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scalar limits of massless amplitudes at the origin of moduli space can be used to determine

Coulomb-branch amplitudes to leading order in the mass. This is demonstrated in numer-

ous examples. 2) We find compact explicit expressions for several towers of tree-level am-

plitudes, including scattering of two massive W -bosons with any number of positive helicity

gluons, valid for all values of the mass. 3) We present the general structure of superampli-

tudes on the Coulomb branch. For example, the n-point “MHV-band” superamplitude is

proportional to a Grassmann polynomial of mixed degree 4 to 12, which is uniquely deter-

mined by supersymmetry. We find explicit tree-level superamplitudes for this MHV band

and for other simple sectors of the theory. 4) Dual conformal generators are constructed,

and we explore the dual conformal properties of the simplest massive amplitudes.

Our compact expressions for amplitudes and superamplitudes should be of both the-
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truncations of the theory with less supersymmetry.
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1 Introduction

Planar on-shell scattering amplitudes of massless particles in N = 4 SYM enjoy numerous

remarkable properties: they are much simpler than Feynman rules indicate; they are well-

behaved under both ordinary and dual superconformal symmetry [1, 2]; they can be pack-

aged into superamplitudes that make these symmetries manifest [3–7]; and compellingly

simple loop-order expressions have been obtained both at the level of the integrand [8–10]

and of the final integrated result [11, 12]. Their good looks and good behavior are likely due

to the underlying integrable structure of the planar sector of N = 4 SYM. So is there any

hope that scattering processes involving massive particles might enjoy similar properties?

— or even be simple? Introduction of massive particles breaks the conformal symmetry,

and may well wreck the simplicity of amplitudes. The goal of this paper is to show that

many attractive results can be achieved for tree-level amplitudes with massive particles,

and that they arise from a natural connection to the massless amplitudes.
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An ideal laboratory for studying amplitudes with massive external states is N = 4

SYM on the Coulomb branch. To date, essentially all developments regarding on-shell

scattering amplitudes in N = 4 SYM have focused on the theory at the origin of moduli

space where all particles are massless. Recent work [13–16] used states on the Coulomb

branch to regularize IR divergences of the loop amplitudes, and in doing so it was shown

that a version of dual conformal symmetry survives as long as the masses also transform

appropriately. Until now, however, there has been no systematic study of Coulomb-branch

amplitudes with massive external states.1 In this work we initiate such a systematic analysis

of massive tree-level amplitudes.

We push the theory onto the Coulomb branch by letting some of the scalars in the

theory acquire a vacuum expectation value (vev); our choice of vevs leads to a higgsing of

the U(N +M) gauge group to U(N)×U(M) and breaks the global R-symmetry SU(4)→
Sp(4).2 The massive N = 4 multiplets contain W-bosons and their SUSY partners. Thus

the familiar helicity amplitudes must be generalized to include massive external lines, and

there will be new classes of amplitudes that vanish in the m → 0 limit. This includes

“ultra-helicity-violating” (UHV) amplitudes with only one negative-helicity particle, as

well as SU(4)R-violating amplitudes. Just as MHV amplitudes in massless N = 4 SYM

take an intriguingly simple explicit form, we derive simple all-order expressions for UHV

and maximally SU(4)R-violating amplitudes using BCFW recursion [29, 30].

As an example of such massive amplitudes, let us present our result for the all-n tower

of tree-level W -W -gluon amplitudes:

〈
W−1 W

+
2 g

+
3 g

+
4 · · · g

+
n

〉
= −

m2〈q 1⊥〉2 [3|
∏n−1
i=4 (m2 − xi2x2,i+1)|n]

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉
∏n
i=4(x

2
2i +m2)

. (1.1)

Here we have introduced xij = pi + pi+1 + · · ·+ pj−1. The ⊥ on the spinors of the massive

lines 1 and 2 refers to the decomposition of their momenta pi into two null directions,

namely p⊥i and a reference vector q. This massive spinor helicity formalism was developed

in [31, 32], and we review its essentials in section 2. Note that the amplitude (1.1) has

familiar little-group scaling properties. We obtained (1.1) via a BCFW [4, 3〉-shift, but in

fact the expression differs only by an overall factor from a formula found in [33] for the

scattering of 2 scalars with n−2 positive helicity gluons. Indeed, this factor can be inferred

as a simple consequence of the supersymmetric Ward identities.3

The concise form of the all-n tower (1.1) suggests that the simplicity of amplitudes

at the origin of moduli space persists as we venture onto the Coulomb branch. Indeed,

there are several reasons why we expect amplitudes on the Coulomb branch of N = 4

SYM to be simple. One is, of course, the maximal supersymmetry, but there is another —

1That is not to say, of course, that no progress has been made; for preliminary discussions of scattering

amplitudes on the Coulomb branch, see in particular [17, 18]. For the study of massive amplitudes using

recursion relations in other theories, see for example [19–26, 18, 27, 28].
2Most of our results immediately carry over to the more general symmetry-breaking pattern U(

∑
iNi)→∏

iU(Ni) for the gauge group, and SU(4)R→SU(2)×SU(2) for the R-symmetry.
3Note also that all-n results for certain other amplitudes with two massive states have been given

previously in the literature [34, 35], but in a different representation that involves quite elaborate sums.

We thank M. Peskin for bringing this work to our attention.
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perhaps more interesting — reason. Since the masses are proportional to the scalar vevs,

the small-mass4 limit takes us close to the theory at the origin of moduli space; thus at

least in this limit the massive amplitudes should be simple. Indeed, the soft-momentum

limits of massless scalars at the origin of moduli space probe the physics on the Coulomb

branch. Hence we propose a precise connection between the (multi-)soft-scalar limits of the

massless amplitudes at the origin of moduli-space and the Coulomb-branch amplitudes in

the small-mass limit!

We demonstrate this connection in several explicit examples. To illustrate the idea,

consider the n-point amplitude
〈
W−W

+
φ34 g+ · · · g+

〉
n

of two conjugate massive W -

bosons, one massless scalar and n−3 gluons. This amplitude vanishes in the massless

limit where it is forbidden by SU(4) R-symmetry; the broken R-symmetry allows it to be

non-vanishing on the Coulomb branch. For small mass, the leading O(m)-term can be

reproduced exactly from the soft scalar limit ε→ 0 of the massless (n+1)-point amplitude〈
g− φ12εq g

+ φ34 g+ · · · g+
〉
n+1

. Furthermore, in the ε→ 0 limit, the (n+1)-point amplitude

leaves behind information about the direction q of the momentum of the scalar: this q

is precisely the reference vector introduced on the Coulomb branch to define a basis of

polarization vectors for W bosons. Thus we recover a nice physical interpretation of the

null vector q that was originally introduced as a purely technical tool. Our proposal is that

n-point amplitudes with leading small-mass behavior O(ms) match the symmetrized s-soft

scalar limit of (n+s)-point amplitudes at the origin of moduli space. This proposal is borne

out by a variety of explicit examples. The examples in this work match Coulomb-branch

amplitudes to leading order in the mass, but one can actually recover the entire massive

amplitude from an infinite sum of soft-scalar amplitudes, as shown in [36].

It is natural to package the massive amplitudes together using the unbroken N = 4

supersymmetry of the Coulomb branch. Thus we commence the study of massive Coulomb-

branch superamplitudes.5 The W -W -gluon amplitude (1.1) vanishes in the massless limit,

since the SUSY Ward identities for massless amplitudes forbid vector amplitudes 〈++· · ·+〉
and 〈−+· · ·+〉. For massive amplitudes, 〈++· · ·+〉must still vanish in a helicity basis with

only one reference vector q [41], but 〈− + · · ·+〉 is allowed. The “ultra-helicity-violating”

(UHV) amplitudes 〈−+ · · ·+〉 are therefore the simplest ones on the Coulomb branch, just

like the Parke-Taylor amplitudes [42] are the simplest ones at the origin of moduli space.

Unlike amplitudes at the origin of moduli space, however, their encapsulation in superam-

plitudes is somewhat subtle. Recall that for the massless case, supersymmetry does not

mix amplitudes in different NkMHV sectors, so the SUSY and R-symmetry constraints can

be solved independently sector-by-sector, and the result can be encoded in superamplitudes

of Grassmann degree 4(k + 2). In contrast, the UHV amplitudes on the Coulomb branch

correspond to superamplitude Grassmann polynomials of degree 4, which does not itself

close under supersymmetry. Instead it requires additional contributions of degree 6, 8, 10,

4Throughout this paper, we consider masses to be small when they are small compared to the momentum-

invariants of the scattering process.
5Since we want to recover the simplicity of massless amplitudes in the massless limit, we choose a chiral

representation of the superamplitude. This is to be contrasted with the non-chiral representations [18, 37]

that arise directly from a compactification of the 6d superamplitudes of [38–40].
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and 12. (We are assuming that an SU(2) × SU(2) subgroup of the SU(4) R-symmetry is

preserved, hence we admit only even orders in the Grassmann variables.) We call the re-

sulting superamplitude the “MHV-band” since it reduces to the familiar MHV Grassmann

delta-function δ(8)(Q̃) in the massless limit.

We show that the combination of SUSY and SU(2) × SU(2) constraints determines

the MHV band superamplitude completely up to an overall factor, which can be fixed

by projecting out any amplitude; thus for the case of just two adjacent massive states,

we fix the entire MHV-band using the UHV amplitude (1.1). The result can be written

compactly as

AMHV−band
n = −

[3|
∏n−1
i=4 [m2−xi2x2,i+1]|n]

〈1⊥2⊥〉2〈34〉〈45〉 · · · 〈n−1, n〉
∏n
i=4(x

2
2i+m

2)

×
[
δ(4)
(
|i⊥〉ηia

)
+

m〈1⊥2⊥〉
〈q1⊥〉〈q2⊥〉

δ(2)
(
〈qi⊥〉ηia

)]2
×
[
1− [1⊥q][2⊥q]

m[1⊥2⊥]
δ(2)
(
miηia
[i⊥q]

)]2
(1.2)

for a particular choice6 of the reference vector q. The squares are understood as a product

of two factors corresponding to the two SU(2)’s. This superamplitude includes amplitudes

with any two particles from the massive multiplet on lines 1 and 2, including longitudinal

polarizations of the W -bosons, and we specify how to extract them. The superamplitude

and the massive spinor helicity formalism can be encoded in Mathematica, rendering it

easy to project out any desired amplitude.

Given that the MHV-band superamplitude is an inhomogeneous η-polynomial of degree

4 through 12, it is natural to wonder how the massive analogues of NkMHV superamplitudes

are structured. We find that these higher bands are inhomogeneous η-polynomials of

increasing degree, but constant “width”. Each band overlaps with its adjacent bands.

For example, the NMHV-band involves η-polynomials of degree 8 through 16, so that

it overlaps with part of the MHV band. This means that this and higher-bands must

also be determined as needed in order to extract amplitudes associated with η-degrees

8 or higher. Also, the SU(2) × SU(2) R-symmetry structure allows us to assign distinct

NkMHV level to each of the two factors of SU(2). At 6-point, for example, there exist

additional MHV×NMHV and MHV×MHV bands, which must vanish in the massless limit.

The general superamplitude structure is illustrated in figure 1. We will discuss the SUSY

structure in further detail in section 4; let us just mention here that the reason the sectors

extend into bands is closely related to the fact that the SUSY algebra on the Coulomb

branch has a central charge [43, 44]. The corresponding on-shell supercharges Qa and Q̃a
annihilate the MHV-band superamplitude (1.2).

Having established the band structure of superamplitudes on the Coulomb branch,

we compute a variety of superamplitudes involving either two or arbitrary numbers of

massive lines. In particular, we present an extremely compact superamplitude expression

6Here q is constrained to satisfy q · (p1 + p2) = 0. This choice leads to particularly simple expressions,

see section 4.
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Figure 1. The structure of superamplitudes on the Coulomb branch. We can assign a separate

NkMHV level to the two factors of SU(2) corresponding to ηi1, ηi2 and ηi3, ηi4. The full Coulomb-

branch superamplitude can then be decomposed into NkMHV× Nk′
MHV superamplitudes.

for the maximally-SU(4)R-violating MHV×MHV band with two adjacent massive lines, and

fairly simple CSW-type expressions for all superamplitudes that are MHV or MHV with

respect to one of the two SU(2) sectors. The latter is valid for any number of massive

lines. We also present the special case of the 3-point superamplitude; it turns out that

supersymmetry alone fixes it completely — including the relative normalization of the

MHV, MHV and MHV×MHV bands. With these superamplitudes in hand, we extend

the connection between soft-scalar limits of massless amplitudes and small-mass limits of

Coulomb-branch amplitudes to the full superamplitudes.

