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1 Introduction

Generically, 5d gauge theories do not exist as microscopic theories since they are non-

renormalizable and thus require a UV completion beyond the scale set by the inverse

Yang-Mills coupling. However, under certain circumstances, it is possible to remove the

UV cutoff while having a theory well defined everywhere on its moduli space [1–3]. The

crucial point is that minimally supersymmetric theories in 5d contain 8 supercharges and

therefore a non-abelian SU(2)R R-symmetry. The effective action on the Coulomb branch

follows then from a pre-potential, which in the 5d case is severely restricted by gauge-

invariance and anomaly considerations.1 Inspection of the exact effective gauge coupling

shows that, upon appropriately choosing the gauge group and matter content, the bare

Yang-Mills coupling can be removed. The resulting theory is expected to be at an isolated

fixed point.

A particularly interesting theory is that of a USp(2N) gauge group with an antisym-

metric hyper-multiplet and Nf fundamental hyper-multiplets. According to the analysis

in [1–3] this theory is at a fixed point as long as Nf < 8. Moreover it can be naturally

embedded into string theory as the world-volume theory of N D4 branes probing an O8−

plane with Nf D8 branes on top of it [1]. From the string theory perspective, the inverse

bare YM coupling corresponds to the value of the dilaton at the orientifold plane. The fixed

point theory corresponds to the case where the dilaton is tuned to diverge on top of the

O8/D8. The SO(2Nf ) global flavor symmetry, corresponding to the D8-brane gauge sym-

metry, is then enhanced to ENf+1 via massless D0-brane states (dual to instanton particles

in the 5d gauge theory) localized at the position of the orientifold [5–7]. This has been

1In 5d, upon integration out massive fermions, a Chern-Simons term is produced [4]. This is very similar

to the 3d parity anomaly.
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recently demonstrated in [8] from a purely field theoretical perspective. The near-horizon

limit of this brane construction gives a warped AdS6 × S4 background in massive Type

IIA supergravity [9], reinforcing the claim that the 5d field theory under consideration is

indeed at a fixed point.

Starting with this basic theory, three infinite families of daughter theories were con-

structed in [10] by replacing the flat R4 transverse to the D4’s inside the O8/D8 by an

orbifold C2/Zn. This produces quiver gauge theories involving products of USp(2N) and

SU(2N) gauge groups, with dual massive Type IIA supergravity backgrounds given by

warped AdS6 × S4/Zn. The S5 free energy of the quiver theories was recently computed

using localization in [11], and shown to agree precisely with the entanglement entropy for

an S4 in supergravity, thus providing further support for the existence of the quiver fixed

points and for the AdS6 duals. Note that supersymmetric AdS6 solutions are remarkably

hard to find [12], thus rendering this series of examples is quite noteworthy. Interest-

ingly, upon allowing for more exotic ansatze one can find other AdS6 solutions ([13]; for a

preliminary account of results see [14]).

We expect that the quiver theories also exhibit an enhanced ENf+1 global symmetry

on the Higgs branch. Note that, on general grounds (see e.g. [15]), the Higgs branch

of these theories coincides with the moduli space of ENf+1 instantons on C2/Zn. This

enhanced ENf+1 symmetry is not visible in the gravity dual. In fact, the latter becomes

singular at the location of the O8/D8 as both the dilaton and the curvature diverge.

This is not surprising since certainly supergravity fails to capture the D0-branes which

become massless and provide the necessary extra states for the symmetry enhancement.

Nevertheless, the full Higgs branch of the theory contains operators which are both flavor-

and instanton-blind, and thus are insensitive to this symmetry enhancement. In this paper

we concentrate on such operators, which can then be thought of as (partial) probes of the

Higgs branch. In the gravity dual they correspond to dual giant gravitons sitting on top of

the O8/D8. As we will see, although the curvature and dilaton diverge at that point, the

world-volume theory on the dual giants is perfectly well behaved, and in fact matches the

expected field theory results upon geometric quantization of their phase space as in [16, 17]

(see also [18, 19]).

