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Abstract: We consider the conformal field theory of N complex massless scalars in 2 + 1

dimensions, coupled to a U(N) Chern-Simons theory at level k. This theory has a ’t Hooft

large N limit, keeping fixed λ ≡ N/k. We compute some correlation functions in this theory

exactly as a function of λ, in the large N (planar) limit. We show that the results match

with the general predictions of Maldacena and Zhiboedov for the correlators of theories

that have high-spin symmetries in the large N limit. It has been suggested in the past that

this theory is dual (in the large N limit) to the Legendre transform of the theory of fermions

coupled to a Chern-Simons gauge field, and our results allow us to find the precise mapping

between the two theories. We find that in the large N limit the theory of N scalars coupled

to a U(N)k Chern-Simons theory is equivalent to the Legendre transform of the theory of

k fermions coupled to a U(k)N Chern-Simons theory, thus providing a bosonization of the

latter theory. We conjecture that perhaps this duality is valid also for finite values of N and

k, where on the fermionic side we should now have (for Nf flavors) a U(k)N−Nf/2 theory.

Similar results hold for real scalars (fermions) coupled to the O(N)k Chern-Simons theory.
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1 Introduction and summary of results

Two of the simplest conformal field theories in 2 + 1 dimensions are the theory of N real

massless free scalars ϕi, in the sector of operators that are singlets of O(N), and the

“critical O(N) model”. The latter may be viewed as the IR limit of the deformation of

the free theory by g4(ϕiϕi)2 (when fine-tuning the IR scalar mass to zero), or equivalently

by adding an auxiliary field σ and deforming the free theory by σϕiϕi (and fine-tuning a

linear term in σ to get to a non-trivial fixed point). Due to the latter description we will

call the “critical O(N) model” the Legendre transform of the free theory.1

1The two theories are not precisely Legendre transforms, except in the large N limit, since we need to

flow to the IR and to fine-tune to get to the fixed point. However, we will use this name for this type of

relation between theories, for lack of a better name.
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Two other simple conformal field theories in 2 + 1 dimensions are the theory of N

massless free fermions ψa (again limited to singlets of O(N)), and the Gross-Neveu model.

One can formally define the latter by deforming the free fermion theory by (ψaψa)2, but

since this operator is not renormalizable this definition does not make much sense (except

in the large N limit). As above, one can also formally define it by performing a Legendre

transform with respect to the operator (ψaψa). One way to properly define the Gross-

Neveu theory is as a theory that has a scalar operator σ̂ (analogous to the auxiliary field

σ above), such that when we deform the theory by (σ̂2) it flows to the free fermion theory

(when fine-tuning the IR fermion mass to zero).

The free theories described above both have high-spin symmetries of every even spin

s = 2, 4, 6, · · · , generated by conserved currents J (s). In the interacting theories these

symmetries (for s > 2) are broken, though the effect of the breaking is small in the large

N limit.2 In this limit all local operators in these theories are products of the high-spin

currents J (s) and of one additional scalar operator J (0) (given by (ϕiϕi) in the bosonic

case, and by (ψaψa) in the fermionic case).

The two bosonic theories are simply related by a Legendre transform with respect

to J (0), as are the two fermionic theories, but at first sight there is no relation between

the bosonic and fermionic theories. As far as we know, the first hint for such a relation

came by considering their gravity duals. All the theories discussed above have a good 1/N

expansion (see [1] for a review), so it is natural to suggest that they could have classical

gravitational duals (by the AdS/CFT correspondence [2–4]) at large N , living on AdS4.

These duals should have massless high spin fields, to match with the field theory spectrum.

Indeed, it was suggested in [5, 6] (see also [7–9]) that the bosonic theories are dual to the

type A high-spin gravity theories of Vasiliev [10–14], and the fermionic theories to the type

B high-spin gravity theories of Vasiliev. In the gravity language, the difference between

the two bosonic (fermionic) theories is just a different choice of boundary conditions for

the bulk scalar field which is dual to J (0); in the classical gravity limit this is equivalent to

a Legendre transform [15–17]. Strong evidence for this equivalence was found in [18, 19],

and suggested derivations of the equivalence were presented in [20–23].

The type A and type B high-spin gravity theories mentioned above have the same

spectrum but different interactions. However, there is a family of high-spin gravity theories

labeled by a parameter θ (appearing in the Vasiliev equations of motion) that interpolates

between the type A and type B theories, such that the bosonic theories arise when θ = 0 and

the fermionic ones when θ = π/2. This hints that perhaps there is a family of field theories

(that is continuous, at least in the large N limit) which interpolates between the bosonic

and fermionic theories described above. The theories with θ 6= 0, π/2 are not parity-

invariant. It was conjectured in [24] that they arise by coupling the bosonic/fermionic

theories to O(N) Chern-Simons theories at level k. For infinite k this just implements the

reduction to singlets of O(N), but for finite λ ≡ N/k in the large N limit it provides a

parity-breaking modification of the bosonic and fermionic theories, by a parameter that is

2The divergences of the high-spin currents and their anomalous dimensions are proportional to 1/N , but

some correlators feel the breaking even in the large N limit.
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continuous in the large N limit (though it is discrete for finite N). This conjecture was

tested in [24, 25], where it was shown that the spectrum of operators in these theories is

independent of λ in the large N limit. This is consistent with the fact that the high-spin

fields in the dual gravity theory are classically massless; presumably they acquire a mass

(whenever the field theory is not free) at order 1/N by loop corrections in the bulk [26].

Significant support for this conjectured relation between the bosonic and fermionic

theories was recently given in [27, 28], where it was shown that the large N correlation

functions in these theories could be computed just by knowing that they have a high-

spin symmetry that is broken by 1/N effects (plus some additional technical assumptions).

Maldacena and Zhiboedov showed that these correlation functions could be expressed in

terms of two (or three) parameters appearing in the non-conservation equations of the

high-spin currents. It is natural to assume that these parameters map to the parameters

N and k mentioned above, but the precise relation is not known (when there is a third

parameter it can be identified with the coefficient of an extra g6(ϕiϕi)3 interaction, that

is exactly marginal in the large N limit [25]). Maldacena and Zhiboedov found that if one

starts from the free bosonic theory and turns on the coupling (in their language, turning

on the breaking of the high-spin symmetry), then in the limit of infinite coupling one ends

up with the correlation functions of the Gross-Neveu model (the Legendre transform of the

free fermionic theory). The Legendre-transformed statement is also true: by starting from

the correlation functions of the free fermionic theory and turning on the coupling, they

found that in the limit of infinite coupling one ends up with the “critical O(N) model”

(the Legendre transform of the free bosonic theory).

This suggests that for each theory mentioned above, there are actually four different

ways to describe it and to compute its large N correlation functions: (a) It can be described

as a theory of Ns massless scalars coupled to a O(Ns)ks Chern-Simons theory; (b) It can

be described as a theory of Nfer. massless fermions coupled to a O(Nfer.)kfer. Chern-Simons

theory; (c) It can be described purely algebraically as a theory with a slightly-broken high-

spin symmetry, and its large N correlators can be expressed in terms of the parameters Ñ

and λ̃ of [28]; (d) It can be described as Vasiliev’s high-spin gravity theory with a parameter

θ. The first two descriptions exist also for finite N , while in the latter two it is only known

how to compute in the planar limit. The discussion above implies that in the large N limit

all of these descriptions are equivalent (up to possible Legendre transforms, in particular

between the first and second descriptions), but the precise mapping between them is not

yet known.

Our main goal in this paper is to clarify the relation between the first three descriptions

of these theories, and to compute the precise mapping between their parameters (in the

large N limit).3 All the O(N) theories discussed above have also U(N) versions, where we

start with N complex scalars (fermions) and couple them to a U(N)k Chern-Simons theory.

The U(N) theories have conserved currents J (s) (in the large N limit) also for odd spins

s, but in the large N limit the correlators of the even spin operators in these theories are

3We will not discuss here the mapping to the gravitational side. The results of [24] for even contributions

to correlators imply that in this mapping λ̃ = tan(θ), and this is confirmed by more detailed computations

in [29].
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equivalent to those of the O(N) theories. In this paper we will perform computations for

the U(N) case, since in this case there is a spin-one current that takes a simpler form than

the higher spin currents; however our conclusions should be equally valid for the O(N) case.

Most of our paper is devoted to performing exact computations of large N correlation

functions in the bosonic theories described above. After introducing our theories and

methods in section 2, we compute in section 3 some exact planar correlation functions of

the scalar fields in these theories. These are then used in section 4 to compute exactly

(as a function of λ) some planar correlators of gauge-invariant operators in the bosonic

theories. Specifically we compute some 2-point and 3-point functions of the operators J (s)

with s = 0, 1, 2.

Section 5 contains our main results. We begin by matching our results for the theories

of scalars coupled to a U(N)k Chern-Simons theory to the general results of [28]. There

are two different standard definitions of the Chern-Simons level. We will denote by k the

definition we will use in our computations (which is sometimes called the “renormalized

coupling”; it arises, for instance, from regularization by dimensional reduction). However,

defining the level by a regularization using a Yang-Mills term at high energies gives a

different (at one-loop) definition of the level, kYM = k − N . Some of our results are

simpler to express in the first language and some in the second language; of course the

translation between them is straightforward, and we will try to carefully distinguish the

two everywhere. The matching to [28] works better using k and λ ≡ N/k; in these variables

we find that the parameters of [28] are related to the bosonic rank and level by4

Ñ = 2N
sin(πλ)

πλ
, λ̃ = tan

(
πλ

2

)
. (1.1)

In particular λ̃ diverges as λ→ 1, which corresponds to an infinite coupling (N/kYM →∞)

using the Yang-Mills regularization, and in this limit we should approach the fermionic

theory.

The mapping to the fermionic theory is nicer to describe using the Yang-Mills regular-

ization, which we will use in the rest of this introduction.5 Taking the strong coupling limit,

we find that the theory of N scalars coupled to a U(N)kYM
Chern-Simons theory matches

(in the large N ,kYM limit) to the (Legendre transform of the) theory of kYM fermions

coupled to a U(kYM)N Chern-Simons theory.6 The two Chern-Simons theories in question

are related by level-rank duality [30–32], and our claim is that coupling one of them to a

massless scalar in the fundamental representation is exactly equivalent (up to a Legendre

transform) to coupling the other to a massless fermion in the fundamental representation.

