
J
H
E
P
1
2
(
2
0
1
1
)
0
8
4

Published for SISSA by Springer

Received: July 30, 2011

Revised: November 30, 2011

Accepted: November 30, 2011

Published: December 22, 2011

Families of exact solutions to Vasiliev’s 4D equations

with spherical, cylindrical and biaxial symmetry

Carlo Iazeollaa and Per Sundellb,1
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1 Introduction

1.1 Motivations

The importance of higher-spin gravities [2–5] — both in themselves, as some of the few

known consistent interacting gauge field theories, and as systems of intermediate com-

plexity between ordinary gauge theories and string field theories — is currently becoming
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more widely appreciated. All known models in four dimensions and above consist of an

infinite tower of gauge fields, essentially tied to dressings of the minimal-bosonic models

consisting perturbatively of symmetric-tensor gauge fields of even ranks including a physical

scalar [3, 21]. Such infinite towers resemble the leading Regge trajectory of string theories

collapsed to critical masses given in units of a finite cosmological constant. Indeed, just

like string field theories, higher-spin gravities admit a formulation, found by Vasiliev [2],

in terms of master fields depending on commuting spacetime coordinates and internal os-

cillators, and interacting via star-product algebras. However, their algebraic structures are

simple enough that equations of motion based on a gauge principle — including general-

ized spacetime symmetries — can be spelled out explicitly in a background-independent

fashion, as for ordinary (super)gravities. Corresponding off-shell formulations have been

proposed recently in [8] and related issues concerning globally-defined formulations on-shell

and off-shell have been studied in [45]. Moreover, the properties of discretized strings in

Anti-de Sitter spacetime [18] (motivated by the semi-classical results of [9, 10]) suggest

that higher-spin gravities are sub-sectors of particular tensionless limits of closed string

field theories. Higher-spin gravities are thus tractable models for studying large-curvature

effects in stringy completions of ordinary gravities.

In particular, this opens a new window on holography in regimes where the boundary

theories are weakly coupled and the bulk theories contain higher-spin gravities (and that

are hence complementary to the more widely studied dual pairs involving strongly-coupled

boundary theories and string theories with low-energy effective gravity descriptions on the

bulk side). In this regime, the massless higher-spin fields correspond to the bilinears in

free fields on the boundary, which is a manifestation of the Flato-Fronsdal theorem [19].

An important special case is the holographic correspondence between three-dimensional

O(N)-vector models and four-dimensional higher-spin gravities [20, 24], for which super-

symmetries are not essential and the absence of boundary gauge symmetries implies sim-

plified 1/N expansions. At the level of three-point functions, this correspondence was

verified in the case of scalar self-couplings [21] and more recently for general couplings

in [22, 23]. Moreover, possessing the full bulk field equations allows for more direct and de-

tailed studies of holography using, for example, exact renormalization-group equations [25]

or bilocal fields [26].

Vasiliev’s equations [2, 3] (see [4–6] for reviews) provide a fully nonlinear framework

for higher-spin gravities. They encode the classical dynamics of a highly complicated sys-

tem — in which infinitely many fields of all spins are coupled through higher-derivative

interaction vertices — into a combination of zero-curvature constraints, for suitable master

fields with simple higher-spin gauge transformations, and algebraic constraints, that ac-

tually describe a deformed ⋆-product algebra. This elegant description is achieved within

the unfolded formulation of dynamics [4, 5, 14, 15], which is a generalization based on

differential algebras of the covariant Hamiltonian formulation of dynamics. The resulting

unfolded systems consist of finitely many fundamental differential forms, which are the

aforementioned master fields, living on extensions of spacetime referred to as correspon-

dence spaces. Locally, these are products T ∗X×T , where X contains spacetime, and T is a

non-commutative twistor space in the case of four-dimensional spacetime. The unexpected
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simplicity of the equations resides in that all spacetime component fields required for the

unfolded formulation are packed away into the master fields in such a way that contractions

of the coordinates of T , controlled by the deformed ⋆-product algebra, reconstruct gener-

ally covariant albeit non-local interactions in spacetime.1 In this sense, the gauge principle

based on higher-spin symmetries leads to a departure from the more familiar framework

of Einstein gravity with perturbative stringy corrections into a radically different realm

involving interesting new phenomena, already at the classical level, for which we would like

to gain more intuition.

Given the aforementioned non-localities, exact solutions of Vasiliev’s equations are of

great interest as they can provide important insights on both the physics and the geometry

underlying such an unconventional physical regime. To find examples, one can conve-

niently solve the zero-curvature constraints locally on X using gauge functions; the local

degrees of freedom are thus encoded into suitable fibre elements that solve the remain-

ing deformed-oscillator problem on T [41, 42]. In this precise sense, Vasiliev’s unfolded

equations naturally map the original dynamical problem in spacetime to an arguably more

tractable problem in the fibre space — a property that has not only proved useful for find-

ing exact solutions [28, 31, 32] but also greatly simplified the computations of three-point

functions in [23].

1.2 Known exact solutions to higher-spin gravity

Besides the anti-de Sitter vacuum solution, a number of non-trivial solutions have been

found in recent years. In 2 + 1 dimensions, where higher-spin fields do not propagate, a

class of vacuum solutions have been constructed in models containing non-trivial matter

sectors [27] by making use of a specific Ansatz for the deformed oscillators. More recently,

the BTZ black-hole has been embedded into Vasiliev’s three-dimensional higher-spin grav-

ity [28] and black-hole-like solutions to a certain Chern-Simons higher-spin gravity have

appeared [29, 30]. In 3+1 dimensions, the first non-trivial example of an exact solution was

found in [31] by using the gauge-function method and adapting the aforementioned Ansatz

for deformed oscillators to the four-dimensional case. In various four-dimensional spacetime

signatures, further classes of exact solutions were presented in [32], including algebraically

special generalizations of type-D2 gravitational instantons, with all higher-spin fields turned

1Barring the issue of topologically nontrivial configurations on T , which we shall address later in sec-

tion 3.4 and appendix G, projecting out T yields a full set of infinitely many component fields on spacetime

that can be expressed on-shell in terms of a set of dynamical fields and their derivatives (see appendix D).

In particular, there is always a dynamical metric tensor that one can treat non-perturbatively while treating

all other dynamical fields as weak. More precisely, the generally-covariant dynamical equations take the

form of standard kinetic terms with critical mass terms [40], equated to source terms that admit a double

expansion in weak fields and derivatives. At every fixed order in weak fields, the derivative expansions

do not terminate, at least not in the naively defined basis of dynamical fields (see for example [11–13]

and references therein). Moreover, the derivatives are given in units of the cosmological constant and, as

a consequence, the higher-derivative interaction terms are huge on-shell for unitarizable fluctuation fields

belonging to lowest-weight spaces. Thus, an important open problem is to specify admissible boundary

conditions, possibly related to a weakened notion of perturbative locality [13].
2This terminology refers to Petrov’s invariant classification of the Weyl tensors [37–39], based on the

algebraic properties of the latter at any spacetime point; for further details, related notation and conventions,
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on, and some new vacuum solutions describing topologically non-trivial field configurations

on Z. Finally, in [1], Didenko and Vasiliev have given a solution that in many respects

corresponds to an extremal generalization of the Schwarzschild solution to AdS gravity.

In the latter solution, characterized by a single deformation parameter M , spherically

symmetric modes for each spin are switched on in a coherent fashion. The spin-s Weyl

tensors depend on the radial coordinate r of the spherically symmetric coordinate system of

AdS4 as C(s) ∝ r−s−1, are all of (generalized) Petrov-type D [37], and are built in terms of

covariant derivatives of a time-like AdS4 Killing vector. Asymptotically, at spatial infinity

where r → ∞, the different spins decouple and one can meaningfully identify the spin-2

Weyl tensor with that of the AdS-Schwarzschild black hole with mass proportional to M .

However, near r = 0 the Weyl tensors are large and the strong coupling between infinitely

many fields of all spins may give rise to important deviations from the standard results in

gravity. This raises the very interesting question whether the non-localities associated to

the unbroken higher-spin symmetry suppress the short-distance singularities.

A remarkable feature of the Didenko-Vasiliev solution, shared with 4D gravity black

holes, is that it linearizes the full equations of motion. Technically, this property is encoded

into the fact that 4D black hole metrics as well as the higher-spin gauge fields of the solution

can be written in Kerr-Schild form [1] in a certain gauge. In the Didenko-Vasiliev solution,

this is achieved by factorizing a certain operator appearing in the Vasiliev equations, known

as the inner Kleinian operator, into a product of two delta functions on T [1, 36], and by

expressing the fluctuation part of the master fields via a spacetime-dependent vacuum

projector related to the above-mentioned AdS4 Killing vector, providing an Ansatz that

simultaneously solves the linearized equations and trivializes all nonlinear corrections.

1.3 Summary of our main results

In this paper, we find six families of exact solutions to four-dimensional bosonic higher-

spin gravities by combining the gauge-function method on X with the aforementioned

factorization property of the inner Kleinians on T . The latter facilitates the separation of

variables in the twistor-space T
loc∼= Y×Z\D, where Y ∼= C

2 is a non-commutative fibre space

on which the master fields admit expansions in terms of symbols belonging to associative

algebras with well-defined traces, Z ∼= C
2 is a non-commutative base space, and D stands

for some submanifold of Y×Z on which the master fields may develop suitable singularities

— as it happens on some of the solutions, as we shall see. The corresponding factorized

Ansatz amounts to expanding the master fields in terms of projector algebras on Y times

coefficient matrices on Z that solve the deformed oscillator problem (modulo subtleties

having to do with potential non-trivial D developing over certain points in spacetime).

All our solutions possess the Kerr-Schild property of the Didenko-Vasiliev solution,

i.e. the full Weyl tensors coincide with the linearized ones. This implies that the full Weyl

zero-forms belong to linear spaces, while gauge fields and internal connections on Z contain

interference terms (that do not cancel out in the gauge we use, though they do in other

gauge choices [1]).

see appendix A.
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The projectors are functions of pairs of generators in the complexified Cartan subal-

gebra of so(3, 2), that can be any inequivalent combination of rotations J , boosts iB or

spatial and time translations iP and E, respectively, namely (E, J), (J, iB) and (iB, iP ).

This yields three classes of so(2)×so(2)-invariant3 solutions, that we shall refer to as being

biaxially symmetric (or simply axisymmetric), consisting of master fields that are diago-

nalized over bases of eigenstates |n〉 of the above pairs of generators. These solution spaces

are coordinatized by massive deformation parameters νn representing the eigenvalues of

the Weyl zero-form master field in the aforementioned bases.

The two Cartan generators can be identified as the linear combinations of the number

operators acting in two Fock spaces, say F+
i (i = 1, 2), and the corresponding anti-Fock

spaces F−
i . The total state space (F+

1 ⊕F−
1 )⊗ (F+

2 ⊕F−
2 ) decomposes under so(3, 2) into

four sub-sectors (±,±) ≡ F±
1 ⊗ F±

2 . In each sub-sector, one of the two Cartan generators

is either positive or negative definite, and is to be referred to as the principal Cartan

generator. The full equations admit discrete global symmetries (the τ -map) that relate

(+,+) to (−,−) and (+,−) to (−,+). Hence (+,+) ⊕ (−,−) and (+,−) ⊕ (−,+) form

two independent families of solutions, which can be labelled by their principal Cartan

generators. In other words, denoting each family by MK(±)
(hR) with distinct symmetry

sub-algebras hR = so(2)(+) ⊕ so(2)(−) ⊂ so(3, 2) ∼= sp(4; R) and principal Cartan generator

K(±) ∈ sp(4; C) (formed as either the sum (+) or difference (−) of the aforementioned

number operators), the six families of solutions can be organized into the following three

pairs:

ME(E, J) , MJ(E, J) ; MJ (J,B) , MiB(J,B) ; MiB(B,P ) , MiP (B,P ) . (1.1)

In case the principal Cartan generator is imaginary, the reality condition implies that

the corresponding master fields must contain both Fock-space and anti-Fock-space pro-

jectors. The required projector algebra can be realized by presenting the dependence on

the Cartan-subalgebra generators via inverse Laplace-like transforms introducing auxiliary

closed-contour integrals, which we refer to as regular presentations. The co-existence of

Fock-space and anti-Fock-space projectors is also required for the minimal-model projection

of all our solutions.

In this paper we shall mainly focus on the two solution spaces ME(E, J) and

MJ (E, J). Drawing on the results obtained in [43], the projectors used in the (+,+)

and (−,−) sub-sectors of ME(E, J) are related to supersingleton and anti-supersingletons

states, respectively, while the (+,−) and (−,+) sub-sectors of MJ(E, J) are related to

analogous ultra-short albeit non-unitary so(3, 2)-irreps. Specific combinations of such ax-

isymmetric solutions give rise to solutions with enhanced spherical so(3)⊕ so(2)-symmetry

or cylindrical so(2, 1) ⊕ so(2)-symmetry (and their higher-spin extensions), arising from

enhancing either so(2)J to so(3) or so(2)E to so(2, 1), respectively (see table 1). In the

general-relativistic terminology, which is valid in the asymptotic weak-curvature regions,

this amounts to that the non-enhanced Killing vector becomes hypersurface-orthogonal;

3More precisely, the solutions are left invariant by the intersection of the enveloping algebra of so(2) ×

so(2) with the underlying higher-spin symmetry algebra.
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if the latter is time-like, the corresponding stationary solution is, in fact, static. This is

the case for all the solutions belonging to the rotationally-invariant family, one member

of which is the Didenko-Vasiliev solution that we find here being based on the singleton

ground-state projector P1(E) := 4e−4E .

All the solutions found in this paper are algebraically special. In particular, all the

Weyl tensors of the symmetry-enhanced solutions are always of generalized Petrov-type D.

This means that the Weyl tensors have two principal spinors, i.e., that at every spacetime

point there exists a (normalized) tangent-space twistor basis (u+
α (x), u−

α (x)) (a spin-frame,

in the terminology of [38, 39]) on which the self-dual part of the spin-s Weyl tensor takes

the form4 Cα(2s) ∼ f(x)(u+
α u−

α )s, which we shall also refer to as type-{s, s} (analogously for

the anti-selfdual part with the complex conjugate twistors (ū+
α̇ (x), ū−

α̇ (x))). Furthermore,

the principal spinors of the Weyl tensors of the above solutions are those of the Killing

two-form κµν = ∇µvν where vµ is a specific AdS4 Killing vector, i.e., the Weyl tensors

can be rewritten as Cα(2s) ∼ F (x)(καα)s. In four-dimensional Einsten gravity, if the

corresponding Killing vector is asymptotically time-like, this is a local hallmark of black-

hole solutions [33–35]. The Weyl tensors of the axisymmetric solutions are less special, as

we shall see: they are algebraically general for spin s ≤ k and type-{s − k, s − k, 1, . . . , 1︸ ︷︷ ︸
2k

}

for s > k (the integer k depending on the projector the solution is built on), which we shall

refer to as almost type-D.

For our spherically-symmetric solutions, which are based on energy-dependent su-

persingleton state projectors Pn(E), the aforementioned specific AdS4 Killing vector is

asymptotically time-like and given by the time-translation ∂/∂t. These solutions contain

an infinite tower of Weyl tensors, one for every spin, of the form

C
(n)
α(2s) ∼ in−1µn

rs+1
(u+

α u−
α )s , (1.2)

where µn = i−nνn are real deformation parameters, as explained in sections 3 and 5. As first

observed in [1] for the case n = 1, the s = 2 sector coincides with the AdS-Schwarzschild

Weyl tensor. Interestingly, the curvatures are real for n odd and imaginary for n even, which

suggests that solutions built on projectors Pn(E) over combinations of states belonging to

the scalar (n odd) or spinor (n even) singleton representation, related to the Type A or

Type B models5 [21], are connected via a generalized electric/magnetic duality.

Starting with the asymptotically space-like Killing vector ∂/∂ϕ, on the other hand,

leads to cylindrically-symmetric solutions, based on the rotation-dependent projectors

4We use the shorthand notations Ta(n) to denote a tensor with n totally symmetrized indices Ta1...an =

T(a1...an). Repeated non-contracted indices are also to be understood as totally symmetrized, SaaTaa :=

S(a1a2
Ta3a4).

5As explained in [43], the projectors Pn(E) belong to D(1/2, 0) ⊗ D∗(1/2, 0) for n odd and to

D(1, 1/2) ⊗ D∗(1, 1/2) for n even, where D(1/2, 0) is the scalar-singleton representation and D(1, 1/2)

the spinor singleton representation. From the point of view of a two-sided, twisted-adjoint action they are

an enveloping-algebra realization of states belonging to the tensor product of two scalar and two spinor

singletons, respectively, which are in their turn related to the spectrum of the Type A and Type B minimal

bosonic models defined in [21].
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Pn(J), the Weyl curvatures of which exhibit a non-singular behaviour,

C
(n)
α(2s) ∼ in+s+1µn

(1 + r2 sin2 θ)
s+1
2

(u+
α u−

α )s , (1.3)

where µn are real deformation parameters.

Finally, in the case of strictly axisymmetric solutions in ME(E, J), the Weyl ten-

sors diverge at the origin with a power-law that is in general different from that of the

spherically-symmetric case (see for instance eq. (5.5)). On the other hand, in MJ(E, J),

the Weyl tensors inherit the regularity of the cylindrically-symmetric solutions.

Therefore, for a number of reasons, it is tempting to identify the singular family

ME(E, J) as higher-spin generalizations of black holes. A more detailed study of whether

or not, for instance, the singularity is physical and not a gauge artifact, and whether or not

these solutions possess an event horizon, can be performed by analyzing the propagation of

small fluctuations over them. The deviations from Einstein gravity in the strong-curvature

region, as discussed above, may be radical, essentially due to the non-locality of interactions

induced by the unbroken higher-spin symmetry. To probe this region, it may be necessary

to extend the usual tools of differential geometry to the higher-spin context, since standard

concepts such as the relativistic interval are not higher-spin invariant.

However, we already have at our disposal some useful instruments for distinguishing

gauge-inequivalent solutions and for characterizing them physically even in strong-field

regions, namely zero-form charges [31, 32, 44, 45], that we shall use in this paper. They

are a set of functionals of the zero-form master-fields, defined via the trace of the ⋆-product

algebra, that are conserved on the field equations and provide classical observables that do

not break the higher-spin gauge symmetries. As the non-locality on T of the star-product

is mapped via the field equations to spacetime non-locality, the zero-form charges hide their

higher-derivative nature into the ⋆-products between master-fields, and this facilitates their

evaluation. We find that certain zero-form charges involving the spacetime curvatures are

well-defined on our solutions, and amount to linear combinations of powers of the squared

deformation parameters µ2
n, that therefore characterize the various field configurations in

a gauge-independent way. Interestingly enough, all these invariants are finite everywhere

— unless the solution under consideration is based on infinitely many projectors and the

eigenvalues µn are not too small. Whether or not this is the signal of a true singularity in

higher-spin gravity is a question that needs further study. We speculate on this and related

issues in the final section of this paper, where we also mention a possible way of turning

on an angular momentum, the details of which we leave for future work.