These excursions onto the Coulomb branch are all realized constructively in four dimen-

sions. However, we may also recapture many of the same results in a somewhat different

light by the reduction of maximal SYM in higher dimensions. In particular, N = 4 SYM

amplitudes on the Coulomb branch can be obtained through the dimensional reduction

of N = 1 SYM in ten dimensions or N = (1, 1) SYM in six dimensions, both of which

have been described in terms of a spinor helicity formalism [45, 46]. We focus on the

4d-6d connection, which suffices to capture all the Coulomb branch vacua preserving an

SU(2) × SU(2) R-symmetry. Massless amplitudes in N = (1, 1) SYM can be constructed

using BFCW recursion relations, and at this time explicit results have been found for

3, 4, 5-point superamplitudes [38–40]. The 4- and 5-components of the 6d momenta are

interpreted as (complex) masses in 4d: p4± ip5 = m±. Reduction of the 6d on-shell super-

field formalism [38–40, 47] results in a non-chiral formulation of the 4d superamplitudes,

but this can in principle be converted to the chiral formulation by a particular Grassmann

Fourier transform [47, 48]. We have verified numerically that the 4-point superamplitude

– 5 –
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in 6d matches the corresponding MHV-band superamplitude in 4d, and find in many cases

that the 6d picture provides a natural organizing principle for our 4d results.

Finally, let us mention that much progress on massless N = 4 amplitudes was ob-

tained from the Yangian structure [49], of which dual conformal symmetry constitutes one

level. It is known that on-shell tree amplitudes of 6d N = (1, 1) have dual conformal

symmetry [38–40] and that those of the Coulomb branch also do, again provided that the

masses transform [13, 38]. We probe the dual conformal transformation properties of am-

plitudes on the Coulomb branch and write some of our all-n amplitudes in a manifestly

dual conformal covariant way, albeit with ambiguous weights.

This paper is organized as follows. In section 2 we set up notation and present explicit

examples for helicity amplitudes on the Coulomb branch. In particular, we present our

results for UHV and maximally-SU(4)R-violating amplitudes with adjacent massive legs

for arbitrary n. In section 3, we present our proposal for the computation of Coulomb-

branch amplitudes from the soft-scalar limits of massive amplitudes, which we illustrate

with various examples. In section 4, we introduce Coulomb-branch superamplitudes; we

discuss their general structure, how they simplify for a smart choice of reference vector q,

and the special case of the 3-point superamplitude. We also present the more elaborate

example of a match between the s-soft scalar limit of a massless superamplitude with

the leading order ms term of a massive amplitude, for any s. In section 5, we derive

a CSW form [50] for the MHV×NkMHV band superamplitudes for arbitrary masses. In

section 6, we discuss massive dual conformal symmetry. In section 7 we outline avenues

for future work.

2 Explicit amplitudes on the Coulomb branch

In this section, we begin our study of amplitudes on the Coulomb branch of N = 4 SYM

with a set of explicit examples. These examples are chosen to illustrate the physical aspects

that distinguish Coulomb-branch amplitudes from the amplitudes at the origin of moduli

space, for instance R-symmetry breaking and the presence of longitudinal vector bosons.

To set the stage, consider the brane picture with a stack of (N+M) D3-branes [51, 13].

Let us separate M branes from the others; obviously this breaks the U(N+M) gauge group

to U(N)×U(M). In this paper, we consider the simplest scenario with scalar vevs〈
(φ12)I

J
〉

=
〈
(φ34)I

J
〉

= v δI
J for I, J ∈ U(M) ,〈

φab
〉

= 0 otherwise .
(2.1)

The N = 4 supersymmetry is preserved, but the global R-symmetry SU(4) is broken to

Sp(4). The resulting spectrum has 5 Goldstone bosons. The massiveN = 4 supermultiplets

(arising from strings stretched between the separated branes) consist of bifundamentals of

U(N)×U(M): massive W-bosons (3 d.o.f.), their wino partners ψ (8 d.o.f.) and 5 massive

scalars w. We can illustrate the splitting by writing the matrix fields in block-diagonal form

(Âµ) =

(
(Aµ)N×N (Wµ)N×M

(Wµ)M×N (Ãµ)M×M

)
, (2.2)

– 6 –
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massless fields massive fields massive polarisation/wavefct

gluons / W±-boson: g+, g− W+, W− ε−=
√
2|i⊥〉[q|
[i⊥q]

, ε+ =
√
2|q〉[i⊥|
〈i⊥q〉

scalar / WL-boson: 1√
2
(φ12+φ34) WL∼ 1√

2
(w12+w34) /εL = 1

mi

(
/p
⊥
i

+
m2

i

2q·pi
/q
)

scalars:
φ13, φ14, φ23, φ24, w13, w14, w23, w24,

1
1√
2
(φ12−φ34) 1√

2
(w12−w34)

fermions: χa, χabc Ψa v+ =

 |p⊥]

im|q〉
〈qp⊥〉

 , v−=

im|q]
[p⊥q]

|p⊥〉


Table 1. Massless and massive particles on the Coulomb branch for the R-symmetry break-

ing SU(4)→ Sp(4). States are projected out from the superamplitudes of section 4 by reading

off the appropriate Grassmann derivatives from the R-symmetry index structure of the state. For

example, ∂/∂ηi3 selects a Weyl fermion χ3(pi) with wave function |i] in the massless case and a

Dirac fermion Ψ3(pi) with wave function v+ in the massive case.

and similarly for the other fields. The Aµ and Ãµ gluon multiplets of U(N) and U(M)

remain massless, while the bifundamentals W and W are massive. The masses are given

by m2 = g2v2. In the following, we will suppress all dependence on the coupling g; in

particular, we will set 〈φ12〉 = v = m. We are summarizing the massless and massive

states in table 1.

The goal of this section is to present examples of explicit n-point amplitudes with

massive states on the Coulomb branch. Since the masses can be understood as momenta

in the directions transverse to the branes, non-vanishing on-shell amplitudes must have∑
imi = 0, where the sum runs over the external states. In the present section, we focus

on amplitudes with 2 adjacent external particles from the massive multiplet and n − 2

from the familiar massless multiplet. The resulting trace-structure of the color-ordered

amplitude is easily inferred from the block-matrix form.

To find compact results for the amplitudes, we adapt here the massive spinor-helicity

formalism of [31], using the notation of [32]: we introduce a light-like reference vector q

and decompose the massive momenta pi as7

pi = p⊥i −
m2
i

2q · pi
q , with p2i = −m2

i , (p⊥i )2 = q2 = 0 . (2.3)

We then express amplitudes in terms of the spinors |i⊥〉, |i⊥] and |q〉, |q] associated with

the null vectors pi and q.8 For massive vector bosons, it is convenient to use the following

7One can choose a different reference spinor qi for each line; however, the amplitudes are significantly

simpler when all qi’s are equal, qi = q. We make this choice throughout the paper.
8The little-group ambiguity in the spinors of p⊥i results in 〈qi⊥〉 = [i⊥q]. This condition can simplify

expressions for amplitudes, but the perp’ed spinors then no longer satisfy the conventional little-group

transformation properties familiar from massless amplitudes. Throughout this paper, we will not use

〈qi⊥〉 = [i⊥q] and instead keep conventional little-group properties of perp’ed spinors manifest. See [32] for

further discussion of little-group properties of massive amplitudes.

– 7 –
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basis of polarization vectors:

ε− =

√
2|i⊥〉[q|
[i⊥q]

, ε+ =

√
2|q〉[i⊥|
〈i⊥q〉

, /ε0 =
1

mi

(
/p
⊥
i
− m2

i

〈q|pi|q]
/q

)
. (2.4)

The amplitudes we present are “helicity amplitudes” in the basis of these polarizations.9

Helicity of the massive particles is only well-defined in a fixed Lorentz-frame; different

choices of q lead to physically distinct polarizations, and generically the helicity amplitudes

depend on the reference spinor q. In the massless limit, q-independence is recovered.

In this spinor-helicity formalism, 3-point amplitudes with transverse vectors take a

simple form:

〈
W−W+g+

〉
=

[2⊥3]4

[1⊥2⊥][2⊥3][3 1⊥]
,

〈
W+W+g−

〉
=

[1⊥2⊥]4

[1⊥2⊥][2⊥3][3 1⊥]
, (2.5)

and similarly for their conjugates. TheW and W vector bosons have masses mW = −mW ≡
m, and g is a massless gluon. We recognize the conventional Parke-Taylor amplitudes, with

regular spinors replaced by perp’ed spinors on the massive lines. The massless limit is easily

recovered by removing the perp’s.

We focus first on amplitudes with transverse (positive/negative) polarizations and

discuss longitudinal vector bosons shortly thereafter. To further illustrate the structure of

amplitudes on the Coulomb-branch, we give the following 4-point examples:

〈
W−W−g+g+

〉
= − 〈1⊥2⊥〉2[34]

〈34〉(P 2
23 +m2)

,

〈
W−W+g+g+

〉
= − m2〈q1⊥〉2[34]

〈q2⊥〉2〈34〉(P 2
23 +m2)

.

(2.6)

In the massless limit, the first amplitude reduces to the Parke-Taylor expression

〈12〉3/〈23〉〈34〉〈41〉. We note that the mass enters through the perp’ed spinors as well

as in the propagator 1/(P 2
23 +m2).

The second amplitude of (2.6) is “ultra-helicity violating” (UHV) and vanishes at the

origin of moduli space, m = 0, as a consequence of the supersymmetry constraints for

amplitudes with massless particles. With massive external particles and a single reference

vector q, amplitudes with just positive helicity vectors vanish identically [41], as in the

massless case. However, the supersymmetric Ward identities in the massive case allow

vector amplitudes with one negative-helicity particle to be non-vanishing [41]. These ultra-

helicity-violating (UHV) amplitudes, together with their supersymmetric cousins, comprise

the simplest sector of amplitudes on the Coulomb branch; their simplicity is analogous to

that of MHV amplitudes in the massless case.

UHV amplitudes can be systematically computed for any distribution of masses on the

external legs; we demonstrate this in section 4. Here we concentrate on the case of only two

adjacent massive W-bosons 〈W−W+
g+ . . . g+〉. The n-point formula is derived recursively

9For simplicity, we refer to the polarization ε± of (2.4) as positive/negative helicity both in the massless

and massive case.
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from a gluonic [4, 3〉 BCFW shift, with the 3-point amplitude 〈W−W+
g+〉 from (2.5) as

input. We obtain the astonishingly simple all-n form for the UHV-sector tree amplitude

〈
W−1 W

+
2 g

+
3 g

+
4 · · · g

+
n

〉
=

m2〈q1⊥〉2 [3|
∏n−1
i=4 (m2 − xi2x2,i+1)|n]

〈q2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉
∏n
i=4(x

2
2i +m2)

, (2.7)

where we defined xij =pi+pi+1+. . .+pj−1. It is interesting to consider this amplitude both

in the small and large mass limit. To leading order in small mass, we have

〈
W−1 W

+
2 g

+
3 g

+
4 · · · g

+
n

〉
=

m2〈q1⊥〉2〈1⊥2⊥〉
〈q2⊥〉2 〈2⊥3〉〈34〉〈45〉 · · · 〈n−1, n〉〈n 1⊥〉

+ O(m4) . (2.8)

In section 3, we show how this leading-order term can be obtained from double-soft scalar

limits of amplitudes at the origin of moduli space.

In the large-mass limit, on the other hand, we obtain

〈
W−1 W

+
2 g

+
3 g

+
4 · · · g

+
n

〉
= − 〈q1⊥〉2 [3n]

〈q2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉
+O(1/m2) . (2.9)

In this limit, the amplitude can be interpreted as a solution to self-dual Yang-Mills theory

in the background created by the heavy W -boson, which can be analyzed, for example,

with the methods of [52–54].

In massless amplitudes, SU(4) invariance dictates that each SU(4) index a = 1, 2, 3, 4

must occur the same number of times on the external states of any non-vanishing ampli-

tude. For example, the amplitude 〈φ12φ12φ34φ34〉 is non-vanishing, while the amplitude

〈φ12φ34φ34φ34〉 vanishes in the massless theory. With SU(4)R symmetry broken to Sp(4)

on the Coulomb branch, the pairs of SU(4) indices {1, 2} and {3, 4} can appear in different

multiplicities. The maximal SU(4) violation occurs in amplitudes that contain the indices

{1, 2} only once, but contain n−1 instances of the indices {3,4}. At the 3-point level, an

example of such an amplitude is

〈
W−W+φ34

〉
= −m 〈1

⊥|q|2⊥]

〈2⊥|q|1⊥]
. (2.10)

For general n, the sector of maximally SU(4)-violating amplitudes includes the ampli-

tude tower 〈
W−1 W

+
2 φ

34
3 φ344 · · ·φ34n

〉
= − mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥]
∏n
i=4(x

2
2i +m2)

. (2.11)

This result was derived recursively from a [3, 4〉 shift, starting with 〈W−W+
φ34〉 given

in (2.10), though this particular amplitude is so simple that it can also be directly computed

from Feynman diagrams to all n.