This may be viewed as a bosonization of the fermionic theory, expressing it purely in bosonic

variables. The generalization to the O(N) case is straightforward, mapping the theory of

4The same value of λ̃ is found in supersymmetric generalizations of these theories, by completely different

methods, in [29].
5We will always use this convention whenever we have kYM appearing, either in the level or in the rank

of our theories.
6In our computations we do not determine the sign of the Chern-Simons coupling, so the level may also

be (−N).
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N real scalars coupled to an O(N)kYM
Chern-Simons theory to the (Legendre transform of

the) theory of kYM real fermions coupled to an O(kYM)N Chern-Simons theory.

Our results show that the bosonic and fermionic theories have the same correlation

functions at large N , and thus provide strong evidence for their equivalence in this limit.

More precisely, we derive this particular matching of parameters just in the strong coupling

limit of the bosonic theory, which is the weak coupling limit of the fermionic theory, but

it seems natural that it should extend throughout the parameter space; this is confirmed

by preliminary computations of exact 2-point and 3-point correlators in the fermionic the-

ory [33]. The mapping of the previous paragraph contradicts computations of the thermal

free energy presented in [24], which is why it was not found already in [24, 28]; we discuss

in the final section why these computations do not give the correct answers for the free

energy at finite λ.

While so far we only discussed the large N limit, it is natural to conjecture that

perhaps the equivalence between the two theories is valid also at finite N (this is true for

the level-rank duality, and also in similar dualities for supersymmetric theories [34, 35]).

If this is not correct, then the scalar and fermion theories would provide two different

quantum generalizations of the same classical high-spin gravity theory. Unfortunately, it

is hard to test this conjecture, since at least one side of the duality is always strongly

coupled, and we do not know how to perform exact computations at finite N . All we have

so far is a weak test of this finite N duality, by comparing the mass deformations on both

sides. This test suggests that at finite N the precise mapping is from a U(N)kYM
bosonic

theory to a U(kYM)N−1/2 fermionic theory. If we have Nf flavors in the fundamental

representation, a natural generalization would map the theory of Nf massless scalars in

the fundamental of U(N) coupled to the U(N)kYM
Chern-Simons theory to the (Legendre

transform of the) theory of Nf massless fermions in the fundamental of U(kYM), coupled

to the U(kYM)N−Nf/2 Chern-Simons theory. It would be interesting to find ways to test

this conjecture. In particular it may be interesting to see how the scalars become fermions

and vice versa; one can try to analyze this7 by looking at open Wilson lines ending on

scalars/fermions and checking which anyonic statistics the ends of these Wilson lines obey,

as a function of N and kYM.

2 Vector model with Chern-Simons interactions

Consider the theory of a complex scalar field φ in the fundamental representation of U(N),

coupled to gauge bosons Aµ with Chern-Simons interactions at level k in three Euclidean

dimensions. The action is

S = SCS + Sscalar . (2.1)

The Chern-Simons action SCS is given by

SCS =
ik

4π

∫
TrN

(
A∧ dA+

2

3
A3

)
=
ikC1(N)

4π

∫
d3x εµνρ

(
Aaµ∂νA

a
ρ +

1

3
fabcAaµA

b
νA

c
ρ

)
. (2.2)

7We thank N. Itzhaki for this suggestion.
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The trace is taken in the fundamental representation, and we normalize the generators with

C1(N) = −1/2.8 With this normalization the theory is gauge invariant if k ∈ Z [36, 37].

The scalar field action is

Sscalar =

∫
d3x

(
|Dµφ|2 +

λ6

3!N2
(φ†φ)3

)
, (2.3)

where Dµ ≡ ∂µ +Aµ.

We work in the ’t Hooft large N limit, keeping λ = N
k and λ6 fixed. In this limit,

the theory (2.1) is conformal to all orders in perturbation theory in λ and λ6 [25]. In the

planar limit, our theory is closely related to the O(N̂) theory of N̂ real scalar fields coupled

to an O(N̂) Chern-Simons theory at level k̂; in this limit the latter theory (with N̂ = 2N)

is simply a projection of our theory, keeping only some of its operators. For finite N the

two theories are not equivalent, but all of our large N computations (except for the ones

that involve operators that are projected out when going to O(N̂)) can easily be translated

into computations in the O(N̂) theory as well.

Let us define light-cone coordinates by x± = x∓ = (x1 ± ix2)/
√

2. We work in light-

cone gauge, A− = 0.9 With this choice of gauge, the A ∧ A ∧ A self-interaction of the

gauge field vanishes, and the seagull term φ2A2
µ is also simplified as we shall see. This

greatly reduces the complexity of perturbative calculations. The utility of light-cone gauge

in theories of this kind was first noticed in [24].

In this gauge the gluon propagator is

〈Aaµ(−p)Abν(q)〉 = Gνµ(p)δab · (2π)3δ3(q − p) ,

G+3(p) = −G3+(p) =
4πi

k

1

p+
, (2.4)

and the other components of Gνµ vanish. At leading order in the ’t Hooft large N limit,

where scalar loops can be ignored, the gluon propagator in this gauge does not receive

corrections, because the A ∧A ∧A interaction vanishes and the ghosts are decoupled.

To regulate the theory, we use dimensional regularization in the direction x3, and a

cutoff Λ on the momentum in the 1-2 plane. The cutoff regulator breaks Lorentz invariance

(as does our choice of gauge), conformal invariance and gauge invariance. However, we only

encounter power-law divergences, and the counter-terms used to subtract those divergences

are completely fixed by demanding that the continuum theory is conformally invariant (in

general these counter-terms are not gauge-invariant or Lorentz-invariant). The fact that

our final results for the correlation functions of gauge-invariant operators are consistent

with the analysis of [28] (see section 5) gives strong evidence that Lorentz and gauge

invariance are restored in the continuum limit.

The value of k in Chern-Simons theories depends on the regularization; as in any other

theory, coupling constants in different regularizations are not the same at higher orders in

perturbation theory. In particular, as shown in [38], the value of k in our regularization

8For a representation R of U(N) with generators {T a}, C1(R) is defined by TrR(T aT b) = C1(R)δab.
9In Euclidean space A+ = Ā−, but we keep A+ 6= 0. One can think of this prescription as an analytic

continuation of light-cone gauge in Minkowski space.
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(which is sometimes called the “renormalized coupling”) differs from the value of k using a

regularization involving a Yang-Mills term in the UV by kus = kYM +N = kYM(1 + λYM)

(where we define λYM ≡ N/kYM).10 In terms of the ’t Hooft coupling we have λus =

λYM/(1 + λYM), so that the two couplings agree perturbatively, but the maximal value of

λ that can be achieved in the Yang-Mills regularization is λ = 1 (which corresponds to

λYM →∞, or kYM → 0).

In the large N limit, the spectrum of operators of the theory (2.1) includes a single

primary operator J (s) for each integer spin s ≥ 0, with conformal dimension ∆ = s + 1 +

O(1/N) [25]. Each J (s) can be written as a symmetric, traceless tensor that is schematically

given by

J (s)
µ1...µs = φ†iDµ1 · · · Dµsφi + · · · . (2.5)

All other primaries are products of these “single-trace” operators. The currents Jµ ≡ J (1)
µ ,

Tµν ≡ J (2)
µν correspond to the unbroken U(1) and Poincaré symmetries and are conserved.11

The currents with s > 2 are generally not conserved when λ 6= 0. In this work we will need

the explicit form of the following operators:

J (0) = φ†φ ,

Jµ = iφ†
(←−Dµ −

−→Dµ

)
φ ,

Tµν = φ†
[

3

2

←−D (µ
−→D ν) −

1

4

−→D (µ
−→D ν) −

1

4

←−D (µ
←−D ν)

]
φ+ δµν (· · · ) . (2.6)

Here
−→Dµ =

−→
∂ µ + Aµ,

←−Dµ =
←−
∂ µ − Aµ, and parentheses around indices denote averaging

over symmetric permutations. The trace terms in Tµν will not be important for us in this

paper. The currents in (2.6) are canonically normalized, namely, the charges Q ≡
∫
d2xJ0,

Pµ ≡
∫
d2xT0µ obey [Q,φi] = φi, [Pµ, φ

i] = −i∂µφi.
For completeness we now review the results of [28] which will be needed in section 5.

2.1 Review of the results of Maldacena and Zhiboedov

Our theory belongs, in the large N limit, to the general class of conformal field theories

studied in [28], which were named “quasi-boson” theories. In general, a CFT belongs to

this class of theories if it has a large N expansion, and its large N spectrum of operators

includes conserved high-spin currents of even spins and a dimension one scalar operator.

The large N expansion parameter, denoted by Ñ , was defined in [28] to be proportional to

the two-point function of the energy-momentum tensor, and the proportionality constant

was fixed by requiring that Ñ = 1 for a free real boson. The theory described in this section,

and the Gross-Neveu model coupled to U(N)k Chern-Simons interactions, are particular

examples of “quasi-boson” theories.

10Without loss of generality we assume k > 0. A parity transformation takes k → −k, λ→ −λ.
11Note that the naive U(1) global symmetry acting on the complex scalar fields is gauged, but the

equations of motion of the gauge field imply that the symmetry generated by the topologically-conserved

current J(1) = ∗tr(dA), acts on the scalar fields in the same way as the naive U(1) global symmetry, up to

an overall factor.
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A closely related class of theories, called “quasi-fermion” theories, was defined in [28]

by the same properties that were used to define the “quasi-boson” theories, except that

the scalar primary J (0) has dimension 2 + O(1/N). Following [28] we will denote this

scalar by J̃ (0) to avoid confusion with the quasi-boson case. The Legendre transform of

the theory described in this section, and the theory of N free fermions coupled to U(N)k
Chern-Simons interactions, are both examples of “quasi-fermion” theories.

The conservation of high-spin currents in either the quasi-boson or quasi-fermion the-

ories is generally violated by double-trace and triple-trace operators. For example, the

non-conservation of the s= 4 current in the quasi-boson theory takes the schematic form

(with appropriate derivatives on the right-hand side)

∂ · J (4) = a2J
(2)J (0) + a3

(
J (0)J (0)J (0) + J (2)J (0)J (0)

)
, (2.7)

and a similar equation containing only the double-trace term applies in the quasi-fermion

case. Using (2.7) Maldacena and Zhiboedov derived a sequence of Ward identities, which

enabled them to express all the planar 3-point functions in terms of Ñ , λ̃ ∝ Ña2 and also

in terms of a3 in the quasi-boson case.