1.4 Plan of the paper

The organization of this paper is as follows. In section 2 we recall some relevant aspects

of the Vasiliev’s equations, in a general fashion that also encompasses details that are

relevant for the off-shell extensions and globally defined formulations [8, 45], including

some discussion of observables in higher-spin gravity. Moreover, in section 2.3 we recall

the gauge-function solution method and give the reduced, twistor-space equations that
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we shall solve in the next section. In section 3 we spell out our solution strategy and

Ansätze: in particular, we give the details of the gauge functions we work with, introduce

the main objects the solutions will be made up of, discuss their spacetime meaning, and

solve the deformed oscillator problem. Section 3.7 contains a summary of the obtained

internal, twistor-space solutions, where we also show that they form a subalgebra under

⋆-product, and analyze their singular points in Y × Z — i.e., the appearance of a non-

trivial submanifold D of singular points in Y × Z. In section 4 we obtain the spacetime

master-fields by evaluating the relevant ⋆-products with the gauge function. We show that

all the master-fields and the generating functions of the gauge fields are regular, except

possibly at spacetime points where the curvatures are singular. Thus, introducing the

spacetime coordinates softens the behaviour of the singular solutions on T : for example,

in the spherically-symmetric case the radial coordinate r enters the Weyl master zero-form

as the parameter of a limit representation of a delta function in twistor space. Section 5

is devoted to the study of the individual spin-s Weyl tensors (to which one can assign

a physical meaning only in asymptotic regions, where the curvatures are weak and the

different spins effectively decouple) focusing on solutions depending on E and J . We then

turn, in section 6, to characterizing the solutions also in strong-field regions by evaluating

the above-mentioned zero-form observables. Finally, in section 7 we draw our conclusions

and mention a number of directions for future study and open problems. The paper is

completed by seven appendices, where we spell out our conventions (appendix A), give

some general discussion of the ⋆-product algebras for the Vasiliev system and orderings

(appendix B), recall some background material (appendices C and D), and collect some

results that are used in the main body of the paper (appendices E, F and G).

2 Vasiliev’s equations for four-dimensional bosonic models

In this section we describe various aspects of Vasiliev’s four-dimensional higher-spin grav-

ities, with focus on bosonic models. The direct requisites for the construction of the exact

solutions are found mainly in sections 2.1.2, 2.1.3, 2.2.2, 2.2.3, 2.3 and 2.4.1, and in ap-

pendix B.3 ; in particular, the original form of the Vasiliev equations, which we shall solve

using the gauge-function method, is given in eqs. (2.41)–(2.45). For the general picture

and some terminology we refer to appendix C, and for the weak-field expansion we refer

to appendix D.

2.1 Kinematics

2.1.1 Correspondence space

The basic variables of Vasiliev’s formulation of higher-spin gravity are differential forms on

C, a non-commutative symplectic manifold with symplectic structure Γ, that we shall refer

to as the correspondence space. Locally, C is the product of a phase-spacetime, containing

the ordinary (commutative) spacetime, and internal directions. Like in ordinary gravity,

the moduli space of the theory, say M, consists of super-selection sectors M(Σ), here

labelled by Σ, related to various classes of boundary condition on (C), as we shall detail

in section 2.3. In higher-spin gravity, each sector, which consists of field configurations
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on-shell, arises inside a larger, graded-associative differential algebra defined off-shell, here

denoted by Ω(Σ)(C), that is endowed with a differential d̂ and a binary composition rule ⋆,

such that if f̂ , ĝ ∈ Ω(Σ)(C) then

d̂
(
f̂ ⋆ ĝ

)
=
(
d̂ f̂
)

⋆ ĝ + (−1)deg( bf)f̂ ⋆
(
d̂ ĝ
)

, d̂ 2 = 0 , (2.1)

and a hermitian conjugation operation obeying

(
f̂ ⋆ ĝ

)†
= (−1)deg( bf)deg(bg)

(
ĝ
)†

⋆
(
f̂
)†

,
(
d̂ f̂
)†

= d̂
((

f̂
)†)

. (2.2)

The graded bracket [·, ·]⋆ is defined by

[
f̂ , ĝ

]
⋆

= f̂ ⋆ ĝ − (−1)deg( bf)deg(bg)ĝ ⋆ f̂ . (2.3)

In the atlas approach, the manifold C consists of charts CI covered by real canonical

coordinates Ξ
M
I obeying

[
Ξ

M
I ,Ξ

N
I

]
⋆

= 2iΓMN ,
[
Ξ

M
I , dΞ

N
I

]
⋆

= 0 ,
[
dΞ

M
I , dΞ

N
I

]
⋆

= 0 , (2.4)

where ΓMP ΓMN = δP
N and we shall write dΞ

M
I dΞ

N
I := dΞ

M
I ⋆ dΞ

N
I . The charts are glued

together via canonical transformations

Ξ
M
I′ = (T̂ I

I′)
−1 ⋆ Ξ

M
I ⋆ T̂ I

I′ , (2.5)

such that Γ|CI
= 1

2dΞ
M
I ⋆ dΞ

N
I ΓMN where dΞ

M
I ≡ d̂

(
Ξ

M
I

)
and ΓMN is a constant sym-

plectic matrix. As we shall discuss below, the globally-defined elements f̂ ∈ Ω(Σ)(C) are

represented by sets
{
f̂I

(
Ξ

M
I , dΞ

M
I

)}
of locally-defined composite operators. The Ξ

M
I -

dependence of the latter is expanded in a basis presented using a suitable prescription, or

regular presentation, with the following two key properties: i) it is adapted to the boundary

conditions related to Σ; and ii) it provides Ω(Σ)(CI) with two algebraic structures, namely

that of iia) an associative ⋆-product algebra; and iib) a separate left- and right-module

for the ⋆-product algebra consisting of arbitrary polynomials in
(
Ξ

M
I , dΞ

M
I

)
. In other

words, the regularly-presented basis elements must have ⋆-product compositions among

themselves as well as with arbitrary polynomials that are finite as well as compatible with

associativity, and their symbols must be functions that facilitate the imposition of the

boundary conditions in question.

Turning to Vasiliev’s formulation of four-dimensional higher-spin gravity, the local

splitting of the correspondence space into a phase-spacetime and internal directions is of

the form:

CI
∼= T ∗XI × Y × Z , Γ|CI

= ΓT ∗XI
+ ΓY + ΓZ , (2.6)

where T ∗XI is a chart of a phase space T ∗X and Y×Z is a twistor space; the corresponding

canonical coordinates (α = (α, α̇); α, α̇ = 1, 2)

ΞM = (XM , PM ;Y α;Zα) , (Y α;Zα) = (yα, ȳα̇; zα,−z̄α̇) , (2.7)
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are defined such that

ΓT ∗X = dPMdXM , ΓY =
1

2
(dyαdyα + dȳα̇dȳα̇) , ΓZ =−1

2
(dzαdzα + dz̄α̇dz̄α̇), (2.8)

(XM )†= XM , (PM )†= PM , (yα)† = ȳα̇ , (zα)†= z̄α̇ , (2.9)

which implies

[XM , PN ]⋆ = iδM
N , [yα, yβ ]⋆ = 2iǫαβ , [zα, zβ ]⋆ = −2iǫαβ , (2.10)

and hermitian conjugates, and our conventions for spinors are collected in appendix A. In

what follows, we shall construct exact solutions on submanifolds of X by first projecting

to the reduced correspondence space

Č
loc∼= X × Y × Z , (2.11)

and then further down to four-dimensional submanifolds of X .

2.1.2 Bosonic master fields

The fundamental fields are a locally-defined zero-form Φ̂I ; a locally-defined one-form ÂI ;

and a globally-defined complex two form (Ĵ , ̂̄J). These master fields obey the reality

conditions

(Φ̂, Â, Ĵ , ̂̄J)† = (π(Φ̂),−Â,−̂̄J,−Ĵ) . (2.12)

In bosonic models, they also obey the projections

ππ̄(Φ̂, Â) = (Φ̂, Â) , π(Ĵ , ̂̄J) = π̄(Ĵ , ̂̄J) = (Ĵ , ̂̄J) , (2.13)

where π and π̄ are the involutive automorphisms defined by d̂ π = π d̂, d̂ π̄ = π̄ d̂ and

π(XM , PM ; yα, ȳα̇; zα, z̄α̇) = (XM , PM ;−yα, ȳα̇;−zα, z̄α̇) , π(f̂ ⋆ ĝ)=π(f̂) ⋆ π(ĝ) , (2.14)

π̄(XM , PM ; yα, ȳα̇; zα, z̄α̇) = (XM , PM ; yα,−ȳα̇; zα,−z̄α̇) , π̄(f̂ ⋆ ĝ)= π̄(f̂) ⋆ π̄(ĝ) . (2.15)

In minimal bosonic models, the master fields obey the stronger projections

τ(Φ̂, Â, Ĵ , ̂̄J) = (π(Φ̂),−Â,−Ĵ ,−̂̄J) , (2.16)

where τ is the graded anti-automorphism defined by d̂ τ = τ d̂ and

τ(XM , PM ;Y α;Zα) = (XM ,−PM ; iY α;−iZα) , τ(f̂ ⋆ ĝ) = (−1)
bfbgτ(ĝ) ⋆ τ(f̂) , (2.17)

and obeying τ2 = ππ̄. The perturbative spectra of the bosonic and minimal bosonic models

consist of real Fronsdal fields of integer and even-integer spins, respectively, with each spin

occurring in the spectrum with multiplicity one.
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2.1.3 Inner Kleinians

The automorphisms π and π̄ are inner and generated via the adjoint action of inner Kleini-

ans as follows:

π(f̂) = κ̂ ⋆ f̂ ⋆ κ̂ , κ̂ = cos⋆(πŵ) , κ̂ ⋆ κ̂ = 1 , (2.18)

π̄(f̂) = ̂̄κ ⋆ f̂ ⋆ ̂̄κ , ̂̄κ = (κ̂)† = cos⋆(π ̂̄w) , ̂̄κ ⋆ ̂̄κ = 1 , (2.19)

where the holomorphic and anti-holomorphic (shifted) number operators, respectively, are

realized as ŵ = 1
2 {â−α , â+α}⋆, with (â+

α , â−α ) = 1
2 (yα + zα,−iyα + izα) obeying

[
â−α , â+β

]
⋆

=

δβ
α, and ̂̄w = (ŵ)†, such that

ŵ =
i

2
yα ⋆ zα , ̂̄w = − i

2
ȳα̇ ⋆ z̄α̇ . (2.20)

The Kleinians can be expressed in various ordering schemes; for details, see appendix B.4.

For the weak-field expansion, it is convenient to normal-order with respect to the complex-

ified Heisenberg algebra (â+
α , â−α ) [17], which we denote by N̂+-order, where the induced

⋆-product among symbols is given by (B.25), that is

[f̂1]
bN+ ⋆ [f̂2]

bN+ =

∫

RC

d4Ud4V

(2π)4
ei(vαuα+v̄α̇ūα̇)[f̂1]

bN+(y + u, ȳ + ū; z + u, z̄ − ū)

×[f̂2]
bN+(y + v, ȳ + v̄; z − v, z̄ + v̄) , (2.21)

where [·]B and [·]B denote the Wigner map to the basis B and its inverse, respectively, that

is, [·]B maps totally-symmetric operators to B-ordered operators and [·]B maps operators

to totally-symmetric symbols (for further details, see appendix B). In the N̂+-order, one

has [2, 17]

κ̂ = [exp(iyαzα)]
bN+

, ̂̄κ =
[
exp(−iȳα̇z̄α̇)

]
bN+

. (2.22)

while in the Weyl order

κ̂ =
[
(2π)2δ2(y)δ2(z)

]
Weyl

, ̂̄κ =
[
(2π)2δ2(ȳ)δ2(z̄)

]
Weyl

, (2.23)

which implies the factorization property [1]

κ̂ = κy ⋆ κz , κy = [2πδ2(y)]Weyl , κz = [2πδ2(z)]Weyl , (2.24)

where κy and κz are the inner Kleinians for the chiral oscillator algebras generated by yα

and zα, respectively (for further details, see appendix B.4). This factorization property,

which holds in all orders, is crucial for the separation of twistor-space variables that we

shall use below.
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2.2 Unfolded equations of motion

2.2.1 Quasi-free differential algebra

The unfolded equations of motion of the four-dimensional bosonic higher-spin gravities that

we shall study can be written as6

Γ⋆2
Y ⋆ D̂Φ̂ = 0 , Γ⋆2

Y ⋆
(
F̂ + F(Φ̂) ⋆ Ĵ + F(Φ̂) ⋆ ̂̄J

)
= 0 , (2.25)

Γ⋆2
Y ⋆ d̂ Ĵ = 0 , Γ⋆2

Y ⋆ d̂ ̂̄J = 0 , (2.26)

with Yang-Mills-like curvatures F̂ := d̂ Â+ Â⋆Â and DΦ̂ := d̂ Φ̂+[Â, Φ̂]π, where [f̂ , ĝ]π :=

f̂ ⋆ ĝ− (−1)deg( bf)deg(bg)ĝ ⋆π(f̂) for f̂ , ĝ ∈ Ω(C). The interaction ambiguities F andF = (F)†

are given by

F(Φ̂) =

∞∑

n=0

f2n+1(Φ̂ ⋆ π(Φ̂))
(
Φ̂ ⋆ π(Φ̂)

)⋆n
⋆ Φ̂ , (2.27)

where f2n+1 are complex-valued zero-form charges obeying

d̂f2n+1 = 0 , (2.28)

as we shall describe in more detail below. Integrability requires the algebraic constraints

Ĵ ⋆ π(Φ̂, Â) = (Φ̂, Â) ⋆ Ĵ , ̂̄J ⋆ π(Φ̂, Â) = (Φ̂, Â) ⋆ ̂̄J , (2.29)

modulo terms that are annihilated by Γ⋆2
Y ⋆. In other words, eqs. (2.25)–(2.26) and eq. (2.28)

are compatible with d̂2 ≡ 0 modulo eq. (2.29), hence defining a universal (i.e. valid on any

X ) quasi-free associative differential algebra. Factoring out perturbative redefinitions of Φ̂,

the ambiguity residing in F reduces down to [4, 17, 45]

F = B ⋆ Φ̂ , B = exp⋆

(
iθ[Φ̂ ⋆ π(Φ̂)]

)
, (2.30)

θ[Φ̂ ⋆ π(Φ̂)] =
∞∑

n=0

θ2n[Φ̂ ⋆ π(Φ̂)]
(
Φ̂ ⋆ π(Φ̂)

)⋆n
, (2.31)

which breaks parity except in the following two cases [21]:

Type A model (scalar) : θ = 0 , P (Φ̂, Â, Ĵ) = (Φ̂, Â, Ĵ) , (2.32)

Type B model (pseudo-scalar) : θ =
π

2
, P (Φ̂, Â, Ĵ) = (−Φ̂, Â,−Ĵ) , (2.33)

where the parity operation is the automorphism of Ω(CI) defined by

P (XM , PM , yα, ȳα̇, zα, z̄α̇) = (XM , PM , ȳα̇, yα,−z̄α̇,−zα) , d̂P = P d̂ . (2.34)

The gauge transformations read

δ
bǫΦ̂ = −[ǫ̂, Φ̂]π , δ

bǫÂ = D̂ǫ̂ , δ
bǫĴ = 0 , (2.35)

6In the topological open-string C-model proposed in [18] as a microscopic origin for Vasiliev’s equations,

the ⋆-multiplication by Γ⋆2
Y has a natural interpretation as the insertion into the path integral of delta-

functions for fermionic zero-modes.
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with D̂ǫ̂ := d̂ǫ̂ + [Â, ǫ̂]⋆, and where ǫ̂ is subject to the same kinematic conditions as Â.

In globally-defined formulations, the transition functions T I′
I defined in (2.5) glue together

the locally-defined configurations (Φ̂I , ÂI , ĴI) as follows:

Φ̂I = (T̂ I′

I )−1 ⋆ Φ̂I′ ⋆ π(T̂ I′

I ) , ÂI = (T̂ I′

I )−1 ⋆ (ÂI′ + d̂) ⋆ T̂ I′

I , ĴI = ĴI′ . (2.36)

2.2.2 Free differential algebra and deformed oscillators

The projection implied by the ⋆-multiplication by Γ⋆2
Y can be solved locally on CI by taking

the master fields to be forms on T ∗XI × Z valued in the algebra Ω[0](Y) of zero-forms on

Y. Thus

Â = Û + V̂ , (2.37)

where

Û = dXM ÛM (X,P ;Z;Y ) + dPM ÛM (X,P ;Z;Y ) , (2.38)

V̂ = dZαV̂α(X,P ;Z;Y ) = dzαV̂α(X,P ;Z;Y ) + dzα̇V̂α̇(X,P ;Z;Y ) , (2.39)

and the algebraic constraints (2.29) admit the solution

Ĵ = − i

4
dzα ∧ dzα κ̂ , ̂̄J = − i

4
dz̄α̇ ∧ dz̄α̇ ̂̄κ . (2.40)

In order to find exact solutions, it is convenient to cast7 the remaining differential con-

straints into Vasiliev’s original deformed-oscillator format:8

dÛ + Û ⋆ Û = 0 , dΦ̂ + Û ⋆ Φ̂ − Φ̂ ⋆ π(Û) = 0 , (2.41)

dŜα + [Û , Ŝα]⋆ = 0 , (2.42)

Ŝα ⋆ Φ̂ + Φ̂ ⋆ π(Ŝα) = 0 , ̂̄Sα̇ ⋆ Φ̂ + Φ̂ ⋆ π̄(̂̄Sα̇) = 0 , (2.43)

[Ŝα, Ŝβ ]⋆ = −2iǫαβ(1 − B ⋆ Φ̂ ⋆ κ̂) , [̂̄Sα̇, ̂̄S β̇]⋆ = −2iǫα̇β̇(1 − B ⋆ Φ̂ ⋆ ̂̄κ) , (2.44)

[Ŝα, ̂̄Sα̇]⋆ = 0 , (2.45)

7As an intermediate step, the twistor-space components of the master field equations can be rewritten

as

∂α
bΦ + bVα ⋆ bΦ + bΦ ⋆ π(bVα) = 0 , ∂α̇

bΦ + bV̄ α̇ ⋆ bΦ + bΦ ⋆ π̄(bV̄ α̇) = 0 ,

dbVα + ∂α
bU +

h

bU, bVα

i

⋆
= 0 , bFαβ = −

ib

2
ǫαβB ⋆ bΦ ⋆ bκ , bFαβ̇ = 0 , bFα̇β̇ = −

ib̄

2
ǫα̇β̇B ⋆ bΦ ⋆ bκ̄ ,

where bFαβ = 2∂[α
bVβ] + [bVα, bVβ ]⋆ and ∂α ≡ ∂/∂Zα.

8This format exhibits two global symmetries: Firstly, the Z2-transformations (bΦ,cW, bSα, bS̄α̇) →

(bΦ,cW,−bSα,−bS̄α̇). Secondly, the transformations
 

yα

zα

!

→

 

Aα
β Bα

β

Bα
β Aα

β

! 

yα

zα

!

,

that preserve (i) the ⋆-product algebra, which requires (A + B)(At − Bt) = −1 ; (ii) the inner Kleinian

operators, which requires AtA − BtB = −1 ; and (iii) the bosonic projection conditions, finally fixing

non-minimal GL(2; C)-transformations with B 6= 0, or minimal SL(2; C)diag-transformations with B = 0.