Next consider longitudinal vector bosons. On the Coulomb branch, the gluons ‘eat’

a scalar to become the massive W -bosons. In terms of the familiar massless labeling

of the scalars, the longitudinal mode of the W -boson can thus be identified as WL =

(w12+w34)/
√

2. The orthogonal linear combination w⊥ = (w12−w34)/
√

2 is one of the five

scalars in the massive multiplet; the other four are w13, w14, w23, and w24. Thus if we write
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on-shell helicity amplitudes in terms of w12 and w34 (which is technically convenient) we

must keep in mind that they contain both longitudinal gauge-boson and scalar components.

For this reason, such amplitudes typically depend explicitly on the reference spinor q. As

examples, let us present the following 3-point amplitudes:〈
WLW−g+

〉
=
√

2
〈
w12W−g+

〉
= −
√

2m
〈2⊥|q|3]2

〈q|1|q]〈q|2|q]
,〈

WLWLφ34
〉

=
1

2

(〈
w12w12φ34

〉
+
〈
w12w34φ34

〉
+
〈
w34w12φ34

〉)
= −m

2

〈q|1|q]2 + 〈q|2|q]2 + 〈q|3|q]2

〈q|1|q]〈q|2|q]
.

(2.12)

These amplitudes all vanish in the massless limit, because they violate the SU(4) R-

symmetry. They can be non-vanishing when m 6= 0 because they respect the unbroken

SU(2) × SU(2) ⊂ Sp(4) R-symmetry. The amplitudes (2.12) are related to the ampli-

tude (2.10), and in fact also to the SU(4)-preserving amplitudes (2.5), by supersymmetry

(see section 4.3).

3 Constructing massive amplitudes from massless ones

In theories with spontaneously broken global symmetries, the flat directions of the vac-

uum manifold reveal themselves through the properties of amplitudes involving Goldstone

bosons: the amplitudes vanish as the momentum of any Goldstone boson is taken soft. This

property has many useful consequences, from its original discovery in the context of pion

physics [55] to the study of finiteness in N = 8 supergravity [56–63]. The scalars of N = 4

SYM theory at the origin of moduli space, however, are of course not Goldstone bosons —

as we move out onto the Coulomb branch, the physics is genuinely different. Thus we do

not expect the scalar soft limits of amplitudes in massless SYM theory to vanish. Instead,

their soft limits should allow us to probe the physics on the Coulomb branch. In this

section we illustrate that the soft-scalar limits of massless amplitudes correctly reproduce

the leading term in the small-mass expansion of Coulomb branch tree amplitudes. It is

trivial to reproduce the leading order of amplitudes that are O(1) in the massless limit: to

leading order, these massive and massless amplitudes simply coincide. We thus start by

considering Coulomb-branch amplitudes that are O(m).

3.1 O(m) amplitudes from massless amplitudes

Consider the Coulomb-branch amplitude 〈W−W+
φ34g+ · · · g+〉 of two massive W bosons,

a massless scalar, and arbitrarily many positive-helicity gluons. This amplitude is SU(4)-

violating and thus vanishes in the massless limit. To leading order in mass it can be derived

using superamplitude techniques, as we show in section 4. The result is

〈
W−1 W

+
2 φ

34
3 g

+
4 · · · g

+
n

〉
= −m 〈q1⊥〉〈1⊥3〉2

〈q2⊥〉〈2⊥3〉 · · · 〈n 1⊥〉
+O(m3) . (3.1)
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We expect that this leading-order behavior of the amplitude is accessible through scalar

soft-limits of amplitudes at the origin of moduli space. But which massless amplitude

should we pick? In particular, at what position(s) should we insert a soft scalar into the

amplitude? To answer this question, let us have a closer look at the trace structure of (3.1).

Denoting SU(N) indices by A,B, . . . and SU(M) indices by I, J, . . ., the trace structure

takes the form

(W−)A
I(W

+
)I
B(φ34)B

C · · · (g+)D
A . (3.2)

The scalar we want to insert should be along the direction of the vev, 〈(φab)IJ〉=m(δab12 +

δab34)δI
J . There is only one place in the color trace where a scalar with color-index structure

δI
J can fit: between the two W bosons. This leads us to consider the massless analogue of

the amplitude (3.1), with an additional soft scalar along the vev direction inserted between

the first two vectors. This massless N = 4 amplitude is given by

〈
g−1 φ

12
εq g

+
2 φ

34
3 g+4 · · · g

+
n

〉
n+1

=
〈1q〉2〈13〉2

〈1q〉〈q2〉〈23〉 · · · 〈n1〉
. (3.3)

The corresponding amplitude with the other vev scalar φ34 inserted between the two gluons

vanishes, because it violates SU(4). Comparing this to (3.1), we find〈
W−1 W

+
2 φ343 g+4 · · · g

+
n

〉
n

= m lim
ε→0

〈
g−1 φ

12
εq g

+
2 φ

34
3 g+4 · · · g

+
n

〉
n+1

+O(m3) . (3.4)

It is intriguing that the soft-limit crucially depends on the direction q along which we take

the scalar momentum soft.

Let us now formulate the lessons from the above example. We claim that the leading

term in O(m) amplitudes can be obtained from the corresponding massless amplitude in

which pairs of massive W bosons Wi, W j are replaced by gluons gi, gj and soft scalars in

the vev-direction are inserted between them. The leading-order mass dependence comes

from the vev(s) (in the example above 〈φ12〉 = m) such that for the case of 2 adjacent

massive lines, we propose

〈
W1W 2 · · ·〉n = 〈φab〉 lim

ε→0

〈
g1 φ

ab
εq g2 · · ·

〉
n+1

+O(m3) . (3.5)

Similarly for other particles of the massive W -multiplets. Some comments on this proposal

are in order:

• The right-hand side generically depends on the direction q along which we take

the scalar momentum pφ = εq to zero. This q-dependence translates into the q-

dependence of the polarization vectors (2.4) on the left-hand side. Thus in this limit,

the reference spinor q in the massive spinor helicity formalism has a natural interpre-

tation as the direction of the soft scalar momentum!

• As the gluons g1 and g2 on the right-hand side are massless, they cannot carry

the massive momenta p1 and p2 of W1 and W 2 on the left-hand side. Instead, we

assign them the q-projected momenta p⊥1 and p⊥2 . Naively, this violates momentum
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conservation. However, momentum is still conserved to leading order in m, and the

leading term on the right-hand side is thus unambiguous.10

• When the color-trace of the Coulomb-branch amplitude allows the insertion of a

scalar along the vev directions in several positions, the right-hand side of (3.5) turns

into a sum over soft-scalar insertions. This can occur when there is more than one

pair of W -bosons, and/or when a pair of W -bosons is not adjacent in the color trace.

We will illustrate this momentarily in an example.

Example: amplitudes with non-adjacent W -bosons. Consider the amplitude

〈W− g̃+W+
φ34g+ · · · g+〉, where g̃ denotes a U(M) gluon and g are the usual U(N) gluons.

To leading order, it is given by

〈
W−1 g̃+2 W

+
3 φ

34
4 g

+
5 · · · g

+
n

〉
= −m 〈q1⊥〉〈1⊥3⊥〉〈1⊥4〉2

〈q3⊥〉〈1⊥2〉〈23⊥〉〈3⊥4〉 · · · 〈n 1⊥〉
+O(m3) . (3.6)

The color-structure of this amplitude is

(W−)A
I(g̃+)I

J(W
+

)J
B(φ34)B

C · · · (g+)D
A . (3.7)

Since the gluon between the two W ’s carries indices in U(M), there are now two places

where we can insert the vev scalar: between W− and g̃+, or between g̃+ and W
+

. The

corresponding contributions from the massless amplitudes can be computed as in (3.3)

〈
g−1 φ

12
εq g

+
2 g

+
3 φ344 g+5 · · · g

+
n

〉
n+1

=
〈1q〉2〈14〉2

〈12〉〈23〉 · · · 〈n1〉
× 〈12〉
〈1q〉〈q2〉

,

〈
g−1 g

+
2 φ

12
εq g

+
3 φ344 g+5 · · · g

+
n

〉
n+1

=
〈1q〉2〈14〉2

〈12〉〈23〉 · · · 〈n1〉
× 〈23〉
〈2q〉〈q3〉

.

(3.8)

Adding the two contributions gives

〈
g−1 φ

12
εq g

+
2 g

+
3 φ

34
4 g+5 · · · g

+
n

〉
n+1

+
〈
g−1 g

+
2 φ

12
εq g

+
3 φ

34
4 g+5 · · · g

+
n

〉
n+1

= − 〈q1〉〈13〉〈14〉2

〈q3〉〈12〉〈23〉 · · · 〈n1〉
.

(3.9)

Comparing this to (3.6) gives a precise match to our conjecture for this example.

We encountered in section 2, eq. (2.7), a tower of amplitudes
〈
W−1 W

+
2 g

+
3 g

+
4 · · · g+n

〉
whose leading terms in small-mass were O(m2). Now we match those at leading order by

taking double-soft scalar limits from the origin of moduli space.

3.2 O(m2) amplitudes from massless amplitudes

To generalize our proposal to amplitudes whose leading term is O(m2), two soft scalars

must be inserted. Naively, one might propose〈
W1W 2 · · ·〉n

?
= 〈φab〉〈φcd〉 lim

ε→0

〈
g1 φ

ab
εqφ

cd
εq g2 · · ·

〉
n+2

+O(m4) . (3.10)

10One could be pedantic and enforce momentum conservation by correlating the small-mass and ε → 0

limit as ε = − m2

2q·p1
− m2

2q·p2
. Then,

∑
p⊥i + εq = 0. However, the leading mass term is independent on how

one takes the limit ε→ 0.
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This prescription indeed works when the scalars do not have collinear divergences. Con-

sider, for example, the small-mass limit of the maximally SU(4) violating 4-point amplitude

〈
W−1 W

+
2 φ

34
3 φ344

〉
=

−m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](x224 +m2)
= m2 −〈1⊥|q|2⊥]

〈2⊥|q|1⊥]〈23〉[23]
+O(m4) . (3.11)

For this example, the only non-vanishing massless amplitude that appears on the right-hand

side of (3.10) is the NMHV 6-point amplitude 〈g−φ12φ12g+φ34φ34〉. After some algebra,

which we present in more detail in section 4.5, we find

lim
ε→0

〈
g−1 φ

12
εq φ

12
εq g

+
2 φ

34
3 φ344

〉
= − 〈1|q|2]

〈2|q|1]〈23〉[23]
, (3.12)

and thus 〈
W−1 W

+
2 φ

34
3 φ344

〉
= m2 lim

ε→0

〈
g−1 φ

12
εq φ

12
εq g

+
2 φ

34
3 φ344

〉
+O(m4) , (3.13)

in precise agreement with (3.10).

Generically, however, the right-hand side of (3.10) is divergent due to the collinear

scalars. The collinear divergences stem from Feynman diagrams in which φab and φcd sit

on the same 3-point vertex.11 These divergences can be removed by simple symmetrization

in the scalars φab and φcd. We thus propose, for O(m2) amplitudes,〈
W1W 2 · · ·〉n (3.14)

=
1

2
〈φab〉〈φcd〉 lim

ε→0
lim
q′→q

(〈
g1 φ

ab
εqφ

cd
εq′ g2 · · ·

〉
n+2

+
〈
g1 φ

cd
εq′φ

ab
εq g2 · · ·

〉
n+2

)
+O(m4) .

As a concrete example, let us then consider the amplitudes 〈W−W+
g+ . . . g+〉 in (2.7).

Its expression to leading order in mass was given in (2.8). For this amplitude, the pro-

posal (3.14) reads〈
W−1 W

+
2 g

+
3 · · · g

+
n 〉n (3.15)

= m2 lim
ε→0

lim
q′→q

(〈
g−1 φ

12
εqφ

34
εq′ g

+
2 g

+
3 · · · g

+
n

〉
n+2

+
〈
g−1 φ

34
εq′φ

12
εq g

+
2 g

+
3 · · · g

+
n

〉
n+2

)
+O(m4) .

The right-hand side of (3.15) can be evaluated straight-forwardly:

lim
ε→0

lim
q′→q

(〈
g−1 φ

12
εqφ

34
εq′ g

+
2 g

+
3 · · · g

+
n

〉
n+2

+
〈
g−1 φ

34
εq′φ

12
εq g

+
2 g

+
3 · · · g

+
n

〉
n+2

)
= lim

q′→q

〈1q〉2〈1q′〉2

〈23〉〈34〉 · · · 〈n1〉

(
1

〈1q〉〈qq′〉〈q′2〉
+

1

〈1q′〉〈q′q〉〈q2〉

)
=

〈q1〉2〈12〉
〈q2〉2〈23〉〈34〉 · · · 〈n1〉

.

(3.16)

Recalling the leading-mass expression (2.8) for 〈W−W+
g+ . . . g+〉, this precisely confirms

the claim (3.15).