The plan for the rest of the paper is as follows. In section 2 we provide a lightning

review of the quiver theories under consideration and their gravity duals. In section 3

we study a family of massless geodesics in the geometry. These massless geodesics are

followed by the dual giant gravitons, which we introduce in section 4. We then perform the

geometric quantization of their phase space in section 5 and find that it is in one-to-one

correspondence to that of a C2/Zn which can be actually thought as the pre-near horizon

ALE space. This result is matched with the field theory expectations in section 6. Finally,

we end in section 7 with some comments and future prospects.

2 5d quiver theories and their AdS6 duals

Following [10], the class of 5d theories of interest can be engineered by considering in type

I ′ string theory N D4-branes probing an O8-plane with Nf coincident D8-branes wrapping
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Figure 1. Quiver diagram for the Z2 k+1 case.

an ALE space as follows (the boxed coordinates denote the ALE directions),

0 1 2 3 4 5 6 7 8 9

D8/O8− × × × × × × × × ×

D4 × × × × ×

. (2.1)

We can construct the corresponding theories by starting with Type IIA string theory

on C2/Zn and then performing the orientifold projection Ω I9. Prior to the orientifold we

find an N = (1, 1) 6d SUGRA multiplet together with (n−1) 6d vector multiplets coming

from the (n− 1) twisted sectors of the orbifold. Upon orientifolding this theory, since the

orientifold involves an inversion, the resulting theory lives in 5d. Furthermore, due to the

combined action of the inversion and the Ω, the i-th twisted sector is identified with the

(n − i)-th one, so that out of the original n − 1, only half of them survive the orientifold

projection, each giving rise to a 5d vector multiplet and a 5d hyper-multipelt. Obviously

for the case of an even orbifold the middle twisted sector is left unpaired and hence it must

be treated with special care. It turns out that there are two ways of implementing the

orientifold projection on it [20]: in one, which goes under the name of no vector structure

(NVS), one keeps a 5d hyper-multiplet; while in the other, which goes under the name of

vector structure (VS), one keeps the vector multiplet. In addition, in the NVS case there

is trapped B2 flux on the 2-cycle corresponding to the middle twisted sector.

The corresponding open string sectors must also be adjusted accordingly. The world-

volume theories on the D4-branes depend crucially on the type of orbifold. Let us set

Nf = 0. For odd orbifolds C2/Z2 k+1 we find a USp(2N) × SU(2N)k gauge theory with

bi-fundamentals and an antisymmetric hyper-multiplet for the last SU group as shown

in figure 1. Note that this theory has a [U(1)k]B × [U(1)k+1]I × U(1)M global non-R

symmetry, where the subscripts B, I and M denote respectively baryonic, instantonic and

mesonic symmetries.2 For even orbifolds C2/Z2 k without vector structure the gauge group

is SU(2N)k and the matter content includes k− 1 bi-fundamentals and two antisymmetric

hyper-multiplets, as shown in figure 2. The global symmetry group is in this case [U(1)k]B×
[U(1)k]I ×U(1)M . For even orbifolds C2/Z2 k with vector structure we have a USp(2N)×
SU(2N)k−1 × USp(2N) gauge theory with bi-fundamental matter, figure 3. In this case,

the global symmetry group is [U(1)k−1]B × [U(1)k+1]I ×U(1)M .

2In 5d gauge theories there is a topological current for each gauge group constructed out of its field

strength as jI = ?(F ∧ F ). Instantons, which in 5d are particle-like excitations, are electrically charged

under these symmetries.
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Figure 2. Quiver diagram for the Z2 k no vector structure case.

Figure 3. Quiver diagram for the Z2 k vector structure case.

The dual massive Type IIA supergravity backgrounds are warped AdS6×S4/Zn with

a metric and dilaton given by

ds2 = Ω̂2

{
ds2
AdS6

+
4

9
L2
(
dα2 + cos2 αdΩ̃2

3

)}
, eΦ =

3

2L

(
3

2
m sinα

)− 5
6

, (2.2)

where

Ω̂ =

(
3

2
m sinα

)− 1
6

, L4 =
38/3 π nN

22/3m1/3
, m =

8−Nf

2π
, (2.3)

and dΩ̃2
3 stands for the metric of the lens space S3/Zn,

dΩ̃2
3 =

1

4
(dψ − cos θ dφ)2 +

1

4
(dθ2 + sin2 dφ2) , (2.4)

