximal number of space-time derivatives in γ, one shows that
δ

δva
(w∗

b (d
F +γ)wb)|w=0 can

only depend on w∗
c of the degree higher than that of wa

∗ (by definition, the degree of w∗
a

equals the degree of its conjugate wa). Because in a given configuration there can be only

finite number of nonvanishing w∗
a variables the equations can be always solved algebraically.

3.4 Scalar field example

The parent formulation for a free scalar field in Minkowski space is almost trivial as there

is no genuine gauge symmetry. However, this example is extensively used as an illustration

of the unfolded approach as e.g. in [44, 62] and at the same time was not discussed in detail

in [37]. Moreover, in section 4.1 we need this example to illustrate the relationship to other

approaches.

Scalar field on n-dimensional Minkowski space is described by Lagrangian L =

−1
2η

ab∂aφ∂bφ − V (φ) (metric ηab is assumed of almost positive signature). The mani-

fold N is the usual jet-space with coordinates za, ξa, φa1...ak , k = 0, 1, . . .. The target space

M is the cotangent bundle T ∗[n− 1]N with the shifted degree. Denoting by pa, ρa, π
a1...ak
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the variables conjugate to za, ξa, φa1...ak the target space function SM takes the form:

SM = −paξ
a −

∞∑

k=0

πa1...akξaφaa1...ak + V L , V =
1

n!
ǫa0...an−1

ξa0 . . . ξan−1 . (3.9)

The BV master-action (3.4) is given by

SP =

∫
dnxdnθ

[
pa(dz

a − ξa) + ρadξ
a +

∞∑

k=0

πa1...ak(dφa1...ak − ξaφaa1...ak) + V L

]
.

(3.10)

We then work with the nonparametrized version of the parent formulation which is

obtained by putting za = xa and ξa = θa inside the BV action which is then understood

as a functional of only π(a)(x, θ) and φ(a)(x, θ). Here xa denote Cartesian space-time

coordinates.

Integrating then over θa and keeping only physical (=vanishing ghost degree) fields

gives

S0 =

∫
dnx

[
∞∑

k=0

πb|a1...ak (∂bφa1...ak − φba1...ak)−
(
1

2
φaφ

a + V (φ)
)]

, (3.11)

where we have identified n−1-forms πa1...ak with vector fields πb|al...ak . Unlike φa1...ak fields

πb|a1...ak are subject to gauge invariance which can be read off from the above master-action.

More precisely along with the physical fields πb|a1...ak target space coordinates πa1...ak give

rise to ghost fields which are n − 2-forms and which we identify with bivectors λbc|a1...ak .

The gauge transformation reads as

δλπ
b|a1...ak = λb(a1|a2...ak) − ∂cλ

cb|a1...ak , k = 0, 1, . . . (3.12)

where the parenthesis denote the symmetrization of the enclosed indexes. Thanks to the

first term this gauge invariance is Stüeckelberg (algebraic) for k > 0 and it is easy to

eliminate the respective pure gauge components.

An efficient way to analyze the system is to introduce suitable Fock space notation.

To this end let ya be bosonic variables seen as creation operators. The Fock space is then

simply the space of polynomials in ya where 1 is the vacuum. It is also useful to introduce

the dual Fock space generated by dual operators ȳa. The inner product is completely

determined by 〈1, 1〉 = 1 and the conjugation rule (ȳa)
∗ = ∂

∂ya
and (ya)∗ = ∂

∂ȳa
, e.g.

〈ȳa, y
b〉 = δba. With the help of extra fermionic variables θ̄a let us introduce generating

functions

Π(ȳ, θ̄) =
∞∑

k=0

πb|a1...ak θ̄bȳa1 . . . ȳak , Λ(ȳ, θ̄) =
1

2

∞∑

k=0

λbc|a1...ak θ̄cθ̄bȳa1 . . . ȳak , (3.13)

for fields πb|a1...ak and gauge parameters λbc|a1...ak . In these terms gauge transforma-

tions (3.12) can be written as

δλΠ = AΛ +BΛ , A = ȳa
∂

∂θ̄a
, B =

∂

∂θ̄a

∂

∂xa
, (3.14)
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Operator A can be seen as a version of de Rham operator and its cohomology is trivial in

nonvanishing degree in ȳ, θ̄. It follows that by choosing suitable Λ one can always achieve

θ̄a
∂

∂ȳa
Π = 0 or in other words assume fields πb|a1...ak symmetric in all indexes.

This motivates the following useful choice of generating functions for πb|a1...ak after

gauge fixing

πl =
1

(l + 1)!
πa|a1...al ȳaȳa1 . . . ȳal . (3.15)

It is also useful to introduce generating functions for fields φa1...al as

φl = φa1...aly
a1 . . . yal . (3.16)

Here and below the identification φ0 ≡ φ is assumed.

In terms of the generating functions the gauge fixed version of the parent action reads as

S
gf
0 =

∫
dnx

[
∞∑

l=0

〈πl, ∂φl − φl+1〉 −
1

2
φaφ

a − V (φ)

]
, (3.17)

where ∂ = ya ∂
∂xa . This action is not anymore gauge invariant and is clearly a direct

generalization of the 1d action (3.5). It can be seen as a minimal local action whose set of

fields contains fields of the unfolded formulation and whose equations of motion reproduce

the unfolded ones. Another proposal for the unfolded equations variatinal principle was

pushed forward inin [62].

The equations of motion obtained by varying (3.17) with respect to πl and φl read as

∂φl − φl+1 = 0 , ∂̄πl + πl−1 + δ1l φ1(ȳ) + δ0l
∂V

∂φ
= 0 , l = 0, 1, . . . , (3.18)

where ∂̄ = ∂
∂ȳa

∂
∂xa , φ1(ȳ) = φaη

abȳb, and πi = 0 for i < 0.

Just like in the case of mechanics if only finite number of πl can be nonzero then

equations (3.18) can be solved for φl, l > 0 and πl, l> 0 algebraically so that these variables

are auxiliary fields. Indeed, equations obtained by varying with respect to these variables

can be solved for them algebraically. The reduced action is obviously the starting point one

in agreement with the general equivalence statement. Note that one can consider a different

reduction (see [37] for more details) where one first eliminates φl, l > 1 and πl, l > 0 and

then eliminates φ1 through its own equation of motion. This results in the well-known first

order Schwinger action depending on φ and πa.