In the non-minimal case, the GL(2, C)-action is the closure of SL(2; C)diag and the discrete transformation

(yα, zα) → i(zα, yα), that is broken by the τ -condition in the minimal models.
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where we have defined d = dXM∂M + dPM∂M and

Ŝα = Zα − 2iV̂α = (Ŝα,−̂̄Sα̇) = (zα − 2iV̂α,−z̄α̇ + 2i ̂̄V α̇) . (2.46)

The integrability of the system implies the gauge transformations

δ
bǫ Φ̂ = −[ǫ̂, Φ̂]π , δ

bǫ Ŝα = −[ǫ̂, V̂α]⋆ , δ
bǫ Û = dǫ̂ + [Û , ǫ̂ ]⋆ . (2.47)

2.2.3 Manifest Lorentz invariance

Manifest local Lorentz covariance can be achieved by means of the field redefini-

tion [4, 40, 45]

Ŵ := Û − K̂ , K̂ :=
1

4i

(
ωαβM̂αβ + ω̄α̇β̇M̂ α̇β̇

)
, (2.48)

where (ωαβ , ω̄α̇β̇) is the canonical Lorentz connection, and

M̂αβ := M̂
(0)
αβ + M̂

(S)
αβ , M̂ α̇β̇ = M̂

(0)

α̇β̇ + M̂
(S̄)

α̇β̇ , (2.49)

are the full Lorentz generators, consisting of the internal part

M̂
(0)
αβ := y(α ⋆ yβ) − z(α ⋆ zβ) , M̂

(0)

α̇β̇ := ȳ(α̇ ⋆ ȳβ̇) − z̄(α̇ ⋆ z̄β̇) , (2.50)

rotating the Y and Z oscillators, and the external part

M̂
(S)
αβ := Ŝ(α ⋆ Ŝβ) , M̂

(S̄)

α̇β̇ := ̂̄S(α̇ ⋆ ̂̄Sβ̇) , (2.51)

rotating the spinor indices carried by (Ŝα, ̂̄Sα̇). As a result, the master equations read

∇Ŵ + Ŵ ⋆ Ŵ +
1

4i

(
rαβM̂αβ + r̄α̇β̇M̂ α̇β̇

)
= 0 , ∇Φ̂ + Ŵ ⋆ Φ̂ − Φ̂ ⋆ π(Ŵ ) = 0 , (2.52)

∇Ŝα + Ŵ ⋆ Ŝα − Ŝα ⋆ Ŵ = 0 , ∇̂̄Sα̇ + Ŵ ⋆ ̂̄Sα̇ − ̂̄Sα̇ ⋆ Ŵ = 0 (2.53)

Ŝα ⋆ Φ̂ + Φ̂ ⋆ π(Ŝα) = 0 , ̂̄Sα̇ ⋆ Φ̂ + Φ̂ ⋆ π̄(̂̄Sα̇) = 0 (2.54)

[Ŝα, Ŝβ]⋆ = −2iǫαβ(1 − B ⋆ Φ̂ ⋆ κ̂) , [̂̄Sα̇, ̂̄S β̇]⋆ =−2iǫα̇β̇(1 − B ⋆ Φ̂ ⋆ ̂̄κ) (2.55)

[Ŝα, ̂̄Sα̇]⋆ = 0 , (2.56)

where rαβ := dωαβ + ωαγωβ
γ and r̄α̇β̇ := dω̄α̇β̇ + ωα̇γ̇ωβ̇

γ̇ , and

∇Ŵ := dŴ +
1

4i

[
ωαβM̂

(0)
αβ + ω̄α̇β̇M̂

(0)

α̇β̇ , Ŵ

]

⋆

, (2.57)

∇Φ̂ := dΦ̂ +
1

4i

[
ωαβM̂

(0)
αβ + ω̄α̇β̇M̂

(0)

α̇β̇ , Φ̂

]

⋆

, (2.58)

∇Ŝα := dŜα + ωα
βŜβ +

1

4i

[
ωβγM̂

(0)
βγ + ω̄β̇γ̇M̂

(0)

β̇γ̇ , Ŝα

]

⋆

, (2.59)

∇Ŝα̇ := dŜα̇ + ω̄α̇
β̇ ̂̄Sβ̇ +

1

4i

[
ωβγM̂

(0)
βγ + ω̄β̇γ̇M̂

(0)

β̇γ̇ , ̂̄Sα̇

]

⋆

. (2.60)

– 14 –



J
H
E
P
1
2
(
2
0
1
1
)
0
8
4

Besides their manifest local Lorentz symmetry, these equations are by construction also left

invariant under the local shift-symmetry with parameter (ςαβ , ς̄ α̇β̇) = dXM (ςM
αβ, ς̄M

α̇β̇)+

dPM (ςM αβ, ς̄M α̇β̇) acting such that

δς(Û , Φ̂, Ŝα, ̂̄Sα̇) = 0 , δς(ω
αβ , ω̄α̇β̇) = (ςαβ , ς̄ α̇β̇) ⇒ δςŴ = − 1

4i

(
ςαβM̂αβ + ς̄ α̇β̇̂̄M α̇β̇

)
.

(2.61)

The canonical Lorentz connection can be embedded into the full theory by using the afore-

mentioned shift-symmetry to impose

∂2

∂yα∂yβ
Ŵ

∣∣∣∣
Y =Z=0

= 0 ,
∂2

∂ȳα̇∂ȳβ̇
Ŵ

∣∣∣∣
Y =Z=0

= 0 . (2.62)

2.2.4 Spacetime projection and component fields

For the projection of eqs. (2.52)–(2.56) to manifestly generally-covariant equations of

motion for dynamical component fields in four-dimensional spacetime X4, see appendix D.

In essence, after choosing a manifestly Sp(4; R)diag-invariant ordering scheme, eliminating

the auxiliary fields related to the unfolded description on X4 and Z, and fixing suitable

physical gauges (such as the twistor gauge condition (D.7) on V̂α and generalized holonomic

gauges on Wµ), there remains a set of dynamical fields consisting of a physical scalar field

φ ≡ C := Φ̂|Y =Z=0 , (2.63)

which together with the self-dual Weyl tensors Cα(2s) (s > 1) make up the generating

function (s > 0)

C := Φ̂|Z=0,ȳ=0 , Cα(2s) :=
∂2s

∂α1 · · · ∂α2s
C
∣∣∣∣
y=0

, (2.64)

and a tower of manifestly Lorentz-covariant, symmetric and doubly-traceless tensor gauge

fields, or Fronsdal tensors, given by (s > 1)

φµ(s) := 2ieα1α̇1

(µ1
· · · eαs−1α̇s−1

µs−1

∂2s−2

∂α1 · · · ∂αs−1 ∂̄α̇1 · · · ∂̄α̇s−1
Wµs)

∣∣∣∣
Y =0

, (2.65)

where xµ are local coordinates on X4 and

W :=Ŵ |Z=0 =

(
Û− 1

4i

(
ωαβ(yα ⋆ yβ + Ŝα ⋆ Ŝβ) + ω̄α̇β̇(ȳα̇ ⋆ ȳβ̇ + ̂̄Sα̇ ⋆ ̂̄Sβ̇)

))∣∣∣∣
Z=0

. (2.66)

As a result, the regular presentation of the master fields, by its very definition, provides

a regularization scheme for the strongly-coupled derivative expansions of the interaction

vertices in the component-field formulation that is compatible with higher-spin gauge sym-

metry. In this sense, the naive spacetime picture, based on a tower of interacting Fronsdal

fields without any regular presentation attached to it, does not contain the same amount

of information as the full formulation in terms of master fields in correspondence space, as

we shall comment on in the Conclusions.

– 15 –



J
H
E
P
1
2
(
2
0
1
1
)
0
8
4

2.3 Gauge functions and moduli

Equations (2.41) and (2.42) can be solved (on a chart CI) by

ÛI = L̂−1
I ⋆ dL̂I , Φ̂I = L̂−1

I ⋆ Φ̂′ ⋆ π(L̂I) , ŜI;α = L̂−1
I ⋆ Ŝ′

α ⋆ L̂I , (2.67)

where L̂I(X,P, Y, Z) is a gauge function, assumed to obey

L̂I |X=P=Y =Z=0 = 1 , (2.68)

and (Φ̂′, Ŝ′
α) are integration constants for the zero-forms on T ∗X given by

(Φ̂′, Ŝ′
α) = (Φ̂, Ŝα)|X=P=0 (2.69)

and obeying the remaining twistor-space equations

Ŝ′
α ⋆ Φ̂′ + Φ̂′ ⋆ π(Ŝ′

α) = 0 , ̂̄S′
α̇ ⋆ Φ̂′ + Φ̂′ ⋆ π̄(̂̄S′

α̇) = 0 (2.70)

[Ŝ′
α, Ŝ′

β ]⋆ = −2iǫαβ(1 −B ⋆ Φ̂′ ⋆ κ) , [̂̄S ′
α̇, ̂̄S ′

β̇
]⋆ = −2iǫα̇β̇(1 −B ⋆ Φ̂′ ⋆ κ̄) (2.71)

[Ŝ′
α, ̂̄S ′

α̇]⋆ = 0 . (2.72)

Given a solution to these equations, the generating functions (2.64) and (2.66) take the

form CI =
(
L̂−1

I ⋆ Φ̂′ ⋆ π(L̂I))
∣∣∣
Z=0,ȳ=0

and

WI = L̂−1
I ⋆

[
d− 1

4i

(
ωαβ

(
yα ⋆ yβ + Ŝ′

α ⋆ Ŝ′
β

)
+ ω̄α̇β̇

(
ȳα̇ ⋆ ȳβ̇ + ̂̄S

′

α̇ ⋆ ̂̄S
′

β̇

))]
⋆ L̂I

∣∣∣∣
Z=0

, (2.73)

subject to (2.62), which serves to determine (ωαβ
M , ω̄α̇β̇

M ).

A particular class of solutions, containing the exact solutions listed in section 1.2,

admits perturbative expansions

Φ̂′ =

∞∑

n=1

Φ̂′(n) , Ŝ′
α =

∞∑

n=0

Ŝ′(n)
α ≡ Zα − 2i

∞∑

n=0

V̂ ′(n)
α , (2.74)

where (Ŝ
′(n)
α , Φ̂′(n)) are of the nth order in the integration constant

Φ′(Y ) = Φ̂′(Y,Z)|Z=0 , (2.75)

and Ŝ
′(0)
α is a flat connection in twistor space obeying

[Ŝ′(0)
α , Ŝ

′(0)
β ]⋆ = −2iCαβ := −2i

(
ǫαβ 0

0 ǫα̇β̇

)
. (2.76)

Depending on the boundary conditions on Ŝ
′(0)
α in twistor space there are various natural

approaches to solving these equations: If the boundary conditions are chosen such that

there exists a gauge where V̂
′(0)
α = 0, one may adapt the perturbative scheme based on (D.4)

and (D.5) to the case at hand. In this paper, we shall instead obtain solutions of the
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form (2.74) by solving the deformed oscillator problem (2.70)–(2.72) using separation of

variables and the non-perturbative method of [27, 31] spelled out in appendix G. This

method also encompasses non-trivial flat connections V̂
′(0)
α , essentially by activating Fock-

space projectors in the space of functions on Y×Z. The resulting solutions appear naturally

in gauges that differ radically from the aforementioned radial twistor gauge in the sense that

the space of residual symmetries is not isomorphic to hs(4) or its non-minimal extension,

as we shall discuss below.

In constructing exact solutions, we are thus led to the following moduli (for a more

detailed discussion on (iii) and (iv), see [8, 45]):

(i) local degrees of freedom contained Φ′(Y ) ;

(ii) boundary degrees of freedom contained in L̂I |∂C where ∂C in particular contains the

boundary of its four-dimensional spacetime sub-manifold ;

(iii) monodromies and projectors contained in flat connections V̂ ′(0) on Z × Y and Û (0)

on T ∗X ;

(iv) windings contained in the transition functions T̂ I′

I defined in (2.5) and (2.36) ;

In what follows, we shall mainly activate (i), (ii) and to some extent (iii). The Weyl

zero-form moduli have so far been examined mainly in the following sectors:

(ia) the non-unitarizable twisted-adjoint sectors consisting of arbitrary twistor-space poly-

nomials [5, 16, 27] and plane waves [42, 44];

(ib) the unitarizable sector consisting of states with compact so(3, 2)-weights belonging to

the massless lowest-weight spaces D(−) ∼=
⊕

s=0,2,4,... D(s + 1; (s)) ∼= [D(1
2 ; (0))]⊗2

symm

and D(+) ∼=
⊕

s=2,4,... D(s + 1; (s, 1)) ⊕ D(2; (0)) ∼= [D(1; (1
2 ))]⊗2

anti−symm with oscil-

lator realization in terms of operators represented by finite-dimensional matrices in

the scalar and spinor singleton weight-spaces D(1
2 ; (0)) and D(1; (1

2 )), respectively.

These spaces are the twisted-adjoint hs(4)-orbits of the scalar ground states T
(0)
1;(0) =

exp(−4E) and T
(0)
2;(0) = exp(−4E)(1−8E), respectively, which are proportional to the

projectors P1(E) ≡ P1;(0) = |12 ; (0)〉〈1
2 ; (0)| and P2(E) ≡ P2;(0) = |1; (1

2 )〉i i〈1; (1
2 )|; for

further details, see appendix F and [43];

(ic) the unitarizable sector of states with compact so(3, 2)-weights belonging to the gen-

eralized Verma modules W(+) and W(−) given by the twisted-adjoint hs(4)-orbits

of the reference states T
(0)
0;(0) = sinh 4E

4E and [T
(0)
0;(1)]r = 3

64E3 Pr(4E cosh 4E − sinh 4E),

respectively, modulo the ideal subspaces D(±) [43];

(id) the sector of states with compact so(3, 2)-weights belonging to the spaces S(±) =

D(±) ⋆ κy.

The sector (ia) contains the initial data for the exact so(3, 1)-invariant solutions given

together with twistor-space moduli of type (ii) in [31, 32]. The sector (ib) contains Anti-de
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Sitter analogs of flat-space plane waves and the sector (ic) contains runaway solutions [43].

The completion of the latter two sectors into exact solutions, which includes providing

regular presentations along the lines discussed in section 2.5, remains an open problem at

this stage. Finally, the sector (id) consists of initial data for solutions with at least two

Killing symmetries corresponding to the energy operator and one compact spin of so(3, 2).

Below, we provide this sector with a regular presentation that together with other tools

facilitates the construction of corresponding exact solutions for both minimal and non-

minimal models, including a non-minimal solution that appears to be gauge-equivalent to

the extremal solution of [1]. We also treat related sectors singled out by other choices of

commuting pairs of Killing vectors. Finally, we dress the resulting solution spaces with

additional twistor-space moduli, corresponding to insertions of additional Z-dependent

projectors into the connection V̂α.

2.4 Classical observables

In order to provide a gauge-invariant characterization of exact solutions that remains valid

in strong-coupling regions where the weak-field expansion (see appendix D) breaks down,

it is useful to develop a formalism for classical observables. These are functionals of the

locally-defined master fields and transition functions, defined in (2.5), that are defined

globally in generalized spacetimes carrying various higher-spin geometric structures [45].

There are several globally-defined formulations, or phases, of the theory, based on different

unbroken gauge groups, or structure groups. In what follows, we shall mainly focus on

zero-form charges, which are observables in the unbroken phase. We then present certain

p-form charges that may play an important rôle in the characterization of solutions, as we

shall comment on in the Outlook.

2.4.1 Zero-form charges

In the unbroken phase, the classical observables do no break any gauge symmetries. The

basic such observables are Wilson loops in commuting sub-manifolds of T ∗X . These loops

can be decorated with insertions of zero-form composites that transform as adjoint ele-

ments [45]. In the case of trivial monodromy, these can be contracted down to a single

point T ∗X resulting in zero-form charges given by the generating function

I(σ, k, k̄;λ, λ̄) = T̂rR

[
(κ̂̂̄κ)⋆σ ⋆ exp⋆(λ

αŜα + λ̄α̇ ̂̄Sα̇) ⋆ (Φ̂ ⋆ κ̂)⋆k ⋆ (Φ̂ ⋆ ̂̄κ)⋆k̄
]

, (2.77)

where T̂rR is the chiral trace defined by the integral in (B.26) with integration do-

main (B.24) ; (σ, k, k̄) are natural numbers defined modulo (σ, k, k̄) ∼ (σ ± 2, k, k̄) ∼
(σ, k ± 2, k̄∓ 2) ∼ (σ ± 1, k± 1, k̄∓ 1) ; and (λα, λ̄α̇) are commuting spinors. The zero-form

charges are manifestly higher-spin gauge invariant and hence defined globally on any base

manifold; it follows that

dI(σ, k, k̄;λ, λ̄) = 0 , (2.78)

modulo the equations of motion. The derivatives of I(σ, k, k̄;λ, λ̄) with respect to (λ, λ̄)

can be re-written as traces of ⋆-commutators involving the internal Lorentz generators

(M̂
(S)
αβ , ̂̄M

(S)

α̇β̇ ) defined in (2.51), whose evaluation requires a careful examination of boundary
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terms in twistor space. In what follows, we shall mainly be concerned with9 I(σ, k, k̄) :=

I(σ, k, k̄; 0, 0), and in particular the supertraces

I2N := I(1, 2N, 0) = T̂rR[κ̂̂̄κ ⋆ (Φ̂ ⋆ π(Φ̂))⋆N ] . (2.79)

In the Weyl order, [κ̂̂̄κ]Weyl = (2π)4δ4(Y )δ4(Z), and the zero-form charges assume the

localized form

I2N =
[
(Φ̂ ⋆ π(Φ̂))⋆N

]Weyl
∣∣∣∣
Y =Z=0

. (2.80)

On the other hand, in the normal order where [κ̂̂̄κ]
bN+

= exp i(yαzα − ȳα̇z̄α̇), the zero-form

charges assume the non-local form

I2N =

∫

RR

d4Y d4Z

(2π)4
exp i(yαzα − ȳα̇z̄α̇)

[
(Φ̂ ⋆ π(Φ̂))⋆N

]
bN+

. (2.81)

In particular, if Φ̂ does not depend on Z, that is Φ := Φ̂
∣∣∣
Z=0

= Φ̂, then the equality of (2.80)

and (2.81) follows immediately from [Φ]
bN+

= [Φ]Weyl. In what follows we shall evaluate the

zero-form charges I2N on exact type-D and almost-type-D solutions. Moreover, in [44] their

perturbative Φ′-expansion has been shown to be well-defined for Φ′ in the twistor-space

plane-wave sector.10 These two sectors thus remain well-defined within bosonic models

with

θ2n = θ2n (I2N ) (2.82)

in the phase factor B defined in (2.30) and (2.31).

2.4.2 Comments on observables in broken phases

The characteristic observables of broken phases break some of the higher-spin gauge sym-

metries off-shell ; these broken symmetries re-surface on-shell albeit with restricted gauge

parameters forming sections belonging to bundles associated to the principal bundle of the

(unbroken) structure group [8, 45]. One can show that the characteristic observables, also

referred to as the order parameters, are actually diffeomorphic invariant.