where ψ ∈ [0, 4π
n ]. The background also includes a RR 4-form and 0-form,

F0 = m , F̃4 =
10

81

(
2

3

) 2
3

m
1
3 L4 sin

1
3 α cos3 αdα ∧ dψ ∧ ω2 , (2.5)

where ω2 = sin θ dθ∧dφ. Note that α ∈ [0, π2 ], so the compact space is really a hemisphere

with a boundary at α = 0. We can interpret this as the result of the orientifold action which

takes α→ −α. Due to the α-dependence of the warp factor, the background only exhibits

the symmetry of the lens space, which is generically SU(2) × U(1). These symmetries

correspond respectively to the SU(2)R and U(1)M in the field theory.

The background is singular at α = 0, where both the curvature and the dilaton diverge.

This makes some of the properties of this solution, like the on shell Euclidean action, ill-

defined at the supergravity level. This presumably requires a stringy resolution. However,

many properties remain well-defined, and are indeed consistent with the dual 5d gauge

theories [10]. The dual giant gravitons that we will analyze below are also completely

well-defined in this background.

2.1 Global coordinates

To analyze the dual giant gravitons it is convenient to work in global coordinates for AdS6,

dual to radial quantization of the 5d CFT’s. The AdS metric is then given by

ds2
AdS6

= −
(

1 +
r2

L2

)
dt2 +

dr2

(1 + r2

L2 )
+ r2 dΩ2

4 . (2.6)
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Dualizing the 4-form we get

∗ F̃4 = F̃6 =
10

3
r4 dt ∧ dr ∧ ω4 , (2.7)

where ω4 is the volume 4-form of the S4 in the global AdS6. Since there is no H3 flux, and

the possible B2 flux can only be along internal directions we can integrate the 6-form to

get the 5-form potential:

C5 = −2

3
r5 dt ∧ ω4 . (2.8)

3 A family of massless BPS geodesics

There are two circles in the internal space S4/Zn on which we could naturally imagine

particles orbiting, namely those parametrized by ψ and φ. Let us then consider a massless

particle at fixed α, θ moving along those coordinates. Note that since we will be interested

in massless particles we need to use a Polyakov-like action obtained by introducing a

world-line metric so that the zero mass limit is well-defined. More explicitly, denoting

the world-line time by τ , we consider {t(τ), ψ(τ), φ(τ)}. Upon gauge-fixing the world-line

metric to one, the action reads

S = −
∫

dτ Ω̂2

[(
1 +

r2

L2

)
ṫ2 − 4L2

9n2
cos2 α

((
ψ̇ +

n

2
cos θ φ̇

)2

+
n2

4
sin2 θ φ̇2

)]
, (3.1)

where the dot indicates a derivative with respect to the world-line coordinate τ . We have

rescaled ψ so that it takes values in [0, 2π]. The world-line hamiltonian is

HWL =
P 2
t

4 Ω̂2 (1 + r2

L2 )
−

9 (4P 2
φ + n2 P 2

ψ − 4nPφ Pψ cos θ)

16L2 Ω̂2 sin2 θ cos2 α
. (3.2)

The constraint imposed by the world-line metric sets this to zero, which gives

LH =
3

2

√
1 +

r2

L2

√
4P 2

φ + n2 P 2
ψ − 4nPφ Pψ cos θ

1

cosα sin θ
, (3.3)

where H = Pt is the energy of the particle. Clearly, the energy is minimized at α = 0. For

θ there are two possible solutions:

a) cos θ =
n

2

Pψ
Pφ
 LH = 3Pφ

√
gAdS6
tt (3.4)

b) cos θ =
2

n

Pφ
Pψ
 LH =

3n

2
Pφ

√
gAdS6
tt . (3.5)

Since | cos θ| ≤ 1, it is clear that if
Pφ
Pψ

> n
2 the appropriate solution will be a), while if

Pφ
Pψ

< n
2 the appropriate solution will be b).
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4 Dual giant gravitons

Now consider a D4-brane wrapping {t, Ω4}, and assume that ψ = ψ(t), φ = −φ(t). The

induced metric is given by (we again rescale ψ so that it takes values in [0, 2π])

ds2 = Ω̂2

{
−
((

1+
r2

L2

)
− 4L2

9n2
cos2 α

[(
ψ̇+

n

2
cos θ φ̇

)2

+
n2

4
sin2 θ φ̇2

])
dt2 + r2 dΩ2

4

)}
.