The 3-point functions of single-trace primaries in the quasi-boson and quasi-fermion

theories are constrained to contain at most three different conformal structures in the large

N limit [28],

〈J (s1)J (s2)J (s3)〉 = αs1s2s3〈J (s1)J (s2)J (s3)〉bos. + βs1s2s3〈J (s1)J (s2)J (s3)〉fer.

+ γs1s2s3〈J (s1)J (s2)J (s3)〉odd . (2.8)

In the above equation 〈·〉bos. and 〈·〉fer. refer to the correlators in the theory of a real free

boson and fermion respectively, while 〈·〉odd refers to independent conformally-invariant

contributions to the correlators that appear only in interacting theories. Explicit expres-

sions for these structures can be found in [27, 39, 40].

To extract meaningful information from the 3-point functions (2.8) one has to specify

the precise normalization of the operators. In [28] a normalization was chosen such that

the 2-point functions of currents are equal in the quasi-boson and quasi-fermion theories,

〈J (s)(x)J (s)(0)〉 = Ñ〈J (s)(x)J (s)(0)〉bos. , s 6= 0 . (2.9)

The 2-point functions of the scalar operators were chosen to be

〈J (0)(x)J (0)(0)〉 =
Ñ

1 + λ̃2
〈J (0)(x)J (0)(0)〉bos. , (2.10)

〈J̃ (0)(x)J̃ (0)(0)〉 =
Ñ

1 + λ̃2
qf

〈J̃ (0)(x)J̃ (0)(0)〉fer. . (2.11)

With these normalizations the coefficients of the conformal structures in the 3-point

– 8 –
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functions (2.8) in the quasi-boson case were found to be (in the large N limit)

αs1s2s3 = Ñ
1

1 + λ̃2
, βs1s2s3 = Ñ

λ̃2

1 + λ̃2
, γs1s2s3 = Ñ

λ̃

1 + λ̃2
,

αs1s20 = Ñ
1

1 + λ̃2
, γs1s20 = Ñ

λ̃

1 + λ̃2
, (2.12)

αs100 = Ñ
1

1 + λ̃2
,

α000 = Ñ
1

(1 + λ̃2)2
+ z

(
Ñ

1 + λ̃2

)3

a3 ,

where z is a specific constant (denoted by z1(nfree boson
0 )3 in [28]).

Similarly, for the quasi-fermion theories

αs1s2s3 = Ñ
λ̃2

qf

1 + λ̃2
qf

, βs1s2s3 = Ñ
1

1 + λ̃2
qf

, γs1s2s3 = Ñ
λ̃qf

1 + λ̃2
qf

,

βs1s20̃ = Ñ
1

1 + λ̃2
qf

, γs1s20̃ = Ñ
λ̃qf

1 + λ̃2
qf

, (2.13)

βs10̃0̃ = Ñ
1

1 + λ̃2
qf

,

γ0̃0̃0̃ = 0 .

The coefficients which are not specified in the above equations correspond to structures

which are inconsistent with conformal invariance.

To obtain the correlators of the critical bosonic vector model with Chern-Simons in-

teractions it is convenient to define J̃
(0)
crit. bos. = λ̃qfJ̃

(0). In terms of J̃
(0)
crit. bos. the 2-point

function (2.11) and βs10̃0̃ are multiplied by λ̃2
qf., while βs1s20̃ and γs1s20̃ are multiplied by

λ̃qf. The correlators of the critical model with λ = 0 are then obtained by taking the

λ̃qf →∞ limit in (2.11) and (2.13). The correlators of the critical fermionic vector model

are obtained from (2.10) and (2.12) in the same way.

The normalization of J (0) we use in this paper (2.6) is different than the one in (2.10),

and the precise relation between the two normalizations will be fixed in section 5. Note that

in [28] only correlation functions of even-spin operators (that appear both in the O(N) and

in the U(N) theory) were computed, while many of our results below involve the spin-one

current J (1). However, since the odd-spin currents are part of the same high-spin symmetry

algebra as the even-spin currents, and the results of [28] (2.9), (2.12), (2.13) are (as far

as the coupling-dependence goes) independent of the spins for all s > 0, we assume that

the same results hold also for odd-spin correlation functions. Our results will provide a

consistency check on this natural assumption.

3 Exact scalar correlators

In this section we compute 2-point and 4-point scalar correlators exactly in planar pertur-

bation theory. These correlation functions are not gauge-invariant, but they will be useful
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Σ(p;λ)δji = 1PI =
p
i j

(a)

+

(b)

+

(c)

Figure 1. Bootstrap equation for the scalar self-energy. A filled circle denotes the full scalar

propagator.

for computing gauge-invariant correlation functions in the next section. The computations

are shown in some detail, to illustrate the techniques that will be useful later on.

3.1 Scalar propagator

Let us denote the self-energy of the scalar field by Σ(p;λ), such that the full propagator is

〈φ†i (p)φj(q)〉 =
δji

p2 − Σ(p;λ)
· (2π)3δ3(p+ q) . (3.1)

We will compute the self-energy in light-cone gauge at large N by solving its bootstrap

equation, shown in figure 1. Only non-vanishing planar diagrams are shown. The diagram

of order λ, with a single gluon line, vanishes due to parity.12 Diagrams that involve the

A ∧ A ∧ A vertex vanish in light-cone gauge. Diagrams in which two seagull vertices are

connected by a gluon line also vanish; this is because the seagull term φ†AµAµφ reduces in

this gauge to φ†A3A3φ, and the only non-vanishing gluon propagator is 〈A3A+〉. All other

diagrams which do not appear in figure 1, including those involving a (|φ|2)3 vertex, are

subleading in 1/N .

Let us solve the equation of figure 1. The diagrams on the right-hand side of the

bootstrap equation are given by

(a) = −(T a{T a, T b}T b)ji
∫

ddk

(2π)d
ddl

(2π)d
(l + p)µGµν(l − p)Gνρ(k − p)(k + p)ρ

[k2 − Σ(k)][l2 − Σ(l)]
,

(b) + (c) = 2({T a, T b}T aT b)ji
∫

ddk

(2π)d
ddl

(2π)d
(l + p)µGµν(l − p)Gνρ(k − l)(k + l)ρ

[k2 − Σ(k)][l2 − Σ(l)]
. (3.2)

Using the gluon propagator (2.4), in the planar limit we have

(a) = −4(πλ)2δji

∫
ddk

(2π)d
ddl

(2π)d
(l + p)+(k + p)+

(l − p)+(k − p)+

1

[k2 − Σ(k)][l2 − Σ(l)]
,

(b) + (c) = 8(πλ)2δji

∫
ddk

(2π)d
ddl

(2π)d
(l + p)+(k + l)+

(l − p)+(k − l)+

1

[k2 − Σ(k)][l2 − Σ(l)]
. (3.3)

Notice that light-cone gauge preserves the symmetry of rotations in the 1-2 plane, which

act as A− 7→ eiθA−. Hence, Σ(p) = Σ(ps, p3), where ps =
√
p2

1 + p2
2. Further, the expres-

sions (3.3) are independent of p3, and therefore we can guess that Σ(p;λ) = f(λ)p2
s.

12While the Chern-Simons interactions break parity, our theory is invariant under the combined operation

of parity plus λ 7→ −λ. Corrections to the self-energy that come with an odd power of λ must therefore be

accompanied by an εµνρ symbol, but in Σ(p;λ) there is only a single external momentum to saturate it.
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Wi1i2j1j2(p, k, q;λ) =

p+ q

k + q

p

k

i1 i2

j1 j2

Figure 2. Connected diagrams in scalar 4-point function.

Let us now focus on diagram (a). The integrals over the p3 component of the loop

momenta in (3.3) can be carried out,∫
d1−εk3

(2π)1−ε
1

k2 − Σ(k)
=

∫
d1−εk3

(2π)1−ε
1

(k3)2 + (1− f(λ))k2
s

−→ 1

2ks
√

1− f(λ)
, (3.4)

where we have taken ε→ 0 at the end. For the remaining integrals in the 1-2 momentum

plane we use polar coordinates, with k± = kse
±iθk/

√
2. The angular integral can be treated

as a contour integral, for example∫ 2π

0
dθk

k+ + p+

k+ − p+
=

∮
dz

iz

z +
√

2p+/ks

z −
√

2p+/ks
= 2π[2Θ(ks − ps)− 1] , (3.5)

where z = eiθk is integrated over the unit circle and Θ is the step function. The remaining

radial integrals (performed up to the cutoff Λ) are trivial, and the result is

(a) = − λ2δji
4(1− f(λ))

(2ps − Λ)2 , (b) + (c) =
λ2δji

1− f(λ)
ps(ps − Λ) . (3.6)

The self-energy (a) + (b) + (c) is therefore a pure divergence,

Σ = − λ2

4(1− f(λ))
Λ2 . (3.7)

This divergence is subtracted with a mass counterterm φ†φ, which is determined uniquely

by conformal invariance. In the continuum theory the result is therefore Σ = 0, namely

the scalar propagator in our gauge does not receive any corrections.

3.2 Scalar 4-point function

In this section we compute the connected scalar 4-point function

〈φi1(p+ q)φ†i2(−p)φ†j1(−k − q)φj2(k)〉, (3.8)

shown in figure 2. From now on the overall factor (2π)3δ3(
∑
k) is implicit in all correlators

we write. Without loss of generality we focus on the terms proportional to δi1i2δj1j2 (the

other terms are related to this by permutations of the momenta).
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, ,

Figure 3. 1-loop diagrams that include the A2φ2 vertex, up to reflections.

p+ q

k + q

p

k

i1 i2

j1 j2

= +

Figure 4. Bootstrap equation for the connected 4-point function, when q± = 0.

Let us first consider the sum of 1-loop diagrams that contribute to W (the correla-

tor (3.8) without the delta function) and that include an A2φ2 vertex. There are six such

diagrams: the ones shown in figure 3, and their reflections along the vertical axis. It is

easy to compute these diagrams using the methods of the previous section; their sum is

2πNλ2

{
2q+

(k − p)+
[(k + q)s − (p+ q)s − ks + ps]− Λ

}
. (3.9)

The linear divergence is subtracted by a (φ†φ)2 counterterm, which is uniquely determined

by conformal invariance. From now on we will take q± = 0 for simplicity, even though this

is not the most general 4-point function. For this choice of momentum the seagull vertex

does not contribute to the 4-point function, and W becomes a sum of ladder diagrams.