4 Structure of generalized auxiliary fields of parent formulations

4.1 Relation to the Lagrange structure for the unfolded equations

For a Lagrangian theory the parent formulation can be considered as a Lagrangian ex-

tension of the parent formulation at the level of equations of motion which in turn is an

extension of the unfolded formalism [1, 3, 4]. In our setting it is easy to describe both

off-shell and on-shell unfolded formulation using the BRST theory terms.
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For the off-shell version let us restrict to the case where all coordinates on N have

nonnegative ghost degree. Using the conventions of section 3.1 the set of fields is given by

the coordinates on N, with the coordinate of ghost degree p giving rise to a p-form field,

p− 1-form ghost field, p− 2-form ghost for ghost etc. Note that no antifields/momenta Λα

are introduced in contrast to the parent formulation of section 3.1. The BRST differential

is determined by [23]

sPΨα(x, θ) = dΨα + γ̃Ψα(x, θ) (4.1)

or in the appropriate jet-space notations of [23] it can be written as sP = dF + γ̃. Here by

a slight abuse of notation γ̃ denotes the natural extension of γ̃ to component fields entering

Ψα(x, θ). It is easy to see that the equations of motion determined by sP have the form of

a free differential algebra.

The on-shell version is arrived at by imposing in addition the prolongation of the

starting point equations of motion understood as constraints in N. In more geometric

terms this simply amounts to replacing N with Σ ⊂ N singled out by the prolongation of

equations of motion. Note that gauge invariance of the equations of motion implies that

γ̃ is tangent to Σ and hence restricts to Σ. In this way one ends up with the on-shell

unfolded system whose equations of motion are equivalent to those of the starting point

theory.4 The following comments are in order:

– What we have just described is (in general) the parametrized version of the unfolded

system. As originally proposed in [1, 3, 4] the unfolded formulations for field systems

on a given gravity background is based on gauging the space-time symmetry algebra

rather than parametrization. Although the difference is essential for some specific

issues it can well be ignored in the present context. Moreover, both formulations

coincide if one fixes the diffeomorphism invariance in a suitable way (see [23] fore

more details).

– Although in the case of theories without gauge freedom the formulation based on

above sP and the usual unfolded formulation coincide (modulo the above subtlety

with parametrization) this is not the case for general gauge systems. More precisely,

the standard unfolded formulation known in the literature (e.g. of the free spin s

gauge field [63]) is achieved by eliminating a maximal amount of contractible pairs

for γ̃ as was originally described in [20, 21] in the case of free systems (see also [5]

for particular nonlinear systems). The general case was described in [23].

From the above discussion it is clear that the parent Lagrangian formulation can be

seen as an on-shell unfolded system extended by generalized auxiliary fields in such a way

that the resulting system has the form of a Lagrangian AKSZ sigma model. Alternatively,

it can be arrived at by extending the off-shell unfolded system followed by deforming the

resulting AKSZ Lagrangian by L̂. In this sense the parent Lagrangian formulation gives

4However, as the number of fields is infinite the equivalence is to be understood with some care. See

the discussion in section 4.2. Strictly speaking the parametrization also breaks strictly local equivalence

(see the discussion in [23]) but this can be avoided by using the non-parametrized version of the parent

formulation
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a Lagrangian Batalin-Vilkovisky extension of the unfolded approach and hence provides

a setup for quantization, studying consistent deformations, etc. within a well-established

and powerful framework [8, 18, 19, 64].

Another approach to quantizing unfolded dynamics is based on using so-called La-

grange structure [30] instead of a genuine Lagrangian. In a recent work [44] the Lagrange

structure for the usual unfolded form of a free scalar field was constructed. Now we are

going to show that the Lagrange structure of [44] can be obtained by reducing the canoni-

cal Lagrange structure of the Lagrangian parent formulation of [37]. Moreover, this gives

a systematic way to obtain the explicit form of the natural Lagrange structure for the

unfolded formulation of a given Lagrangian system.

We begin with a very brief reminder of the Lagrange structure concept. Details can

be found in the original papers [30, 65–67] (see also [31]). Given a system of (gauge

invariant) differential equations the Lagrange structure can be introduced within the BV-

BRST framework in the following way: at the level of equations of motion the gauge system

is described by the nilpotent BRST differential. If the system is a genuine Lagrangian

gauge theory one can formulate it in such a way that the BRST differential is canonically

generated in the odd Poisson bracket (BV antibracket). The respective generator, the BV

master-action, is essentially the Lagrangian. Moreover, up to technical details specifying

BRST-invariant nondegenerate bracket uniquely fixes the Lagrangian so that the data of

the BRST differential and the compatible bracket can be used to define the system.

In this framework one can allow for not necessarily nondegenerate or regular an-

tibracket (in fact the Jacobi identity can be also fulfilled in a weak sense only) so the

BRST differential is not anymore canonically generated. The Lagrange structure is roughly

a BRST-invariant antibracket which is allowed to be degenerate. This concept was intro-

duced in [30] where it was shown that this data is enough to define a consistent quantization

of the system. This has a simple counterpart in the Hamiltonian quantization: given a pos-

sibly degenerate or not necessarily regular Poisson bracket one can consistently define its

deformation quantization [68].