(4.1)

The D4-brane action is then given by

S = −µ4 V4

∫
2

3
Lr4

√
1 +

r2

L2

√√√√1− 4L2

9n2 (1+ r2

L2 )
cos2 α

[(
ψ̇+

n

2
cos θ φ̇

)2

+
n2

4
sin2 θ φ̇2

]
−µ4 V4

∫
2

3
r5 . (4.2)

The equation of motion for α is again solved for α = 0. Although this is a singular locus

in the geometry, where both the curvature and the dilaton diverge, the behavior of BPS

geodesics there is well-defined.

Legendre-transforming to the hamiltonian H = H(Pψ, Pφ, θ, r) we get

H =
3

L

√
1 +

r2

L2

√
1

sin2 θ

(
P 2
φ +

n2

4
P 2
ψ − nPφ Pψ cos θ

)
+

4L4 µ2
4 V

2
4

81
r8 − 2

3
µ4 V4 r

5 .

(4.3)

We again find two solutions for θ depending on the value of Pφ/Pψ:

a) cos θ =
n

2

Pψ
Pφ

if
Pφ
Pψ

>
n

2
b) cos θ =

2

n

Pφ
Pψ

if
Pφ
Pψ

<
n

2
. (4.4)

Plugging these solutions back into H we find a function of r, whose minima lie either at

r = 0 for both solutions, or at

a) r3 =
9

2L3 µ4 V4
Pφ b) r3 =

9n

4L3 µ4 V4
Pψ (4.5)

respectively. Finally, the on-shell Hamiltonian at these points, for both the r = 0 and the

corresponding r 6= 0 solution, is

a) LH = 3Pφ b) LH =
3

2
nPψ . (4.6)

The r = 0 solutions correspond to a collapsed brane, which looks like a point-like

object. Consequently we recover the results from the previous section. The r 6= 0 solutions

are the expanded “dual giant graviton” branes. They are degenerate both in energy and

charges with the point-like solutions, and hence they correspond to the same state in the

dual field theory (as we will see below, this is a mesonic operator with no insertion of vector

multiplet scalars). As usual [21] we expect the point-like and expanded configurations to

have different regimes of validity in terms of their back-reaction. For a given choice of

charges only one type of configuration will lead to a non-singular background.

– 6 –
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We would like to stress again that the branes live at α = 0, which is a singular point

in the background. Nevertheless their world-volume theory (4.2) is perfectly well-defined.

Finally let us note that we could go back and consider the most generic configuration

where we assume r = r(t), α = α(t) and θ = θ(t). However one can see that the minimal

energy configuration is attained when the corresponding momenta and velocities vanish,

thereby recovering our original ansatz.

5 Symplectic quantization

In the previous section we found a dynamical system with a phase space X parametrized

by a set of coordinates QA = {r, α, ψ, θ, φ} and canonically conjugated momenta PA =

{Pr, Pα, Pψ, Pθ, Pφ}. On general grounds, a classical system is defined once we define

the symplectic space (X, ω) made out of phase space X and a symplectic structure ω.

The quantization of such a system amounts to assigning to X a Hilbert space H (X, ω),

where the quantum wave-functions live. Following the AdS5/CFT4 example [16, 17] (see

also [18, 19]), by quantizing the phase space of the giant gravitons we should recover the

field theory space of dual operators.

The canonical Poisson brackets are

{QA, QB}PB = 0 {PA, PB}PB = 0 {QA, PB}PB = δAB . (5.1)

Let us denote the constraints for the dynamical system for the two types of solutions as

{fa)
A , f

b)
A }. These are given by f

(a,b)
r = Pr, f

(a,b)
α = Pα, f

(a,b)
θ = Pθ, and

f
(a)
ψ = Pψ −

2

n

2L3 V4 µ4

9
r3 cos θ f

(a)
φ = Pφ −

2L3 V4 µ4

9
r3

f
(b)
ψ = Pψ −

4L3 µ4 V4

9n
r3 f

(b)
φ = Pφ −

n

2

4L3 µ4 V4

9n
r3 cos θ . (5.2)

The equations of motion impose the constraints f
(a,b)
A = 0 on the phase space. Define

the matrices M
(a,b)
AB ≡ {f (a,b)

A , f
(a,b)
B }. Since the constraints involving α are trivial, we

can eliminate the corresponding row and column from M (a,b), and reduce X to an eight

dimensional space.