11In the previous example, such 3-point interactions were prohibited by SU(4)-invariance.
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Consider now an example with non-adjacent W -bosons. The n-point Coulomb-branch

amplitude 〈W−g̃+W+
g+ · · · g+〉 is given by〈

W−g̃+W
+
g+ · · · g+

〉
n

= m2 〈q1⊥〉2〈1⊥3⊥〉2

〈q3⊥〉2〈1⊥2〉〈23⊥〉 · · · 〈n1⊥〉
+O(m4) . (3.17)

As in (3.7), there are again two places to insert vev-scalars: between W− and g̃+, or

between g̃+ and W
+

. As we have to distribute two scalars over these two places, there are

now three distinct non-vanishing massless amplitudes to consider. When both scalars are

inserted at the same location, we have

lim
ε→0

〈
g−1 φ

12
εq φ

34
εq g

+
2 g

+
3 · · · g

+
n

〉
sym

=
〈q1〉2〈12〉

〈q2〉2〈23〉 · · · 〈n1〉
,

lim
ε→0

〈
g−1 g

+
2 φ

12
εq φ

34
εq g

+
3 · · · g

+
n

〉
sym

=
〈q1〉4〈23〉

〈q2〉2〈q3〉2〈12〉〈34〉 · · · 〈n1〉
,

(3.18)

where we denoted the symmetrization that was written out explicitly in (3.16) above by

the subscript ‘sym’, for simplicity. Let us now insert the two scalars in distinct locations.

The symmetrization is trivial in this case as the two terms are finite and identical. It gives

lim
ε→0

〈
g−1 φ

12
εq g

+
2 φ

34
εq g

+
3 · · · g

+
n

〉
sym

= 2
〈q1〉4

〈1q〉〈q2〉〈2q〉〈q3〉〈34〉 · · · 〈n1〉
. (3.19)

The sum of the three contributions allow us to complete a square and after a single appli-

cation of the Schouten identity, we obtain

lim
ε→0

[〈
g−1 φ

12
εq φ

34
εq g

+
2 g

+
3 · · · g

+
n

〉
sym

+
〈
g−1 g

+
2 φ

12
εq φ

34
εq g

+
3 · · · g

+
n

〉
sym

+
〈
g−1 φ

12
εq g

+
2 φ

34
εq g

+
3 · · · g

+
n

〉
sym

]
=

〈q1〉2〈13〉2

〈q3〉2〈12〉〈23〉 · · · 〈n1〉
.

(3.20)

Comparing this to (3.17) again demonstrates a precise match.

3.3 General O(ms) amplitudes

For amplitudes whose leading term is O(ms), it is now natural to conjecture〈
W1W 2 · · ·〉n =

1

s!
〈φa1b1〉 · · · 〈φasbs〉 lim

ε→0

〈
g1 φ

a1b1
εq · · ·φasbsεq g2 · · ·

〉
n+s,sym

+O(ms+2) ,

(3.21)

where the subscript ‘sym’ indicates the s-scalar generalization of the 2-scalar symmetriza-

tion given in (3.14). We note that, for s > 2, the only non-vanishing contributions to (3.21)

arise from the case where the φaibi are either all φ12 or all φ34. If there were a non-vanishing

amplitude containing mixed soft scalars such as (φ12)s−1φ34, then R-symmetry would also

allow a non-vanishing soft-limit contribution with two fewer soft scalars, (φ12)s−2 — but

the latter would imply that
〈
W1W 2 · · ·〉n is really O(ms−2), not O(ms), in contradiction

with our attempt to extract the leading O(ms) term of the amplitude.12 With identical

12This argument is valid only for s > 2. It does not apply to O(m2) dependence of UHV amplitudes

derived above, which required a symmetrization of mixed scalars φ12φ34. Indeed, R-symmetry does not

forbid UHV amplitudes in the massless case, but they still vanish due to SUSY constraints. Therefore,

UHV amplitudes on the Coulomb-branch are O(m2), not O(1) as R-symmetry might have suggested.
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scalars, there are never any collinear divergences in (3.21), even before symmetrization.

We conclude that for s > 2,〈
W1W 2 · · ·〉n = ms lim

ε→0

(〈
g1 φ

12
εq · · ·φ12εq g2 · · ·

〉
n+s

+
〈
g1 φ

34
εq · · ·φ34εq g2 · · ·

〉
n+s

)
+O(ms+2) .

(3.22)

In section 4.5, we present an explicit computation of the leading term in the n-point

maximally-SU(4)-violating amplitude (2.11) from soft limits of n − 2 scalars. This com-

putation, carried out with the help of superamplitudes, gives a precise match via the

proposal (3.22).

4 Coulomb-branch superamplitudes

In this section we initiate the construction of superamplitudes for N = 4 SYM on the

Coulomb-branch. We begin with the SUSY constraints, then study the form of the super-

amplitudes and their application to matching soft-scalar limits. The 4d-6d correspondence

is briefly outlined at the end of the section.

In the massless case, the superalgebra of N = 4 SYM is{
|Q̃a〉α̇, [Qb|β

}
= δba p

α̇β ,
{

[Qa|α, [Qb|β
}

=
{
|Q̃a〉α̇, |Q̃b〉β̇

}
= 0 . (4.1)

It can be realized in the on-shell superfield formalism by the following operators

|Q̃a〉 = |p〉ηa , [Qa| = [p| ∂
∂ηa

. (4.2)

On the Coulomb branch, we choose to give vevs only to some of the scalars

〈φab〉 = Zab = Z∗ab = Z

(
iσ2 0

0 iσ2

)
. (4.3)

Now the superalgebra acquires a central charge:{
|Q̃a〉α̇, [Qb|β

}
= δba p

α̇β ,
{

[Qa|α, [Qb|β
}

= −εαβ Zab ,
{
|Q̃a〉α̇, |Q̃b〉β̇

}
= −εα̇β̇ Z∗ab .

(4.4)

On superamplitudes, this algebra can be realized by the operators

[Qa| = [p⊥| ∂
∂ηa
− [q|

[p⊥q]
Zabηb , |Q̃a〉 = |p⊥〉ηia −

|q〉
〈qp⊥〉

Z∗ab
∂

∂ηb
. (4.5)

The central charge Z is related to the mass of W -bosons through m2 = Z∗Z. We will take

Z to be real in the following.

4.1 MHV superamplitudes for n > 3

To write down Coulomb-branch superamplitudes, we need to determine the SUSY-invariant

η-polynomial that generalizes the delta function δ(8)(|i〉ηia) at the origin of moduli space.

This step is non-trivial because we are using the chiral representation of the superspace that

is conventional at the origin of moduli space. The supercharges (4.5) mix η polynomials
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of different degrees; therefore, there is no polynomial of homogenous degree in η that is

annihiliated by these supercharges. The central charge (4.3) breaks SU(4) → Sp(4) ⊃
SU(2) × SU(2), and it is convenient to determine SUSY invariants separately for the two

SU(2) sectors. Explicitly, the supercharges for the {1, 2} SU(2)-sector take the form

|Q̃1〉 =

n∑
i=1

|i⊥〉ηi1 − µ̄i|qi〉
∂

∂ηi2
, [Q1| =

n∑
i=1

[i⊥| ∂
∂ηi1

− µi[qi|ηi2 ,

|Q̃2〉 =
n∑
i=1

|i⊥〉ηi2 + µ̄i|qi〉
∂

∂ηi1
, [Q2| =

n∑
i=1

[i⊥| ∂
∂ηi2

+ µi[qi|ηi1 ,

(4.6)

where we defined

µi =
mi

[i⊥q]
, µ̄i =

mi

〈qi⊥〉
. (4.7)

We now construct a SUSY invariant annihilated by the SUSY charges |Q̃a〉, |Q̃a〉 with

a = 1, 2. We are looking for an invariant δ12 that generalizes the massless δ-function, so it

should take the form

δ12 = δ(4)
(
|i⊥〉ηia

)
+O(m) . (4.8)

For any n > 3, this leads to a unique SUSY invariant whose terms are of η-degree 6 or less.

It is given by

δ12 = δ(4)
(
|i⊥〉ηia

)
+K4δ

(2)
(
〈qi⊥〉ηia

)
δ(2)
(
µiηia

)
+K ′4

[
δ(2)
(
|i⊥〉ηi1

)
δ
(
〈qi⊥〉ηi2

)
δ
(
µiηi2

)
+ δ(2)

(
|i⊥〉ηi2

)
δ
(
〈qi⊥〉ηi1

)
δ
(
µiηi1

)]
+K2δ

(2)
(
〈qi⊥〉ηia

)
+K6δ

(4)
(
|i⊥〉ηia

)
δ(2)
(
µiηia

)
.

(4.9)

Here, K2, K4, K
′
4 and K6 are kinematic factors. For the case of two massive lines with

masses m1 = −m2 = m, we have

K2 =
mx213
〈q|1.2|q〉

, K4 = − [q|1.2|q]
〈q|1.2|q〉

, K ′4 =
m〈q|x13|q]
〈q|1.2|q〉

, K6 = −〈q|1|q]〈q|2|q]
m〈q|1.2|q〉

. (4.10)

Note that the factor of 1/m in K6 is harmless because K6 multiplies a term that is O(µ2) ∼
m2 in (4.9), which vanishes in the massless limit. The general form of the kinematic factors

Ki with arbitrary number of massive lines will be given in section 4.6.

On the Coulomb-branch of N = 4 SYM, the conventional massless supermomentum

delta-function generalizes to δ12 × δ34, where δ34 is simply δ12 with R-symmetry indices

a = 1, 2 replaced by a = 3, 4. All superamplitudes (with n > 3 legs) must contain a factor

of δ12× δ34. We will call the superamplitude in which the entire η-dependence is captured

by δ12 × δ34 the “MHV-band” superamplitude; the MHV-band superamplitude contains

terms with η-degrees ranging from 4 to 12. One amplitude in the sector of η-degree 4 is

sufficient to completely determine the MHV-band superamplitude. For the special case of

two massive particles on lines 1 and 2, for example, the explicit tower of amplitudes (2.7)

determines the MHV-band superamplitude to be

AMHV−band
n = −

[1⊥2⊥]2[3|
∏n−1
i=4 [m2 − xi2x2,i+1]|n]

〈34〉〈45〉 · · · 〈n−1, n〉x413
∏n
i=4(x

2
2i +m2)

× δ12 × δ34 . (4.11)
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Let us now discuss the general structure of superamplitudes on the Coulomb-branch.

Beyond the MHV-band, it is convenient to first generalize our analysis within each SU(2)

sector. Invariants under the SUSY transformations (4.6) can always be written as

ANkMHV = P k12 δ12 , (4.12)

where P k12 is a homogeneous polynomial of degree 2k in ηi1, ηi2. The SUSY constraints on

P k12 can be solved using the methods of [64], but we spare the reader the derivation of these

constraints as the detailed general form of P k12 for Coulomb-branch amplitudes is beyond

the scope of this paper. In the following, we will only need the fact that that any SUSY

invariant can be decomposed into terms of the form (4.12) with P k12 of homogenous degree.

It follows from this that SU(2) superamplitudes can be organized into an MHV band with

η degrees 2, 4, 6; an NMHV band with η-degrees 4, 6, 8; an N2MHV band with η-degrees

6, 8, 10; etc. The different NkMHV bands are thus all of the same “width” in η-degree and

overlap: for example, the NMHV band contributes to amplitudes that are MHV in the

massless limit.

We can assign a different NkMHV level to both SU(2) subsectors, according to

the structure (4.12). From this perspective, the MHV-band superamplitude (4.11) is

MHV×MHV: it is MHV in both SU(2) sectors. More generally, the NkMHV× Nk′MHV-

band superamplitude Ak,k
′

n takes the schematic form

Ak,k′n =
∑

P k12P
k′
34 × δ12 × δ34 . (4.13)

Each term in Ak,k
′

n is of degree 2(k + 1), 2(k + 2), or 2(k + 3) in ηi1, ηi2 and of degree

2(k′ + 1), 2(k′ + 2), or 2(k′ + 3) in ηi3, ηi4. This structure is illustrated in figure 1 in the

introduction.

The all-n amplitude (2.11) of the maximally SU(4) violating sector fully determines

the MHV×MHV sector superamplitude

AMHV×MHV-band
n =

〈1⊥2⊥〉[1⊥2⊥]

x413
∏n
i=4(x

2
2i +m2)

× δ12 × δ34 , (4.14)

where δ
34

is the conventional parity conjugate of the invariant δ34, i.e. it arises from δ34
by the map [ij]↔ 〈ji〉 and ηia → η̄ia for a = 3, 4.13

The MHV and MHV×MHV band are all that is needed to fully determine the 4- and

5-point superamplitudes. Explicitly, for the case of two adjacent massive lines,

A4 =− [1⊥2⊥]2[34]

〈34〉x413(x224 +m2)
× δ12 × δ34

A5 =− 〈1⊥2⊥〉[1⊥2⊥]

x413(x
2
24 +m2)(x225 +m2)

[
[1⊥2⊥][3|m2−x42x25|5]

〈1⊥2⊥〉〈34〉〈45〉
× δ12 × δ34

− δ12 × δ34 − δ12 × δ34 +
〈1⊥2⊥〉〈3|m2−x42x25|5〉

[1⊥2⊥][34][45]
× δ12 × δ34

]
.