Given a nilpotent BV-BRST differential sψA = sA[ψ] associated to gauge invariant

equations of motion one can associate an odd BRST charge Ω0 = ψ̄As
A on the space of the

field variables ψA and their canonically conjugate momenta ψ̄A. This satisfies the master

equation {Ω0,Ω0} = 0 where { , } denotes the canonical Poisson bracket determined by{
ψA, ψ̄B

}
= δAB. In the case of Lagrangian gauge systems we are interested in now these

structures were introduced in [26]. For instance for the scalar field described by (3.17)

BRST charge Ω0 takes the form (here and below space-time integrals are implicit)

Ω0 = φ̄∗l
δS0

δφl
+ π̄∗l

δS0

δπl
=

∞∑

l=0

[
〈π̄∗l , ∂φl − φl+1〉 − 〈φ̄∗l , ∂̄πl + πl−1 + δ1l φ1(ȳ) + δ0l

∂V

∂φ
〉
]
, (4.2)

where φl, πl were introduced in (3.15), (3.16), φ∗l (ȳ), π
∗
l (y) are analogous generating func-

tions for their conjugate antifields, and φ̄l(ȳ), π̄l(y) and φ̄∗l (y), π̄
∗
l (ȳ) denote generating

functions for momenta conjugate to φl, πl, φ
∗
l , π

∗
l . Note that gh(φ̄∗l ) = gh(π̄∗l ) = 1 so that

Ω0 has a simple meaning of the BRST charge implementing the equations of motion as

Hamiltonian first-class constraints.
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The Lagrange structure can be understood as a deformation of linear in momenta Ω0 by

the terms quadratic in momenta [30]. The canonical Lagrange structure for a Lagrangian

theory is given by 1
2(−1)|B|ψ̄AE

ABψ̄B, where EAB =
(
ψA, ψB

)
are coefficients of the

Poisson bivector of the antibracket, |A| = |ψA|, and ψ̄A denotes momenta conjugate to ψA.

In the case at hand one gets

Ω = Ω0 +Ω1 = Ω0 −

∞∑

l=0

[
〈π̄∗l , π̄l〉+ 〈φ̄∗l , φ̄l〉

]
, (4.3)

with Ω0 given by (4.2). The last two terms are simply the ones encoding the canonical

antibracket.

It turns out that the BRST charge Ω can be used to reduce the theory by eliminating

the generalized auxiliary fields at the level of equations of motion [20] pretty much the

same way as the master-action can be used to eliminate generalized auxiliary fields in the

Lagrangian setting [54]. Indeed one can check that replacing the master action with Ω

and antifields with momenta in the original definition of [54] describes elimination of the

generalized auxiliary fields at the level of equations of motion along with their conjugate

momenta. This gives an efficient way to reduce both the BRST differential and the La-

grange structure in a consistent way. As an illustration it is easy to observe that all the

variables entering (4.3) save for φ0, φ
∗
0, φ̄0, φ̄

∗
0 are generalized auxiliary and their elimination

gives back usual Ωred = φ̄∗0(∂a∂
aφ0 −

∂V

∂φ0

) − φ̄∗0φ̄0 associated to the usual formulation of

the scalar field.

Let us consider now a different reduction of the system described by (4.3). Varying Ω

with respect to πl, l> 0 and φ̄∗l , l > 0 and putting φ∗l , l > 0 and π̄l, l> 0 to zero one gets

φ̄∗l+1 = ∂φ̄∗l , −φ̄l = ∂̄πl + πl−1 + δ1l φ1(ȳ) . (4.4)

The first equation immediately gives φ̄∗l = (∂)lφ̄∗0. The second equation is solved by

πl = −
∞∑

i=0

(−∂)iφ̄l+i+1 − φ1δ
l
0 . (4.5)

so that they are algebraically solved for φ̄∗l , l > 0 and πl, l> 0 and hence these variables

and their conjugate momenta are generalized auxiliary fields.

Substituting these variables in terms of the remaining ones in Ω gives

Ωred = 〈π̄∗l , ∂φl − φl+1〉+ 〈φ̄∗0, ∂̄φ1(ȳ)− φ̄0 −
∞∑

i=1

(−∂̄)iφ̄i〉 . (4.6)

Note that ∂̄φ1(ȳ) = ∂aφa and the constraint ∂φ = φ1 imply ∂̄φ1(ȳ) = trφ2 = φaa. One then

represents the second parenthesis as φaa−
∑∞

i=0(−∂)
iφ̄i. In this form it obviously coincides

with the Lagrange structure extension of the unfolded constraint φaa = 0 proposed in [44].

Note that the reduction also reproduces the trivial Lagrange structure extension of the

equations ∂φl − φl+1 = 0 of this reference. Let us recall that in our notation the unfolded

form of the scalar field read as

∂φl − φl+1 = 0 , trφl = 0 . (4.7)
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Let us stress that the Lagrange structure in this setting is represented by a function

depending on derivatives of unbounded order. This type of functions is normally excluded

in the usual BRST cohomology treatment. In particular, this explains that there is no

contradiction between the form of the Lagrange structure and the result of [31] stating that

any Lagrange structure for the AKSZ sigma model (and in particular unfolded system) is

equivalent to the one not involving space-time derivatives as the considerations of [31] were

explicitly restricted to local function(al)s and hence local Lagrange structures.

4.2 Functional multivectors and generalized auxiliary fields

The example of the previous section can in fact be easily understood from a more general

perspective. To this end in the setting of section 2.1 let us consider the case where the

number of fields va, wa is infinite.

As in section 2.1 it is convenient to use adapted coordinates φiR, u
a = swa, ta = wa

such that sφiR = Si
R[φR]. Even if the change of variables φi, wa, va → φiR, u

a, ta is local

and invertible the inverse change of variables can have unbounded order of derivatives even

if the expression for an individual va in terms of φR, u, t is a local function (i.e. contains

derivatives of finite order only) for any given va. If f(φ, v, w) is a representative of s-

cocycle (modulo total derivative) then by re-expressing it in terms of adapted coordinates

as f ′(φR, u, t) it is easy to see that f ′(φR, 0, 0) is an sR cocycle. However, it can involve

derivatives of unbounded order if the number of va-variables is infinite. That is why the

isomorphism of cohomology takes place only if one restricts to local function(al)s depending

on finite number of fields only.

This type of generalized auxiliary fields is exactly what one employs to reformulate the

theory in the unfolded form or parent form [23].5 In particular, it was shown in [23] that

cohomology in the space of local function(al)s of a given theory and its parent extension

are isomorphic if one restricts to function(al)s depending on finite number of fields only.