The symplectic structure on the reduced phase space is obtained by computing the

Dirac bracket, which in this case is

{QA, QB}DB = (MAB)−1 . (5.3)

The symplectic structure for the two solutions is then given by

ωa =
4L3 µ4 V4

3n
r2 cos θ dr ∧ dψ +

2

3
L3 µ4 V4 r

2 dr ∧ dφ+
4L3 µ4 V4

9n
r2 sin θ dψ ∧ dθ

ωb =
4L3 µ4 V4

3n
r2 dr ∧ dψ +

2

3
L3 µ4 V4 r

2 cos θ dr ∧ dφ− 2

9
L3 µ4 V4 r

3 sin θ dθ ∧ dφ . (5.4)

Integrating, we get the one-forms

νa =
2L3 µ4 V4

9
r3

(
dφ+

2

n
cos θ dψ

)
νb =

2L3 µ4 V4

9
r3

(
2

n
dψ + cos θ dφ

)
. (5.5)

– 7 –
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Recall that we have rescaled the ψ coordinate in the original metric so as to have period

2π, while at the same time the giant moves along the −φ direction. Let us go back to the

original coordinates. Besides, let us introduce ρ2 ≡ (4/9)µ4V4L
3r3, so that

ν̂a =
ρ2

2
(dφ− cos θ dψ) ν̂b =

ρ2

2
(dψ − cos θ dφ) . (5.6)

Having determined the symplectic form we now have a symplectic manifold (X, ω). We

would like now to quantize this system. This amounts to associating to this classical phase

space the Hilbert space H (X, ω) of wave-functions for the quantized system. One would be

naturally tempted to simply define as H (X, ω) the space of functions on (X, ω). However

this way wave-functions would generically depend on all coordinates on (X, ω), that is, on

both momenta and position. As reviewed in [17], the correct quantization prescription is

to identify H (X, ω) with the space of holomorphic functions, in the complex structure

defined by ω, on (X, ω). In this way, wave-functions naturally depend only on half of the

coordinates of the phase space. Thus, the upshot is that the Hilbert space associated to

the classical system of giant gravitons consists of holomorphic functions on the classical

space (X, ω).

In order to understand the classical space (X, ω), in particular with the above ωa, b,

consider an auxiliary C2 parametrized by (z1, z2). The metric, ds2 = dzi dz̄i, can be

rewritten in two equivalent ways:

ds2 =
(
dz̄1 dz̄2

) ( 1 0

0 1

) (
dz1

dz2

)
or ds2 =

(
dz̄1 dz2

) ( 1 0

0 1

) (
dz1

dz̄2

)
.

This shows that C2 is invariant under SU(2)a × SU(2)b, where SU(2)a rotates (z1, z2) and

SU(2)b rotates (z1, z̄2). We can define two complex structures on C2,

Ja = i (dz1 ∧ dz̄1 + dz2 ∧ dz̄2) Jb = i (dz1 ∧ dz̄1 − dz2 ∧ dz̄2) . (5.7)

The first is invariant under SU(2)a×U(1)b, where U(1)b is the Cartan subgroup of SU(2)b,

and the second is invariant under SU(2)b×U(1)a. Let us express these in polar coordinates:

z1 = ρ ei
ψ+φ
2 sin

θ

2
z2 = ρ ei

−ψ+φ
2 cos

θ

2
, (5.8)

where ψ ∼ ψ + 4π, φ ∼ φ + 2π and 0 ≤ θ ≤ π. The periodic coordinates ψ, φ are shifted

by the U(1)a and U(1)b Cartan subgroup, respectively. In these coordinates

Ja = ρ dρ ∧ dφ− ρ cos θ dρ ∧ dψ +
1

2
ρ2 sin θ dφ ∧ dψ = d

[
ρ2

2
(dφ− cos θ dψ)

]
(5.9)

Jb = −ρ cos θ dρ ∧ dφ+ ρ dρ ∧ dψ +
1

2
ρ2 sin θ dθ ∧ dφ = d

[
ρ2

2
(dψ − cos θ dφ)

]
.