(4.15)

13Note that this representation of the superamplitude in terms of ηi1, ηi2 and η̄i3, η̄i4 is distinct from the

non-chiral representation of [18] in terms of ηi1, η̄i2 and ηi3, η̄i4.

– 17 –



J
H
E
P
1
2
(
2
0
1
1
)
0
9
7

We see that even entire superamplitudes that encapsulate all sectors can be reasonably

simple on the Coulomb branch.

4.2 Simplified superamplitudes for a smart choice of q-frame

The vector q carries no physical significance in itself — it is a reference vector that we

choose to decompose amplitudes into helicity amplitudes. It should thus be thought of as

a choice of basis. Picking the reference vector q to be identical for all lines already leads to

one significant simplification: amplitudes with all-plus or all-minus helicity vector bosons

vanish in this case [41]! This would not have been the case if we had picked distinct qi for

each line. Indeed,

〈W−W−g−〉 =
〈1⊥2⊥〉[q1q2]〈3⊥|2|q3]

[1⊥q1][2⊥q2][3⊥q3]
+ cyclic , (4.16)

vanishes when we take all qi to be the same. In the superamplitude structure, this simpli-

fication manifests itself in the absence of η0 contributions.

Is there a preferred choice of q that simplifies the (super)amplitudes even further? One

natural condition to impose is that the perp’ed momenta satisfy momentum conservation

among themselves, ∑
p⊥i = 0 for some q = q0 . (4.17)

Note that this condition is not incompatible with q ·pi 6= 0 for all i, which must be satisfied

for q to define a non-singular choice of basis. For the case of 2 massive lines m1 = −m2 = m,

the condition implies

m2

2q0 · p1
qµ0 +

m2

2q0 · p2
qµ0 = 0 ⇒ q0 · (p1 + p2) = 0 , (4.18)

as is obvious from (2.3). The condition (4.17) thus becomes a linear orthogonality condition

on q. As long as p1 and p2 are not collinear, this condition can be satisfied for some regular

choice of q-basis.

With this choice of q, a number of striking simplifications occur. The kinematic K ′4
in (4.10) vanishes, so this eliminates the most cumbersome term in the superamplitude δ12
in (4.9). The remaining K’s organize themselves to satisfy K4 = K2K6 for q = q0. The

invariant δ12 then takes on an intriguing factorized form:

δ12 =

[
δ(4)
(
|i⊥〉ηia

)
+

m〈1⊥2⊥〉
〈q1⊥〉〈q2⊥〉

δ(2)
(
〈qi⊥〉ηia

)]
×
[
1− [1⊥q][2⊥q]

m[1⊥2⊥]
δ(2)
(
µiηia

)]
for q = q0 . (4.19)

The entire MHV-band superamplitude, for example, then simply reads

AMHV−band
n =

−[3|
∏n−1
i=4 [m2−xi2x2,i+1]|n]

〈1⊥2⊥〉2〈34〉〈45〉 · · · 〈n−1, n〉
∏n
i=4(x

2
2i+m

2)

×
[
δ(4)
(
|i⊥〉ηia

)
+

m〈1⊥2⊥〉
〈q1⊥〉〈q2⊥〉

δ(2)
(
〈qi⊥〉ηia

)]2
×
[
1− [1⊥q][2⊥q]

m[1⊥2⊥]
δ(2)
(
µiηia

)]2
for q = q0 ,

(4.20)
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where the squares should be understood as a product of two factors corresponding to the

two SU(2)’s. Here we also used the relation x213 = 2p⊥1 · p⊥2 which holds for this special

choice of q.

A similar factorization also occurs for superamplitudes with arbitrarily many massive

legs when (4.17) is imposed; this will be discussed in section 4.6 below.

4.3 3-point superamplitudes

So far we have studied superamplitudes with n > 3. However, the 3-point superamplitudes

on the Coulomb-branch also take a very simple form. As the explicit 〈W W g〉 ampli-

tudes (2.5) suggest, the massive generalizations of the conventional MHV and MHV sec-

tors follow from the conventional Parke-Taylor superamplitude by replacing conventional

spinors |i〉, |i] by perp’ed spinors |i⊥〉, |i⊥]:

AMHV
3 =

δ(8)
(
|i⊥〉ηia

)
〈1⊥2⊥〉〈2⊥3⊥〉〈3⊥1⊥〉

, AMHV
3 =

δ(4)
(
[1⊥2⊥]η3a+cyc

)
[1⊥2⊥][2⊥3⊥][3⊥1⊥]

. (4.21)

The SU(4)-violating MHV×MHV sectors are completely determined by SUSY from the

MHV and anti-MHV sectors. Their Grassmann structure within each SU(2) sector is either

of the MHV or MHV type — it remains to determine the overall kinematic prefactor. For

the case of two massive lines m1 = −m2 = m, the MHV×MHV superamplitude is given by

AMHV×MHV
3 =

m〈q|3|q]2

〈q|1|q]〈q|2|q][1⊥2⊥]〈1⊥2⊥〉
× δ(4)12

(
|i⊥〉ηia

)
× δ(2)34

(
[1⊥2⊥]η3a+cyc

)
.

(4.22)

Here the subscripts on δ signify the SU(2) sector that the Grassmann delta-function lives in.

The parity-conjugate superamplitude AMHV×MHV
3 is identical, except that the two SU(2)

sectors are exchanged: δ12 ↔ δ34.

There is another form of the MHV×MHV sector with a slightly different packaging of

the η-structure,

AMHV×MHV
3 =

m

〈q|1|q]〈q|2|q]
×

2∏
a=1

(
[1⊥q]η2aη3a + cyc

)
× δ(2)34

(
〈qi⊥〉ηia

)
. (4.23)

When all three lines are massive,14 subject to the 6d momentum conservation constraint

m1 +m2 +m3 = 0, this superamplitude generalizes to:

AMHV×MHV
3 =

m2〈q|1|q]−m1〈q|2|q]
〈q|1|q]〈q|2|q]〈q|3|q]

×
2∏

a=1

(
[1⊥q]η2aη3a + cyc

)
× δ(2)34

(
〈qi⊥〉ηia

)
.

(4.24)

This form is useful for our discussion of the CSW-expansion for Coulomb-branch amplitudes

in section 5.

14For this to happen, the gauge group must be broken into a product of at least 3 SU(Ni)’s.

– 19 –



J
H
E
P
1
2
(
2
0
1
1
)
0
9
7

4.4 Single-soft limits and matching at the superamplitude level

In section 3 we saw examples of how the leading small-mass limit of massive amplitudes

could be obtained from soft scalar limits of massless amplitudes at the origin of moduli-

space. We now take this one step further and show how the matching can be promoted to

superamplitudes.

As the starting point, consider the n-point MHV-band superamplitude with two mas-

sive external particles on lines 1 and 2, m1 = −m2 = m. The MHV-band superamplitude

has a clear hierarchy of mass-powers, and expanding in small m up to order η6, we find

that the superamplitude (4.11) is simply15

AMHV-band
n =

1

〈1⊥2⊥〉 · · · 〈n1⊥〉
× m〈1⊥2⊥〉
〈q1⊥〉〈q2⊥〉

×
{
δ
(4)
12

(
|i⊥〉ηia

)
δ
(2)
34

(
〈qi⊥〉ηia

)
+ δ

(2)
12

(
〈qi⊥〉ηia

)
δ
(4)
34

(
|i⊥〉ηia

)}
+O(m2) +O(η8) . (4.25)

Here, the factor of m〈1⊥2⊥〉/〈q1⊥〉〈q2⊥〉 is simply the small-mass expansion of the kine-

matic factor K2 in (4.10). The states associated with the amplitudes in (4.25) contain two

pairs of indices a = 1, 2 and one pair of a = 3, 4 (or the reverse). Clearly this violates

SU(4). An example of an amplitude in this sector is
〈
W−W

+
φ34g+ · · · g+

〉
. Projecting

out this particular amplitude from (4.25) produces the leading order expression that we

stated in (3.1).

Let us now compare the massive superamplitude (4.25) with the single-soft scalar limit

of the (n+ 1)-point MHV superamplitude at the origin of moduli space:

AMHV
n+1 (1, εq, 2, 3, . . . , n) =

1

〈1, εq〉〈εq, 2〉〈23〉 · · · 〈n1〉
δ(8)
(
|εq〉ηi,εq +

n∑
i=1

|i〉ηia
)
. (4.26)

We now follow the same steps as in section 3.1: On the line with momentum εq, we project

out the linear combination of scalars φ12 + φ34 corresponding to the vev, and take the soft

scalar limit ε→ 0 as discussed above. We find

AMHV
n+1 (1, φ12εq , 2, 3, . . . , n) +AMHV

n+1 (1, φ34εq , 2, 3, . . . , n)

=
1

〈1q〉〈q2〉〈23〉 · · · 〈n1〉

{
δ
(4)
12

( n∑
i=1

|i〉ηia
)∑

i,j

〈qi〉〈qj〉ηi3ηi4

+ δ
(4)
34

( n∑
i=1

|i〉ηia
)∑

i,j

〈qi〉〈qj〉ηi1ηi2
}
.

(4.27)

Note that the sum in the delta-function does not include line q anymore. Comparing this

to (4.25), we have confirmed

AMHV-band
n = −m

[
AMHV
n+1 (1, φ12εq , 2, 3, . . . , n) +AMHV

n+1 (1, φ34εq , 2, 3, . . . , n)
]

+O(η8) +O(m2)

(4.28)

at the level of superamplitudes.

15To leading order, the η6 pieces in the MHV-band superamplitude correspond to actual amplitudes —

the η6 pieces in the MHV×NMHV and NMHV×MHV bands only contribute to order O(m2).
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4.5 Multi-soft limits of NkMHV superamplitudes

We now present a simple expression for multi-soft scalar limits of the massless NkMHV

superamplitude in the case where all soft scalars are adjacent and identical, say φ12. As

explained in section 3.3, the identical-scalar soft limits are indeed all that is needed to

determine the leading order terms in amplitudes that are O(m3) or higher. In particular,

this computation allows us to match to the leading-mass term O(mn−2) of the n-point

maximally-SU(4)-violating amplitude 〈W−W+
φ34 . . . φ34〉 of (2.11) from a (n−2)-fold soft

scalar limit of the (2n−2)-point Nn−3MHV amplitude 〈g−φ12 . . . φ12g+φ34 . . . φ34〉.
As a warmup, let us first consider the double soft limits of the MHV and NMHV

superamplitudes. We take lines 1 and N to be the scalars φ12; practically this is done

by applying Grassmann derivatives ∂11∂
2
1∂

1
N∂

2
N and subsequently setting η1a, ηNa → 0 for

a = 3, 4. At MHV level, we have

AMHV
N,φ121 φ12N

= −
δ
(4)
34

(∑N−1
i=2 |i〉ηi

)
〈23〉〈34〉 . . . 〈N−2, N−1〉

× 〈N1〉
〈N−1, N〉〈12〉

. (4.29)

Note that the expression on the r.h.s. is valid even without taking p1 and pN soft; we

will need that later. To compare with our massive amplitudes with all reference vectors

equal, we take a collinear limit p1, pN → q before taking the momenta soft. Due to the

〈N1〉 numerator-factor in (4.29), the MHV contribution vanishes in the collinear limit, so

AMHV
N, 2-soft = 0. This agrees with our previous results, since the Coulomb-branch superam-

plitudes do not16 contain terms of zeroth order in the η’s of one SU(2) sector.

Now consider the double soft limit of the NMHV superamplitude, again with soft φ12

scalars on lines 1 and N . The superamplitude [3] can be written

ANMHV
N = AMHV

N

∑
2≤a1,b1≤N−1

RN ;a1b1 , (4.30)

where a1 + 1 < b1 in the sum and RN ;a1b1 is the dual superconformal invariant given by

RN ;a1b1 =
〈a1, a1−1〉〈b1, b1−1〉δ(4)

(
〈N |xNa1xa1b1 |θb1N 〉+ 〈N |xNb1xb1a1 |θa1N 〉

)
x2a1b1〈N |xNa1xa1b1 |b1〉〈N |xNa1xa1b1 |b1−1〉〈N |xNb1xb1a1 |a1〉〈N |xNb1xb1a1 |a1−1〉

.

(4.31)

Here we have defined θuv =
∑v−1

i=u |i〉ηi for u < v, θuv = −θvu for v < u.