One such broken phase, proposed in [45], is the soldered phase with soldering one-

form Ê := 1
2 (1 − π)Ŵ , with Ŵ defined in (2.48). Its order parameters are functionals

9These classical observables can be identified as the on-shell values of certain deformations of the topo-

logical action of [8], which can be interpreted as generators of semi-classical amplitudes. These amplitudes

were in their turn proposed in [18] to correspond to correlation functions for a topological open-string

C-model.
10In this sector, the first sub-leading term of I2N vanishes, i.e.

I2N |tw.plane−waves = (Φ′ ⋆ π(Φ′))⋆N
˛

˛

˛

Y =0
+ O((Φ′)2N+2) .

In general, the arguments involved as well as the localization procedure require a careful study since the

trace may reduce to a boundary term in Z ; for example, from (qbV + bV ⋆ bV )⋆2 = − 1
8
dz2dz̄2(bΦ ⋆ π(bΦ)) ⋆ bκbκ̄,

with q = dZα∂α, it follows that I2 = − 1
2π4

R

RR

d2y d2ȳ q(bV ⋆ qbV + 2
3
bV ⋆ bV ⋆ bV ) that one can argue leads to

protection of I2 to all orders in the Φ′-expansion.
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O
[
ÊI , Φ̂I , Ŝα,I ; T̂

I′
I

]
that depend explicitly on Ê and that are manifestly invariant under

the unbroken gauge transformations with locally-defined parameters Λ̂I = π(Λ̂I), that is

δ
bΛ
O ≡ 0 without using the equations of motion or any boundary conditions. Moreover,

they are invariant on-shell under gauge transformations with broken gauge parameters

ξ̂I = −π(ξ̂I) that belong to sections, that is δ
bξ
O = 0 modulo the equations of motion and

the transitions (2.36) and ξI = (T̂ I′

I )−1 ⋆ ξI′ ⋆ T̂ I′

I . An example of such order parameters

are the charges of complex abelian p-forms given by (p = 2, 4, . . . ),11

QΣ =

∮

Σ
T̂ rR

[(
Ê ⋆ Ê +

1

2
(1 + π)r̂(S)

)⋆(p/2)

⋆ κ̂

]
, (2.83)

where r̂(S) = 1
4i(r

αβM̂
(S)
αβ + r̄α̇β̇M̂

(S̄)

α̇β̇ ) and Σ is a non-trivial cycle in a Lagrangian sub-

manifold of T ∗X .

2.5 Super-selection sectors and regular presentations

Let us end this section by commenting on super-selection sectors, regular presentations

and the interrelations between these two notions. Drawing on the general structure of

the theory, it is natural to adopt a working hypothesis, yet to be fully explored, that,

like in the case of ordinary gravity, there exists super-selections rules that partition the

classical moduli space into super-selection sectors M(Σ)(C) that by their very definition

are to be coordinatized by preferred sets of classical observables, here denoted by Σ. In

other words, by this hypothesis, super-selection is tantamount to identifying super-selection

sectors as charts of moduli space, which is a good definition in the sense that it amounts to

insisting on the finiteness of a set of observable quantities (a property that cannot change

through local fluctuations or deformations). In practice, to implement these rules, one

separately constructs families of classical observables and classical solutions and evaluates

the former on the latter. As solutions of the equations of motion are characterized by

boundary conditions or asymptotic behaviors in the correspondence space, it is natural to

expect that different classes of boundary conditions are paired up with corresponding sets

of observables. This form of duality allows one to identify super-selection sectors as classes

of boundary conditions, which is a slightly less abstract way of realizing the former than

that of charts in moduli space.

Moreover, from our discussion in section 2.3, we see that the boundary conditions

form various representations of the underlying higher-spin Lie algebra. In particular, the

local degrees of freedom of the theory fall into the twisted-adjoint module. The latter has

an indecomposable structure [43] consisting of sub-representations generated from ground

states (in finite-dimensional representations of a sub-algebra of the higher-spin algebra);

11These classical observables can be identified as the on-shell values of certain deformations of the topo-

logical action of [8], which can be interpreted as generators of semi-classical amplitudes associated to the

boundaries of Σ. Another set of order parameters are minimal (p+1)-volumes constructed from Cayley-like

determinants of generalized metrics such as (s = 2, 4, . . . ) GM1...Ms = cTrR

h

bκbκ̄ ⋆ bE(M1
⋆ · · · ⋆ bEMs)

i

and

generalizations thereof obtained by inserting adjoint impurities. One may ask whether there exist preferred

metrics that can be used to compute not just minimal areas but also p-brane partition functions.
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for example, it contains particles, run-away solutions, instantons and solitons, of which the

latter are to become the main topic of the remainder of this paper. As in standard classical

perturbative field theory, one may start by extending a class of boundary conditions into

linearized bulk fields on-shell, assuming some bulk vacuum such as anti-de Sitter spacetime,

that can then be dressed into interacting fields on-shell by various techniques, such as the

gauge-function method.

In a given sector of boundary conditions, or super-selection sector by the above reason-

ing, the on-shell master fields are composite operators whose functional nature in twistor

space may require the usage of a suitable regular presentation, leading to well-defined

⋆-product compositions (being finite as well as compatible with associativity).12 These

presentations involve not only a choice of ordering scheme (as discussed in appendix B)

but possibly also the usage of auxiliary integration variables entering via Laplace trans-

forms and open or closed-contour generalizations thereof; it would be interesting to develop

further the already quite far-going analogies to Schwinger’s first-quantized proper-time pre-

sentation of the Feynman propagators in spacetime.

Although the study of regular presentations is a crucial and non-trivial physical prob-

lem in higher-spin gravity, it has so far been addressed only in limited number of contexts.

The original works [5, 16, 27] concerned the determination of the regular presentation of

the dependence on internal canonical coordinates of formal perturbative expansions around

maximally-symmetric spacetime backgrounds, later refined to generally-covariant weak-

field expansions in [40] (see also appendix D). As these perturbative expansions do not

refer to any specific spacetime boundary conditions, their regular presentations concern the

class of arbitrary polynomials in twistor space, or equivalently, the class of twistor-space

plane waves, dressed by a certain type of non-polynomial functions stemming from the

internal Kleinians. The resulting presentations involve homotopy-contracting integrals,

which can be taken along either an open or a closed contour [6, 43], entering only at

sub-leading orders in the perturbative approach; for a recent analysis of the rôle of closed-

contour homotopy integrals and the duality between zero-form charges and twistor-space

plane waves, see [44]. Other recent works [43] (for a discussion, see also [6]) have initiated a

systematic study of the interplay between more non-trivial spacetime boundary conditions

and the need for non-trivial closed-contour regular presentations of the linearized Weyl

zero-form. As we shall see next, the latter are required in order to define minimal models

with generalized Type-D solutions, and in particular with spherically symmetric solutions.

12Strictly speaking, in dealing with more than one superselection sector simultaneously, each equipped

with at least one regular presentation, a compatibility problem may arise upon requiring that linear com-

binations of linearized solutions belonging to different sectors can be dressed into full solutions. This

compatibility problem may have either only the trivial outcome, namely that each sector can only be

dressed separately, which one may view as a broadening of the problem of regularization of ⋆-products to

compositions involving different classes of functions; or various non-trivial ones consisting of compatible

combinations of regular presentations. For example, in this paper we shall find that, in order to combine

linearized profiles based on certain Fock-space and anti-Fock-space projectors, one is forced to use a specific

common regular presentation (see appendix F). Another interesting related problem, which we plan to

address in a future publication, is the emission and absorption of AdS-harmonics corresponding to one-

particle states by soliton solutions of the type that we shall construct in this paper. We thank our Referee

for prompting this remark.
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3 Gauge function Ansatz for generalized type-D solutions

This section describes Ansätze for families of exact type-D and almost-type-D solutions

to Vasiliev’s equations based on gauge functions in an AdS4 background spacetime and

separation of variables in twistor space: the latter is achieved by expanding the master-fields

in Fock-space projectors realized as functions on Ω[0](Y), leading to a tractable deformed-

oscillator problem. For the notations and conventions used in AdS4 spacetime and the

terminology used in Petrov classification, see appendix A; for the explicit realizations of

spin-frames and projectors, see appendices E and F; and for details concerning the deformed

oscillators, see appendix G.

3.1 Solution strategy and basic notation

We divide the presentation of our solutions into the following steps:13

I) gauge functions and spin-frames (in section 3.2);

II) separation of twistor-space variables by expansion in projectors (in section 3.3, with

details on the projectors in sections 3.5, 3.6 and their regular presentation in ap-

pendix F);

III) solution of the deformed-oscillator problem (in section 3.4 and appendix G);

IV) reconstruction of full gauge fields (in sections 4.1 and 4.2);

V) reconstruction of the full Weyl zero-form (in section 4.3);

VI) weak-field analysis: disentangling individual spin-s Weyl tensors in regions where all

zero-forms approach their vacuum values, i.e. vanish (in section 5);

VII) strong-field analysis: calculation of p-form charges that remain well-defined in regions

where the individual zero-forms blow up (in section 6).

The method spelled out above yields six families of solutions organized into three pairs that

we denote by MK(±)
(hR) with distinct symmetry sub-algebras hR = so(2)(+) ⊕ so(2)(−) ⊂

so(3, 2) ∼= sp(4; R) and “principal” Cartan generator K(±) ∈ sp(4; C) defined modulo

Sp(4; R) rotations, as will be clarified in more detail below. There are four possible such

generators, namely

K = E , J , iB , iP , (3.1)

where E = P0 = M0′0 is the AdS energy, J := M12 is a spin, B := M03 is a boost and

P := P1 = M0′1 is a translation, leading to the three pairs

ME(E, J) , MJ(E, J) ; MJ (J,B) , MiB(J,B) ; MiB(B,P ) , MiP (B,P ) . (3.2)

13In order to sooner recognize the higher-spin generalization of the familiar type-D Weyl tensors char-

acteristic of isolated massive objects in general relativity, the reader may take steps (V) and (VI) directly

after step (II).
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Each family is a space of biaxially symmetric solutions coordinatized by a set of deformation

parameters as follows (ε = ±, N
±

1
2

:=
{
±1

2 ,±3
2 , . . .

}
):

MK(ε)
(h) = {νn1,n2 ;σn1,n2 ; θn1,n2}

(n1,n2)∈

 

N
+

1
2

×N ε
2

!

∪

 

N
−

1
2

×N
−

ε
2

! , (3.3)

where ν ∈ C are “Φ-moduli” whose real and imaginary parts are related to generalized

masses and TAUB-NUT charges, or generalized electric and magnetic charges, depending

on which terminology one prefers to use, while σ, θ ∈ {±1} are “S-moduli” related to

boundary conditions on the twistor-space connection.

The family ME(E, J) contains the spherically-symmetric solutions, i.e. solutions with

enhanced so(3) ⊕ so(2)-symmetry, while the remaining five families contain solutions with

enhanced so(2, 1) ⊕ so(2)-symmetry. The symmetry-enhanced spin-s Weyl tensors are of

generalized Petrov-type D, i.e. type-{s, s}, while those of the generic so(2)(+) ⊕ so(2)(−)-

symmetric solutions are less special: for a given fixed projector they are algebraically

general for spin s ≤ k and of type {s−k, s−k, 1, . . . , 1} ≡ {(s−k)2, 12k} for s > k, where the

integer k depends on the projector, which we shall refer to as almost type-D (see appendix A

for more details on the generalization of the Petrov classification to higher spins).

3.2 Spacetime gauge function

We equip the four-dimensional sub-manifold X4 ⊂ T ∗X with coordinates xµ ∈ R4 ⊂ R
4,

and define Gaussian gauge functions

L̂(K)(x|Y,Z) = L(x|Y ) ⋆ L̃(K)(x|Z) , (3.4)

realized as ⋆-exponentials of bilinears in Y α and Zα, respectively, and where L : R4 →
Sp(4; R)/SL(2; C) reconstructs spacetime and L̃(K) : R4 → SL(2; C)/CSL(2;C)(K

L) aligns

the spin-frame of Z with a K-adapted spin-frame of Y, as we shall describe below. In the

above, CSL(2;C)(M) denotes the subgroup of SL(2; C) that commutes with

M := 1
8MαβY α ⋆ Y β ∈ sp(4; C) ; (3.5)

K ∈ sp(4; C) is the aforementioned principal Cartan generator; and we use the notation

fL(Y ) := L−1(x|Y )⋆f(Y )⋆L(x|Y ) , f L̃K (Z) := (L̃K)−1(x|Z)⋆f(Z)⋆ L̃(K)(x|Z) . (3.6)

It follows that

KL
αβ = Lα

α′
(x)Lβ

β′

(x)Kα′β′ , (3.7)

where the matrix representation Lαβ(x) of L, idem L̃(K), are defined via

Y L
α := L−1 ⋆ Yα ⋆ L = Lα

βYβ , Z
L̃(K)
α := L̃−1

(K) ⋆ Zα ⋆ L̃(K) = (L̃(K))α
βZβ . (3.8)

More generally, one has that

[
fL(Y )

]Weyl
=
[
f(Y L)

]Weyl
,

[
f L̃(K)(Z)

]Weyl
=
[
f(ZL̃(K))

]Weyl
. (3.9)
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The Gaussian gauge functions L̂(K) are related to the non-Gaussian dittos L̂(v) of the

twistor gauge (D.7) via a higher-spin gauge transformation

L̂(v)(x|Y,Z) = Ĝ
(K)
(v) ⋆ L̂(K) , (3.10)

whose construction we defer to future studies.

The vacuum configuration (Φ̂, Ŝα, Û) = (Φ̂, Ŝα, Û)
(0)
(K) given by

Φ̂
(0)
(K)

= 0 , Ŝ
(0)
(K)α

= Z
L̃(K)
α , (3.11)

Û
(0)
(K) = L̂−1

(K) ⋆ dL̂(K) = Ω(0) + L̃−1
(K) ⋆ dL̃(K) , Ω(0) := L−1 ⋆ dL , (3.12)

solves the full Vasiliev equations. Imposing (2.62) and using L̃−1
(K) ⋆ dL̃(K)|Z=0 = 0, it

follows that

e
(0)
αα̇ = 2iλ

∂2

∂yα∂ȳα̇
Ω(0)

∣∣∣∣
Y =0

, (ω
(0)
αβ , ω̄

(0)

α̇β̇
) = 2i

(
∂2

∂yα∂yβ
,

∂2

∂ȳα̇∂ȳβ̇

)
Ω(0)

∣∣∣∣
Y =0

, (3.13)

describing an AdS4 background. The above configuration can be brought via

Ĝ(0)(K)
(v) = L̃−1

(K) , (3.14)

to (Φ̂, Ŝα, Û ) = (Φ̂, Ŝα, Û )
(0)
(v) = (0, Zα,Ω(0)) in the twistor-gauge (D.7) with vα = Zα. The

vacuum is invariant under higher-spin gauge transformations obeying δ
bǫ
(0)
(K)

(Φ̂, Ŝα, Û )
(0)
(K) =

0 = δ
bǫ
(0)
(v)

(Φ̂, Ŝα, Û)
(0)
(v), viz.

ǫ̂
(0)
(K) = L̂−1

(K) ⋆ ǫ′(Y ) ⋆ L̂(K) = ǫ′L , ǫ̂
(0)
(v) = (Ĝ(0)(K)

(v) )−1 ⋆ ǫ̂
(0)
(K) ⋆ Ĝ(0)(K)

(v) = ǫ′L , (3.15)

where ǫ′ belongs to either hs(4) or hs1(4) as defined under (D.9). In particular, the bilinear

sector consists of Killing matrices ǫ′Lαβ ∈ sp(4; R) whose complexifications ML
αβ ∈ sp(4; C)

obey

D(0)ML
αβ = 0 , (3.16)

where D(0) = d + Ω(0) is the AdS-covariant derivative. The decomposition [34, 35]

ML
αβ =




κ
L
αβ vL

αβ̇

v̄L
α̇β κ̄

L
α̇β̇


 , vL

αβ̇
= v̄L

β̇α
, (3.17)

idem Mαβ yields a complexified AdS4 Killing vector vL
αβ̇

(x) = v̄L
β̇α

(x) and the self-dual and

anti-self-dual components κ
L
αβ(x) and κ̄

L
α̇β̇

(x), respectively, of the corresponding Killing

two-form κ
L
µν := ∇(0)

µ vL
ν .

The exact solutions that we shall construct are generalized type-D and almost type-

D deformations of the AdS4 vacuum whose symmetry algebra is essentially given by the
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higher-spin (enveloping) extension of the centralizer csp(4;R)(K) of principal Cartan gener-

ators K ∈ sp(4; C) that obey

Kα
βKβγ = −Cαβ . (3.18)

As we shall see in section 3.5, (3.18) selects the four cases listed in (3.1), i.e. K = E, J , iB,

iP , modulo Sp(4; R)-rotations. To the π-odd principal generators E and iP correspond

block off-diagonal Kαβ matrices (Kαβ = −(Γ0)αβ and Kαβ = −i(Γ1)αβ , respectively, for

which καβ = 0 and vαβ̇ 6= 0) and to the π-even generators J and iB block diagonal ones

(Kαβ = −(Γ12)αβ and Kαβ = −i(Γ03)αβ , respectively, for which καβ 6= 0 and vαβ̇ = 0).