In the same setting let us now consider the local BRST cohomology in the space of

functional multivectors. If one restricts to graded symmetric multivectors a standard way

to treat them (see e.g. [31] for more details) is to introduce momenta conjugate to each

variable and then identify functional multivectors with local functionals homogeneous in

momenta. In our case we introduce momenta φ̄i, v̄a, w̄a conjugate to φi, va, wa. To study

the relation between the cohomology it is again useful to utilize an adapted coordinate

system φR, ua, ta, where ua = swa, ta = wa and φiR are complementary coordinates, along

with their conjugate momenta φ̄iR, ūa, t̄a.

The change of coordinates φi, va, wa → φiR, u
a, ta now extends to a canonical trans-

formation φi, va, wa, φ̄i, v̄a, w̄a → φiR, u
a, ta, φ̄Ri , ūa, t̄a. If the inverse change is given by

φi = φi[φR, u, t], v
a = va[φR, u, t], w

a = wa[φR, u, t] then the standard momenta transfor-

5Note that if the theory at hand is not diffeomorphism-invariant one needs to chose a particular back-

ground or use the non-parametrized version for the parent formulation. Otherwise one spoils the strict

equivalence by extra gauge fields whose elimination is not a strictly local operation (see [23] for more

details).
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mation law for e.g. φ̄i

φ̄Ri (x) =

∫
dny

(
φ̄j(y)

δφj(y)

δφi
R(x)

+ v̄a(y)
δva(y)

δφi
R(x)

+ w̄a(y)
δwa(y)

δφi
R(x)

)
, (4.8)

where we have used the usual field-theoretical language to simplify the exposition and to

avoid introduction jet-space technique for the momenta. It is clear from the expression

that if the number of va is infinite the second term may contain derivatives of arbitrarily

high order. Note that the third term vanishes in the present case as wa = ta.

If now f(φR, φ̄R, u, t, ū, t̄) is an s-cocycle expressed in terms of adapted coordinates then

f(φR, φ̄R, 0, 0, 0, 0) is an sR-cocycle. Other way around if f(φ, φ̄R) is an sR-cocycle of the

reduced theory then considered as a functional in the unreduced formulation it represents s-

cocycle. Although this map is an isomorphism of cohomology in the space local functionals

in φR, φ̄R, u, t, ū, t̄, the change of variables can produce derivatives of unbounded order so

that this does not in general induce isomorphism between the original and the reduced

system. Nevertheless, it may happen that such a representative is equivalent to a genuine

local one but this is not guaranteed. This is usually the case with functional vector fields

(and hence f linear in momenta) because one can remove all the derivatives of the momenta

by adding total derivatives and then reexpress derivatives of fields through the equations

of motion.

This is exactly what happens in the case of parent formulation at the level of equations

of motion [23]. Indeed, the parametrized parent formulation is simply an AKSZ sigma

model with the target space being the jet space of BRST formulation of the starting point

theory. IfW is an s-cocycle i.e. the evolutionary vector field on the jet space of the starting

point theory. By the isomorphism it is mapped to a functional vector field induced by W

understood as a vector field on the target space. It is easy to check that in this way one

indeed gets a BRST cocycle of the parent formulation. In particular, the above observation

shows that it is legitimate to analyze global symmetries within the parent formulation in

agreement with [20, 39].

Let us illustrate the above general considerations using the following toy model of the

unfolded or parent extension. We take as φi variables φ0, φ
∗
0 (coordinate and its antifield)

and as va, wa variables φl, wl, l = 1, . . . with gh(φl) = 0 and gh(wl) = −1. The BRST

differential is

sφ = sφ∗ = 0 , swl = φl − ∂φl−1 , (4.9)

so that we are indeed dealing with the off-shell unfolded system.

Let f(φ0, φ
∗
0, φl, wl) be a representative of s-cohomology. We then reduce the system by

eliminating auxiliary fields φl, wl, l = 1 . . .. As explained above we switch to new coordinate

system

φR = φ0, φ∗R = φ∗0, ul = φl − ∂φl−1, tl = wl . (4.10)

The inverse transformation reads as

φl = ul +
l−1∑

i=1

(∂)iul−i + (∂)lφR , φ∗ = φ∗R , wl = tl . (4.11)
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In terms of new variables the map of representatives amounts to simply putting ul, wl to

zero. In particular φl is mapped to (∂)lφR as one expects from the very beginning. Note

that in this example it is also clear that if f depends on infinite number of φl it is mapped

to a nonlocal function of φR.

We then consider bivectors. As a characteristic example take Ω1 = φ̄Rφ̄
∗
R which

encodes a canonical antibracket between φR and φ∗R of the reduced system. In the adapted

coordinates Ω1 represents a cocycle of the extended system as well. Let us rewrite it in

terms of original coordinates: φ̄∗R = φ̄∗0 while for φ̄R equation (4.8) implies

φ̄R =
∞∑

l=0

∫
dnyφ̄l(y)

δφl(y)

δφR(x)
=

∞∑

l=0

(−∂)lφ̄l , (4.12)

so that Ω1 =
∑∞

l=0 φ̄
∗
0(∂)

lφ̄l. It should not be a surprise that this is exactly the Lagrange

structure for an unfolded scalar field. In the previous section we have seen how to get it

from the Lagrangian parent formulation through the appropriate reduction. Now we have

derived it by explicitly adding generalized auxiliary fields.

It is clear from the above discussion that the set of generalized auxiliary fields employed

in the Lagrangian parent formulation is very special. Indeed this set contains the subset of

fields employed in off-shell unfolded form (more precisely, the off-shell parent formulation

at the equations of motion level) but at the same time the extended Lagrange structure is

still canonical. Moreover, auxiliary fields employed in the Lagrangian parent formulation

are not of the type considered above. It is instructive to illustrate this using the example

of section 3.2.

For the parent formulation of mechanics the structure of auxiliary fields is clear from

equations (3.6). Let us try to find a coordinate change

ql+1, pl → rl+1[q], tl[p] l> 0 , (4.13)

that brings the auxiliary field equations to the standard form rl+1 = 0, tl = 0, l> 0. For

r-variables we take rl = ql − ∂ql−1 while for t-variables we take tl = pl + ∂pl+1 − δ0l
∂L

∂q1
.