The R-invariant RN ;a1b1 has no explicit dependence on η1, ηN , so inserting φ12 on those

lines gives

ANMHV
N,φ121 φ12N

= AMHV
N,φ121 φ12N

×
∑

2≤a1,b1≤N−1
RN ;ij . (4.32)

Since the prefactor AMHV
N,φ121 φ12N

vanishes in the collinear limit, any finite contribution must

come from R-invariants with simple poles in the sum. Note that RN ;2b1 has denominator

terms such as 〈N |xN2· · ·=〈N |p1· · ·=〈N1〉[1|· · · , and indeed these are the only R-invariants

16If we had not insisted on all-qi reference vectors equal, such terms could appear in the massive super-

amplitude, and indeed (4.29) with p1 6= pN indicates that they could be matched by soft-scalar limits. We

will not pursue this here.
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in the sum (4.32) with such poles in the collinear limit. However, in one case, namely

b1 = N−1, the denominator factors 〈N1〉 are cancelled by contributions from δ(4), and

a detailed calculation shows that this particular contribution vanishes like [N1] in the

collinear limit. The remaining RN ;2b1 give finite results, and we find the NMHV double-

soft limit to be

ANMHV
N, 2-soft = −

δ
(4)
34

(∑N−1
i=2 |i〉ηi

)
〈23〉〈34〉 . . . 〈N−1, q〉〈q2〉

× (4.33)

×
∑

3<b1<N−1

〈b1−1, b1〉 δ(2)34

(
[q|x2b1 |

∑N−1
i=b1
|i〉ηi〉

)
δ
(2)
12

(∑N−1
i=2 〈qi〉ηi

)
P 2
b1...N−1[q|x2b1 |b1〉[q|x2b1 |b1−1〉

.

The sum in (4.33) is empty for N = 5, so let us consider the simplest non-vanishing

case, N = 6. For a proper association with a Coulomb-branch amplitude with massive

lines 1 and 2, we relabel momenta {q, 2, 3, 4, 5, q} → {q, 2, 3, 4, 1, q} to find

ANMHV
6, 2-soft =

δ
(4)
34

(∑4
i=1 |i〉ηi

)
δ
(2)
34

(
[4q]η1 − [1q]η4

)
δ
(2)
12

(∑4
i=1〈qi〉ηi

)
[14]〈14〉[1q]〈q1〉[2q]〈q2〉〈23〉2

. (4.34)

As an example, consider the component amplitude 〈g−φ12εqφ12εq g+φ34φ34〉. It can be

easily extracted from (4.34), giving

lim
ε→0

〈
g−1 φ

12
εq φ

12
εq g

+
2 φ

34
3 φ344

〉
= − 〈q1〉[2q]

[23]〈23〉〈q2〉[1q]
. (4.35)

This is precisely the soft-limit given in (3.12) that we used to determine the leading term

in
〈
W−W

+
φ34 φ34

〉
. Thus we have successfully made contact with the soft-scalar limits

at the NMHV level.

For the general N -point NkMHV superamplitude, we adopt the notation of [4]; in

particular, we use the diagrammatic expansion given in figure 4 of [4]. We restrict ourselves

to the case where all the scalars are adjacent: we choose them to lie on lines N, 1, . . . s− 1

for the s-scalar soft limit of the N -point NkMHV massless superamplitude. The resulting

soft-limit thus corresponds to the leading O(ms) contribution in an n-point amplitude

with n = N − s. It turns out that the only non-vanishing contribution to the s-scalar soft

limit, with soft φ12 scalars on lines N, 1, . . . , s− 1, is given by the left-most branch of the

expansion, with ai = i + 1 for 1 ≤ i < s. Each new level17 of the expansion contributes a

factor of the form

RN ;b12;b23;...;bi−1i;i+1 bi →
〈Ni〉〈i, i+ 1〉
〈N, i+ 1〉

×
〈bi − 1, bi〉δ(2)34

(
[i|xi+1 bi |θbi i+1〉

)
x2i+1 bi

[i|xi+1 bi |bi − 1〉[i|xi+1 bi |bi〉
. (4.36)

In the same way that the j = N − 1 term vanished in the NMHV case, the “boundary”

terms where bi = bi+1 vanish in the more general case; in order to be able to continue down

to level s− 1 of the expansion, we require s+ 1 = as−1 + 1 < bs−1 < bs−2 < . . . < b1 < N .

17Each term in an NkMHV amplitude contains k factors of R-invariants. We denote the first, NMHV-like

factor as “level 1”, the N2MHV-like factor as “level 2”, etc.
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Terms on other branches of the expansion, or not satisfying ai = i + 1, can be shown to

vanish on the support of the delta functions when the s lines are taken collinear and the

shared momentum is taken soft.

Note that the 〈i, i+1〉 factor in each term in (4.36) cancels a pole from the MHV

prefactor, and the 〈N i〉/〈N, i+1〉 factor telescopes. The product of these factors with the

leading MHV and NMHV-like prefactors are manifestly finite and non-zero, and we find

ANkMHV
N, s-soft = −

δ
(4)
34

(∑N−1
i=s |i〉ηi

)
δ
(2)
12

(∑N−1
i=s 〈qi〉ηi

)
〈s, s+1〉 . . . 〈N−2, N−1〉〈N−1, q〉〈q s〉

×
∑

s+1<bs−1<...<b1<N−1

s−1∏
i=1

〈bi−1, bi〉δ(2)34

(
[q|xN bi |θbiN 〉

)
x2bi s[q|xN bi |bi〉[q|xN bi |bi−1〉

× remaining product of (k − s+ 1) R-invariants .

(4.37)

Here, we have plugged in the soft momentum q on lines N, 1, . . . , s − 1, but we have not

relabeled the lines s, . . . , N − 1. If k > s − 1, the diagrammatic expansion continues

down to level k, and is a sum over all terms descending from the vertices on the leftmost

branch at level s − 1, with each vertex characterized by the choice of previous bi-indices

{b1, b2, . . . , bs−2, bs−1}. Each such term is a product of (k− s+ 1) R-invariants. In all such

descendant factors, we can set ηi → 0 for i = N, 1, . . . , s− 1.18

Example: matching to maximally-SU(4)-violating amplitudes. As a concrete

example, consider the leading term in the maximally-SU(4)-violating amplitude of (2.11),

〈W−W+
φ34 · · ·φ34〉n. Its leading behavior is O(mn−2):〈
W−1 W

+
2 φ

34
3 φ344 · · ·φ34n

〉
= −mn−2 〈1⊥|q|2⊥]

〈2⊥|q|1⊥]
∏n
i=4 x

2
2i

+ O(mn) . (4.38)

According to the proposal of section 3.3, this leading behavior can be obtained from

the soft limit (4.37) with k = n − 3, s = k + 1 and N = n + k + 1 (= n + s = 2s + 2).

This is the simplest non-vanishing example because no remaining product of R-invariants

appears in (4.37) in this case, and there is exactly one allowed choice for the bi’s:

{b1, b2, . . . , bs−2, bs−1} = {N − 2, N − 3, . . . , s + 3, s + 2}, i.e. bi = N − 1 − i for i < s.

Projecting out a positive helicity gluon on line s, a negative helicity gluon on line N − 1

and φ34 scalars on the other lines is done easily when the δ(4)-function is used to rewrite

|θbiN 〉 = −|θsbi〉. We obtain the soft-limit component amplitude,

lim
ε→0

〈
φ12εq · · ·φ12εq g+s φ34s+1 · · ·φ34N−2 g−N−1

〉
=

〈N−2, N−1〉〈N−1, q〉
〈s, s+1〉〈q, s〉

∏s−1
i=1 x

2
s+1+i, s

s−1∏
i=1

[q|xN, s+1+i|s+i〉
[q|xN, s+1+i|s+1+i〉

. (4.39)

Using momentum conservation in the multi-soft limit, we can write,

s−1∏
i=1

[q|xN, s+1+i|s+i〉
[q|xN, s+1+i|s+1+i〉

=
[q|xN s+2|s+1〉

[q|xN,N−1|N−2〉
=

[qs]〈s, s+1〉
[q, N − 1]〈N−2, N−1〉

. (4.40)

18A further simplification can be applied to the descendant R-invariants: The spinor 〈ξ| =

〈N |xNb1 · · ·xsbs · · ·xbrar defined in [4] can be replaced by 〈ξ| → 〈q|xsbs · · ·xbrar .
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Relabeling {s, s+ 1, . . . , N − 1} → {2, 3, . . . , n, 1} gives the final result,

lim
ε→0

〈
g−1 φ

12
εq · · ·φ12εq g+2 φ

34
3 · · ·φ34n

〉
= − 〈1 q〉[q 2]

〈2 q〉[q 1]

1∏n
i=4 x

2
2i

. (4.41)

This matches precisely to the leading term in the massive amplitude (4.38) for all n,

consistent with the proposed relation (3.21) of section 3.3. A much simpler derivation of

this result as well as the extension to all orders in mass can be found in [36].

4.6 The structure of superamplitudes with generic massive lines

In the above discussion we focused on amplitudes with only two massive lines adjacent

to each other in the trace-structure. We argued that the corresponding superamplitudes

must be proportional to δ12× δ34, defined in (4.9), with the kinematic coefficient Ki given

in (4.10). δ12 × δ34 is the Coulomb-branch generalization of the conventional δ(8)(|i〉ηia)
in the massless case.

It turns out that there is also a simple and concise expression for the generalization of

δ(8)(|i〉ηia) to the case with arbitrarily many massive lines. In this case δ12 is still given

by (4.9). To write down the general kinetic factors K2, K4, K
′
4 and K6, however, it is

convenient to introduce a bit of notation.

We define K⊥ as the constant satisfying∑
i

|i⊥〉[i⊥| = K⊥ |q〉[q| . (4.42)

From (2.3), it is obvious that K⊥ can be written as

K⊥ =
∑
i

m2
i

2q · pi
= −

∑
i

µ̄iµi . (4.43)

Next, we note that ∑
i

µi[i
⊥| ∝ [q| ,

∑
i

µ̄i|i⊥〉 ∝ |q〉 . (4.44)

This follows immediately from the 6d momentum conservation constraint
∑

imi = 0, as

can be seen from contracting the left-hand-sides with |q] and 〈q|, respectively. We now

denote the kinematic proportionality constants by K‖ and K̄‖, respectively:∑
i

µi[i
⊥| = K‖ [q| ,

∑
i

µ̄i|i⊥〉 = K̄‖ |q〉 . (4.45)

Explicit expressions for K‖ and K̄‖ can be obtained by contracting the above equations

with arbitrary spinors 6= |q], 〈q| .
Using K⊥, K‖ and K̄‖, it is now easy to write down explicit expressions for the

kinematic constants Ki that appear in δ12:

K2 =
(K⊥)2

K‖
+ K̄‖ , K4 =

K̄‖

K‖
, K ′4 =

K⊥

K‖
, K6 =

1

K‖
. (4.46)
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It is straight-forward (albeit tedious) to verify that with these Ki, the superamplitude δ12
is invariant under all supercharges (4.6).

We note that the “special choice” of q = q0 discussed above in the 2-mass case has an

arbitrary-mass generalization. We again demand∑
i

p⊥i = 0 . (4.47)

In the two-mass case, this condition reduced to the orthogonality condition q0 ·(p1+p2) = 0

given in (4.18). For more than 2 massive lines, this condition is no longer linear and it

is therefore less practical to implement (though solutions q0 are still guaranteed to exist).

For q = q0, we have K⊥ = 0 and thus K ′4 = 0 and K4 = K2K6, just as in the 2-mass case.

With this special choice of q, the invariant δ12 takes the following simple factorized form:

δ12 =
[
δ(4)
(
|i⊥〉ηia

)
+ K̄‖δ(2)

(
〈qi⊥〉ηia

)]
×
[
1 +

1

K‖
δ(2)
(
µiηia

)]
for q = q0 . (4.48)

Due to its simplicity, this form provides a natural starting point for a comparison to the

non-chiral formulation that arises from a straight-forward dimensional reduction of the 6d

superamplitudes of [38–40].

4.7 4d-6d correspondence

We have several times alluded to the connection between 6d massless amplitudes of N =

(1, 1) SYM and the 4d N = 4 SYM amplitudes on the Coulomb branch. In this section we

briefly outline the map to go between the two descriptions.

The 4d masses are simply the extra dimensional momenta p4 ± ip5 = m±, and hence

the external states of the on-shell amplitudes have to satisfy the condition
∑n

i=1mi = 0.

The 6d spinor-helicity formalism [45] can easily be decomposed to 4d massive spinors, as

for example the 6d spinor product (in our conventions)

〈ia|jḃ] =

(
−〈i⊥j⊥〉 µi[j

⊥q]− µ̄j〈qi⊥〉

−µ̄i〈qj⊥〉+ µj [i
⊥q] [i⊥j⊥]

)
. (4.49)

The 6d on-shell superspace reduces to a non-chiral representation of 4d on-shell super-

space [47, 38–40]; the map can be found in section 7.2 of [48]. To recover the familiar chiral

superfield formulation, a half-Fourier transform is carried out on the Grassmann variables.