Now consider the orbifold C2/Zn where Zn acts as

(z1, z2) → (ω z1, ω
−1 z2) ωn = 1 . (5.10)

– 8 –
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This breaks SU(2)a → U(1)a (for n > 2) and preserves SU(2)b. In polar coordinates it

simply changes the periodicity of ψ to ψ ∼ ψ + 4π/n. On the orbifold, the first complex

structure Ja preserves U(1)a × U(1)b, whereas the second complex structure Jb preserves

U(1)a × SU(2)b.

Comparing with the symplectic one-forms (5.6) we see that Ja, b = d ν̂a, b. The ge-

ometric quantization of the phase space of dual giant gravitons is therefore mapped to

that of C2/Zn. The wave-functions correspond to holomorphic functions on C2/Zn with

a given complex structure, Ja or Jb, depending on whether Pφ/Pψ is larger or smaller

than n/2, and are classified according to the corresponding symmetry, U(1)a × U(1)b or

U(1)a × SU(2)b, respectively. Therefore there is a one-to-one map between wave-functions

on C2/Z2, the geometrically quantized phase space of dual giants, and mesonic operators

in the field theory. In fact, the translation to the field theory language is now obvious:

SU(2)b corresponds to the SU(2)R R-symmetry, and U(1)a ∈ SU(2)a corresponds to the

U(1)M ∈ SU(2)M mesonic symmetry.

Thus, although they live in the near-horizon AdS6 × S4/Zn space, the dual giant

gravitons located at α = 0 actually probe the C2/Zn space transverse to the D4-branes

inside the O8-plane, which is the Higgs branch of the theory.

6 Field theory operators

The dual giant gravitons should correspond to a sub-sector of operators on the Higgs

branch that are flavor-, baryon- and instanton-neutral. These operators involve only the

bi-fundamental and antisymmetric hyper-multiplets, and are classified by their quantum

numbers under SU(2)R ×U(1)M .

Since the sub-sector we are interested in only involves hyper-multiplets, it turns out

to be technically easier to consider the field theory on R1, 3 × S1. Upon sending the radius

of the S1 to zero we find a 4d theory whose quiver diagram and interactions are precisely

equal to those of the original theory. From the 4d point of view, it is natural to choose

an N = 1 sub-algebra and express the theory in terms of N = 1 super-fields. The natural

object to consider then is the chiral ring, composed of chiral operators upon imposing the

equivalence relations dictated by the F-terms. Note that in 4d our theories really have N =

2 supersymmetry, where the R-symmetry is SU(2)R×U(1)′R. The SU(2)R part is inherited

from the 5d R-symmetry, and the U(1)′R part arises from the compactification. However in

the N = 1 chiral ring only the Cartan U(1)R ∈ SU(2)R is manifest. For example, a hyper-

multiplet corresponds to a pair of chiral super-fields (Q, Q̃) in conjugate representations of

the gauge group, whereas SU(2)R acts on the doublet (Q, Q̃†), i.e. in a non-holomorphic

way. The chiral ring therefore automatically chooses the complex structure Ja, and will

therefore only include the subset of operators that are dual to the dual giant graviton

states corresponding to this choice of complex structure. Note that the other subset of

giants just corresponds to non-holomorphic operators in this language. For this reason in

the following we will concentrate on those operators/giants which are holomorphic in the

chosen N = 1 language.
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Let us start with the n = 1 case. This is a USp(2N) theory with one antisymmetric

hyper-multiplet A. The fundamental hyper-multiplets do not play a role in the sector

in question, so we set Nf = 0. In the 4d N = 1 language A corresponds to a pair of

antisymmetric chiral superfields (A1, A2), transforming as a doublet under SU(2)M . The

interactions are captured by the super-potential [22]

W = εαβTr (AαΦAβ) , (6.1)

where Φ is the adjoint chiral super-field of the N = 2 vector multiplet. The components

(A1, A2) carry charges (1/2,−1/2), respectively, under U(1)M ∈ SU(2)M , and charges