The inverse change of variables involves derivatives of arbitrary order. For example, for pl
one gets pl =

∑∞
i=0(−∂)

itl+i + δ0l
∂L

∂q1
. Without the restriction on allowed configuration (so

that only finite number of pl and hence tl can be nonvanishing) this expression is not even

well-defined.

The analysis of this section (see also the discussion of generalized auxiliary fields in [23]

and [44, 55]) shows that the notion of equivalence between theories differing through elim-

ination of infinite number of generalized auxiliary fields is somewhat subtle. The strict

equivalence often requires extra requirements on the class of allowed functionals or even

fails in a naive sense. This gives a wide range of possibilities to deform the theory by using

its parent formulation. We plan to return to this issues elsewhere.
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5 Parent formulations for totally symmetric fields

5.1 Parent formulation at the level of equation of motion

The free theory of totally symmetric spin-s gauge field is formulated as follows. The set

of fields is given by φa1...as which is assumed double-traceless. The ghost field associated

to gauge transformations is Ca1...as−1 and is assumed traceless. The contraction of indexes

is defined using the Minkowski space metric. The gauge part of the BRST differential is

given by

γφ = pa∂aC , (5.1)

where generating functions φ,C are introduced as follows

φ =
1

s!
pa1 . . . pasφ

a1...as , C =
1

(s− 1)!
pa1 . . . pas−1

Ca1...as−1 . (5.2)

The Lagrangian is given by [45]

L =
1

2
〈∂aφ, ∂

aφ〉 −
1

2
〈p̄a∂aφ, p̄

a∂bφ〉+ 〈pa∂
aD, p̄b∂

bφ〉 − 〈∂aD, ∂
aD〉 −

1

2
〈p̄a∂aD, p̄

b∂bD〉,

(5.3)

where p̄a ≡ ∂
∂pa

, D ≡ Tφ, and T ≡ ∂
∂pa

∂
∂pa

. Note the transformation for D: γD = p̄a∂aC.

By considering D as an independent field one can remove (double-) tracelessness con-

dition on fields and parameters. This essentially coincides with the so-called triplet formu-

lation [69–71] (see also [72–75] for more recent developments) and the above Lagrangian

describes the reducible system in this case. The irreducible system in the triplet approach

is singled out by the constraints D = Tφ, TD = 0, and TC = 0.

To construct parent formulation we introduce supermanifold N (jet-space) with coor-

dinates za, ξa along with φ,C and their derivatives. As usual it is convenient to handle

derivatives by allowing φ and C to depend on extra variables ya

φ(p, y) = φ(p) + φa(p)y
a +

1

2
φab(p)y

ayb + . . . ,

C(p, y) = C(p) + Ca(p)y
a +

1

2
Cab(p)y

ayb + . . . .
(5.4)

It is also convenient to introduce the following operators in the space of auxiliary variables

p, y

S† = pa
∂

∂ya
, S =

∂

∂ya
∂

∂pa
, � =

∂

∂ya
∂

∂ya
. (5.5)

The off-shell parent formulation [20, 23] is an AKSZ sigma model with the target space

N equipped with the differential γ̃ = −dH + γ. Fields are 1-form A and 0-form F which

are the following component fields

C(x, θ|y, p) =
0
C(x|y, p) + θaAa(x|y, p) + . . . ,

φ(x, θ|y, p) = F (x|y, p) + θa
1
φ(x|y, p) + . . . ,

(5.6)

while the component
0
C(x|y, p) has ghost degree 1 and is a ghost field associated to a

parameter of the gauge transformations.
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The equations of motion and gauge transformations are given respectively by [20]

(d− σ)A = 0 (d− σ)F + S†A = 0 , (5.7)

and

δA = (d− σ)λ, δF = S†λ , (5.8)

where σ = ξa ∂
∂ya

and λ = λ(x|y, p) has the same structure as
0
C(x|y, p) (i.e. pa ∂

∂pa
λ =

(s − 1)λ and Tλ = 0). In addition one has equation and gauge symmetries for fields

implementing reparametrization invariance: d
0
za =

1
ξa and δ

0
za = ǫa , δ

1
ξa = dǫa. Recall

that at any moment one can fix reparametrization invariance by e.g. putting everywhere

za = xa and ξa = θa.

The on-shell version of the parent formulation is obtained by requiring both C, φ and

hence A,F to be totally traceless: TC = SC = �C = Tφ = Sφ = �φ = 0. It is clear

that the equations of motion (5.7) and gauge transformations (5.8) are consistent with the

constraints.

Let us now recall the cohomological results of [20] and demonstrate how the unfolded

formulation can be arrived at in this framework. According to [20] (see also [76]) all the

fields, ghosts, and their independent derivatives can be replaced by trivial pairs for γ̃ except

for so called-generalized connections and generalized curvatures (in the context of general

gauge theories these structures were push forward in [35, 36]). These can be conveniently

packed into the generating functions C(y, p), R(y, p) satisfying6

pa
∂

∂ya
C = 0 , ya

∂

∂pa
R = 0 , (5.9)

along with the tracelessness conditions

TR = SR = �R = 0 , TC = SC = �C = 0 . (5.10)

Recall also the spin conditions for these variables pa ∂
∂pa

R = sR , pa ∂
∂pa

C = (s− 1)C.

The reduced differential γ̃red is conveniently represented as [20]

γ̃redC = σC +Πσσ̄R , γ̃redR = ΠσR , (5.11)

where σ = ξa ∂
∂ya

, σ̄ = ξa ∂
∂pa

while Π and P denote projectors to the subspaces determined

by S†χ = 0 and yap̄aχ = 0 respectively. In particular, the AKSZ sigma model with the

target space with coordinates C,R, z, ξ and differential γ̃red is precisely the parametrized

version of the unfolded formulation [63] of the Fronsdal system.

In what follows we also need the off-shell version of the above reduction. If one does

not restrict to the stationary surface the reduced set of variables involves [76] generalized

connections encoded in C, off-shell curvatures R̂ (which are not traceless anymore) and the

Fronsdal tensor F along with its derivatives. In terms of the fields and their derivatives F

is expressed as follows

F = (�φ− S†Sφ+ S†S†T )φ|y=0 . (5.12)

6Note that if one considers C as a 1-form these variables give a set of fields for the unfolded formulation

of Fronsdal system [63].
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It follows from FS† = S†S†S†T that F is gauge invariant. Indeed, γFφ = FS†C =

(S†)3TC = 0 because C is traceless.