The bootstrap equation for the 4-point function with q+ = 0 is shown in figure 4. In

writing it we used the fact that the scalar propagator does not receive quantum corrections

in our gauge.

Let us now restrict the form of Wi1i2j1j2(p, k, q;λ). Using dimensional analysis we

can write

Wi1i2j1j2(p, k, q;λ) = δi1i2δj1j2 |q3| W̃
(
ks
q3
,
ps
q3
, . . . ;λ

)
. (3.10)

By computing the first few contributions to W̃ explicitly, we can see that they depend only

on the variables

x =
ks
|q3|

, y =
ps
|q3|

, z =
(k + p)+

(k − p)+
, Λ′ =

Λ

|q3|
, λ̂ = λ sign(q3) , (3.11)
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and that the dependence on z is at most linear.13 Let us assume that this holds to all

orders, and write

W̃ (x, y, z; λ̂) = W̃0(x, y; λ̂) + z W̃1(x, y; λ̂) . (3.12)

Returning to the bootstrap equation, after carrying out the loop integrals over the 3-

component and the angular directions, the equation can be written as

W̃0 + W̃1z = −4πi
λ̂

N
z + 2iλ̂(I0 + I1) ,

I0 = |q3|
[
2

∫ Λ

ks

−
∫ Λ

0

]
dk′s

W̃0 (x′, y)

4k′2s + q2
3

,

I1 = |q3|
[∫ Λ

0
+2z

∫ ps

ks

]
dk′s

W̃1(x′, y)

4k′2s + q2
3

, (3.13)

where x′ = k′s
|q3| . Let us first solve for W̃1 by equating the coefficients of z and differentiating

with respect to ks. The result is

W̃1(x, y) = C1(y)e−2iλ̂ arctan(2x) . (3.14)

Here C1(y) is an integration “constant” that is determined, by plugging W̃1 back into (3.13),

to be

C1(y) = −4πiλ̂

N
e2iλ̂ arctan(2y) . (3.15)

One can now solve for W̃0 similarly, and plug the result in (3.10). We find

Wi1i2j1j2(|q|, x, y, z; λ̂)
∣∣∣
q±=0

= δi1i2δj1j2
4πλ̂|q3|
N

[
tan

(
λ̂ arctan

(
2Λ′
))
− iz

]
×

exp
[
2iλ̂ (arctan(2y)− arctan(2x))

]
. (3.16)

4 Exact gauge-invariant correlators

In this section we compute several exact 2-point and 3-point functions of single-trace pri-

mary operators in momentum space. Using the results of section 3 one can compute any

such correlator, with all external momenta pointing in the 3-direction, by computing a

finite number of integrals. A useful step is to first compute exact vertices of the form

〈J (s)(−q)φφ†〉, since they encode all the information of the scalar 4-point function inside

2-point and 3-point gauge-invariant correlators. We begin by computing correlators of

J (0) ≡ φ†φ, and then generalize to other operators.

13We choose to work with parity-invariant variables. Up to order λ3, we find

W̃ |o(λ) = −4πi
λ̂

N
z ,

W̃ |o(λ2) = 4π
λ̂2

N

[
arctan(2Λ′) + 2z (arctan(2y)− arctan(2x))

]
,

W̃ |o(λ3) = 8πi
λ̂3

N

[
arctan(2Λ′) (arctan(2y)− arctan(2x)) + z (arctan(2y)− arctan(2x))2

]
,

where x, y, z are defined above.
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k

J0

q

= +

k

p

q

Figure 5. The vertex 〈J (0)φφ†〉. A cross denotes a J (0) insertion in the free theory, and a circled

cross denotes the exact vertex. The hatched ellipse denotes diagrams in which the 4 scalar lines are

connected.

J0 J0

q

Figure 6. The diagrams contributing to 〈J (0)(−q)J (0)〉.

4.1
〈
J (0)J (0)

〉
Let us compute the J (0) vertex

〈J (0)(−q)φ†j(k)φi〉 = δijV0(q, k;λ) , (4.1)

for the special case of q± = 0, where we can use the results of the previous section.

(From here on we do not always explicitly write the momentum of the last operator in our

correlation functions, which is fixed by momentum conservation.) As shown in figure 5,

we can write this vertex as a sum of a free piece, and a piece from the connected 4-scalar

function W . The free piece is just δij . The connected piece is given by (using the variables

of (3.11))

N |q3|δij
∫

ddp

(2π)d
W̃ (x, y, z; λ̂)

p2(p+ q)2
= δij

[
2e−2iλ̂ arctan(2x)

1 + e−2iλ̂ arctan(2Λ′)
− 1

]
, (4.2)

where the integral can be computed by the same method as before. Crucially, the radial

integration can be carried out analytically. Adding the free piece, we find

V0(x; λ̂) =
2e−2iλ̂ arctan(2x)

1 + e−2iλ̂ arctan(2Λ′)
. (4.3)

It is now easy to compute the J (0) 2-point function, shown in figure 6. Note that

replacing a single J (0) insertion by the exact vertex (4.3) accounts for all the diagrams

without any double-counting. Thus,

〈J (0)(−q)J (0)〉 = N

∫
ddk

(2π)d
V0(x; λ̂)

k2(k + q)2
→ N

4

1

|q3|
tan
(
πλ̂
2

)
πλ̂

, (4.4)
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where in writing the final result we took Λ→∞. Note that the result is even under λ→ −λ,

as expected. The obvious Lorentz-invariant generalization of this result to any q is

〈J (0)(−q)J (0)〉 =
N

4

1

|q|
tan
(
πλ
2

)
πλ

. (4.5)

The momentum dependence of (4.5) is determined by conformal invariance; in position

space this translates into 〈J (0)(x)J (0)(y)〉 ∝ 1/(x−y)2. The dependence on λ is not fixed by

the symmetries, and we observe that the 2-point function diverges at λ = 1, and becomes

negative afterwards, suggesting that our theories only make sense up to λ = 1. As men-

tioned above, if we define the Chern-Simons level using a regularization involving a Yang-

Mills theory, the value λ = 1 is actually the maximal allowed value, so this is not too surpris-

ing (similar results were found also for fermions coupled to Chern-Simons theory in [24]).

4.2
〈
J (0)J (0)J (0)

〉
Using the exact J (0) vertex (4.3) we can compute the 3-point function of scalar operators

〈J (0)(−q)J (0)(−q′)J (0)(−q′′)〉, with all momenta q, q′, q′′ in the x3-direction. Using the

vertices defined above, all contributions to this 3-point function are included in the diagrams

of figure 7. All the diagrams turn out to be finite, so we remove the cutoff in the expressions

below. Diagram (a) evaluates to

(a) = 2N

∫
d3k

(2π)3

V0(q, k)V0(q′, k + q′)V0(q′′, k − q′′)
k2(k + q)2(k − q′′)2

=
N tan

(
πλ
2

)
2πλ cos2

(
πλ
2

) 1

|q||q′||q′′| . (4.6)

Summing over diagrams (b), (c) and (d), and integrating over the 3 and angular

directions gives

(b) + (c) + (d) = −λ
2N

π

∫ ∞
0

dksdlsdps
V0(q, k)V0(q′, l)V0(q′′, p)

(4k2
s + q2)(4l2s + q′2)(4p2

s + q′′2){
(2Θ(ks − ps)− 1) (2Θ(ls − ps)− 1)

+ (2Θ(ps − ks)− 1) (2Θ(ls − ks)− 1)

+ (2Θ(ks − ls)− 1) (2Θ(ps − ls)− 1)
}

= −λ
2N

π

(∫ ∞
0

dks
V0(q, k)

4k2
s + q2

)(∫ ∞
0

dls
V0(q′, l)
4l2s + q′2

)(∫ ∞
0

dps
V0(q′′, p)
4p2
s + q′′2

)
= −N tan3

(
πλ
2

)
8πλ

1

|q||q′||q′′| , (4.7)

where in the second equality we used the fact that

(2Θ(ks − ps)− 1) (2Θ(ls − ps)− 1)

+ (2Θ(ps − ks)− 1) (2Θ(ls − ks)− 1)

+ (2Θ(ks − ls)− 1) (2Θ(ps − ls)− 1) = 1 . (4.8)
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(a)

J0

J0 J0

q

q′ q′′

(b) (c) (d) (e)

Figure 7. The diagrams contributing to 〈J (0)(−q)J (0)(−q′)J (0)(−q′′)〉.

The remaining diagram (e) contributes if λ6 6= 0. It gives

(e) = −Nλ6 tan3
(
πλ
2

)
64π3λ3

1

|q||q′||q′′| . (4.9)

Note that 〈J (0)J (0)J (0)〉 is the only 3-point function which receives a contribution from the

(φ†φ)3 vertex in the planar limit. This is since diagram (e), when computed in momentum

space, factorizes into a product of three 2-point functions of J (0) with the inserted operators:

〈J (s)J (s′)J (s′′)〉(e) ∝ 〈J (s)J (0)〉〈J (s′)J (0)〉〈J (s′′)J (0)〉, and these 2-point functions vanish by

conformal invariance unless s = s′ = s′′ = 0.

Summing up all the contributions we obtain

〈J (0)(−q)J (0)(−q′)J (0)(−q′′)〉 =
N

2πλ

[
tan

(
πλ
2

)
cos2

(
πλ
2

) − 1

4
tan3

(
πλ

2

)(
1+

λ6

8π2λ2

)]
1

|q||q′||q′′| ,

(4.10)

which has the correct momentum dependence required by conformal invariance (it is

uniquely determined by the result we computed for q± = q′± = q′′± = 0).

4.3
〈
J (1)J (1)

〉
Next, we compute two correlators that involve J (1).

In this subsection we compute 〈J−(−q)J+〉, with q± = 0.14 For this purpose let us

first compute the J− vertex, namely 〈J−(−q)φ†φ〉 with q± = 0. In fact, it is no more work

to compute the J−···− vertex

〈J−···−(−q)φ†j(k)φi〉 = δijVs(q, k;λ) , (4.11)

for any current J (s) with s > 0, as long as q± = 0. Indeed, in our gauge the bootstrap

equation for this has the same form as the equation for the J (0) vertex (figure 5), since A− =

0 so there are no additional diagrams where a gauge field is connected to J (s). Further,

by Lorentz invariance the free piece in (4.11) is given (when q± = 0) by αs(k
+)s, where

the factor αs depends on the normalization of the current. In computing the connected

14Note that when q± = 0, current conservation implies q3〈J3(q) · · · 〉 = 0 up to contact terms, and

therefore correlators involving the J3 component of J(1) do not contain information that is useful for our

purposes.
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J− J+

q

Figure 8. The diagrams contributing to 〈J−(−q)J+〉.

i j

k J+

q

=U1(q, k;λ) = +

+ +

+ +

4 reflections .