In the massless case, this allows us to trace which terms in the 6d superamplitudes give rise

to the NkMHV classification of the 4d superamplitudes. Similarly, it should be possible

to extract the NkMHV×Nk′MHV-band structure for the massive amplitudes; this however

is non-trivial, in part because only 3,4,5-point 6d superamplitudes are currently available.

We have only checked the 4d-6d match of the massive MHV band for the n = 4 case.

5 CSW expansion for all MHV×NkMHV superamplitudes

We now derive an expression for the tree-level MHV×NkMHV superamplitudes with ar-

bitrarily many massive lines. The derivation is based on a CSW-type expansion of the

superamplitude in terms of Coulomb-branch 3-point superamplitudes.
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To illustrate the method, we consider the gauge boson amplitudes 〈X−1 X
+
2 · · ·X+

n 〉,
where each state X can be a massive W boson or a massless gluon g. For the case of only

two massive W bosons on lines 1 and 2, this amplitude was given above in (2.7). Here we

let the n vectors have arbitrary masses mi, subject to
∑
mi = 0. Consider the holomorphic

all-line shift19

|i⊥〉 → |̂i⊥〉 = |i⊥〉+ z ci |q〉 , with
∑
i

ci|i⊥] = 0 , (5.1)

in which q is the same reference spinor that we use in our massive spinor helicity formalism.

It follows from the proof in [32] that amplitudes 〈X−1 X
+
2 · · ·X+

n 〉 with n > 3 fall off as 1/z,

or better, for large-z. The resulting all-line recursion relations will allow us to construct

these n-point amplitudes from 〈X−1 X
+
2 X

+
3 〉 as a simple CSW-type MHV vertex expansion,

as we now show.

As a simple warm-up, consider n = 4. The all-line shift recursion relation in this case

has two diagrams, corresponding to the P12 and P23 channel, and it gives

〈
X−1 X

+
2 X

+
3 X

+
4

〉
=

[2⊥P12]
3

[1⊥2⊥][P121⊥]
× 1

P 2
12 +m2

12

× [3⊥4⊥]3

[P123⊥][4⊥P12]

+
[2⊥3⊥]3

[P232⊥][3⊥P23]
× 1

P 2
23 +m2

23

× [P234
⊥]3

[4⊥1⊥][1⊥P23]

=
〈q1⊥〉3

〈q2⊥〉〈q3⊥〉〈q4⊥〉

[
[1⊥2⊥][3⊥4⊥]

P 2
12 +m2

12

− [1⊥4⊥][2⊥3⊥]

P 2
23 +m2

23

]
,

(5.2)

where m2
ij = (mi +mj)

2 is the mass2 of the internal line. Some comments are in order:

• We have used little-group invariance on the internal line to convert all internal spinors

to the CSW prescription,

[P̂⊥I | → [PI | ≡ 〈q|PI . (5.3)

• The shift parameters ci do not appear in the final answer, because the 3-point sub-

amplitudes 〈X−X+X+〉 are anti-holomorphic in the spinors of external lines, and

thus invariant under the holomorphic shift (5.1).

• The amplitude 〈X−X+X+X+〉 must of course vanish in the massless limit; indeed,

when mi → 0 the two terms cancel against each other because momentum conserva-

tion in massless 4-point kinematics gives [34]/〈12〉 − [14]/〈23〉 = 0.

• 〈X−X+X+X+〉 can be used to fix the normalization of the 4-point superamplitude

with arbitrary massive lines; as we saw above the Grassmann structure is completely

determined by supersymmetry already. This means that all other 4-point amplitudes

are related to 〈X−X+X+X+〉 by supersymmetry. We have verified numerically that

19Massless holomorphic all-line (super)shifts were introduced in [65, 66] to prove the (super-)MHV vertex

expansion in N = 4 SYM (see also [67]). They generalize the Risager 3-line shift [68], which was applied

in N = 4 SYM to derive MHV vertex expansions at the NMHV level [56, 69]. The generalization of

holomorphic all-line shifts to massive external lines was presented in [32].
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the resulting 4-point superamplitude coincides with the result obtained from dimen-

sional reduction and Grassmann Fourier transformation of the 6d superamplitude

of [38–40].

In the all-line shift recursion relation for 〈X−1 X
+
2 · · ·X+

n 〉, all subamplitudes are again

of the form 〈X−X+ · · ·X+〉. Note that SU(2)×SU(2) R-symmetry as well as our choice of

all-q equal do not admit any other subamplitudes to appear in the recursion diagrams.

Therefore, we can recursively use all-line shifts to reduce this amplitude into 3-point

subamplitudes 〈X−X+X+〉. Furthermore, since 〈X−X+X+〉 = [2⊥3⊥]3/([1⊥2⊥][3⊥1⊥])

is purely anti-holomorphic, the recursive reduction of 〈X−X+ · · ·X+〉 fulfills all criteria

stated in [32] for the validity of a massive CSW expansion — it is an “anti-MHV vertex

expansion” for 〈X−1 X
+
2 · · ·X+

n 〉:

〈X−1 X
+
2 · · ·X

+
n 〉 =

∑
cubic

diagrams

∏
I

1

P 2
I +m2

I

∏
v

[v⊥2 v
⊥
3 ]3

[v⊥1 v
⊥
2 ][v⊥3 v

⊥
1 ]
. (5.4)

For each diagram, the products run over the n−2 MHV vertices v and the n−3 internal

lines I. The subamplitude of vertex v is the three-point MHV amplitude 〈X−v1X
+
v2X

+
v3〉,

with the CSW prescription (5.3) understood for all internal-line spinors.

Let us now take this to the level of superamplitudes. The amplitude (5.4) is sufficient

to determine the full MHV superamplitude on the Coulomb-branch: it is given by

AMHV×MHV
n =

〈X−1 X
+
2 · · ·X+

n 〉
〈q1⊥〉4K2

2

× δ12 × δ34 , (5.5)

where δ12 was defined in (4.9), and the kinematic factors Ki for arbitrary masses on the

external lines were given in (4.46). The normalization follows simply from projecting out

〈X−1 X
+
2 · · ·X+

n 〉.
A crucial ingredient needed to derive the anti-MHV vertex expansion from the all-line

shift recursion is the fact that MHV×MHV 3-point amplitudes 〈X−X+X+〉 are invariant

under the shift (5.1). But this invariance extends beyond the MHV level! It is also true

for 3-point MHV×MHV amplitudes as is obvious from their superamplitude (4.24), which

contains angle spinors only in the invariant combination 〈qi⊥〉. Thus any amplitude whose

states only carry the SU(2) indices a = 1, 2 once each, and arbitrary combinations of

a = 3, 4 indices is also computable from the CSW expansion. Examples are amplitudes

that contain one negative helicity gauge boson X− and an arbitrary number of scalars x34

and positive helicity gauge bosons X+. Together with supersymmetry, this can be used to

determine the full MHV×(anything) superamplitude. We will begin by stating the answer,

then outline its derivation.

The full MHV×(anything) superamplitude, with arbitrarily many massive lines, takes

the form

AMHV×(anything)
n =

δ12
K2
×
∑
cubic

diagrams

∏
I

∫
dηI3ηI4
P 2
I +m2

I

∏
v

R3 . (5.6)
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In this superamplitude, the entire ηi1, ηi2 dependence is captured by δ12, while the ηi3, ηi4
dependence sits in the vertex superamplitudes R3 given by

R3 =
δ
(2)
34

(
[1⊥2⊥]η3a+cyc

)
〈q|1.2|q〉

+
m2〈q|1|q]−m1〈q|2|q]
〈q|1|q]〈q|2|q]〈q|3|q]

4∏
a=3

(
[1⊥q]η2aη3a + cyc

)
. (5.7)

Each factor of R3 in the product over vertices v in (5.6) is evaluated with the momenta

1, 2, 3 → v1, v2, v3 corresponding to the vertex. As before, the CSW prescription (5.3) is

implied for all square spinors that correspond to internal lines.

To derive (5.6), we proceed as follows. The first step is to write the MHV×(anything)

superamplitude in the following form:

AMHV×(anything)
n =

δ12
K2〈q1⊥〉2

×
∫
dη11dη12× (5.8)

×
∑
cubic

diagrams

∏
I

∫
d4ηIa

P 2
I +m2

I

∏
v

(
AMHV×MHV

3 +AMHV×MHV
3

)∣∣∣∣
ηi1,ηi2→0

,

where the A3 are the 3-point superamplitudes (4.21) and (4.24) corresponding to ver-

tex v, with the CSW prescription for spinors of internal lines understood. Here, we

denoted the MHV-band superamplitude pedantically by AMHV×MHV
3 to avoid confu-

sion. To see that (5.8) is indeed the correct superamplitude, note that the right part∫
dη11dη12[. . .]|ηi1,ηi2→0 projects out amplitudes from the anti-MHV vertex expansion that

carry R-symmetry indices a = 1, 2 only on line 1. As argued above, for all such amplitudes

the anti-MHV vertex expansion is valid, irrespective of their structure with respect to the

second SU(2). This guarantees that the ηi3, ηi4-structure of (5.6) is correct. The ηi1, ηi2-

structure is that of an MHV band, as the explicit δ12 makes manifest. Finally, to check

the overall normalization, we note that∫
dη11dη12

δ12
K2〈q1⊥〉2

∣∣∣∣
ηi1,ηi2→0

= 1 . (5.9)

This ensures that any amplitude that carries R-symmetry indices a = 1, 2 only on line 1 is

projected out correctly from AMHV×(anything)
n , and thus confirms the overall normalization.

We now carry out the η-integration in the first SU(2) sector. Note that

AMHV
3 +AMHV×MHV

3 = δ
(2)
12

(
〈qi⊥〉ηia

)
×R3 , (5.10)

where R3 is the superamplitude (5.7) that only “lives” in the SU(2) sector corresponding

to a = 3, 4. We carry out the integrations with respect to η1a, ηIa for a = 1, 2 in (5.8),

giving a factor of 〈q1⊥〉2
∏
I〈qP̂⊥I 〉2. The product

∏
I〈qP̂⊥i 〉2 is canceled by the little-group

scaling of the internal lines that allows us to replace the |P̂⊥i ] of the internal line by its

CSW prescription (5.3). It follows that the full superamplitude AMHV×(anything)
n takes the

form presented in (5.6).
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6 Massive dual conformal invariance

The dual superconformal symmetry of planar amplitudes in N = 4 SYM [1, 2] has enabled

significant progress in understanding scattering amplitudes at the origin of moduli space.

Although conventional conformal symmetry is broken on the Coulomb branch, it has been

proposed [13–16] that a form of dual conformal symmetry nonetheless persists. This is

perhaps not completely surprising given the interesting recent observations that dual con-

formal symmetry is also a property of planar tree amplitudes in maximally SYM in 10d [46]

and 6d [38–40]. For example, 6d superamplitudes at tree level transform covariantly un-

der 6d dual conformal inversions, albeit with additional weight coming from the mismatch

between the momentum and supermomentum delta functions in six dimensions [38]. A

complete understanding of dual conformal symmetry on the Coulomb branch of N = 4

SYM could be a helpful guide for further progress on the structure of these amplitudes, at

both tree and loop level.

Just as at the origin of moduli space, momentum conservation on the Coulomb branch

suggests the definition of conventional region momenta,∑
pi = 0 → (xi − xi+1)αα̇ ≡ (xi,i+1)αα̇ = |i⊥〉[i⊥|+ µiµ̄i|q〉[q| , (6.1)

with the periodic identification xn+1 = x1. Likewise, the Coulomb branch condition∑
mi = 0 (from the 6d perspective, conservation of momentum in the extra dimensions)

suggests ‘region masses’,20∑
mi = 0 → (ni − ni+1) ≡ ni,i+1 = mi . (6.2)

These region variables may be collected together into a larger object suggestive of the

higher-dimensional origin: let us define x̂i = (xi, ni) such that x̂2i,i+1 = x2i,i+1 + n2i,i+1.

We are going to explore the behavior of certain planar Coulomb branch amplitudes

under dual conformal inversions. The inversions act on xi and mi simply as [13]

I
[
x2i,i+1

]
=

x2i,i+1

x̂2i x̂
2
i+1

, I
[
m2
i

]
=

m2
i

x̂2i x̂
2
i+1

. (6.3)

Less trivially, the inversion properties of helicity spinors for massive momenta may be

obtained by carrying out the reduction of the corresponding six-dimensional expressions

found in [38–40].21 For example, we have (spinor indices implicit):

I
[
〈i⊥|

]
=

1

x̂2i

(
xi|i⊥〉 − niµi|q]

)
, I

[
[i⊥|
]

=
1

x̂2i

(
xi|i⊥]− niµ̄i|q〉

)
, (6.4)

I
[
µ̄i〈q|

]
=

1

x̂2i

(
µ̄ixi|q〉+ ni|i⊥]

)
, I

[
µi[q|

]
=

1

x̂2i

(
µixi|q] + ni|i⊥〉

)
.