Upon eliminating the contractible pairs the differential γ̃ = −dH + γ becomes a nilpo-

tent ghost degree 1 vector field Q on the reduced space. To the best of our knowledge

the explicit expression for Q is not available in the literature. However, we need only few

explicit relations which can be obtained directly:

QC = −ξbCb , QCa = −ξbCba + ξaξc
∂

∂pc
F ′ , . . . . (5.13)

where F ′ is linearly related to the undifferentiated Fronsdal tensor.

To make contact with the literature mention that the extra (with respect to the on-

shell version) term in QCa is related to the certain σ−-cohomology [63, 77] class, namely

so-called “Einstein cohomology”, of the operator σ− = ξa ∂
∂ya

restricted to act on the space

of polynomials in ya, pa satisfying S†χ = Tχ = �χ = Sχ = 0. From the present perspective

σ− can be identified with Q restricted to the submanifold F = R̂ = 0, known as the gauge

module in the unfolded approach.7

5.2 Frame-like Lagrangian from parent formulation

According to the general prescription of section 3.1 to construct a parent formulation

in addition to γ̃ = −dH + γ defined on N we need a Lagrange potential L̂ which is a

representative of the Lagrangian in the cohomology of γ̃. To compute L̂ and to construct

the parent formulation it is convenient to first eliminate some trivial pairs for γ. More

precisely, all the components in C and φ except for those parametrizing the subspace

singled out by SC = 0 and Tφ = 0 form contractible pairs for γ. Indeed γTφ = SC. This

is a jet-space counterpart of the well-known traceless gauge for the Fronsdal system [48]

(see also [46, 47]. Note that the expression for both dH and γ are unchanged as both vector

fields reduce to the surface N
′ ⊂ N singled out by SC = Tφ = 0.

After elimination the Lagrangian takes a simple form [48]

L =
1

2
〈φa, φa〉 −

1

2
〈Sφ, Sφ〉|y=0 . (5.14)

We search for a γ̃-invariant completion of L in the form

L̂ = VL+ VaJ
a +

1

2
VabJ

ab . (5.15)

where

Va1...ak =
1

(n− k)!
ξb1 . . . ξbn−k ǫb1...bn−kaa1 ...ak

. (5.16)

Condition γ̃L̂ = 0 gives γL = −∂aJ
a and γJa = ∂bJ

ba. Direct computation gives a possible

solution for Ja, Jab:

Ja = 〈φ, pa�C〉|y=0 − 〈φ, ∂aS†C〉|y=0 , (5.17)

7More precisely, if q denotes restriction of Q to the subspace then σ− is an associated “first-quantized

BRST operator” in the sense that σ−C = qC where σ− act on y, a, ξ while q on coordinates C
b1...bs−1

a... .
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and

Jba =
1

2

[
〈pbC, pa�C − ∂aS†C〉|y=0 − 〈S†C, pb∂aC〉|y=0 − (a↔ b)

]
, (5.18)

so that we have explicitly constructed all the ingredients for the parent Lagrangian formu-

lation for Fronsdal system. It is then given by an AKSZ sigma model with the target space

T ∗[n− 1]N′.

Note that the structure of the n-form component L of Lagrange potential L̂ coincides

with the Fronsdal Lagrangian in the traceless gauge [48] (see also [46, 47]). However, in

our setting imposing this gauge doesn’t produce differential constraints on the true gauge

parameters of the parent formulation because this only restricts the target space so that the

constraints are algebraic. This is in contrast to the usual treatment [46–48] of the traceless

gauge. Moreover, the parent formulation can be build starting from a theory where gauge

parameters are subject to differential constraints. In this case, however, the equivalence

is not guaranteed and has to be studied separately. If it happens to be equivalent the

parent formulation gives a systematic way to replace the constrained formulation with the

unconstrained one.

We now reduce the system by eliminating contractible pairs for γ̃. According to the

discussion in the previous section all the coordinates on N (and hence on N
′) form con-

tractible pairs for γ̃ except for za, ξa, C, R̂,F and differential γ̃ induces a reduced differential

Q in the space Nred of these variables. In what follows we restrict to the case s> 2 as the

reduction for s = 0, 1 is different and was discussed in details in [37].

Upon the reduction L̂ reduces to a representative L̂red such that QL̂red = 0. The

Lagrangian potential L̂ and hence L̂red is not unique as it is defined modulo γ̃-exact or

Q-exact terms respectively. To understand the relation with the frame-like formulation

a useful choice of L̂red is to have it R̂, F -independent. To find such L̂red we use another

representative for L̂. Namely we observe that the term containing 〈S†C, · 〉 in Jab can be

absorbed by adding ∂b〈φ, · 〉 to J
a and hence −γ〈φ, · 〉 to Jab. Adding such term does not

affect the reduction of Ja because it only involves 0-th and 1-st derivatives of φ and hence

can not produce either F or R̂ fields if s> 0. The first term VL as well as VaJ
a reduce to

zero by the same reasoning so that we concentrate on the last term 1
2VabJ

ab.

By construction Jab is defined modulo dual total derivative. By adding 1
2∂cT

bca with

T bca = 〈pbC, (pcCa − paCc〉+ cycle(bca) , (5.19)

one finds new representative

J ′ab =
1

2

[
〈paCd, p

dCb − pbCd〉 − (a↔ b)
]
+ 〈S†C, (pb∂a − pa∂b)C〉|y=0 . (5.20)

The last term can also be removed by redefining Ja by terms independent on R̂, F . Finally,

putting to zero all the coordinates except for za, ξa, F, R̂, C one finds:

L̂red =
1

2
Vab

[
〈Ca, Cb〉 − 〈paCd, p

bCd〉
]
. (5.21)

By construction it is Q-invariant. This can be easily checked directly. The reduced parent

formulation is completely determined in terms of Q and L̂red defined on Nred.
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We now show that a certain further reduction results in the well-known frame-like

Lagrangian. We first fix a reparametrization invariance by za = xa and ξa = θa. Observe

then the set of fields of the reduced formulation is formed by component fields of C(a), F, R̂

and their conjugate antifields. If L̂red were zero all of the fields except for those originating

from C and their conjugate antifields were generalized auxiliary because the theory would

be dynamically empty. But the Lagrangian potential L̂red depends on Ca only so that all

the other fields along with their antifields are generalized auxiliary and can be eliminated.