Figure 9. Diagrams of 〈J+φ†φ〉 in which a gauge field is connected to J+.

piece of the bootstrap equation, the only modification to (4.2) is to insert αs(p
+)s in the

integral. The computation carries through, and we find for all s ≥ 1

Vs = αs(k
+)se2iλ̂(arctan(2Λ′)−arctan(2x)) . (4.12)

Note that α1 = 2 for the canonically-normalized J (1),

The 2-point function 〈J−(−q)J+〉 receives the contributions shown in figure 8, where

the circled insertion is the exact vertex given by V1 of (4.12), and the squared insertion is

defined in figure 9: it accounts for the diagrams in which a gauge field A+ is connected to

J+. The squared insertion of figure 9 evaluates to

U1(q3, k;λ) =
k2
s + iλ̂|q3|ks

k+
δji . (4.13)

The exact 2-point function 〈J−(−q)J+〉 is then given by

〈J−(−q)J+〉 = N

∫
ddp

(2π)d
V1(q, p)U1(−q, p+ q)

p2(p+ q)2

→ iN |q3|
16

eπiλ̂ − 1

πλ̂
+
N

4π
Λ . (4.14)

In the second line we took Λ→∞, carefully keeping divergent terms.

This result has two peculiar features. First, the linear divergence is a contact term

that violates conformal invariance. If we denote the background gauge field that couples

to Jµ by Aµ, then this divergence can be subtracted by a mass counterterm AµAµ. The

second peculiar feature of (4.14) is the appearance of a λ-odd part, equal to

iNq3

16

cos(πλ)− 1

πλ
. (4.15)

– 17 –



J
H
E
P
1
2
(
2
0
1
2
)
0
2
8

k

J+

q

=

J+

+

k

p J+

q

Figure 10. The vertex 〈J+(−q)φ†(k)φ〉.

This piece violates parity, while 〈JJ〉 is parity-even in a conformal theory [39, 41]. However,

this piece can come from a contact term 〈Jµ(q)Jν〉 ∼ εµνρq
ρ that is conformally-invariant,

and gives a derivative of a delta function in position space. It corresponds to the appear-

ance of a Chern-Simons term iκ
4π

∫
A∧ dA in the generating functional F [A, . . . ]. In many

cases, contact terms are scheme-dependent and therefore do not contain physical informa-

tion. This is equivalent to saying that their values can be shifted arbitrarily by adding an

appropriate counter-term. In our case this would correspond to shifting κ. However, since

this is a Chern-Simons term we only have the freedom to shift it by an integer amount. The

fractional part of this term (in units of κ) is therefore a physical observable [42]. It would

be interesting to understand if this observable is constrained by the high-spin symmetry,

like the other correlators discussed in [28].

Removing both contact terms, we are left with the parity-even result

〈J−(−q)J+〉 = −N |q|
16

sin(πλ)

πλ
. (4.16)

Note that this also changes sign at λ = 1, consistent with our theory stopping to make

sense (at least as a unitary theory) there.

4.4
〈
J (0)J (1)J (1)

〉
In this section we compute the 3-point function 〈J (0)(−q)J+(−q′)J−(−q′′)〉, with q, q′, q′′

all in the 3-direction. We first need to compute the J+ vertex,

〈J+(−q)φ†j(k)φi〉 = δijV+(q, k;λ) , (4.17)

shown in figure 10. It can be evaluated using (3.16) and (4.13), and the result is

V+(q, k;λ) =
1

4k+

[
4k2

s + q2
3 − q2

3e
−2iλ̂ arctan(2x)

]
. (4.18)

Returning to the 3-point function, the diagrams which contribute to it are shown in

figure 11. In the diagrams that contain a seagull vertex, the final radial integrals cannot

be performed analytically. However, using the step-function relation

Θ(x− y)Θ(y − z) + Θ(y − x)Θ(x− z) = Θ(x− z)Θ(y − z) , (4.19)
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(a)

J0

J+ J−

q

q′ q′′

(b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 11. Diagrams contributing to 〈J (0)(−q)J+(−q′)J−(−q′′)〉.

one can see that these diagrams cancel in triples,

(c) + (d) + (e) = (f) + (g) + (h) = (i) + (j) + (k) = 0 . (4.20)

The remaining diagrams (a), (b) are given by

(a) = 2N

∫
d3p

(2π)3

V0(q, p− q)V+(q′, p)V1(q′′, p+ q′)
p2(p− q)2(p+ q′)2

=
N

π

eπiλ̂
′′

1 + e−πiλ̂

∫ Λ

0
dps e

−2iλ̂ arctan(2y)−2iλ̂′′ arctan(2y′′) 12p2
s + q2 + q′2 + qq′

(4p2
s + q2)(4p2

s + q′′2)

+
N

π

eπiλ̂
′′

1 + e−πiλ̂

iq′
[
1− e−πi(λ̂+λ̂′+λ̂′′)

]
4λq(q + q′)

,

(b) = 8πiλN

∫
d3p

(2π)3

d3k

(2π)3

V0(q, p)V1(q′′, k − q′′)
p2(p+ q)2k2(k − q′′)2

(p+ k)3

(p− k)+

=
N

π

eπiλ̂
′′

1 + e−πiλ̂
q − q′′
q′′

∫ Λ

0
dps

e−2iλ̂ arctan(2y)−2iλ̂′′ arctan(2y′′)

4p2
s + q2

− N

π

q − q′′
4λqq′′

tan

(
πλ̂

2

)
, (4.21)

where now λ̂′ = λ sign(q′), x′ = ks
|q′| , y

′ = ps
|q′| , and similarly for q′′. In writing this we took

Λ → ∞ where possible to simplify the expressions. Since there are no divergences (as we

shall see), this does not change the final result.
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The remaining radial integrals cannot be computed separately, but the integral in the

sum (a) + (b) can be computed analytically. The final result is

〈J (0)(−q)J+(−q′)J−(−q′′)〉 =
N

π

eπiλ̂
′′

1 + e−πiλ̂

iq′
[
1− e−πi(λ̂+λ̂′+λ̂′′)

]
4λq(q + q′)

− N

π

q − q′′
4λqq′′

tan

(
πλ̂

2

)

+
N

π

eπiλ̂
′′

1 + e−πiλ̂
i(q + 2q′)

4λq′(q + q′)

[
1− e−πi(λ̂+λ̂′′)

]
. (4.22)

By conformal invariance, this correlator should have one parity-even and one parity-odd

structure [39]. Let us consider the λ-even and λ-odd parts separately.

4.4.1 Even structure

Let χ ≡ πλ
2 . The λ-even part of (4.22) is

〈·〉λ-even =
N

8πλqq′(q + q′)
1

cos(sign(q)χ)

{
(−q2 + 2qq′ + 2q′2) sin

(
sign(q)χ

)
− q′2 sin

(
sign(q)χ+ 2sign(q′)χ

)
− q′′2 sin

(
sign(q)χ+ 2sign(q′′)χ

)}
. (4.23)

By simple trigonometry we can write this as

N

8

sin(πλ)

πλ

[ |q|
q′q′′

+
|q′|
qq′′

+
|q′′|
qq′

]
+
N

2

sin2
(
πλ
2

)
tan
(
πλ
2

)
πλ

1

|q| . (4.24)

By conformal invariance we expect only a single parity-even structure, so we expect that

the second piece is a contact term. Indeed, it is easy to check that

〈J (0)(−q)JµJν〉 ∼
δµν
|~q| (4.25)

is a conformally-invariant contact term (independent of the second momentum).

4.4.2 Odd structure

Using similar methods, the odd part of (4.22) can be written as

〈·〉λ-odd =
iN

4

sin2
(
πλ
2

)
πλ

[
1

q′′
− 1

q′
+

1

|q|

( |q′′|
q′
− |q

′|
q′′

)]
. (4.26)

In this case it is not important for us whether there is a contact term, because the λ

dependence of the odd structure (which is what we are interested in) cannot be changed

by its presence. Indeed, this λ dependence is determined by the last term in the square

brackets, which cannot be a contact term.

4.5
〈
J (2)J (2)

〉
In this section we compute the correlator 〈T−−(−q)T++〉 with q± = 0. We again introduce

the notation of a squared vertex U2 for T++, shown in figure 12 (similar to figure 9). The

filled-circle vertex is the exact vertex 〈φ†φA+〉, shown in figure 13.

– 20 –



J
H
E
P
1
2
(
2
0
1
2
)
0
2
8

i j

k T++

q

=U2(q, k;λ) = +

+ +

+ +

+ +

5 reflections .

Figure 12. Diagrams of 〈T++φ
†φ〉 in which a gauge field is connected to T++.

3

= + +

Figure 13. Shorthand notation for the exact vertex 〈φ†φA+〉.

We find that

U2(q, k;λ) =
k2
s

6(k+)2

[
3
(
1 + λ2

)
k2
s + 3λ2k3(k3 + q3) + 2iλ

(
2 + λ2

)
ksq3

]
δji . (4.27)

The 2-point function of the stress-energy tensor is then given by figure 8, replacing J− with

T−− and J+ with T++. The exact T−− vertex is given by V2. Using (4.12) and (4.27), the

result is

〈T−−(−q)T++〉 =
N

384πλ

[
3iq3

3

(
1− e2iλ̂ arctan(2Λ′)

)
− 12λq2

3Λ

− 24iλ2q3Λ2 + 16λ(1 + 2λ2)Λ3
]
. (4.28)

The result should contain a single parity-even conformal structure, up to divergences and

contact terms. The divergent pieces in (4.28) can be subtracted by counterterms of the

form Λ∂µgνρ∂
µgνρ, Λ2εµνρg

ρσ∂µgνσ, and Λ3gµνg
µν , where gµν is the linearized background

metric that couples to the stress-tensor. The finite λ-odd piece, proportional to q3
3, can

come from the contact term [42]

〈Tµν(−q)Tρσ〉 ∼
[
εµρλq

λ(qνqσ − q2δνσ) + (µ↔ ν)
]

+ (ρ↔ σ) . (4.29)

The remaining finite λ-even piece is

N |q3|3
128

sin(πλ)

πλ
. (4.30)
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(a)

T−−

J+ J+

q

q′ q′′

(b) (b’) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

Figure 14. Diagrams contributing to 〈T−−(−q)J+(−q′)J+(−q′′)〉. In addition to these, there are

reflections of (i)-(n) about the vertical axis.