(1/2, 1/2) under U(1)R ∈ SU(2)R. The F-term is given by

εαβ Aβ Aα = 0 . (6.2)

The effect of this F-term is to symmetrize products of Aα. All of the operators in question

can therefore be expressed as

Om,n = Tr (Am1 An2 ) . (6.3)

Having constructed the operators by reduction to 4d, we need to come back to 5d. In 5d

these operators have ∆ = 3
2 (n+m) and QR = 1

2(n+m), so that they satisfy

∆ = 3QR . (6.4)

Upon identifying QR with Pφ this agrees with the energy of the corresponding dual giant

graviton (4.6), as it should in global AdS. The U(1)M charge of these operators is QM =
1
2(n−m). We see that |QM | ≤ QR. IdentifyingQM with n

2Pψ, this agrees with the condition

for the dual giant graviton (4.4) (recall that the ψ coordinate in (4.4) was rescaled so that

ψ ∼ ψ + 2π). For the first few operators we find

2
3 ∆ operators #

1 A1, A2 t (z + z−1)

2 A2
1, A1A2, A

2
2 t2 (z2 + 1 + z−2)

3 A3
1, A

2
1A2, A1A

2
2, A

3
2 t3 (z3 + z1 + z−1 + z−3)

(6.5)

where we introduced the fugacity t which stands for the dimension of the operator and the

fugacity z which counts the QM charge. Note that z appears through the character of the

highest weight m SU(2) representation, which we will denote as [m]z. It is straightforward

to see that the generating function is given by∑
m

[m]z t
m =

1

(1− t z) (1− t
z )
. (6.6)

This is precisely the Hilbert series of C2, meaning that these operators are in one-to-one

correspondence with holomorphic functions on C2. This is precisely the expected result for

the case n = 1.
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Let us now consider the case of n = 2, focusing first on the NVS case with the gauge

group SU(2N), and two antisymmetric hyper-multiplets A, A′. In terms of the pairs of

chiral super-fields (A1, A2) and (A′1, A
′
2), the 4d super-potential is given by

W = εαβTr (Aα ΦAβ +A′α ΦA′β) . (6.7)

In this case the global SU(2)M acts on the doublets (A1, A
′
1) and (A′2, A2). In particular, A1

and A′2 carry a U(1)M charge of +1/2, and A′1 and A2 carry a U(1)M charge of −1/2. The

SU(2)R symmetry acts on (A1, A
†
2) and (A′1, A

′†
2 ), so the U(1)R charge assignment is +1/2

for all Aα, A
′
α.3 Taking into account the F-term, which imposes εαβ(AβAα + A′βA

′
α) = 0,

the first few operators are given as follows

2
3 ∆ operators #

2 A1A
′
2, A1A2, A

′
1A2 t2 (z2 + 1 + z−2)

4 A1A
′
2A1A

′
2, A1A2A1A

′
2, A1A2A1A2, t4 (z4 + z2 + 1 + z−2 + z−4)

A1A2A
′
1A2, A

′
1A2A

′
1A2

. (6.8)

These satisfy ∆ = 3QR and |QM | ≤ QR, which are again the expected relationships for

the dual giant gravitons. We also recognize here the first few terms in the expansion of

(1− t4)

(1− t2) (1− t2 b2) (1− t2

b2
)
, (6.9)

which is the Hilbert series for C2/Z2, thus precisely recovering the dual giant graviton result.

In the VS case we have a USp(2N)×USp(2N) theory with one bi-fundamental hyper-

multiplet, which we express in terms of 4d chiral super-fields as (Q, Q̃). The U(1)M charge

assignment is (1/2,−1/2), and the U(1)R charge assignment is (1/2, 1/2). The F-term

imposes QQ̃ = Q̃Q. The first few operators are given by

2
3 ∆ operators #

2 Q2, Q Q̃, Q̃2 t2 (z2 + 1 + z−2)

4 Q4, Q3 Q̃, Q2 Q̃2, Q Q̃3, Q̃4 t4 (z4 + z2 + 1 + z−2 + z−4)

. (6.10)

We again see that ∆ = 3QR and |QM | ≤ QR, as expected, and we again find the Hilbert

series for C2/Z2, as expected from the giant graviton analysis.