20Here, as elsewhere, we are taking mi real. Properly speaking, ni,i+1 = Zi, but the reality condition

allows us to identify the region masses directly with mi.
21It is important to note that in order to reproduce the known 4d inversion properties in the massless

limit, the 6d inversions should not raise or lower the 6d little group index.
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Let us now apply dual inversion to the w⊥w⊥-gluon UHV amplitude from the MHV-

band, where w⊥ denotes the scalar w⊥ = (w12−w34)/
√

2 “orthogonal” to the longitudinal

gauge boson. As both massive lines in this amplitude are scalars, the resulting amplitude

must be independent of the reference spinor q. Indeed, projecting out w⊥ and w⊥ on lines

1 and 2 from the superamplitude (4.11) and positive helicity gluons on the other lines,

we find 〈
w⊥1 w

⊥
2 g

+
3 g

+
4 . . . g

+
n

〉
=

m2 [3|
∏n−1
i=4 [m2 − xi2x2,i+1]|n]

〈34〉〈45〉 · · · 〈n−1, n〉
∏n
i=4(x

2
2i +m2)

. (6.5)

The dual conformal properties of (6.5) are not obvious. However, in this case with just two

massive lines, the region masses are such that m = n2i for any i = 1, 3, 4, . . . , n. Hence we

can rewrite the propagators using x22i +m2 = x22i + n22i = x̂22i. In the numerators we write

(m2 − xi2x2,i+1)
β
α = (−x̂i2x̂2,i+1)

β
α , which is the projection of a 6d spinor product to 4d

square spinors. Concretely, writing x̂ij in terms of 4d Dirac matrices as x̂ij = xµijγµ+nijγ5,

this projection can be implemented as a chiral projection P− = (1−γ5)/2. This now allows

us to write the amplitude (6.5) as

〈
w⊥1 w

⊥
2 g

+
3 g

+
4 . . . g

+
n

〉
=

(−)nm2 [3|x̂32x̂25][x̂52x̂26][ · · · ][x̂n-1,2x̂2n|n]

〈34〉〈45〉 · · · 〈n−1, n〉
∏n
i=4 x̂

2
2i

, (6.6)

where the separators ][ indicate the projection P− onto square spinors (and thus prevents

us from extracting propagators x̂22i from the string of spinors).

Under dual conformal inversion, the string 〈34〉〈45〉 · · · 〈n − 1, n〉 is covariant with

weight (x̂23 · · · x̂2n−1)−1, just as in the massless case. The propagators
∏n
i=4 x̂

2
2i transform

covariantly with weight (x̂2n−62 x̂24 · · · x̂2n)−1, while the spinor string [3|x̂32 · · · x̂2n|n] trans-

forms covariantly with weight (x̂2n−82 x̂23x
2
5 · · · x̂2n)−1. Note that there is an ambiguity as to

which weight to assign to the m2-factor. Let us for now arbitrarily assign m2 = n212, so that

it transforms with weight (x̂21x̂
2
2)
−1. Finally we recall that the momentum delta-function

has weight 4 at x̂1. Thus, all in all, the amplitude (6.6) transforms covariantly under

dual conformal inversions, but with abnormal weight x̂61x̂
4
4x̂

2
5 · · · x̂2n−1 = (x̂21x̂

2
2 · · · x̂2n)

x̂41x̂
2
4

x̂22x̂
2
3x̂

2
n

.

The unusual weights reflect our simplifying choices for amplitudes with just two massive

lines and the resulting ambiguity in the mass region variables; the overall weights can the

changed using 1 = m2/m2 = n22i/n
2
2j . The main point here is not to understand these

weights, but to illustrate that there is a way to write the amplitude in a way that is

manifestly dual conformal covariant, albeit with ambiguous weights.

In the case of massless planar amplitudes, individual amplitudes are not generically

dual conformal invariant; only split-helicity amplitudes transform covariantly, and in gen-

eral one needs to promote the amplitudes to superamplitudes for covariance to become

manifest. The amplitude (6.6) is in a sense a massive analogue of the split-helicity ampli-

tudes at the origin of moduli space. If we try to press this analogy further, we encounter a

new complication. The amplitude 〈W−W+
g+ . . . g+〉 is closely related to the w⊥w⊥-gluon

amplitude (6.6); they differ only by an overall factor −〈q1⊥〉2/〈q2⊥〉2 which carries the

helicity weights of the vectors. This factor, however, does not transform covariantly under

dual conformal inversions for general q. Curiously, though, our special choice q = q0, in
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(4.2) implies that22 〈q01⊥〉2 = −〈q02⊥〉2 so that the non-covariant factor is eliminated and

the WW -gluon amplitude exactly coincides with the w⊥w⊥-gluon amplitude (6.6). In other

words, the special choice of q0 erases the information from the transverse polarization vec-

tors. The point to beware of here is, however, that the dual conformal transformations do

not generally leave invariant the q-basis chosen for the helicity amplitudes. In the massless

case this is not an issue because the massless helicity amplitudes are frame-independent.

But for the massive amplitudes it is crucial, and any generic choice of q’s cannot be ex-

pected to be preserved, or preferred, by the dual conformal symmetry. Thus the massive

amplitudes that have a chance of displaying manifest covariance under dual conformal

inversions are those which do not depend explicitly on q, such as for example (6.6).23

It is natural to suspect that the dual conformal properties of the Coulomb branch are

more transparent at the level of superamplitudes. Supermomentum conservation allows us

to define Grassmann region variables such as

|θ1i〉 − |θ1i+1〉 ≡ |θ1i,i+1〉 = |i⊥〉η1i − µ̄i|q〉
∂

∂ηi2
, (6.7)

and likewise for the remaining supercharges in each of the two SU(2) sectors. Under

inversions these region supermomenta transform as, e.g.,

I
[
|θ1i〉

]
=

1

x̂2i

(
〈θ1i|xi − ni[θ2i |

)
. (6.8)

The Grassmann variables η transform inhomogeneously under dual conformal inversion.

It is therefore not clear that each of our NkMHV-bands will have dual superconformal

symmetry, or whether it will only be a property of the full n-point superamplitudes. Let us

note, however, that the 4-point MHV-band superamplitude (4.11) is expected to transform

covariantly. This follows from 6d dual conformal invariance since δ12 × δ34 for n = 4

is related to the 6d supermomentum delta functions by a Grassmann Fourier transform

[47, 32], generalized to the massive case. The simple connection between the 4d SUSY

invariant δ12 × δ34 and the 6d invariant δ8(Q) only holds for four external lines. Thus

the explicit behavior of massive NkMHV superamplitude-bands with n ≥ 5 under dual

conformal transformations remains an open question.

It is interesting to consider the infinitesimal massive dual conformal boost generator

acting on the full set of Coulomb branch coordinates. Decomposing the corresponding 6d

generators, we find that the massive dual conformal boost generators take the form (spinor

indices implicit)

K α
α̇ =

n∑
i=1

{
xixi

∂

∂xi
+ 2xini

∂

∂ni
+ n2i

∂

∂xi

+ µ̄i〈q|xi
∂

∂(µ̄i|q〉)
+ 〈i⊥|xi

∂

∂|i⊥〉
+ µi[q|xi

∂

∂(µi|q])
+ [i⊥|xi

∂

∂|i⊥]
(6.9)

+ niµ̄i〈q|
∂

∂|i⊥]
− ni〈i⊥|

∂

∂(µi|q])
+ ni[i

⊥| ∂

∂(µ̄i|q〉)
− niµi

∂

∂|i⊥〉

}
.

22To see this, note that 〈qi⊥〉 = [i⊥q], a relation that we did not make use of in this paper so far, but

that was discussed extensively in [32].
23This is consistent with the evidence in [13] that Coulomb-branch amplitudes are invariant under dual

conformal transformations when not taking into account contributions from the polarization of external

states.
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The first line has the familiar bosonic components appearing in [13, 38]. The remaining two

lines give the transformation properties of the helicity spinors. The massless limit reduces

precisely to the dual conformal boost generator at the origin of moduli space [1, 2]. In

essence, the action of the massive dual conformal boost generator on amplitudes provides

a differential equation relating amplitudes at different points on moduli space. It would be

exciting to realize a useful set of differential equations to move amplitudes around on the

moduli-space.

Let us finally note that in order to fully understand dual conformal symmetry on the

Coulomb branch, it may be useful to relax the condition qi = q which simplified our results

significantly in the earlier sections. This allows a more general framework with generic

reference vectors, and working also with generic masses mi subject to
∑n

i=1mi = 0 may

lead to a more natural implementation of dual conformal symmetry. Our approach here

was exploratory in the context of the formalism used in the previous sections, and we hope

for further progress in the future.

7 Conclusion and outlook

In this paper, we presented a wide variety of compact expressions for massive amplitudes

and superamplitudes, as well as a simple prescription for generating Coulomb-branch am-

plitudes from the origin of moduli space. We have also shown that some amplitudes can

be compactly written in a manifestly dual conformal form. Taken together, our results

suggest that much of the simplicity apparent at the origin of moduli space persists as we

move onto the Coulomb branch.

Our analysis in this paper is far from exhaustive and should be regarded as a first

exploratory step onto the Coulomb branch. For example, using the soft-limit method

introduced here, it seems within reach to obtain compact and simple expressions for the

entire Coulomb-branch superamplitude to leading order in the mass. The soft-limit method

may also be applicable beyond leading order; however, in this case, new subtleties arise

that must be addressed. In particular, the soft-limits that are naturally associated with

sub-leading mass corrections to Coulomb-branch amplitudes suffer from soft divergences

that are absent in our leading-order analysis. As an example, consider 〈W+ W
+
g− g−〉.

At leading order in m → 0, we recover the usual massless Parke-Taylor amplitude. One

might hope that the subleading terms of O(m2) are captured by the double-soft limit of

〈g+ φ12q φ34q g+ g− g−〉. Symmetrization of the scalars eliminates the collinear divergence,

as in section 3, but a soft divergence proportional to 1/s1q + 1/s2q remains as q → 0.

This leads to ambiguous answers for the finite remaining term that we wish to extract.

Curiously, the “special choice of q” that we introduced in section 4.2 to simplify the su-

peramplitudes may play a role in extracting the correct subleading behavior. In fact, in

the above example the soft divergence vanishes for q = q0. Indeed, one can systematically

obtain the subleading terms in the small-mass expansion of tree-amplitudes, as has sub-

sequently been shown in [36]. Using this, the unitarity methods allow one to extract the

subleading mass-corrections also at loop-level. This might be useful in phenomenological

applications where the energy scale of the scattering process dominates the masses.
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It has been observed in planar massless N = 4 SYM that, at the level of the integrand,

increasing the loop level is very closely related to an increase in NkMHV level [70, 10].

If our soft-limit prescription can be extended beyond the leading order, it will exhibit a

similar “conservation of complexity”: higher-order mass corrections are associated with

soft-limits of massless amplitudes of higher NkMHV level — again there is no free lunch.

This fits well with the suggestion of [48] that 6d SYM amplitudes at the n-point level may

be reconstructible from the full massless 4d superamplitude, including the alternating-

helicity sector amplitudes, which are the most complicated ones for the given n. The 6d

amplitudes in turn determine the massive Coulomb-branch amplitudes completely.

There is a third avenue onto the Coulomb-branch: imposing that amplitudes are an-

nihilated by dual conformal generators such as (6.9) implies a differential equation that

connects different points in moduli space. In particular, one should in principle be able to

determine the complete mass dependence from the leading one. It would be valuable to

elucidate the connection between these three seemingly very different approaches to obtain

Coulomb-branch amplitudes from massless ones.

The discussion in this paper has focused entirely on tree amplitudes. Coulomb-branch

amplitudes with massless external states only have been studied at loop-level to regulate

integrals of the massless theory without spoiling dual conformal properties. It would be

useful to study loop-level (super)amplitudes on the Coulomb branch in their own right to

see how many of the nice results obtained at the origin of moduli space can persist in a

massive non-conformal theory. As the general superamplitude structure discussed in this

paper (such as the SUSY invariant δ12 × δ34) is valid at both tree- and loop-level, the

results presented here should facilitate an extension to loop amplitudes.

It would be useful to apply the techniques developed here toward the computation

of QCD amplitudes involving massive quarks. Massless QCD amplitudes may be readily

extracted from N = 4 superamplitudes at the origin of moduli space [71], and it is there-

fore natural to ask whether a similar relation holds between massive QCD and Coulomb-

branch amplitudes. This could be useful for efficient computation of processes relevant for

collider physics.
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