Restricting to the classical action and hence putting the antifields to zero the action takes

the form

SR[e, ω,Λ] =

∫
〈Λ,de− σω〉+ L̂red(ω) , (5.22)

where e and ω denotes 1-form fields of vanishing ghost degree originating from target space

coordinates C and Ca respectively. Namely,

C(x, θ, p) =
0
C(x|p) + θbeb(x, p) +

1

2
θdθb

2
Cdb(x|p) + . . . ,

Ca(x, θ, p) =
0
Ca(x|p) + θbωa|b(x, p) +

1

2
θdθb

2
Ca|db(x|p) + . . .

(5.23)

In its turn, field Λ is an n − 2-form in the space dual to that where
0
C takes values. It

enters the formalism as an antifield conjugate to
2
Cab.

Our next aim is to eliminate ωa|b(x, p) entering Ca(x, θ, p) as θaωa|by
b. To this end

we first note that in the reduced parent formulation ω is subject to the algebraic gauge

symmetry δω = d(
0
Cay

a) − σ(12
0
Caby

ayb), where the ghost fields are to be understood as

gauge parameters. Using the symmetry one can assume that ω doesn’t have an irreducible

component whose tensor structure is identical to that of
0
Cab (recall that

0
Cab is totally

traceless and pa
0
Cab = 0). After gauge fixing the space of such ω is isomorphic to the space

of Λ.

It is convenient to introduce a new inner product for elements of tensor structure as

ω (which we write as generating functions of y, p, θ)) as follows

V〈Fay
a, Gby

b〉′ = Vcab〈p̄
cFa, p̄

bθdGd〉 . (5.24)

which is nothing but the inner product determining the quadratic part of the frame-like

action of [49]. Note that the inner product is nondegenerate. In terms of 〈, 〉′ the expression

for Lred(ω) takes the form Lred(ω) =
1
2V〈ω, ω〉

′. It is also convenient to parametrize fields

in Λ in terms of ω̂ such that ω̂ has the same tensor structure as ω and 〈Λ, ω〉 = V〈ω̂, ω〉′.

In these terms SR takes the form

SR[e, ω, ω̂] =

∫
dnx

(
〈ω̂, ya

∂

∂xa
e− ω〉′ +

1

2
〈ω, ω〉′

)
. (5.25)

Varying with respect to ω gives ω = ω̂. Then eliminating ω gives the familiar frame-like

action

Sframe[e, ω̂] =

∫
dnx 〈ω̂, ya

∂

∂xa
e−

1

2
ω̂〉′ =

∫
dnθdnxVcab〈p̄

cω̂a, p̄
b
(
de−

1

2
σω̂

)
〉 (5.26)
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of [49]. It is natural to expect that the present approach can also help in understanding

the structure underlying more general frame-like Lagrangians [78–80].

Note that the above procedure can be used to explicitly relate cubic vertexes in the

metric-like and the frame-like formulations. Indeed, using in the above procedure the

deformed Lagrangian as a staring point one should end up with the respective deformation

of the frame-like Lagrangian. This can be e.g. used to explicitly relate the metric-like

vertexes (see [81–85] for a complete description and references to earlier contributions) and

the frame-like ones of [86] and refs. therein.

5.3 Off-shell constraints and gauge symmetries at the nonlinear level

Working at the level of equations of motion let us consider the off-shell version of the parent

system (5.7)–(5.8) where in contrast to considerations in section 5.1 fields A,F and gauge

parameters are not subject to any constraint. In particular they are traceful and are not

of definite homogeneity in pa so that the system describes fields of all integer spins. In

addition we work with the non-parametrized version where za = xa and ξa = θa.

It was observed in [5] that this system is a linearization of

dA+
1

2
[A,A]∗ = 0 , dF + [A,F ]∗ = 0 , (5.27)

around a particular solution

A0 = θbpb, F0 =
1

2
ηabpapb . (5.28)

This can be easily checked using [A0, ·]∗ = −σ, [·, F0]∗ = S†. Here [·, ·]∗ denotes the Weyl

∗-commutator determined by [ya, pb]∗ = δab . The above nonlinear system can be related

to the master equation for the quantized scalar particle propagating in the higher spin

filed background [53] (see also [52] for the closely related interpretation in terms of the

conformal fields).

The AdS-space version of the system (5.27) which also takes into account the double-

tracelessness condition is also available [53]. However, the familiar sp(2)-symmetry of

the full nonlinear system from [3] is not manifest in that proposal. We now give a natural

generalization of (5.27) to the AdS case which has both sp(2) and AdS invariance manifest.

We recall that the AdSn space X0 with coordinates xµ can be described in terms of

the o(n − 1, 2)-vector bundle with the fiber R
n+1 and equipped with the flat o(n − 1, 2)

connection ω and a fixed section V satisfying V AVA = −1. This bundle can be seen as a

pullback of the tangent bundle over the ambient space R
n+1 by the embedding of X0 as a

hyperboloid in R
n+1. The connection originates from the standard metric connection on

the ambient space and V from the tautological section of the ambient tangent bundle. For

more details see e.g. [21, 77].

The system we are searching for is directly constructed as an AKSZ sigma model. Let

Y A be coordinates on R
n+1 and PA their dual. Let g be sp(2)-algebra and e1, e2, e3 its

standard basis i.e. [e2, e1] = 2e1, [e2, e3] = −2e3 and [e1, e3] = e2. Introduce coordinates

νi on Πg and take gh(νi) = 1. These are naturally interpreted as ghosts for the BRST
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realization of the Lie algebra complex so that the differential is q = −1
2ν

iνjUk
ij

∂
∂νk

, where

Uk
ij are structure constants of g.