Using the decomposition (3.17), the condition (3.18) reads:14

κ
2 + v2 = κ̄

2 + v̄2 = 1 , κα
βvβγ̇ + vα

β̇
κ̄β̇γ̇ = 0 , (3.19)

where

v2 := 1
2vαβ̇vαβ̇ , κ

2 := 1
2κ

αβ
καβ , (3.20)

idem κ̄. Note that the condition (3.18) (equivalently (3.19)) also holds for the L-rotated

elements KL (κL and vL). For a given K and at points where both (vL)2 and (κL)2

are non-vanishing, the eigenspinors of (κL)α
β define a one-function family of K-adapted

(normalized) spin-frames Ũ ≡ Ũ(K) for Y defined by

(ũ±
α (x), ˜̄u±

α̇ (x)) ∼ (e±χ(x)ũ±
α (x), e±(χ(x))∗ ˜̄u±

α̇ (x)) , (3.21)

(ũ±
α )† = ˜̄u±

α̇ , ũ−
α ũ+

β − ũ+
α ũ−

β = ǫαβ , (3.22)

and by

κ
L
αβ = 2Θ(x)ũ+

(α(x)ũ−
β)(x) , vL

αβ̇
= Θ̆(x)

(
ũ+

α (x)˜̄u
−σ†σπ

β̇
(x) + ũ−

α (x)˜̄u
σ†σπ

β̇
(x)
)

, (3.23)

(Θ, Θ̆)∗ = (−σπΘ, σ†Θ̆) , Θ2 − Θ̆2 = σπ , (3.24)

(χ)∗ = σ†σπχ , (3.25)

where σ† and σπ are signs related to properties of K, K† := σ†K, π(K) := σπK. The

rôle of L̃(K) is to align the spin-frame of Z with Ũ , that is (see appendix E for an explicit

example)

u±β(L̃(K))β
α := ũ±α , (3.26)

where u±
α is a fixed common spin-frame of Y and Z. While (κL

αβ, vL
αα̇) are well-defined at

any point where L is well-defined, the K-adapted spin-frame and hence L̃K are well-defined

only at points where both Θ and Θ̆ are non-vanishing, that is

R4 =
{

xµ : L is well-defined and Θ, Θ̆ 6= 0
}

. (3.27)

14The latter equation in (3.19) is equivalent to the statement that the corresponding AdS4 Killing vec-

tor is hypersurface-orthogonal, i.e. vL
[µ∇

(0)
ν vL

ρ] = 0 (see, for instance, [46]). In gravity, the hypersurface-

orthogonality of a time-like Killing vector vµ of a metric gµν , i.e. v[µ∇νvρ] = 0, means that the otherwise

stationary metric is actually static. As found in [35], the (consistent) truncation of unfolded vacuum gravity

to the type-D sub-system, described by a free differential algebra consisting of (eαα̇; ωαβ, ω̄α̇β̇; Kαβ), admits

an integrating flow that deforms vµ := eµ
αα̇vαα̇ while preserving the two invariants KαβKαβ and Tr(K4)

along the flow, and hence the aforementioned property of v if it holds to begin with in the vacuum.
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Working in units where λ = 1 and defining

xa = −1

2
(σa)αα̇xαα̇ , xαα̇ = (σa)

αα̇xa , (3.28)

one may choose L to be manifestly Lorentz-covariant leading to [31, 42, 43]

L = exp⋆(4iξx
aPa) =

2h

1 + h

[
exp

4ixaPa

1 + h

]

Weyl

, x2 < 1 , x2 := xaxa , (3.29)

ξ := (1 − h2)−
1
2 tanh−1

√
1−h
1+h , h :=

√
1 − x2 , (3.30)

corresponding to the following matrix representation:

Lα
β =


 cosh(2ξ x) δα

β sinh(2ξ x)xα
β̇

x

sinh(2ξ x) x̄α̇
β

x cosh(2ξ x) δα̇
β̇


 . (3.31)

In the notation of appendix A, the vacuum connection Ω(0) consists of the AdS4 vierbein

e(0)
αα̇ = −h−2(σa)αα̇dxa and Lorentz connection ω(0)

αβ = −h−2(σab)αβdxaxb correspond-

ing to presenting the metric in stereographic coordinates as15 ds2
(0) = 4(1 − x2)−2dx2. For

relations to global embedding coordinates and global spherically-symmetric coordinates,

see appendix A. The resulting decompositions (3.17) of KL
αβ take the following forms:

σπ = −1 : vL
αβ̇

=
1

h2

(
vαβ̇ − xα

γ̇ v̄γ̇
γxγβ̇

)
, κ

L
αβ =

1

h2

(
xα

α̇v̄α̇β − vα
α̇x̄α̇β

)
, (3.32)

σπ = +1 : vL
αβ̇

=
1

h2

(
xα

α̇
κ̄α̇β̇ − κα

γxγβ̇

)
, κ

L
αβ =

1

h2

(
καβ − xα

β̇
κ̄β̇

γ̇xγ̇β

)
, (3.33)

where h is defined in (3.29), σπ = −1 for K = E, iP and σπ = +1 for K = J, iB, and vαβ̇

and καβ are the 2×2 blocks of the corresponding Kαβ matrices given above. Consequently,

using (A.11), the pseudo-norm of the AdS4 Killing vector vL
µ := e

(0) αα̇
µ vL

αα̇ is given by

gµν
(0)v

L
µ vL

ν = −(vL)2 =





− 4
(1−x2)2

[
x2 + (xava)

2
]
− 1 , σπ = −1 ,

− 1
(1−x2)2

xa
κa

b (κbc + iκ̃bc) xc , σπ = 1 ,
(3.34)

where κ̃ab := 1
2ǫabcdκ

cd, and (κL)2 = 1 − (vL)2. The corresponding expressions for Θ are

listed in table 1. We note that for K = E and K = J the corresponding AdS4 Killing

vectors ∂
∂t and ∂

∂ϕ are globally time-like and space-like, respectively, viz.

( ∂
∂t)

µ( ∂
∂t)µ = −(1 + r2) , (κL)2 = −r2 (3.35)

( ∂
∂ϕ)µ( ∂

∂ϕ)µ = r2 sin2 θ , (κL)2 = 1 + r2 sin2 θ , (3.36)

here expressed in global spherically-symmetric coordinates. On the other hand, the imagi-

nary Killing vectors corresponding to iB and iP have indefinite pseudo-norm, though they

are time-like and space-like, respectively, at spatial infinity (of the anti-de Sitter back-

ground). The importance of the principal Cartan generators K stems from the fact that

the corresponding κ
L
αβ determines the spacetime behaviour of the generalized (almost)

type-D Weyl tensors, as we shall see in sections 4.3 and 5.

15The metric remains well-defined for x2 > 1 such that the regions x2 < 1 and x2 > 1 together yield a

single cover of AdS4.
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3.3 Separation of twistor-space variables

In order to separate the dependence of the internal master fields on the twistor variables

Y and Z, one may take them to be elements of the algebra

Ω(ΣP )(Y × Z) :=



Ô(Y,Z) =

∑

n,n′

∑

k=0,1

Pn|n′(Y ) ⋆ κ⋆k
y ⋆ Ǒk;n|n′(Z)



 , (3.37)

where P refers to a set of generalized projectors Pn|n′ = ππ̄(Pn|n′) assumed to obey (i =

1, 2)

Pn|n′ ⋆ Pm|m′ = δn′,mPn|m′ , (3.38)

with (n,n′) being discrete indices, and to form a set that is invariant under the operations

π, † and τ and ⋆-multiplication by κyκ̄ȳ, such that

π(Pn|n′) =: Pπ(n)|π(n′) , (Pn|n′)† =: PI(n′)|I(n) , τ(Pn|n′) =: Pτ(n′)|τ(n) , (3.39)

Pn|n′ ⋆ κyκ̄ȳ =: κn′Pn|n′ , (3.40)

with π2(n) = I2(n) = τ2(n) = n and (κn)2 = 1. For explicit realizations of generalized-

projector algebras, see appendix F; in particular, for the proof of associativity, see the

discussion below eq. (F.7). The binary product rule in Ω(ΣP ) takes the form

Ô ⋆ Ô′=
∑

n,n′

Pn|n′ ⋆
((
Ǒ0 ⋆ Ǒ′

0+Ǒ1 ⋆ πy(Ǒ′
1)
)
n|n′ + κy ⋆

(
Ǒ0 ⋆ Ǒ′

1+Ǒ1 ⋆ πy(Ǒ′
0)
)
n|n′

)
, (3.41)

using the matrix notation

(F̌ (Z) ⋆ F̌ ′(Z))n|n′ :=
∑

m

(F̌ (Z))n|m ⋆ (F̌ ′(Z))m|n′ , (1)n|n′ := δn,n′ , (3.42)

(πy(F̌ (Z)))n|n′ := (F̌ (Z))π(n)|π(n′) , (πz(F̌ (Z)))n|n′ := π((F̌ (Z))n|n′) . (3.43)

This composition rule is associative provided that Ǒk;n|n′(Z) belong to an associative ⋆-

product algebra. In what follows, the latter algebra shall in addition be assumed to remain

closed under ⋆-multiplication by κz and κ̄z̄.

To construct a shell within Ω(ΣP)(Y × Z), one first expands

Φ̂′ =
∑

n,n′

Pn|n′(Y ) ⋆ κy ⋆ Φ̌n|n′(Z) , ππ̄(Φ̌n|n′) = Φ̌n|n′ , (3.44)

Ŝ′
α = Zα − 2i

∑

n,n′

Pn|n′(Y ) ⋆ (V̌α)n|n′(Z) , ππ̄((V̌α)n|n′) = −(V̌α)n|n′ , (3.45)

The reality condition (2.12) requires

∑

n,n′

(Pn|n′)† ⋆ (Φ̌n|n′)† =
∑

n,n′

Pn|n′ ⋆ κyκ̄ȳ ⋆ π(Φ̌n|n′) , (3.46)

∑

n,n′

(Pn|n′)† ⋆ ((V̌α)n|n′)† = −
∑

n,n′

Pn|n′ ⋆ ( ˇ̄Vα̇)n|n′ , (3.47)
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that is,

(Φ̌n|n′)† = κI(n) π(Φ̌I(n′)|I(n)) , ((V̌α)n|n′)† = −( ˇ̄Vα̇)I(n′)|I(n) . (3.48)

In the minimal-bosonic case, it follows from τ(κy) = −κy that (2.16) requires

τ(Φ̌n|n′) = −π(Φ̌τ(n′)|τ(n)) , τ((V̌α)n|n′) = −i(V̌α)τ(n′)|τ(n) , (3.49)

implying that the range of (n,n′) be symmetric under overall sign inversion. Defining

(Σ̌α)n|n′ := δn,n′Zα − 2i(V̌α)n|n′ , (κ̌z)n|n′ := δn,n′κz , (ˇ̄κz̄)n|n′ := δn,n′κnκ̄z̄ (3.50)

B ≡ exp⋆ iθ[Φ̂ ⋆ π(Φ̂)] =:
∑

n,n′

Pn|n′ ⋆ B̌n|n′ , (3.51)

the factorization property (2.24) implies that the Ansatz must obey the matrix equations

Σ̌α ⋆ Φ̌ + Φ̌ ⋆ πz(Σ̌α) = 0 , ˇ̄Σα̇ ⋆ Φ̌ + Φ̌ ⋆ π̄z̄(
ˇ̄Σα̇) = 0 , (3.52)

[Σ̌α, Σ̌β ]⋆ = −2iǫαβ(1 − B̌ ⋆ Φ̌ ⋆ κ̌z) , [ ˇ̄Σα̇, ˇ̄Σβ̇]⋆ = −2iǫα̇β̇(1 − ˇ̄B ⋆ Φ̌ ⋆ ˇ̄κz̄) , (3.53)

[Σ̌α, ˇ̄Σβ̇]⋆ = 0 . (3.54)

Expanding also ǫ̂ ′(Y,Z) =
∑

n,n′ Pn|n′(Y ) ⋆ ǫ̌n|n′(Z), the gauge transformations take the

matrix form

δǫ̌Φ̌ = −[ǫ̌, Φ̌]πz , δǫ̌Σ̌α = −[ǫ̌, Σ̌α]⋆ . (3.55)

The space of solutions covered by the Ansatz contains a subspace16 consisting of the gauge

orbits reached from diagonal solutions obeying

Φ̌n|n′(Z) = δn,n′ Φn(Z) . (3.56)

In the perturbative sector, this implies that

(V̌α)n|n′(Z) = δn,n′V n

α (Z) , (Σ̌α)n|n′(Z) = δn,n′Σn

α(Z) , (3.57)

modulo gauge artifacts. For diagonal solutions we shall use the notation

Pn := Pn|n , B̌n|n′ =: δn,n′ Bn . (3.58)

The resulting partially gauge-fixed equations of motion read

Σn

α ⋆ Φn + Φn ⋆ πz(Σ
n

α) = 0 , Σ̄n

α̇ ⋆ Φn + Φn ⋆ π̄z̄(Σ̄
n

α̇) = 0 , (3.59)

[Σn

α,Σn

β ]⋆ = −2iǫαβ(1 − Bn ⋆ Φn ⋆ κz) , (3.60)

[Σ̄n

α̇, Σ̄n

β̇
]⋆ = −2iǫα̇β̇(1 − κnB̄n ⋆ Φn ⋆ κ̄z̄) , (3.61)

[Σn

α, Σ̄n

β̇
]⋆ = 0 . (3.62)

Perturbative expansion in the initial datum

νn := Φn|Z=0 , (3.63)

16Whether or not its complement is non-trivial remains to be investigated.
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and taking all gauge artifacts that are either π-odd or non-holomorphic to vanish, leads to

a holomorphic Ansatz obeying

Φn = νn , (3.64)

∂̄α̇Σn

α = 0 , Σn

α = −πz(Σ
n

α) , ∂αΣ̄n

α̇ = 0 , Σ̄n

α̇ = −π̄z̄(Σ̄
n

α̇) , (3.65)

[Σn

α,Σn

β ]⋆ = −2iǫαβ(1 −Bnνnκz) , [Σ̄n

α̇, Σ̄n

β̇
]⋆ = −2iǫα̇β̇(1 − κnB̄nν̄nκ̄z̄) , (3.66)

which are defined modulo the residual holomorphic gauge transformations

δǫnΣn

α = [Σn

α, ǫn]⋆ , δǭnΣ̄n

α̇ = [Σ̄n

α̇, ǭn]⋆ , (3.67)

∂̄α̇ǫn = 0 , ∂αǭn = 0 . (3.68)

3.4 Deformed oscillators

The deformed oscillators (Σn

α(z), Σ̄n

α̇(z̄)) defined by (3.65) and (3.66) can be obtained explic-

itly by adapting the ◦-product method of [27], later refined in [31] (see also [32]), resulting

in the following two steps:

i) using a spin-frame u±
α to split (uα+u−

α = 1)

Σn

α(z) = u−
α Σn+(z) − u+

α Σn−(z) , [Σn−,Σn+]⋆ = −2i(1 − Bnνnκz) , (3.69)

and representing the Weyl-ordered17 symbols ([Σn

α(z)]Weyl ,
[
Σ̄n

α̇(z̄)
]Weyl

) by the gen-

eralized Laplace transforms (z± := u±αzα, wz := z+z−, [z−, z+]⋆ = −2i)

[
Σn±

]Weyl ≡ u±αΣn±
α = 4z±

∫ 1

−1

dt

(t + 1)2
fn±

σn

(t) e
iσn

t−1
t+1wz , (3.70)

where (σn)2 = 1 can be chosen independently for each n, and

fn±
σn

(t) := δ(t − 1) + jn±
σn

(t) (3.71)

obey the integral equations ([κz]
Weyl = 2πδ2(z))

4

∫ 1

−1
dt

∫ 1

−1
dt′

fn−
σ (t)fn+

σ (t′)

(tt′ + 1)2

[
1+iσ

tt′ − 1

tt′ + 1
wz

]
e
iσ

tt′−1
tt′+1

wz =1−Bnνn [κz]
Weyl ; (3.72)

ii) inserting 1 =
∫ 1
−1 du δ(tt′ − u) into the left-hand side of (3.72) and changing order of

integration, using

(h1 ◦ h2)(u) :=

∫ 1

−1
dt

∫ 1

−1
dt′ h1(t)h2(t

′) δ(tt′ − u) , (3.73)

which defines a commutative and associative product on the space of functions on

the unit interval, and the representation

lim
ε→0

1

ε
e−iσ

1
ε wz = σ [κz ]

Weyl , (3.74)

17For the (anti-)normal-ordered forms of the deformed oscillators, see appendix G.
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yields the integral equations

(fn−
σ ◦ fn+

σ )(t) = δ(t − 1) − σnBnνn

2
, (3.75)

with the following solution space for each value of n (for details, see appendix G):

f±
σ (t) = g◦(±1)

σ ◦ fσ , fσ = δ(t − 1) + jσ(t) , (3.76)

jσ(t) = qσ(t) +

∞∑

k=0

λσ,kpk(t) , qσ(t) = −σBν

4
1F1

[
1

2
; 2;−σBν

2
log t2

]
, (3.77)

where gσ is a gauge artifact and we use the notation g◦(+1) = g and g◦(−1) ◦ g = 1;

pk(t) := (−1)k

k! δ(k)(t) act as projectors in the ◦-product algebra; and λk are given

by (G.33) and (G.36).

The first step relies on the fact that if sources ρα are used to write (in what follows we

suppress n)

[
Σ±

σ

]Weyl
= −4i

∂

∂ρ±

∫ 1

−1

dt

t + 1
f±

σ (t) e
i

t+1 (σ(t−1)wz+ρ+z++ρ−z−)
∣∣∣∣
ρ±=0

, (3.78)

then the space of generalized Laplace transforms over [−1, 1] with sources is closed under

the ⋆-product, as can be seen from the following ⋆-product formula in the Weyl-order:

1

t + 1
e

i
t+1 (σ(t−1)wz+ρ+z++ρ−z−) ⋆

1

t′ + 1
e

i
t′+1(σ(t′−1)wz+ρ′+z++ρ′−z−)

=
1

2(t̃ + 1)
e

i
t̃+1

“

σ(t̃−1)wz+ρ̃+z++ρ̃−z−−
1
2ρ+ρ′−+

1
2ρ−ρ′+−σ t′−1

t+1
ρ+ρ−−σ t−1

t′+1
ρ′+ρ′−

”

, (3.79)

t̃ := tt′ , ρ̃± := (t′−1)(1∓σ)+2
2 ρ± + (t−1)(1±σ)+2

2 ρ′± , (3.80)

where thus the induced map (t, t′) ∈ [−1, 1] × [−1, 1] → t̃ ∈ [−1, 1]. In particular,
[

1

(t+1)2
z− e

iσ
t−1
t+1wz ,

1

(t′+1)2
z+ e

iσ
t′−1
t′+1wz

]

⋆

=− i

2(t̃+1)2

(
1+iσ

t̃ − 1

t̃ + 1
wz

)
e
iσ

t̃−1
t̃+1

wz
. (3.81)

In the second step, letting h(u) := (f−
σ ◦ f+

σ )(u), eq. (3.72) implies

4

∫ 1

−1

du

(u + 1)2
h(u)

[
1 + iσ

u − 1

u + 1
wz

]
e
iσ

u−1
u+1wz = 1 − 2πBνδ2(z) , (3.82)

that in view of (3.74) admits the unique solution

h(u) = δ(u − 1) − σBν
2 , (3.83)

such that eq. (3.72) is equivalent to the ◦-product equation (3.75), which is solvable

essentially due to the commutative and associative nature of ◦. We also note that the

presentation (3.74) is compatible with κz ⋆f(z) = f(−z)⋆κz, κz ⋆κz = 1, τ(κz) = −κz and

κy ⋆κz = κ̂, and that the fact that gσ contains gauge artifacts follows by using holomorphic

gauge parameters in (3.67) of the form

ǫσ(z) =

∫ 1

−1

dt

1 − t2
ǫ̆σ(t)e

iσ
t−1
t+1wz , (3.84)

which induce

δǫσf±
σ (t) = ±σ

2 (ǫ̆σ ◦ f±
σ )(t) . (3.85)

– 30 –



J
H
E
P
1
2
(
2
0
1
1
)
0
8
4

3.5 Three inequivalent embeddings of complexified Heisenberg algebras

As we shall see below, generalized projectors obeying (3.38) with n = (n1, n2) ∈
(
Z + 1

2

)
×(

Z + 1
2

)
can be obtained by taking

(wi − ni) ⋆ Pn|n′ = 0 , Pn|n′ ⋆ (wi − n′
i) = 0 , (3.86)

where wi are the shifted number operators of the mutually-commuting complexified Heisen-

berg algebras (i, j = 1, 2, ε, ε′ = ±, ǫ−+ = 1)

[yε
i , y

ε′

j ]⋆ = ǫεε′δij . (3.87)

The latter can be realized as (σ, σ′ = ±)

yε
1 = (2i)−

1
2 U

α
1 Y ε,ε

α , yε
2 = (2i)−

1
2 U

α
2 Y ε,−ε

α , Y σ,σ′

α := (Πσ,σ′
)α

β Yβ , (3.88)

using rank-one projectors (Πσ,σ′
)αβ := (Πσ

(+))α
γ(Πσ′

(−))γβ = −(Π−σ,−σ′
)βα given by prod-

ucts of commuting rank-two projectors (q = ±)