Note that the analysis above is strictly speaking valid only at large N , as we have

neglected possible relations among traces. However, a complete analysis at finite N can be

performed explicitly for some small values of N and n = 1, 2 by computing the exact Hilbert

series on the Higgs branch as arising from the field theory with the help of the algebraic-

geometry symbolic computation program Macaulay2 [23]. We find that the Hilbert series

reproduces the expected C2/Zn for n = 1, 2.

3Note that there is one more symmetry assigning charge 1/2 to the Aα and −1/2 to the Ãα. However

no mesonic operators is charged under this symmetry, which is thus a baryonic U(1). In this paper we are

not concerned about baryonic operators.
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While we leave a more thorough analysis of the general case for future work, all in all,

based on the examples, we expect that the counting of operators in the zero baryonic charge,

zero instanton charge and zero flavor charge sector matches exactly the quantization of the

phase space of giant gravitons. More explicitly, the operators in this zero-charges sector

of the Higgs branch are expected to be in one-to-one correspondence with holomorphic

functions on C2/Zn.4

It is interesting to revisit now the status of the gravity computation, where we found

two degenerate solutions for each choice of quantum numbers, namely the expanded and

singular configurations. As we have just argued, the dual operator is a meson composed of

hyper-multiplets without vector multiplet scalars. As usual, a short meson whose dimen-

sion is O(1) corresponds to a SUGRA fluctuation, i.e. point-like particles following BPS

geodesics. On the other hand, as the dimension increases, by the time we consider a long

meson whose dimension is O(N), the dual configuration is best described as the expanded

brane configuration. Indeed, we expect that if we were to consider the fully back-reacted

geometry, the non-singular geometry corresponding to O(N) is that arising from the back-

reaction of the expanded brane configuration, pretty much as in the LLM case [21]. For the

purpose of counting operators however, we could just consider the expanded configurations.

7 Conclusions

In this paper we have studied the sub-sector of the Higgs branch which is both flavor and

instanton blind. In terms of the fields in the corresponding quiver theories, it consists of the

operators made only out of bi-fundamental and/or antisymmetric hyper-multiplets, with

strictly zero baryonic and instantonic charges. In the gravity dual such operators can be

put in correspondence with dual giant gravitons, namely D4-branes in global AdS6, which

follow massless geodesics in the internal space. The geometric quantization of the phase

space associated to such branes shows that the corresponding operators are in one-to-one

correspondence with holomorphic functions on C2/Zn. In fact, we can think of this space as

that transverse to the D4-branes inside the O8-plane in the pre-near-horizon background.

Conversely, at least for the simplest examples, we recover the same results from the field

theory perspective. It would be interesting to check this result more thoroughly for the

three whole families. We took a somewhat lengthier route in that we reduced the theory

down to 4d, in order to use the more familiar N = 1 superspace. It would be interesting

to overcome this technicality by working directly in 5d.

The partition function which counts the operators in question corresponds to the

Hilbert series of the orbifold. It is natural to expect that this corresponds to the Hilbert

series of the entire Higgs branch upon setting to zero the flavor and instanton fugacities.

It would be certainly very interesting to go beyond this flavor and instanton blind sector.

Besides, it would be interesting to clarify whether this Hilbert series can be thought of as

a limit of the super-conformal index [8], in the spirit of the corresponding relation for 4d

theories found in [25].

4Indeed, the same situation is found in the more familiar AdS5/CFT4 case for An quivers [24].
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Having identified the dual giant gravitons, it is natural to wonder whether genuine

giant gravitons, namely those expanding in the internal part of the geometry, exist. We

expect these to correspond to anti-symmetrized products of fields. In particular, there is

an upper limit on the number of fields corresponding to the maximal giant graviton, which

is a manifestation of the so-called string exclusion principle (see [26, 27] for the description

of such phenomenon in the AdS5/CFT4 case). Taking for definiteness the n = 1 case, the

natural candidate for the maximal giant would be the Pfaffian operator Pf(A). However, as

discussed in [10], this operator is related to the N -th power of the meson. While this naively

suggests that in this case giant gravitons will be absent, certainly a more thorough analysis

should be performed. Furthermore, it is natural to ask wether a microscopic description

along the lines of [28–31] is possible. We leave such questions open for future investigations.
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