The target space supermanifold M is introduced as follows. Consider the algebra A of

polynomials in variables PA and νi with coefficients in formal series in Y A and take as M

vector space A with reversed parity and shifted ghost degree. More precisely, coordinates

on M are coefficients of the generating function

Ψ(c, Y, P ) = C(Y, P ) + νiFi(Y, P ) + νiνjGij(Y, P ) + νiνjνkGijk(Y, P ) . (5.29)

The ghost degree and parity of the coordinates are determined by gh(Ψ) = |Ψ| = 1. In

particular, gh(C) = 1, gh(Fi) = 0, gh(Gij) = −1, gh(Gijk) = −2 and the Grassmann

parity is the ghost degree modulo 2.

We need two structures on A: the Weyl star-product determined by [Y A, PB]∗ = δAB
and the Lie algebra differential q = −1

2ν
iνjUk

ij
∂

∂νk
. These structures induce on M an odd

vector field Q determined by8

QΨ = qΨ+
1

2
[Ψ,Ψ]∗ . (5.30)

It is nilpotent Q2 = 0 and of ghost degree 1. The nilpotency is a consequence of q2 = 0,

Jacobi identity for [·, ·]∗, and that q differentiates [·, ·]∗. In coordinate terms one has

QFi = [Fi, C]∗ , QC =
1

2
[C,C]∗ ,

QGij =
1

2
[Fi, Fj ]∗ −

1

2
Uk
ijFk + [Gij , C]∗ , . . . .

(5.31)

Here we do not write the analogous relations for the remaining coordinates because they

are not needed for the equations of motion and gauge symmetries and only serve the BRST

formulation.

Consider AKSZ sigma model with the target space M and the source X = ΠTX0 with

coordinates xµ, θµ (recall that X0 is an AdS space). Equations of motion take the form

dA+
1

2
[A,A]∗ = 0 , dFi + [A,Fi]∗ = 0 , [Fi, Fj ]∗ − Uk

ijFk = 0 , (5.32)

where by some abuse of notations we introduced component fields of ghost degree 0, 1

according to C(x, θ|Y, P ) = C(x|Y, P )+θµAµ(x|Y, P )+. . . and Fi(x, θ|Y, P ) = Fi(x|Y, P )+

θµ . . .. The gauge transformations are

δλFi = [Fi, λ]∗ , δλA = dλ+ [A, λ]∗ , (5.33)

where λ(x|Y, P ) is a gauge parameter replacing the ghost field C(x|Y, P ).

As a next step we analyze the linearization of (5.32) and (5.33) around the following

background solution:

Ψ0 = θµA0
µ + νiF 0

i , (5.34)

8It is not difficult to see that M is a product of two Q-manifolds. One is Πg equipped with q and another

one is Π(Weyl commutator algebra) equipped with the respective Lie algebra differential. Q is simply a

product Q-structure.
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where

A0
µ = θµωB

µA(x)(Y
A + V A)PB ,

F 0
1 = PAPA , F 0

2 = (Y A + V A)PA , F 0
3 = −(Y A + V A)(YA + VA) .

(5.35)

Here ωB
µA(x) are coefficients of the flat AdS connection and V A are components of the

compensator, and indexes are contracted using the o(d−1, 2)-invariant metric. In addition,

we assume that the local frame is such that V A = const.

It follows that the linearized system is precisely the off-shell version of the parent

formulation from [21] for totally symmetric AdS gauge fields. To see this note that the

linearized equations and gauge symmetries can be encoded in the following BRST operator9

Ω = d+ [A0, ·]∗ + νi[F 0
i , ·]∗ + q , (5.36)

acting on the space of states Ψ(x, θ|Y, P, c). One then identifies

d+ [A0, ·]∗ = d+ θµωB
µA

(
PB

∂

∂PA
− (Y A + V A)

∂

∂Y B

)
(5.37)

as the covariant derivative in the so-called twisted realization (see [21, 40] for more details).

Furthermore,

νi[F 0
i , ·]∗ + q = −ν1PA ∂

∂Y A
+ ν2

(
PA

∂

∂PA
− (Y A + V A)

∂

∂Y A

)
− ν3

(
Y A + V A

) ∂

∂PA
+ q

(5.38)

gives the fiber part which is the BRST operator of sp(2) represented on Y, P variables. The

only difference with [21] is that fields are traceful and ν1 is represented in the coordinate

rather than the momenta representation. Assuming Ψ(x, θ|Y, P, c) totally traceless results

in the on-shell system of [21] which is equivalent to the Fronsdal equations.

The following comments are in order:

– The construction can be easily generalized by replacing g with a generic Lie algebra.

One can check that the system remains consistent. In this way we actually find a

family of consistent systems. For instance taking g = R
1 and choosing X0 to be

the ambient space itself (in this case it is natural to identify it as n+ 1-dimensional

Minkowski space) reproduces flat space nonlinear system (5.27) from [5].

– Among the target space coordinates one finds Gij , Gijk which carry negative ghost

degree so that the system is not just an FDA so that using the parent formulation

formalism is essential in this case. Indeed one and the same homological vector field

Q encodes both the FDA relations and the constraints in the consistent way.

– Just like (5.27) the general nonlinear system can also be interpreted as a specific BFV

master equation for a quantized particle propagating in higher spin background in

the spirit of [53].

9Note that this BRST operator can be directly obtained by linearizing the AKSZ sigma model BRST

differential around the particular solution using the technique of [53] (see section 3.2. of that ref.).
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– Using the technique from [40] the system can be reformulated in the purely ambient-

space terms where fields do not depend on Y -variables. This can be obtained by

replacing Y A+V A → XA and dropping xµ, θµ. The only remaining fields are F (X|P )

entering Ψ as Ψ = ηiFi and the equations of motion are imply the sp(2) relations

[Fi, Fj ]∗ = Uk
ijFk where now [XA, PB]∗ = δAB. This reformulation, however, is not a

strictly local operation.

– A natural question is to find a nonlinear version of trace constraints in order to

construct a parent formulation of the Vasiliev nonlinear system [3].
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