(Πσ
(q))αβ :=

1

2

(
Cαβ + iσK

(q)
αβ

)
= −(Π−σ

(q) )αβ , (3.89)

where K
(q)
αβ = K

(q)
βα ∈ sp(4; C) obey

K(q)
α

γ K(q)
γ

β = −δ
β
α , [K(q),K(q′)]αβ = 0 . (3.90)

The commutation relations between the one-dimensional oscillators obtained above read

[Y σ,σ′

α , Y τ,τ ′

β ]⋆ = 2i δσ,−τ δσ′,−τ ′ (Πσ,σ′
)αβ , (3.91)

whose independent components are [Y −,−
α , Y +,+

β ]⋆ = 2i(Π−,−)αβ and [Y −,+
α , Y +,−

β ]⋆ =

2i(Π−,+)αβ . The corresponding shifted number operators can thus be written as

Nσ,σ′
=

1

2i
(Πσ,σ′

)αβ Y (α ⋆ Y β) =
1

2i
Cαβ Y σ,σ′

β ⋆ Y −σ,−σ′

α = −N−σ,−σ′
, (3.92)

[Nσ,σ′
, Y τ,τ ′

α ]⋆ = δστ δσ′τ ′ Y σ,σ′

α − δσ,−τ δσ′,−τ ′ Y −σ,−σ′

α , (3.93)

and one can identify related Cartan sub-algebras

h := {K(+),K(−)} ∈ sp(4; C) , K(q) =
1

8
K

(q)
αβ Y α ⋆ Y β , (3.94)

as

K(q) :=
1

2
(w2 + qw1) , w1 := N+,− , w2 := N+,+ . (3.95)

Using the basis MAB = (MAB)† defined in (A.3) and (ΓAB)α
β(ΓAB)βγ = −ηAAηBBCαγ ,

one finds that (3.90) admits the following solutions modulo Sp(4;R) rotations:

h = {E, J} , h = {J, iB} , h = {iB, iP} , (3.96)

where E := P0 = M0′0, J := M12, B := M03 and P := M0′1 = P1.
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3.6 Projectors and kinematical conditions on deformation parameters

For a given h ∼= so(2)(+)⊕so(2)(−) with generators K(±) = 1
2 (w2±w1), a set of projectors18

Pn1,n2(w1, w2) obeying (ni ∈ Z + 1
2)

Pn1,n2 ⋆ Pn′
1,n′

2
= δn1n′

1
δn2n′

2
Pn1,n2 , (wi − ni) ⋆ Pn1,n2 = 0 , (3.97)

are given by products of two (commuting) sets of projectors, viz. Pn1,n2 = Pn1(w1) ⋆

Pn2(w2), with auxiliary closed-contour integral realization (F.11) subject to the prescrip-

tion that ⋆-products are to be performed prior to the auxiliary integrals. As shown in

appendix F, this regular presentation ensures the orthogonality conditions in (3.97) sim-

ply via a change of variable (see eq. (F.7)) while preserving associativity. More precisely,

if ε1ε
′
1 = 1 = ε2ε

′
2 then the auxiliary integrals in the quantity Pn1,n2 ⋆ Pn′

1,n′
2

can be per-

formed before the ⋆-product, and the projectors can hence be presented without the former

as in (F.11) and (F.29). On the other hand, if ε1ε
′
1 = −1 or ε2ε

′
2 = −1 then the non-integral

presentation leads to a divergent ⋆-product. The divergence can be traced back to the one

arising in the ⋆-product
[
2e−2wi

]
Weyl

⋆
[
2e2wi

]
Weyl

between the non-integral presentations

of the ground-state and anti-ground-state projectors, as can be seen from eq. (F.5) for

s = 1 = −s′.

The projectors Pn1,n2 have rank one in the sense that Tr(Pn1,n2) = 1. With the

exception of the (anti-)ground-state projectors (q = ε1ε2)

Pε1
2 ,

ε2
2

= Pε2(K(q)) =
[
4 exp

(
∓ε2

2
Y α K

(q)
αβ Y β

)]

Weyl
=
[
4 e∓4ε2K(q)

]
Weyl

, (3.98)

which depend only on the principal Cartan generator, the projectors Pn1,n2 depend on both

K(+) and K(−) and are hence h-invariant. We refer to the latter and to the solutions built on

them as being biaxially symmetric (or axisymmetric) in the sense that they are invariant

under two commuting rotations in the five-dimensional embedding space. The rank-|n|
18The ⋆-product formalism refers a priori to bi-modules rather than separate left- and right-modules;

the latter types of modules can be introduced by associating the complexified Heisenberg algebras to state

spaces

Fh
i = (Fh

i )+ ⊕ (Fh
i )− , (Fh)ε

i =

8

<

:

|εn〉i := (yε)
n−

1
2

r

(n−
1
2
)!

⋆ | ε
2
〉i

9

=

;

n ∈ N+
1
2

,

where yε
i ⋆ | − ε

2
〉i := 0 define the (anti-)ground state of the (anti-)Fock space and (wi −ni) ⋆ |ni〉i = 0. The

resulting total state space Fh := Fh
1 ⊗ Fh

2 thus decomposes under sp(4; C) into

Fh =
M

ε1,ε2=±

(Fh)ε1,ε2 , (Fh)ε1,ε2 := (Fh
1 )ε1 ⊗ (Fh

2 )ε2 .

Introducing dual spaces (Fh
i )∗ consisting of states i〈n| obeying i〈n| ⋆ |m〉i = δmn, generated from dual

ground states obeying i〈
ε
2
| ⋆ yε

i = 0, one may realize (εi := ni/|ni|)

Pn1,n2 = |n1, n2〉〈n1, n2| =
(ε1)

n1+
1
2 (ε2)

n2+
1
2

(|n1| −
1
2
)!(|n2| −

1
2
)!

× (yε1
1 )|n1|−

1
2 (yε2

2 )|n2|−
1
2 ⋆ | ε1

2
, ε2

2
〉〈 ε1

2
, ε2

2
| ⋆ (y−ε1

1 )|n1|−
1
2 (y−ε2

2 )|n2|−
1
2 ,

which can be converted into a proper ⋆-product realization by first converting | ε1
2

, ε2
2
〉〈 ε1

2
, ε2

2
|.
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K σπ(K) σ†(K) κ(K) csp(4;R)(K) ∼= so(2) ⊕ g3 Θ(XA) M2(g3)

E=M0′0 − + −1 so(2)E ⊕ so(3)Mrs

√
(X1)2+(X2)2+(X3)2 S2

J =M12 + + +1 so(2)J ⊕ so(2, 1){E,P3,M03} i
√

(X0)2+(X0′)2−(X3)2 AdS2

iB= iM03 + − −1 so(2)B ⊕ so(2, 1){M12,P1,P2} i
√

(X0′)2−(X1)2−(X2)2 H2, dS2

iP = iM0′1 − − +1 so(2)P ⊕ so(2, 1){M02,M03,M23}

√
(X0)2−(X2)2−(X3)2 H2, dS2

Table 1. Properties of ground-state projectors. The signs σπ and σ† are defined above eq. (3.23)

and the signs κ(K) are defined by 4 e∓4K ⋆ κyκ̄ȳ = κ(K)e∓4K and evaluated in appendix F us-

ing Gaussian integration. The centralizers leave Θ invariant, as becomes manifest in the global

embedding coordinates XA obeying ηABXAXB = −1. In global spherical coordinates, one has√
(X1)2 + (X2)2 + (X3)2 = r and

√
(X0)2 + (X0′)2 − (X3)2 =

√
1 + r2 sin2 θ (see appendix A).

The manifolds M2(g3) are two-dimensional maximally-symmetric foliates with rank-3 isometry al-

gebras g3. While the foliations are unique for the solutions with principal Cartan generators E

and J (with corresponding Killing vectors having definite pseudo-norm everywhere), the solutions

based on iB and iP generators (with Killing vector fields having indefinite pseudo-norm, see sec-

tion 3.2) have different local foliates, i.e., the hyperbolic spacetime H2 and the two-dimensional de

Sitter spacetime dS2 in the regions where (X3)2 − (X0)2 + 1 > 0 and (X3)2 − (X0)2 + 1 < 0 or

(X1)2 − (X0′

)2 + 1 > 0 and (X1)2 − (X0′

)2 + 1 < 0 , respectively.

projectors Pn(K(q)) (n ∈ {±1,±2, . . . }) are given by the sum of |n| rank-one projectors

as in (F.22) and have regular presentations given by the integral realization (F.29). They

depend only on the principal Cartan generator K(q) and are therefore invariant under the

centralizer csp(4;C)(K(q)) ∼= so(2; C) ⊕ so(3; C). We shall refer to these projectors and to

the solutions built on them as being symmetry-enhanced axisymmetric solutions, or just

symmetry-enhanced for simplicity.

The phase-factors κn defined in (3.40) are given by

κn = (−1)|n1|+|n2|−1κ(K(ε1ε2)) , (3.99)

where κ(K(ε1ε2)) are collected in table 1. As for the various discrete maps acting on Pn we

refer to table 2, where we have used π(E, J, iB, iP ) = (−E, J, iB,−iP ), (E, J, iB, iP )† =

(E, J,−iB,−iP ) and τ(E, J, iB, iP ) = (−E,−J,−iB,−iP ) which implies

h = {E, J} : π(w1, w2) = (−w2,−w1) , (w1, w2)
† = (w1, w2) , (3.100)

h = {J, iB} : π(w1, w2) = (w1, w2) , (w1, w2)
† = (w2, w1) , (3.101)

h = {iB, iP} : π(w1, w2) = (w2, w1) , (w1, w2)
† = (−w1,−w2) , (3.102)

For the diagonal ansatz, the reality condition (3.48) simplifies to

(νn1,n2)
† = κI(n1),I(n2)νI(n1),I(n2) = κn1,n2νI(n1),I(n2) , (3.103)

which implies

νn1,n2 =





in1+n2 µn1,n2 , h = {E, J}
(−1)n1+n2+1 ν∗

n2,n1
, h = {J, iB}

(−1)n1+n2 ν∗
−n1,−n2

, h = {iB, iP}
(3.104)
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h = {K(+),K(−)} π(Pn1,n2) (Pn1,n2)
† τ(Pn1,n2) κn1,n2

{E, J} P−n2,−n1 Pn1,n2 P−n1,−n2 (−1)n1+n2

{J, iB} Pn1,n2 Pn2,n1 P−n1,−n2 (−1)n1+n2+1

{iB, iP} Pn2,n1 P−n1,−n2 P−n1,−n2 (−1)n1+n2

Table 2. Properties of rank-one projectors. The Cartan generators K(±) := 1
2 (w2 ±w1), such that

w1 = K(+) −K(−) and w2 = K(+) + K(−). The phase factors κn1,n2 are defined by Pn1,n2 ⋆ κyκ̄ȳ =

κn1,n2Pn1,n2 .

where µn1,n2 are real constants. We note that the ranges of n1 and n2 are identical for

h = {J, iB} and separately symmetric around zero for h = {iB, iP}. Moreover, from

eq. (3.104) it follows that if the principal Cartan generator is imaginary then the master

fields must contain Fock-space as well as anti-Fock-space projectors which requires the

regular presentation based on the auxiliary closed-contour integrals, as discussed above.

In the minimal-bosonic models, the τ -projection (3.49), that is, νn1,n2 = −ν−n1,−n2,

implies that

h = {E, J} : νn1,n2 = in1+n2 µn1,n2 , µn1,n2 = (−1)n1+n2+1µ−n1,−n2 , (3.105)

h = {J, iB} : νn1,n2 = (−1)n1+n2+1ν∗
n2,n1

= (−1)n1+n2ν∗
−n2,−n1

, (3.106)

h = {iB, iP} : νn1,n2 = in1+n2+1µn1,n2 , µn1,n2 = (−1)n1+n2+1µ−n1,−n2 , (3.107)

requiring the auxiliary closed-contour presentation of the projectors in all cases.

In the symmetry-enhanced case, it follows from

(Pn(E))† = Pn(E) , (Pn(J))† = Pn(J) , (Pn(iB))† = P−n(iB) ,

(Pn(iP ))† = P−n(iP ) , (3.108)

that the deformation parameters νn in non-minimal models must obey

νn =





inµn , for Pn(E)

in+1 µn , for Pn(J)

(−1)n ν∗
−n , for Pn(iB)

(−1)n+1 ν∗
−n , for Pn(iP )

(3.109)

where µn are real constants. In the minimal-bosonic cases, it follows from νn = −ν−n

that νn = in+1µn for Pn(iB), and that νn = inµn for Pn(iP ), and that µn = (−1)n+1µ−n

in all cases; see table 3 for a summary of these results. Concerning the need for closed-

contour presentations of the projectors, the same considerations hold as in the biaxially

symmetric cases.

As for the internal connection, the reality conditions (3.48) implies

(V n1,n2
α )† =





−V̄ n1,n2

α̇ , h = {E, J}
−V̄ n2,n1

α̇ , h = {J, iB}
−V̄ −n1,−n2

α̇ , h = {iB, iP}
(3.110)
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Pn(K) Non-minimal models Minimal models

K = E νn = in µn µn = (−1)n+1µ−n

K = J νn = in+1 µn µn = (−1)n+1µ−n

K = iB (νn)∗ = (−1)nν−n νn = in+1µn , µn = (−1)n+1µ−n

K = iP (νn)∗ = (−1)n+1ν−n νn = inµn , µn = (−1)n+1µ−n

Table 3. Reality properties of the deformation parameters νn for different types of rank-n,

symmetry-enhanced projectors Pn(K(q)). µn are real parameters.

and, in the symmetry-enhanced cases,

(V n
α )† =

{
−V̄ n

α̇ , for Pn(E) and Pn(J)

−V̄ −n
α̇ , for Pn(iB) and Pn(iP )

(3.111)

In the minimal-bosonic models, the τ -condition implies

τ(V n

α ) = −iV −n

α . (3.112)

3.7 Summary of internal solution and minimal-bosonic projection

In summary, the diagonal internal solution is given explicitly by

Φ̂′ =
∑

n∈
“

Z+
1
2

”2

νnPn ⋆ κy , Ŝ′
α = Zα − 2i

∑

n∈
“

Z+
1
2

”2

Pn ⋆ V n

α , (3.113)

where νn are complex coefficients; the projectors are given in Weyl-order (see [43] and

appendix F) by (n = (n1, n2); εi = ni/|ni|)

[Pn]Weyl = 4(−1)|n1|+|n2|−1

∮

C(ε1)

ds1

2πi

(s1+1)n1−
1
2

(s1−1)n1+
1
2

∮

C(ε2)

ds2

2πi

(s2+1)n2−
1
2

(s2−1)n2+
1
2

e−4K̆(s1,s2), (3.114)

K̆ = 1
2 (s1w1 + s2w2) = 1

2(s1 + s2)K(+) + 1
2(s2 − s1)K(−) (3.115)

=: 1
8 (yαyβ

κ̆αβ + ȳα̇ȳβ̇ ˘̄κα̇β̇ + 2yaȳβ̇ v̆αβ̇) ; (3.116)

and V n

α = (V n

α (z), V̄ n

α̇ (z̄)) with holomorphic part given in symmetric gauge and Weyl order

by

[V n

α ]Weyl = 2izα

∫ 1

−1

dt

(t + 1)2
jn(t)e

iσn

t−1
t+1z+z−

, (3.117)

jn(t) = qn(t) − 2
∑

k

θn,k

[
1 − 1 + (−1)k

2

(
1 −

√
1 − σnBnνn

1 + k

)]
pk(t) , (3.118)

qn(t) = −σnBnνn

4
1F1

[
1

2
; 2;

σnBnνn

2
log

1

t2

]
, pk(t) =

(−1)k

k!
δ(k)(t) , (3.119)
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where σn ∈ {±1} and θn,k ∈ {0, 1}. In minimal-bosonic models, the internal connection

Ŝ′(min)
α = Zα − 2i

∑

n∈(N+
1
2 )×(Z+

1
2 )

(1 + iτ)(Pn ⋆ V n

α ) , (3.120)

which can be written equivalently as

Ŝ′(min)
α = Zα − 2i

∑

n∈(Z+
1
2 )2

Pn ⋆ V n

α , ν−n = −νn , σ−n = − σn , (3.121)

as can be seen from (Vα(νn, σn) := V n

α )

iτ
(
Pn ⋆ Vα(νn, σn)

)
= P−n ⋆ Vα(−νn,−σn) = P−n ⋆ Vα(ν−n, σ−n) . (3.122)

The ⋆-product compositions (σ, k, k̄,m ∈ N)

(κ̂ ⋆ ̂̄κ)⋆σ ⋆ (Φ̂′ ⋆ κ̂)⋆k ⋆ (Φ̂′ ⋆ ̂̄κ)⋆k̄ ⋆ Ŝ′
α1

⋆ · · · ⋆ Ŝ′
αm

∈ Â′
diag , (3.123)

Â′
diag :=




∑

n

Pn(Y ) ⋆
∑

i,̄i,j,j̄=0,1

V n

i,̄i,j,j̄(z) ⋆ V
n

i,̄i,j,j̄(z̄) ⋆ (κy)
⋆i ⋆ (κ̄ȳ)

⋆̄i ⋆ (κz)
⋆j ⋆ (κ̄z̄)

⋆j̄



 ,

(3.124)

V n

i,̄i,j,j̄ :=

∫ 1

−1

dt

t + 1
∆n

i,̄i,j,j̄(t; ∂
(ρ))

[
e

i
t+1 (σn(t−1)z+z−+ρ+z++ρ−z−)

]

Weyl

, (3.125)

where for each fixed n, the operators

∆n

i,̄i,j,j̄(t; ∂
(ρ))[·] :=

∞∑

p=0

f
n,α1...αp

i,̄i,j,j̄;p
(t) ∂(ρ)

α1
· · · ∂(ρ)

αp
(·)
∣∣∣
ρi=0

(3.126)

belong to a space with the commutative and associative composition rule

(
∆(∂(ρ)) ◦ ∆′(∂(ρ))

)
(t) [·]=

∞∑

p,p′=0

(f
α1...αp
p ◦ f

′αp+1...αp+p′

p′ )(t) ∂(ρ)
α1

· · · ∂(ρ)
αp+p′

(·)
∣∣∣
ρ=0

. (3.127)

The ⋆-product compositions of elements in Âdiag thus involve

V (z;σ) ⋆ V ′(z;σ) =

∫ 1

−1
dt

∫ 1

−1
dt′

1

2(t̃ + 1)
∆(t; ∂(ρ))∆′(t′; ∂(ρ′))

×
[
e

i
t̃+1

“

σ(t̃−1)z+z−+ρ̃+z++ρ̃−z−−
1
2ρ+ρ′−+

1
2ρ′+ρ−

”]

Weyl

, (3.128)

where t̃ = tt′ and ρ̃± are defined in (3.80). Rearranging

1
2∆(t; ∂(ρ))∆′(t′; ∂(ρ′))

[
e

i
t̃+1

“

ρ̃+z++ρ̃−z−− 1
2
ρ+ρ′−+

1
2ρ′+ρ−

”]

Weyl

=:
∑

I

∆I(t; ∂(ρ))∆′I(t′; ∂(ρ))

[
e

i
t̃+1

(ρ+z++ρ−z−)
]

Weyl

, (3.129)
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where f
I,α1...αp
p (t) and f

′I,α1...αp
p (t′) are linear combinations of f

α1...αp
p (t) and f

′α1...αp
p (t′),

respectively, with coefficients given by finite polynomials in t and t′, yields

V (z;σ) ⋆ V ′(z;σ)=
∑

I

∫ 1

−1

dt

t+1
(∆I(∂(ρ)) ◦ ∆I′(∂(ρ)))(t)

[
e

i
t+1 (σ(t−1)z+z−+ρ+z++ρ−z−)

]

Weyl

.