4.6
〈
J (2)J (1)J (1)

〉
In this section we compute the correlator 〈T−−(−q)J+(−q′)J+(−q′′)〉, with all external mo-

menta in the 3-direction. We expect two parity-even conformal structures, corresponding

to the free bosonic and fermionic theories, and one parity-odd structure [39].

The diagrams are shown in figure 14. As in the case of 〈J (0)J (1)J (1)〉, all diagrams

that contain the seagull vertex cancel in triples. We are left with (a) + (b) + (b′). After

integrating over the p3 and angular directions, they are given by

(a) =
N

16π
e2iλ̂ arctan 2Λ′

∫ Λ

0
dps

(
24p2

s + q2 + q′2 + q′′2
)

(4p2
s + q2)(4p2

s + q′2)(4p2
s + q′′2)

× (4.31)[
4p2
s + q′2

(
1− e−2iλ̂′ arctan(2y′)

)][
4p2
s + q′′2

(
1− e−2iλ̂′′ arctan(2y′′)

)]
e−2iλ̂ arctan(2y) ,

(b) =
iN

8π
e2iλ̂ arctan 2Λ′(q′′− q)

∫ Λ

0

dps
4p2
s+q2

[
4λps+ iq′′

(
1−e−2iλ̂′′ arctan(2y′′)

)]
e−2iλ̂ arctan(2y) ,

(b′) =
iN

8π
e2iλ̂ arctan 2Λ′(q′− q)

∫ Λ

0

dps
4p2
s + q2

[
4λps + iq′

(
1−e−2iλ̂′ arctan(2y′)

)]
e−2iλ̂ arctan(2y) .

The integral obtained by summing over (a), (b) and (b’) can be computed analytically,

and it has a linear divergence: 3Λ
8π . Subtracting the divergence15 we obtain the 3-point

15This divergence is subtracted by the counter-term g−−A+A+, which is related by SO(3) invariance

to the term g+−A+A− that we already used to subtract the divergence in 〈J+J−〉 (see equation (4.14)).

However, our regularization preserves only SO(2) invariance in the x1− x2 plane (as well as parity duality)

under which these terms are not related. The two subtractions are therefore independent.
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function,

〈T−−(−q)J+(−q′)J+(−q′′)〉 = − iN

32πλ

1

qq′q′′

[
e−πiλ̂

′
(q′4 − q′2q′′2) + e−πiλ̂

′′
(q′′4 − q′2q′′2)+

q′2q′′2e−πi(λ̂
′+λ̂′′) − eπiλ̂q4 + q′q′′(4q′2 + 7q′q′′ + 4q′′2)− 12λ2q′q′′q2

]
. (4.32)

The λ-even part can be written as

〈·〉λ−even = − N

32π

sin(πλ)

λ

[( |q|3
q′q′′

+
|q′|3
qq′′

+
|q′′|3
qq′

)
cos2

(
πλ

2

)
+( |q|3

q′q′′
+
|q′|3
qq′′

+
|q′′|3
qq′
− 2

q′′|q′|+ q′|q′′|
q

)
sin2

(
πλ

2

)]
. (4.33)

Here, the bosonic structure is the one multiplying cos2
(
πλ
2

)
, since it is the one that sur-

vives when taking λ → 0. The fermionic structure multiplies sin2
(
πλ
2

)
, up to possible

contact terms.

The λ-odd part of (4.32) is

〈·〉λ−odd =
Ni

32πλ

[
4(3λ2 + cos(πλ)− 1)q + sin2(πλ)

|q′||q′′|+ q′q′′

q

]
. (4.34)

The first term inside the brackets is a contact term, while the second term is the expected

parity-odd structure.

4.7 Correlators at the critical fixed point

In this section we consider the planar correlation functions in the “critical fixed point”

of the bosonic vector model with Chern-Simons interactions. This fixed point is reached

by starting with the theory we discussed above, turning on the relevant “double-trace”

deformation λ4
2N (φ†φ)2, and flowing to the IR while tuning the IR scalar mass to zero [43, 44].

This is equivalent to adding an auxiliary field σ with a σ(φ†φ) coupling, or performing a

Legendre transform with respect to the operator J (0). Alternatively, one can start with

the usual “critical U(N) model” and couple it to the U(N)k Chern-Simons theory.

In the planar limit the effects of the “double-trace” deformation (J (0))2 are rather

simple. First, the scalar propagator receives corrections involving a chain of scalar loops,

connected by the λ4 vertex, and ending in a tadpole (see figure 15). In the planar limit

one can add gluon lines inside each scalar loop in this chain, such that the scalar loop

has the topology of a disk in double-line notation. These corrections are all power-law

divergent and independent of the scalar momentum. They are subtracted with a mass

counter-term φ†φ.

Second, in correlators of gauge-invariant operators each insertion can be connected to

a similar chain of scalar loops that ends on the rest of the diagram, as shown in figure 16.

In momentum space the scalar loops factorize, and we can use our previous results to

sum over the chains of scalar loops. For instance, using diagrammatics as above, or using

conformal perturbation theory in the large N limit, the 2-point functions in the presence
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Figure 15. Corrections to the scalar propagator in the critical theory, in the planar limit. Gluon

lines can run inside the scalar loops.

Figure 16. Corrections to an insertion of a “single-trace” operator in the critical theory, in the

planar limit. Again, gluon lines can run inside the scalar loops.

of the double-trace deformation can be written as

〈J (s)J (s′)〉λ4 = 〈J (s)J (s′)〉λ4=0

− λ4

N
〈J (s)J (0)〉λ4=0

[ ∞∑
n=0

(
−λ4

N
〈J (0)J (0)〉λ4=0

)n]
〈J (0)J (s′)〉λ4=0 . (4.35)

The second line vanishes unless s = s′ = 0, since 〈J (s)J (0)〉λ4=0 = 0 if s 6= 0 from conformal

invariance. For s = s′ = 0 we can use the exact 2-point function of J (0) (4.4) to sum up

the series,

〈J (0)(−q)J (0)〉λ4 = 〈J (0)(−q)J (0)〉λ4=0

∞∑
n=0

(
−λ4

N
〈J (0)(−q)J (0)〉λ4=0

)n
=
N

λ4

1

1 + 4πλ
tan(πλ2 )

|q|
λ4

. (4.36)

To reach the IR fixed point we take λ4 → ∞, so we expand in |q|
λ4
� 1 and pick up

the leading term (dropping the contact term N/λ4). Defining the scalar operator of the

critical fixed point to be J̃ (0) ≡ λ4J
(0) we obtain that

〈J̃ (0)(−q)J̃ (0)〉crit. = −N 4πλ

tan
(
πλ
2

) |q| , (4.37)

which is the 2-point function of a primary operator of dimension 2 as expected.
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Similarly, the 3-point functions with one scalar operator in the presence of the λ4

deformation are given by

〈J (0)(−q)J (s)J (s′)〉λ4 = 〈J (0)(−q)J (s)J (s′)〉λ4=0

∞∑
n=0

(
−λ4

N
〈J (0)J (0)(−q)〉

)n
IR−→ 〈J (0)(−q)J (s)J (s′)〉λ4=0

4πλ

tan
(
πλ
2

) |q|
λ4

. (4.38)

In particular using (4.24) (dropping the contact term) and (4.26) we obtain,

〈J̃ (0)(−q)J+(−q′)J−(−q′′)〉crit.
λ-even =

N

2

sin(πλ)

tan
(
πλ
2

) [ |q|
q′q′′

+
|q′|
qq′′

+
|q′′|
qq′

]
|q| , (4.39)

〈J̃ (0)(−q)J+(−q′)J−(−q′′)〉crit.
λ-odd =

iN

2
sin(πλ)

[
1

q′′
− 1

q′
+

1

|q|

( |q′′|
q′
− |q

′|
q′′

)]
|q| . (4.40)

By similar methods, the correlator of three scalar operators at the critical fixed point

evaluates to

〈J̃ (0)(−q)J̃ (0)(−q′)J̃ (0)(−q′′)〉crit. ∝ 〈J (0)(−q)J (0)(−q′)J (0)(−q′′)〉λ4=0|q||q′||q′′| . (4.41)

The extra |q||q′||q′′| factor cancels all the momentum dependence of (4.10) so we get a

constant, which is a pure contact term. We therefore obtain that up to contact terms

〈J̃ (0)(−q)J̃ (0)(−q′)J̃ (0)(−q′′)〉crit. = 0 . (4.42)

For λ = 0 this is a standard result for the critical fixed point [45]. The vanishing for all

values of λ is consistent with similar results for the theory of fermions coupled to Chern-

Simons gauge fields, and for the analogous computations in Vasiliev’s theory of gravity [24].

All correlators that do not involve a J (0) insertion remain unchanged at the critical

fixed point in the planar limit.

5 Analysis of the results

Let us summarize the N and λ dependence of the conformal structures that appear in the

various correlators computed in section 4.

2-point functions:

〈J (0)J (0)〉 =
4N tan

(
πλ
2

)
πλ

〈J (0)J (0)〉bos. , (5.1)

〈J (1)J (1)〉 =
2N sin (πλ)

πλ
〈J (1)J (1)〉bos. , (5.2)

〈J (2)J (2)〉 =
2N sin (πλ)

πλ
〈J (2)J (2)〉bos. . (5.3)
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3-point functions:

〈J (0)J (0)J (0)〉 =
4N

πλ

[
tan

(
πλ
2

)
cos2

(
πλ
2

) − 1

4
tan3

(
πλ

2

)(
1 +

λ6

8π2λ2

)]
〈J (0)J (0)J (0)〉bos. , (5.4)

〈J (1)J (1)J (0)〉 =
2N sin (πλ)

πλ
〈J (1)J (1)J (0)〉bos. +

N sin2
(
πλ
2

)
πλ

〈J (1)J (1)J (0)〉odd , (5.5)

〈J (2)J (1)J (1)〉 =
2N sin(πλ) cos2

(
πλ
2

)
πλ

〈J (2)J (1)J (1)〉bos. (5.6)

+
2N sin(πλ) sin2

(
πλ
2

)
πλ

〈J (2)J (1)J (1)〉fer. +
N sin2 (πλ)

πλ
〈J (2)J (1)J (1)〉odd .