(3.130)

As the the ∆-operators form a well-defined ◦-product algebra, which is associative by

construction, and as the projector algebra spanned by Pn is associative as well, using

the prescription based on regular presentations spelled out in appendix F (for details,

see analysis below eq. (F.7)), it follows that Âdiag is an associative ⋆-product algebra.

Viewed as elements of Ω[0](Y ×Z), the Weyl-ordered symbols of the elements in Âdiag have

singularities at hyper-planes ⊂ Y × Z in the form of delta-functions or negative integer

powers of twistor coordinates. For example, in the case that K(+) = E and K(−) = J , it

follows from

P
±

1
2 ,±

1
2

⋆ κy = 2π
[
δ2(y ∓ iσ0ȳ)

]
Weyl

, P
±

1
2 ,∓

1
2

⋆ κy = ±P
±

1
2 ,∓

1
2

(3.131)

that if E is principal then
[
Φ̂′
]Weyl

has delta-function-like singularities on the hyper-planes

y ∓ iσ0ȳ while if J is principal then
[
Φ̂′
]Weyl

is singularity-free. In order to exhibit the

singularities in the deformed oscillators, we use19 (v̄α̇α = vαα̇)

Ô :=

[
e
−

1
2

“

yαyβκ̆αβ+ȳα̇ȳβ̇ ˘̄κ
α̇β̇

+2yaȳβ̇ v̆
αβ̇

”

]

Weyl

⋆

[
e

i
2(t+1) (σ(t−1)zαzβDαβ+2ραzβIαβ)

]

Weyl

(3.133)

=
1√

κ̆2 G2

[
e
−

1
2 ȳα̇ȳβ̇( ˘̄κ

α̇β̇
−˘̄vα̇

ακ̆
−1
α

β v̆
ββ̇)+

i
2(t+1) (σ(t−1)zαzβDαβ+2ραzβIαβ)−

1
2 bαG−1

α
βbβ

]

bN+

,

where the N̂+-order is defined in appendix B, and

Dαβ := 2u−
(αu+

β) , Iαβ := u+
α u+

β + u−
α u−

β , (3.134)

Gαβ := κ̆
−1
αβ + iσ

t − 1

t + 1
Dαβ ,

bα := i

[
yα + ȳα̇ ˘̄vα̇

β
κ̆
−1
β

α +
1

t + 1

(
σ(t − 1)zβDβ

α + ρβIβ
α
)]

, (3.135)

and we recall that G−1
αβ = −Gαβ

G2 with G2 := 1
2GαβGαβ and

1√
G2

=
(t + 1)

√
κ̆2

√
(t + 1)2 − iσ(t2 − 1)κ̆αβDαβ + κ̆2(t − 1)2

. (3.136)

19The related basic ⋆-product lemma reads (yAy := yαAα
βyβ and uy := uαyα idem zBz and vz)

»

e
1
2

yAy+uy

–

Weyl

⋆

»

e
1
2

zBz+vz

–

Weyl

=
“

1 + AαβBαβ + A2B2
”−

1
2

e
uy+vz+iuv+

1
2

ỹ(A+A2B)ỹ+z̃(B+B2A)z̃−2iỹ(AB−A2B2)z̃

1+AαβBαβ+A2B2
, (3.132)

where A2 = 1
2
AαβBαβ idem B, and ỹ = y + iv and z̃ = z − iu.
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From the limit
[
Ô
]
bN+
∣∣∣∣
κ̆=˘̄κ=0

= e
−yαv̆αα̇ȳα̇+ i

2(t+1)(σ(t−1)aαaβDαβ+2ραaβIαβ) , aα := zα + iv̆α
α̇ȳα̇ , (3.137)

it follows that if E is principal then the contribution to Ŝ′
α from the ground-state projector

P1(E) ≡ P1
2 ,

1
2

contains a singularity of the form (σ ≡ σ1
2 ,

1
2
)

[
Ŝ′±

1
2 ,

1
2 ;σ

]
bN+

∼ P1(E)a±
∫ 1

−1

dt

(t + 1)2
j±1
2 ,

1
2

(t)e−
2iσ
t+1

a+a− ∼ P1(E)
1

a∓
, (3.138)

where the last step is based on performing analytical continuation on the twistor-space

variables. Similarly, taking the limit v̆αα̇ = 0 = ˘̄vα̇α one finds that if J is principal

(καβ = iDαβ) then the contribution to Ŝ′
α from the ground-state projector P1(J) ≡ P

−
1
2 ,

1
2

depends on the sign of σ ≡ σ
−

1
2 ,

1
2
: for σ = +1 one has G2 = 4(t + 1)−2 and

[
Ŝ′±

−
1
2 ,

1
2 ;σ=+

(y, ȳ, z)

]
bN+

∼ P1(J)a±e−ia+a−

∫ 1

−1
dt j±

−
1
2 ,

1
2 ;σ=+

[
Ô′(t, y, ȳ, z)

]
bN+

, (3.139)

where
[
Ô′(t, y, z)

]
bN+

is real-analytic in (t, y, ȳ, z), and hence

[
Ŝ′±

−
1
2 ,

1
2 ;σ=+

(y, ȳ, z)

]
bN+

is real-

analytic in (y, ȳ, z); for σ = −1 one has G2 = 4t2(t + 1)−2 and the pole at t = 0 gives rise

to an algebraic singularity.

4 Spacetime-dependent master fields

This section contains the analysis of the spacetime-dependent master fields

(Φ̂(K), Ŝ(K)α, Ŵ(K)) obtained from the internal solution (Φ̂′, Ŝ′
α) via the gauge function

L̂(K). We shall first demonstrate that if L̃(K) is chosen as to align the spin-frames in Y and

Z then the internal connection Ŝ(K)α and spacetime connection Ŵ(K)µ become singularity-

free in an extended region RConn of spacetime.20 Finally, we show that the Weyl zero-form

Φ̂(K) is finite in a region RWeyl ⊇ RConn. We also note that the combination of the

Ansatz (3.113) and the K-adapted gauge function leads to an internal connection Ŝα that

is not given in the twistor gauge (D.7) used for the perturbative analysis of Vasiliev’s

equations discussed in appendix D.

4.1 Internal connection

4.1.1 Alignment of spin-frames and absence of singularities

Using the gauge-function (3.4), the internal connection, given by the third equation

in (2.67), takes the form

Ŝ(K)α = (L̂(K))
−1 ⋆ Ŝ′

α ⋆ L̂(K) = (L̃(K))α
βzβ − 2i

∑

n

PL
n

⋆ Ṽ n

(K)α , (4.1)

20The physical meaning of singularities in the spacetime and twistor-space connections, which may very

well be gauge artifacts, can be addressed by examining observables depending on (bSα, bS̄α̇) (see section 2.4.1);

we leave this issue for future work.
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where the L-rotated projector (εi = ni/|ni|, q = ε1ε2)

PL
n

= 4(−1)|n1|+|n2|−1

∮

C(ε1)

ds1

2πi

(s1+1)n1−
1
2

(s1−1)n1+
1
2

∮

C(ε2)

ds2

2πi

(s2+1)n2−
1
2

(s2−1)n2+
1
2

[
e−4K̆L(s1,s2)

]
Weyl

,

(4.2)

K̆L = L−1 ⋆ K̆ ⋆ L= 1
2(s1 + s2)K

L
(+) + 1

2 (s2 − s1)K
L
(−)

= 1
8(yαyβ

κ̆
L
αβ + ȳα̇ȳβ̇ ˘̄κL

α̇β̇
+ 2yaȳβ̇ v̆L

αβ̇
), (4.3)

κ̆
L
αβ = ε2κ

L
(q)αβ + 1

2 (s1 − ε1)
(

κ
L
(+)αβ − κ

L
(−)αβ

)
+ 1

2(s2 − ε2)
(
κ

L
(+)αβ + κ

L
(−)αβ

)
, (4.4)

and the L̃(K)-rotated internal connection

Ṽ n

(K)α := (L̃(K))
−1 ⋆ V n

α ⋆ L̃(K) . (4.5)

Defining Ŝ′± := u±αŜ′
α, one has

Ŝ±
(K) := (L̂(K))

−1 ⋆ Ŝ′± ⋆ L̂(K) = z̃±(K) − 2i
∑

n

PL
n

⋆ Ṽ n±
(K) , (4.6)

where z̃±(K) := (L̃(K))
−1 ⋆ z± ⋆ L̃(K) = ũ±α

(K)zα, using the K-aligned spin-frame Ũ(K) defined

by (3.26), i.e. ũ±α
(K) := u±β(L̃(K))β

α, and

[
Ṽ n±

(K)

]Weyl
= 2iz̃±(K)

∫ 1

−1

dt

(t + 1)2
j±
n

(t)e
iσn

t−1
t+1 z̃+

(K)
z̃−
(K) . (4.7)

The internal connection can be represented using a source as

[
Ṽ n±

(K)

]Weyl
= 2

∂

∂ρ±

∫ 1

−1

dt

t + 1
jn±
σn

(t) e
i

2(t+1) (σn(t−1)zαzβ
eD(K)αβ+2ραzβ

eI(K)αβ)
∣∣∣∣
ρ=0

, (4.8)

D̃(K)αβ :=
(
ũ+

(K)ũ
−
(K) + ũ−

(K)ũ
+
(K)

)

αβ
, Ĩ(K)αβ :=

(
ũ+

(K)ũ
+
(K) + ũ−

(K)ũ
−
(K)

)

αβ
. (4.9)

From eq. (3.133), which implies that

[
Ŝ±

(K)

]
bN+

− z̃±(K) =−16i
∑

n

(−1)|n1|+|n2|−1

∮

C(ε1)

ds1

2πi

(s1 + 1)n1−
1
2

(s1 − 1)n1+
1
2

∮

C(ε2)

ds2

2πi

(s2 + 1)n2−
1
2

(s2 − 1)n2+
1
2

×
∫ 1

−1

dt√
(t + 1)2 − iσn(t2 − 1)κ̆LαβD̃(K)αβ + (κ̆L)2(t − 1)2

j±
n

(t) (4.10)

× ∂

∂ρ±
e
−

1
2 ȳα̇ȳβ̇

“

˘̄κL

α̇β̇
−˘̄vL

α̇
α(κ̆L)−1

α
β v̆L

ββ̇

”

+
i

2(t+1) (σn(t−1)zαzβ
eD(K)αβ+2ραzβ

eI(K)αβ)−
1
2 bαG−1

α
βbβ

∣∣∣∣
ρ±=0

,

with Gαβ = (κ̆L)−1
αβ + iσn

t−1
t+1 D̃(K)αβ and

bα = i

[
yα + ȳα̇˘̄vL

α̇
β(κ̆L)−1

β
α +

1

t + 1

(
σ(t − 1)zβD̃(K)β

α + ρβĨ(K)β
α
)]

, (4.11)
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and the prescription for the closed contours (see appendix F), it follows that if one chooses

a definite q-value, say K = K(q), then21

κ̆
LαβD̃(K)αβ = −2ε2Θ+O(s1−ε1, s2−ε2) , (κ̆L)2 = −Θ2 +O(s1−ε1, s2−ε2) , (4.12)

and the potential singularities in the integral representation of Ŝ±
K are shifted to the zeroes

of

(t + 1)2 − iσn(t2 − 1)κ̆LαβD̃(K)αβ + (κ̆L)2(t − 1)2 (4.13)

= (t + 1)2 + 2iσnǫ2Θ(t2 − 1) − Θ2(t − 1)2 + O(s1 − ε1, s2 − ε2) (4.14)

=
((

1 + iσnǫ2Θ
)
(t + 1) − 2iσnǫ2Θ

)2
+ O(s1 − ε1, s2 − ε2) , (4.15)

Moreover, the same shift of the pole in t = −1 takes place in the exponent of (4.10);

for the spherically-symmetric case, see (4.21) and (4.24). Thus the symbol
[
Ŝ±

(K)

]
bN+

is

real-analytic in Y and Z if K = E and Θ > 0 or if K = J and σnǫ2 > 0 (in which case

−iΘ =
√

1 + Υ2 > 1). On the other hand, if K = J and σnǫ2 < 0, then there remains

a singularity at a distinct t ∈ [0, 1] for all values of Υ. Since both the pre-factor and the

argument of the exponent blow up at this t-value, one may perform the integral by means

of analytical continuation in the t-independent quantity in the exponent (as in (3.138)),

resulting in that
[
Ŝ±

(K)

]
bN+

is analytic in Y and Z for any x except at a proper subspace

of twistor space. Whether this is an acceptable solution, and in particular whether there

exists a gauge in which spacetime gauge fields can be extracted from it, remains to be

examined. Finally, if K = iB and K = iP then Θ is indefinite and there is a finite region

of spacetime in which Θ is real and hence
[
Ŝ±

(K)

]
bN+

is real-analytic in Y and Z.

4.1.2 Spherically symmetric case

The rotation (4.3)–(4.4) of the generators for solutions based on the (E, J) Cartan pair

proceeds as follows (see also appendix E). Using the conventions in appendix A, it fol-

lows from K(+) = E = 1
4yα(σ0)αα̇ȳα̇ that κ(E)αβ = 0 and v(E)αα̇ = u+

α ū+
α̇ + u−

α ū−
α̇ . In

stereographic coordinates, the L-rotated Killing two-form and Killing vector read

κ
L
(E)αβ = 2xi

1−x2 (σi0)αβ , vL
(E)αβ̇

= (σ0)αβ̇ − 4
1−x2 x[0x

i(σi])αβ̇ . (4.16)

EL can be brought to a spin-frame ũ±
(E)α(x) in which it takes the canonical form (see

appendix E)

κ
L
(E)αβ = r D̃(E)αβ , vL

(E)αβ̇
=
√

1 + r2 T̃(E)αβ̇ , (4.17)

D̃(E)αβ = ũ+
(E)αũ−

(E)β + ũ−
(E)αũ+

(E)β , T̃(E)αβ̇ = ũ+
(E)α

¯̃u+

(E)β̇
+ ũ−

(E)α
¯̃u−

(E)β̇
, (4.18)

21We recall that choosing a principal Cartan generator K = K(q) selects a spin-frame (ũ+
(K(q))

, ũ−
(K(q))

)

adapted to it, i.e. such that the matrix K
(q)L
αβ assumes the corresponding canonical form given in appendix E

(see also table 1 and (3.23) for the definition of Θ).
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expressed in spherical coordinates. Similar operations can be repeated for K(−) = J (see

appendix E for the details). Note however that in general κ(+) and κ(−) are both type-{1, 1}
but have different principal spinors. This in particular means that on the E-adapted spin-

frame ũ±
(E)α J takes a non-canonical form and, in spherical coordinates, the resulting K̆L

for the solutions based on the (E, J) Cartan pair reads (q = ε1ε2 = 1; η := 1
2(s1 +s2) ≈ ε2;

and ζ = 1
2(s2 − s1) ≈ 0 )

κ̆
L
αβ = (ηr + iζ cos θ)D̃(E)αβ + ζ

√
1 + r2 sin θ Ĩ(E)αβ , (4.19)

v̆L
αβ̇

= η
√

1 + r2 T̃(E)αβ̇ + ζ r sin θ S̃(E)αβ̇ , (4.20)

with T̃(E)αβ̇ := (ũ+
(E)

˜̄u+
(E) + ũ−

(E)
˜̄u−
(E))αβ̇ and S̃αβ̇ := (ũ+

(E)
˜̄u−
(E) + ũ−

(E)
˜̄u+
(E))αβ̇, while D̃(E)αβ

and Ĩ(E)αβ are defined in (4.9).

For instance, the solution with n1 = n2 = 1
2 and σ := σ1

2 ,
1
2
, corresponding to the

spherically symmetric ground state, reads
[
Ŝ±

K

]
bN+

= z̃± + 32
[
z̃± ± irỹ± ± i

√
1 + r2 ˜̄y∓

] ∫ 1

−1

dt

(t + 1 + iσr(t − 1))2
j±1
2 ,

1
2

(t) ×

× exp

{
1

t + 1 + iσr(t − 1)

[
− r(t + 1)ỹ+ỹ− + ˜̄y+ ˜̄y−

(
iσ(t − 1) − r(t + 1)

)

−(t + 1)
√

1 + r2
(
ỹ+ ˜̄y+ + ỹ− ˜̄y−

)
+ iσ(t − 1)z̃+z̃− + σr(t − 1)

(
ỹ−z̃+ − ỹ+z̃−

)

+σ(t − 1)
√

1 + r2
(
˜̄y+z̃+ − ˜̄y−z̃−

) ]}
. (4.21)

For higher symmetry-enhanced projectors Pn(E) it is convenient to use the integral repre-

sentation (F.29) in (4.6), and one has

ζ = 0 , κ̆
L
αβ = ηκ

L
(E)αβ = η r D̃(E)αβ , v̆L

αβ̇
= η vL

(E)αβ̇
= η

√
1 + r2 T̃(E)αβ̇ , (4.22)

and the corresponding solutions can be conveniently cast into a more compact form using

the following generalization of the modified oscillators of [34]:

ăα(η) := zα + i(κ̆L
α

βyβ + v̆L
α

β̇ ȳβ̇) , [ăα, ăβ ]⋆ = −2iǫαβ(1 + η2) . (4.23)

The general spherically-symmetric internal connection can thus be written as (ε = n/|n|)
[
Ŝ±

K

]
bN+

= z̃±+ 4
∑

n=±1,±2,...

(−1)n−
1+ε
2

∫ 1

−1
dt j±n (t)

∮

C(ε)

dη

2πi(t + 1 + iσnηr(t − 1))2

(
η + 1

η − 1

)n

×ũα±ăα P1(ηEL) e
iσn(t−1)

2(t+1+iσnηr(t−1)) D̃
αβ ăαăβ

. (4.24)

In particular, for n = 1, i.e. n1 = n2 = 1
2 , the solution (4.21) can be cast in the simpler

form
[
Ŝ±

K

]
bN+

= z̃± + 8P1(E
L) ã±

∫ 1

−1

dt

(t + 1 + iσr(t − 1))2
j±1 (t) e

iσ(t−1)
t+1+iσr(t−1) ã+ã−

. (4.25)

where ã± := ũα±ăα|η=1 coincide with the modified oscillators of [34], obeying zα ⋆ P1
2 ,

1
2

=

aαP1
2 ,

1
2
. Notice that, as anticipated, the internal connection for the spherically-symmetric

case may only diverge in r = 0, as the form of the Weyl tensors (5.9) suggests.
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4.2 Lorentz-covariant spacetime gauge-field generating function

We shall now show that the generating function (2.48) of the spacetime gauge-fields, viz.