The correlators 〈·〉bos., 〈·〉fer. and 〈·〉odd in the above equations were defined around equa-

tion (2.8).16 Note that we computed the correlators only for specific momenta, but using

conformal invariance this is enough to determine the full correlators. One can verify that

when λ→ 0 our correlators indeed go over to those of 2N free real bosons.

5.1 Relation to the results of Maldacena-Zhiboedov

Let us map our microscopic couplings N , λ to the parameters Ñ , λ̃ of [28], by comparing

our correlators to the ones we reviewed in section 2.1. In [28] the normalization of the

energy-momentum tensor was chosen such that its 2-point function matches that of Ñ free

real scalar fields. Our stress-tensor is canonically normalized at any value of λ, and since

we can determine the overall normalization by requiring that in the λ → 0 limit we have

2N free real scalar fields, we find from (5.3)

Ñ = 2N
sin (πλ)

πλ
. (5.7)

The result (5.2) is then also consistent with (2.9), providing a consistency check on the

assumption that the results of [28] hold also for the odd-spin currents. Our other results

will provide additional consistency checks for this assumption. We interpret Ñ as the

effective number of degrees of freedom in our theory, since 〈TT 〉 is one way to define this

number for a conformal theory; we find that it decreases as we increase the coupling, as

expected, and that it goes to zero in the λ → 1 limit (which is an infinite coupling limit

using the Yang-Mills regularization to define the Chern-Simons coupling).

Next, we would like to compute λ̃, by comparing our correlators to the expressions

of [28] for “quasi-boson” theories, written in (2.9), (2.10) and (2.12). Let us define the

normalized correlator〈
J (s1)J (s2)J (s3)

〉norm.
≡

〈
J (s1)J (s2)J (s3)

〉√〈
J (s1)J (s1)

〉 〈
J (s2)J (s2)

〉 〈
J (s3)J (s3)

〉 . (5.8)

16A correlator which involves J(1) in the free theory of a real field (boson or fermion), is defined as 1/2 of

the same correlator for a complex field. The vector current and energy-momentum tensor of a free complex

fermion are defined as Jµ = ψ̄γµψ, Tµν = 1
2
ψ̄γ(µ

←→
∂ ν)ψ. With these normalizations the 2-point functions of

Jµ and Tµν in the free boson and fermion theories agree.
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Comparing our results to equations (2.9), (2.10) and (2.12) we have

〈J (1)J (1)J (0)〉norm.
bos. ∝

[
Ñ(1 + λ̃2)

]−1/2
∝
(
N tan

(
πλ
2

)
πλ

)−1/2

. (5.9)

Using (5.7), we then find that

1 + λ̃2 ∝ 1

cos2
(
πλ
2

) . (5.10)

The proportionality constant can be fixed, for instance, by requiring that λ = 0 corresponds

to λ̃ = 0. The result is

λ̃ = tan

(
πλ

2

)
, (5.11)

where we have arbitrarily fixed the sign by assuming that λ and λ̃ have the same sign.

One can now compute several other normalized correlators to check the results (5.7)

and (5.11). We find

〈J (1)J (1)J (0)〉norm.
odd ∝

[
πλ tan

(
πλ
2

)
N

]1/2

,

〈TJ (1)J (1)〉norm.
bos. ∝

[
πλ

N sin(πλ)

]1/2

cos2

(
πλ

2

)
, (5.12)

〈TJ (1)J (1)〉norm.
fer. ∝

[
πλ

Nsin(πλ)

]1/2

sin2

(
πλ

2

)
, 〈TJ (1)J (1)〉norm.

odd ∝
[
πλ sin(πλ)

N

]1/2

.

All of these results are precisely consistent with the results of [28], using the values of Ñ

and λ̃ computed above.

In the “quasi-boson” theory we also have the parameter a3 which is the coefficient of

the triple-trace term in ∂ · J (4). This term affects only 〈J (0)J (0)J (0)〉. Expressing (4.4)

and (4.10) in terms of λ̃ and Ñ we obtain

〈J (0)J (0)〉 ∝ Ñ(1 + λ̃2) , (5.13)

〈J (0)J (0)J (0)〉 ∝ Ñ(1 + λ̃2)

[
1 +

λ̃2

4

(
3− λ6

8π2λ2

)]
. (5.14)

From the 2-point function we see that to match with the normalization of [28] (see (2.10))

we must have J (0) = J
(0)
MZ(1 + λ̃2), and we then obtain from (5.14)

〈J (0)
MZJ

(0)
MZJ

(0)
MZ〉 ∝

Ñ

(1 + λ̃2)2

[
1 +

λ̃2

4

(
3− λ6

8π2λ2

)]
. (5.15)

Therefore, matching to (2.12) we find

a3 ∝
λ̃2(1 + λ̃2)

Ñ2

(
3− λ6

8π2λ2

)
=

π2

16N2 cos6(πλ2 )

(
3λ2 − λ6

8π2

)
. (5.16)

In particular, for λ6 = 24π2λ2 we get a3 = 0.

– 27 –



J
H
E
P
1
2
(
2
0
1
2
)
0
2
8

We can similarly map our results of section 4.7 for the critical fixed point to the

results of [28] for “quasi-fermion” theories (see the discussion below (2.13)). Since 〈TT 〉 is

the same in the critical and non-critical theories, Ñ remains unchanged. To extract λ̃qf of

the quasi-fermionic theory consider the normalized correlator (see (4.37), (4.39))

〈J (1)J (1)J̃ (0)〉norm.
crit. bos. ∝

(
λ̃2

qf

Ñ(1 + λ̃2
qf)

)1/2

∝
(

πλ

N tan
(
πλ
2

))1/2

. (5.17)

Using (5.7) in the above equation gives the relation

λ̃2
qf

1 + λ̃2
qf

∝ cos2

(
πλ

2

)
. (5.18)

Now, the λ → 0 limit should correspond to λ̃qf → ∞. This fixes the proportionality

constant and we obtain

λ̃qf = cot

(
πλ

2

)
. (5.19)

As we did above for the “quasi-boson” case, one can write down all the other normalized

structures that we computed in section 4.7, and verify that they are all consistent with the

results of [28].

So far we have matched the values of physical parameters to those of Maldacena and

Zhiboedov using correlators at separated points. High-spin symmetry then determines

all the 3-point functions at separated points. As we saw in section 4.3, our theory also

contains contact terms which contain physical information. It would be interesting to

understand whether the high-spin symmetry constrains them, and to compare them to the

fermionic theory.

5.2 The relation between the scalar and fermionic theories

It was shown in [28] that the correlation functions of the “quasi-boson” theory, which is

equal to the free bosonic theory as λ̃→ 0, become equal to those of (the Legendre transform

of) the free fermionic theory as λ̃ → ∞. Similarly, the correlators of the “quasi-fermion”

theory (which is equal to the free fermion theory as λ̃qf → 0) become those of the critical

O(N) (or U(N)) scalar model when λ̃qf →∞.

Our results above imply that the limit of λ̃ → ∞ corresponds to λ → 1, which is

the maximal allowed coupling when regularizing the Chern-Simons theory with Yang-Mills

terms. In this limit our results should thus correspond to a Legendre transform of the

theory of Nfer. free complex fermions, for some value of Nfer.. Let us determine this value

by matching 〈TT 〉 between the two theories (note that in [28], the normalization is such

that this correlator is the same for a free fermion and for a free boson).

In the free fermion theory (and in its Legendre transform), we have simply 〈TT 〉 =

2Nfer.〈TT 〉1, where 〈TT 〉1 is the result for a single real free boson or fermion. In our

bosonic theory we need to take the limit λ→ 1 while simultaneously taking N →∞. We

can parameterize this limit by keeping kYM = k−N fixed while taking N →∞. From (5.3)
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we then see that in this limit Ñ → 2kYM. Thus, we expect our theory to go over to the

Legendre transform of the theory of Nfer. = kYM free complex fermions in this limit. It is

nice to see that this result is always an integer, although since we derived it only in the

large N limit with fixed N/k, it could be subject to shifts of order one (which must still

give an integer).

Next, let us determine the Chern-Simons level of this fermionic theory when we move

slightly away from the free fermion point. In our bosonic theory, using (5.11) and taking

the λ→ 1 limit as defined above, we see that λ̃ ' 2
π(1−λ) . In the fermionic U(Nfer.) theory

at weak coupling, λ̃qf was normalized in [28] so that λ̃qf = π
2
Nfer.
kfer.

(see equation (4.25)

of [28]). Since 3-point functions of operators with s > 0 are independent of the Legendre

transform in the fermionic theory, we can use this result also for the Legendre-transformed

theory, but first we must translate from this “quasi-fermionic” variable λ̃qf to the “quasi-

bosonic” variable λ̃ used above. Matching the high-spin correlators (2.12), (2.13) (which

are independent of the Legendre transform in the large N limit), we find that they are

related by λ̃ = 1/λ̃qf, and we then find that kfer. = k (up to a possible sign17). This implies

that in the large N limit, the theory of N scalars coupled to a U(N)k Chern-Simons theory

is equivalent to the (Legendre transform of the) theory of (k − N) fermions coupled to

a U(k − N)k Chern-Simons theory. If we translate the Chern-Simons level to the one

defined using the Yang-Mills regularization, we obtain that the theory of N scalars coupled

to a U(N)kYM
Chern-Simons theory is equivalent in the large N limit to the (Legendre

transform of the) theory of kYM fermions coupled to a U(kYM)N Chern-Simons theory.

As a first consistency check on this statement, note that the Chern-Simons theories

(without the matter) that we find on both sides of this relation are equivalent by level-

rank duality [30–32] (this is true even at finite N , and certainly at large N). This is an

important consistency check on the duality, since in the large N limit, the computations

of many objects in these theories (like the S3-partition function or correlation functions

of Wilson lines) are dominated by the Chern-Simons contributions, which scale as N2,

and these must agree for the duality to make sense. Moreover, the level-rank duality of

Chern-Simons theories exchanges Wilson lines in symmetric representations with those

in anti-symmetric representations, which meshes well with the exchange of scalars with

fermions. It would be interesting to see if one could perhaps derive the scalar-fermion

duality by integrating out the scalars in one theory and the fermions in the other theory

(at least at large N), expressing the results as correlation functions of Wilson lines in the

pure Chern-Simons theory (see [46] and references therein), and seeing if these correlation

functions are related by level-rank duality. It would be interesting to perform further

tests of the duality, for instance by computing the effective potential on both sides, or by

comparing the fractional contact term coefficients mentioned above.

The duality described above may be viewed as a large N version of bosonization in

three dimensions; a theory of fermions coupled to a Chern-Simons theory is described in a

purely bosonic language (the theory of fermions without any coupling to Chern-Simons is

17This sign can be determined by comparing the signs of the one-loop corrections to the three-point

functions of currents in the bosonic and fermionic theories, but we will not do this here.
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described here as the infinite coupling limit of a bosonic theory). It is interesting to ask

if this bosonization could be an exact equivalence also for finite values of N . Since the

duality between the bosonic and fermionic theories exchanges weak and strong coupling,

it is very difficult to test if this is true (given that we do not know how to perform exact

computations at finite N).18 In two dimensional bosonization we know how to construct

the fermion operators as solitons in the bosonic theory, and to prove the duality rigorously,

but it is not clear how to do this in our case. In supersymmetric theories we can test

similar dualities by comparing moduli spaces, chiral rings, and so on, but we do not have

this privilege in our case. It is interesting to note that the transformation of the Chern-

Simons group in our theory is the same as that of the Seiberg-like duality found in [34]

for N = 2 supersymmetric Chern-Simons-matter theories (up to a shift by the number

of flavors Nf which is not visible in our large N limit); of course in that case both sides

contain both scalars and fermions coupled to the Chern-Simons theory, while in our case we

have only scalars on one side and only fermions on the other side. It is interesting to ask19

if the scalar-fermion duality could perhaps be derived by flowing from the supersymmetric

duality, in which case we could confirm its validity for finite N (since the supersymmetric

duality is believed to be valid also at finite N).

One test that we can perform at finite N involves deformations of our theories. In this

discussion, for simplicity, we use the definition of the Chern-Simons couplings using the

Yang-Mills regularization. First, note that the fermionic theory we discussed cannot really

be at level kfer. = N , since in the presence of one flavor the level must be half-integer for the

theory to be gauge-invariant [47–49]. Let us assume that the correct level is kfer. = N − 1
2 .

Now, let us start with the fermionic theory coupled to a U(kYM)N−1/2 Chern-Simons theory,

and deform it by a mass term to the fermions, Mψ̄aψa. At scales below M we can integrate

out the fermions, and remain with a pure Chern-Simons theory, whose level depends on

the sign of M [47–49]. For one sign we end up with a (topological) U(kYM)N Chern-Simons

theory, and for the other sign with a U(kYM)N−1 Chern-Simons theory.

For the duality to be valid also at finite N , we must obtain the same low-energy theory

also on the bosonic side. On that side we start with the critical bosonic theory, which can be

viewed as the deformation of a theory of scalars coupled to U(N)kYM
by σφ†φ, and deform

it by Mσ. The auxiliary field σ now serves as a Lagrange multiplier, enforcing φ†φ = −M ,

and we need to understand the behavior of the bosonic theory with this constraint. For

large values of N and any value of λ, one can show that for positive M the bosonic theory

has a stable vacuum with unbroken U(N), in which the scalars are massive, so that at low

energies we obtain the U(N)kYM
pure Chern-Simons theory. For negative M there is no

such vacuum, but there is an alternative vacuum in which one of the scalars condenses, and

the gauge symmetry is broken to U(N − 1). In this case we find at weak coupling that the

other (2N − 1) gauge bosons become massive and dynamical (by swallowing scalar fields),

18In the bosonic theory at finite N , or in the Legendre transform of the fermionic theory, the classically

marginal coupling λ6 has a non-trivial beta function and should be taken to its fixed point. It was shown

in [25] that such an IR-stable fixed point exists at large N and small λ, and it would be interesting to

understand exactly when it exists.
19We thank D. Kutasov for suggesting this.
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as does the remaining real scalar, so we obtain at low energies the U(N−1)kYM
pure Chern-

Simons theory. These computations are done assuming that N is large, and in some cases

also that the coupling constant is small, but since the low-energy theory is a topological

theory labeled by discrete parameters, we expect to find the same low-energy theory for any

N and k. The two low-energy theories that we find here, for the two signs ofM , are precisely

equivalent (by level-rank duality) to the two theories that we found in the fermionic case,

thus providing weak evidence for the validity of the bosonization also at finite N .

It is natural to generalize to the case where we have Nf flavors of massless

scalars/fermions in the fundamental representation of some U(N) group. The compu-

tations of the large N correlation functions that we computed above for this case are a

straightforward generalization of our computations in the previous sections, though now

we have N2
f operators of each spin, so it is not a priori obvious if the results of [28] can be

applied.20 In any case, the natural conjecture following from the discussion of the previ-

ous paragraph is that (using the Yang-Mills definition for the Chern-Simons coupling) the

theory of Nf ·N scalars coupled to the U(N)kYM
Chern-Simons theory is equivalent (up to

a Legendre transform) to the theory of Nf · kYM fermions coupled to the U(kYM)N−Nf/2
Chern-Simons theory. Translating back to our definition of the coupling, we map the the-

ory of Nf scalars in the fundamental representation coupled to U(N)k to the theory of

Nf fermions in the fundamental representation coupled to U(k − N)k−Nf/2. This is very

similar to the supersymmetric dualities of [34]. One difference is an overall shift in k by

Nf/2, which is probably related to the one-loop contributions of the fermionic fields to

k. Another difference is taking Nf/2 → Nf , which is related to the fact that in [34] Nf

was the number of fundamental chiral multiplets, and also the number of anti-fundamental

chiral multiplets, so the overall number of flavor fermions was doubled. A final difference

is that in the supersymmetric case the sign of k changes under the duality; above we did

not fix this sign, and it is plausible that also in the scalar-fermion duality one of the sides

should have a negative Chern-Simons coupling (or equivalently, that if we keep positive

Chern-Simons couplings, then the two sides are related by a parity transformation).

Note that the results we present here are much stronger than most previous results

on bosonization in three dimensions (see, for instance, [50–57]), which claimed that the

low-energy limit of the theory of massive fermions coupling to a gauge field is given by a

Chern-Simons theory (and had non-local bosonic actions at higher energies). In our case

we claim that for massless scalars/fermions we have an exact equivalence of conformal field

theories. For the special case of N = 1 and k = 1, our duality seems very similar to the

duality studied in [58–60]; it would be interesting to understand this better, and to see if

the methods of these papers can be used to study our duality more generally.

5.3 Comments on the thermal free energy

As described above, the duality is completely consistent with all correlation function com-

putations done to date; preliminary computations of exact planar 2-point and 3-point corre-

20There are also new correlation functions that can appear when Nf > 1, such as terms proportional to

fABC in 〈J(1)AJ(1)BJ(1)C〉 (see [39]), and it would be interesting to compute them and to check if they are

consistent with the duality.
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lators in the fermionic theory are also consistent with the duality presented in the previous

subsection [33]. However, the duality is not consistent (already at large N) with the form

of the thermal free energy of the fermionic theory, computed in [24], as this form suggests

a different relation between the bosonic and fermionic theories (as noted in [24, 28]). It is

also not consistent with the thermal free energy of the scalar theory [61, 62] if one computes

it by similar methods, as this gives a result that does not even go to zero when λ→ 1. This

is problematic independently of the duality, since we saw above that 〈TµνTρσ〉 vanishes in

this limit, so the number of degrees of freedom should go to zero, and this is not visible in

the naive computation of the thermal free energy.

Our computations of the correlation functions pass many consistency checks; in partic-

ular they agree with the results of [28] which were computed by completely different meth-

ods. On the other hand, there are so far no consistency checks for the thermal free energy

computations. Thus, we claim that the existing computations of the thermal free energy

are not correct. One possible problem is the light-cone gauge which these computations

use. This is defined by an analytic continuation from Minkowski space, and it is plausible

that such a continuation gives correct results for correlation functions (which are analytic

in the momenta), but not for the Euclidean partition function compactified on a circle.

Another possible problem involves the large N limit. The computations in question

are performed in the limit of large N and large volume, and they take the fermions to

be anti-periodic on the Euclidean thermal circle, and the scalars to be periodic on the

circle, namely they assume that the holonomy of the Chern-Simons gauge field around the

Euclidean thermal circle is trivial (A0 = 0). This assumption is expected to be correct at

very high temperatures. It is also valid if we take the large volume limit first, so that the

dynamics of the zero mode of the holonomy is decoupled. However, it is not clear if it is

valid when we take the large N limit first. In particular, as discussed in [63], in vector

models coupled to Chern-Simons theories, the holonomy becomes trivial (at least on S2)

only for very large temperatures T , obeying V T 2 � N (where V is the spatial volume). In

the free theory this was explicitly checked in [63], where it was found that for temperatures

that do not scale with N the holonomy is actually uniformly spread out on the thermal

circle in the large N limit, leading to a vanishing free energy at order N . We expect this

to remain true also for finite λ.

The computations of the thermal free energy in the Chern-Simons-matter theories

in [24, 61, 62] use the standard ’t Hooft limit, where only planar (disk) diagrams are kept.

This is valid when we take the large N limit first, keeping everything else (like the volume

or temperature) fixed, and take any other limits (like large volume) later. As described

above, if we do this for the theory on S2 we land in the low-temperature phase, where the

free energy vanishes at order N , so it does not give any useful comparisons between the

bosonic and fermionic theories. (On other manifolds, like higher genus Riemann surfaces,

the situation is more subtle since the Chern-Simons theory has many degenerate ground

states [64], and we will not discuss this case here.) In order to get a non-vanishing free

energy at order N we need to be in the high temperature phase, with V T 2 � N , but then

it is not obvious that the standard ’t Hooft large N expansion applies. This expansion is

particularly subtle in our case, in which the leading order term, of order N2, is given by
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a topological theory. For instance, one may worry that for any λ > 0 connected diagrams

with n scalar loops could scale as n powers of the volume, since in the pure Chern-Simons

theory the correlators of n Wilson lines are independent of their positions, and this power

of (V T 2)n could overcome the suppression by N2/Nn in the high temperature phase.21 It

would be interesting to try to fix the thermal free energy computation, and to use it to

test the duality. Similarly, it would be interesting if (as in supersymmetric theories [65])

one could find a way to compute exactly the free energy of our theories on a Euclidean S3

(at least in the large N limit), as this could provide another useful test of the duality; this

free energy for our theories at weak coupling may be found in [66].
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