Ŵ(K)µ(x|Y ) = Ω(0)
µ + L̃−1

(K) ⋆ ∂µL̃(K) − K̂(K)µ , (4.26)

where Ω
(0)
µ = e

(0)
µ +ω

(0)
µ is the AdS4 one-form connection (3.12)–(3.13), has the property of

being non-singular for generic spacetime points. From (2.51) it follows that K̂(K)µ contains

terms that are linear as well as bilinear in V̂(K)α. The former have already been examined

and shown to possess the aforementioned property, while the latter contain new structures

of the form V̂(K)(α ⋆V̂(K)β). In the adapted spin-frame, the “self-replication” formula (3.79)

implies

[
V n

± ⋆ V n

±

]Weyl
= 2

∂

∂ρ±
∂

∂ρ′±

∫ 1

−1
dt

∫ 1

−1
dt′

1

t̃ + 1
j n,σn(t)j n,σn(t′)

× e
i

t̃+1
(σn(t̃−1)z+z−+ρ̃+z++ρ̃−z−−

1
2ρ+ρ′−+

1
2ρ′+ρ−)

∣∣∣∣
ρ=ρ′=0

, (4.27)

which shows that the previous considerations for V̂(K)α still apply. Thus, conjugation by

L̃(K) and ⋆-multiplication by PL
n

shifts the singularity out of the homotopy integration

domain; in the cylindrically-symmetric case, this restricts σn, as found above. Thus, the

spacetime gauge fields inherit the regular behaviour at generic spacetime points of the

twistor-space connection.

In the case of spherically symmetric solutions, which arise for K = E, and recalling

that ǫαβ = ũ−
α ũ+

β − ũ+
α ũ−

β , where from now on the gauge index (E) is suppressed, one has

K̂µ(Z, Y |x) =
1

4i

(
ω++

µ M̂−− + ω−−
µ M̂++ − 2ω−+

µ M̂+−
)
− h.c. , (4.28)

with

[
M̂++

]
bN+

= ỹ+ỹ+ +
∑

n=±1,±2,...

8(−1)n−
1+ǫ
2

∮

C(ǫ)

dη

2πi

(
η + 1

η − 1

)n

P1(ηEL) (F−G) ˜̆a+˜̆a+ , (4.29)

[
M̂−−

]
bN+

= ỹ−ỹ− +
∑

n=±1,±2,...

8(−1)n−
1+ǫ
2

∮

C(ǫ)

dη

2πi

(
η + 1

η − 1

)n

P1(ηEL)
(
F−G′

)
˜̆a−˜̆a− , (4.30)

[
M̂+−

]
bN+

= ỹ+ỹ− −
∑

n=±1,±2,...

8(−1)n−
1+ǫ
2

∮

C(ǫ)

dη

2πi

(
η + 1

η − 1

)n

P1(ηEL)

×
[
(Q + F)˜̆a+˜̆a− − ηr(P + R)

]
, (4.31)
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where we have defined the following functions of the modified number operator ˜̆a+˜̆a−,

F(˜̆a+˜̆a−; η; r) =

∫ 1

−1
dt jn(t)

t + 1

χ3
e

iσn(t−1)
χ

˜̆a+ ˜̆a−

, (4.32)

G(˜̆a+˜̆a−; η; r) =

∫ 1

−1
dt jn(t)

∫ 1

−1
dt′ jn(t′)

(t′−1)(1+σn) + (t−1)(1−σn) + 2

χ̃3
e

iσn(t̃−1)
χ̃

˜̆a+ ˜̆a−

,

(4.33)

G′(˜̆a+˜̆a−; η; r) =

∫ 1

−1
dt jn(t)

∫ 1

−1
dt′ jn(t′)

(t−1)(1+σn) + (t′−1)(1−σn) + 2

χ̃3
e

iσn(t̃−1)
χ̃

˜̆a+ ˜̆a−

,

(4.34)

P(˜̆a+ ˜̆a−; η; r) =

∫ 1

−1
dt jn(t)

e
iσn(t−1)

χ
˜̆a+ ˜̆a−

χ2
, (4.35)

Q(˜̆a+˜̆a−; η; r) =

∫ 1

−1
dt jn(t)

∫ 1

−1
dt′ jn(t′)

t̃ + 1

χ̃3
e

iσn t̃
χ̃

˜̆a+ ˜̆a−

, (4.36)

R(˜̆a+˜̆a−; η; r) =

∫ 1

−1
dt jn(t)

∫ 1

−1
dt′ jn(t′)

e
iσn(t̃−1)

χ̃
˜̆a+ ˜̆a−

χ̃2
. (4.37)

with χ := t + 1 + iσnηr(t− 1) and χ̃ := t̃ + 1 + iσnηr(t̃− 1). Performing the integrals over

(η, t, t′) yields a generating function of spacetime gauge fields that is real-analytic in Y and

Z at Y = Z = 0 for positive r. At r = 0, there are contributions from the integration close

to t = −1 and t̃ = −1 that are singular at ˜̆a±|r=0;η=1 ≡ z̃± ± i˜̄y∓ = 0. We leave the issue

of possible corresponding divergencies in the spacetime gauge fields, to be read off in the

twistor gauge, for future studies.

4.3 Weyl zero-form master field

Using the gauge function (3.4), the Weyl zero-form master field in (2.67) takes the following

form in the case of the diagonal solutions given by (3.44), (3.56)–(3.58):

Φ̂(K)(x|Y,Z) =
∑

n

νnPL
n

(Y ) ⋆ κy , (4.38)

where we use the notation PL
n

(Y ) ≡ L−1(x|Y ) ⋆ Pn(Y ) ⋆ L(x|Y ) introduced in (3.6) and

we have used L̂−1
(K) ⋆ Pn ⋆ κy ⋆ π(L̂(K)) = L−1(x|Y ) ⋆ L̃−1

(K)(z|Z) ⋆ Pn(Y ) ⋆ κy ⋆ L̃(K)(z|Z) ⋆

πy(L(x|Y )) = PL
n

(Y ) ⋆ κy. We note that in the K-gauge the full zero-form Φ̂(K) does not

depend on Zα, viz.

Φ̂(K) = Φ̂(K)|Z=0 =: Φ(K) . (4.39)

Recalling the definitions in (4.2)–(4.4) and using the ⋆-product lemma

e−
1
2Y αMαβY β

⋆ κy

=
1√
κ2

[
exp

{
1
2yα

κ
−1
αβ yβ − 1

2 ȳα̇(κ̄α̇β̇ − v̄α̇
α
κ
−1
α

βvββ̇)ȳβ̇ + iyαȳβ̇
κ
−1
αβvβ

β̇

}]
Weyl

, (4.40)
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for matrices Mαβ ∈ sp(4; C), which admit the decomposition (3.17), and κ
2 := det κ =

1
2κ

αβ
καβ and κ

−1
αβ = −κ

−2
καβ, one obtains

[
Φ̂(K)

]Weyl
= 4

∑

n1,n2

νn1,n2(−1)|n1|+|n2|−1

∮

C(ε1)

ds1

2πi

(s1 + 1)n1−
1
2

(s1 − 1)n1+
1
2

×
∮

C(ε2)

ds2

2πi

(s2 + 1)n2−
1
2

(s2 − 1)n2+
1
2

1√
(κ̆L)2

exp

{
1
2yα(κ̆L)−1

αβyβ (4.41)

−1
2 ȳα̇

[
(˘̄κL)α̇β̇ − (˘̄vL)α̇

α(κ̆L)−1
α

β(v̆L)ββ̇)
]
ȳβ̇ + iyαȳβ̇(κ̆L)−1

αβ(v̆L)ββ̇]

}
,

where κ̆
L
αβ = 1

2(s2 + s1)(κ
L
(+))αβ + 1

2(s2 − s1)(κ
L
(−))αβ, idem for ˘̄κL

α̇β̇
and v̆L

αβ̇
.

The expression of the Weyl zero-form master field simplifies for the special superposi-

tions of axisymmetric solutions corresponding to the rank-n projectors Pn(E) and Pn(J)

defined in (F.28) and (F.29), yielding so(2)⊕so(3)-symmetric and so(2)⊕so(2, 1)-symmetric

solutions. These depend on a single AdS generator, K(+) or K(−), the L-rotation of which

maintains the property that (K2
(±))αβ = −Cαβ, which means that the corresponding AdS

Killing vector vL
αα̇ is hypersurface-orthogonal, as explained in section 3.2. As shown in [35]

in a pure gravity context, this property carries over to the corresponding Killing vector of

the black-hole solution obtained by consistent deformation of the AdS Killing equation —

and the so-obtained black hole is therefore static. Extending this criterion to the higher-spin

theory, as in [1], one can therefore refer to the solutions based on the symmetry-enhanced

projectors as static. The corresponding Weyl master zero-form reads

Φ̂(K) = 2
∑

n=±1,±2,...

(−1)n−
1+ǫ
2 νn

∮

C(ǫ)

dη

2πi

(
η + 1

η − 1

)n

e
−4ηKL

(q) ⋆ κy , (4.42)

where ǫ = n/|n| and q = ±. Using the lemma (4.40) together with the hypersurface-

orthogonality condition for vL
αα̇ (i.e., the second equation in (3.19)) this can be written

as

[
Φ̂(K)

]Weyl
=

2√
(κL

(q))
2

∑

n=±1,±2,...

(−1)n−
1+ǫ
2 νn

∮

C(ǫ)

dη

2πiη

(
η + 1

η − 1

)n

× (4.43)

× exp

{
1

η

[
1
2yα(κL

(q))
−1
αβyβ + 1

2 ȳα̇(κ̄L
(q))

−1

α̇β̇
ȳβ̇ + iyαȳβ̇(κL

(q))
−1
αβ(vL

(q))
β

β̇

]}
.

Note the dependence on the inverse square root of (κL
(q))

2, both in (4.41) and (4.43),

appearing in the prefactor and in the exponent (through (κL
(q))

−1
αβ). This recovers the result

in (3.131), in the sense that for the solutions based on π-odd principal Cartan generators

(E and iP ), for which (κ(q))αβ = 0 and the diagonal blocks in KL
(q) vanish for xµ = 0,

the internal, x-independent Weyl master zero-form Φ̂′ has a delta-function-like behaviour

in twistor space. The latter is thus softened by the spacetime dependence introduced

via the gauge-function, and in particular
√

(κL
(q))

2 appears as the parameter of a limit

representation of the delta function.
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5 Weak-field analysis: Weyl tensors in asymptotic regions

In regions where (Φ̂, V̂α) approach their vacuum values, i.e. vanish, the full non-abelian

theory can be approximated by its abelian free-theory limit, in which it makes sense to

assign physical meaning to individual Weyl tensors of fixed spin, including a physical scalar

field. One can check that the latter is always real, for both the axisymmetric and the

symmetry-enhanced solutions, due to the reality properties imposed on the deformation

parameters that are collected in (3.104) and in table 3 (note that the reality conditions

may also constrain the ranges of (n1, n2) and n). In this section we extract the Weyl zero-

form component fields in the K-adapted gauge and examine their nature, focusing on the

solutions depending on E and J . We defer to a future publication a more thorough study

of the individual Weyl tensors as well as of the electric/magnetic duality connecting the

solutions of the Type A and Type B models, in particular taking into account the effect of

going from the K-adapted gauge to the twistor gauge (D.7). For notational simplicity, in

what follows we shall suppress the label (K) indicating the K-adapted gauge.

5.1 Bi-axisymmetric case: almost type-D Weyl tensors

The generating function

[C(x|y)]Weyl := Φ|ȳ=0 =

∞∑

s=0

1

(2s)!
C

(s)
α(2s)(x) yα(2s) , (5.1)

of the self-dual Weyl tensors Cα(2s)(x) is found to be

C(y|x) =
∑

n1,n2

νn1,n2Cn1,n2(y|x) , [Cn1,n2(x|y)]Weyl =:
∞∑

s=0

1

(2s)!
(C(s)

n1,n2
)α(2s)y

α(2s) , (5.2)

Cn1,n2(y|x) = 4(−1)|n1|+|n2|−1

∮

C(ε1)

ds1

2πi

(s1 + 1)n1−
1
2

(s1 − 1)n1+
1
2

×
∮

C(ε2)

ds2

2πi

(s2 + 1)n2−
1
2

(s2 − 1)n2+
1
2

1√
(κ̆L)2

[
e

1
2yα(κ̆L)−1

αβ
yβ

]

Weyl

. (5.3)

As explained in section 4.1.2, the Killing two-forms (κL
(+))αβ and (κL

(−))αβ are both

type-{1, 1} but have different principal spinors. As a consequence, for fixed n1, n2 and

generic xµ, the residues in (5.3) amount to powers of different combinations of κ
L
(+) and

κ
L
(−), and the spin-s Weyl tensor C

(s)
n1,n2(x) is algebraically general for s ≤ k := |n1|+|n2|−1

and type-{s − k, s − k, 1, . . . , 1︸ ︷︷ ︸
2k

}, which we refer to as “almost type-D”, for s > k. For

instance, if K(+) = E and K(−) = J , and if n1, n2 > 0 or −n1,−n2 > 0, we recall that

(κL
(E))αβ = rD̃αβ , (κL

(J))αβ = i cos θ D̃αβ +
√

1 + r2 sin θ Ĩαβ , (5.4)

where thus ũ±
α (x) are the principal spinors of (κL

(E))αβ , and D̃αβ and Ĩαβ have been defined

in (4.9) (and we are suppressing the index (E) on them). For example, the generating
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functions for the Weyl tensors at the first excited level read

[
C3

2 ,
1
2
(y|x)

]Weyl

=
4i

r2
e

yα
eDαβyβ

r

{
i cos θ − 1

2r
yαyβ

[
(r − i cos θ)D̃αβ +

√
1+r2 sin θ Ĩαβ

]}
,

(5.5)[
C1

2 ,
3
2
(y|x)

]Weyl

=−4i

r2
e

yα
eDαβyβ

r

{
i cos θ +

1

2r
yαyβ

[
(r+ i cos θ)D̃αβ −

√
1+r2 sin θ Ĩαβ

]}
,

(5.6)

whose scalar component falls of like r−2 rather than r−1. If n1,−n2 > 0 or n1,−n2 < 0, it

is instead convenient to use a J-adapted spin-frame (see eq. (5.18)), where ũ±
α (x) are the

principal spinors of (κL
(J))αβ .

5.2 Symmetry-enhanced cases: type-D Weyl tensors

5.2.1 Spherical symmetry: generalized electric and magnetic charges

Specializing eq. (4.42) to the case of solutions based on the spherically-symmetric projec-

tors Pn(E) and inserting the appropriate reality properties of the deformation parameters

given in table 3, the rotationally-invariant Weyl zero-forms are given in the non-minimal

models by

Φ̂ = 2
∞∑

n=1

in
∑

ǫ=±1

(−1)
1+ǫ
2 (n−1)µǫn

∮

C(ǫ)

dη

2πi

(
η + 1

η − 1

)ǫn [
e−4ηEL

]
Weyl

⋆ κy , (5.7)

and in the minimal models by

Φ̂(Y |x) = −2
∞∑

n=1

(−i)nµn

∑

ǫ=±1

∮

C(ǫ)

dη

2πi

(
η + 1

η − 1

)ǫn [
e−4ηEL

]
Weyl

⋆ κy . (5.8)

As explained in section 4.1.2, the L-rotation of E generates an element EL with compo-

nents (4.17). It follows that e−4ηEL
⋆ κy|ȳ=0 = 1√

(ηκL)2
exp 1

2ηyα(κL)−1
αβyβ with (κL)−1

αβ =

1
r D̃αβ and (κL)2 = −r2, which yields the following Weyl-tensor generating function in

non-minimal models:

C(y|x) =
2

ir

∞∑

n=1

in
∮

C(1)

dη

2πiη

(
η + 1

η − 1

)n ∑

ǫ=±1

(−1)
1+ǫ
2 (n−1)µǫn

[
e

ǫ
2η yακ

−1
L αβ

yβ
]

Weyl

; (5.9)

and in minimal models:

C(y|x) =
4i

r

∞∑

n=1

(−i)nµn

∮

C(1)

dη

2πiη

(
η + 1

η − 1

)n [
cosh

(
1

2η
yα

κ
−1
Lαβyβ

)]

Weyl

. (5.10)

The sum over ǫ = ±1 in (5.9) includes the independent contributions of positive-energy

(ǫ = +1) and negative-energy (ǫ = −1) excitations, that need to be included in the sum with

equal coefficients in the case of the minimal model (5.10). In other words, the spherically-

symmetric solutions are built in terms of rank-n projectors on combinations of states (with

fixed energy and vanishing J) in the subsectors (F+
1 ⊗ F+

2 ) ⊕ (F−
1 ⊗ F−

2 ) of the whole

Fock-space.
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For a fixed projector Pn(E), expansion in y and auxiliary integration yield the physical

scalar (s = 0) and an infinite tower of spherically-symmetric Type-D Weyl tensors of spin

s > 1 of the form (up to real n-dependent numerical factors)

C
(n)
α(2s) ∼ in−1µn

rs+1
(ũ+ũ−)sα(2s) , (5.11)

where the deformation parameter µn is real in the case of scalar singleton projectors (n

odd) and purely imaginary in the case of spinor singleton projectors(n even). Although

our solutions are not presented in the physical twistor gauge, one may argue that going to

this gauge will alter the leading behaviors of the Weyl tensors only by higher orders in µn

(it may also affect the asymptotic anti-de Sitter radius itself). Thus, to the leading order

in µn, asymptotically defined spin-s charges for s > 1 can be read off by comparing with

the linearized gauge-field equations. Whether it is possible to invert the relation between

these charges and the deformation parameters remains to be clarified: if possible then one

could in principle choose the deformation parameters as to switch off all spins except one.

The asymptotic charges depend on the parameter b. Drawing on the analogy with the

general form of the spin-1 Faraday tensor and the spin-2 Weyl tensor of an AdS4 black

hole [35], one can thus regard the deformation parameters of the solutions based on the

scalar singleton as generalized electric charges (or generalized masses) in the Type A model

and generalized magnetic charges (or generalized NUT charges) in the Type B model, and,

conversely, those of the solutions based on the spinor singleton as magnetic-like charges

in the Type A model and electric-like charges in the Type B model. In this sense, the

solutions of the Type A and Type B minimal bosonic models are related by a generalized

electromagnetic duality.22

In particular, by setting µn = δn,1µ in (5.9), one obtains the static BPS solution (of

the non-minimal model) found in [1]23

[
Φ1

2 ,
1
2
(Y |x)

]Weyl

=
4µ

r
exp

{
1
2yα(κL)−1

αβyβ + 1
2 ȳα̇(κ̄L)−1

α̇β̇
ȳβ̇ + iyαȳβ̇(κL)−1

αβ(vL)ββ̇

}
, (5.12)

which is therefore based on the scalar singleton vacuum-to-vacuum projector 4e−4E . Its

spin-2 sector contains the Weyl tensor of an AdS-Schwarzschild black hole of mass µ, and,

as remarked in [1], all the Weyl tensor in (5.12) correspond to spin-s gauge fields of Kerr-

Schild type.

22The fact that the Type A and Type B models, respectively, with perturbative spectra consisting of the

symmetrized tensor product of two scalar singletons (containing a parity-even scalar in D(1; (0))) and the

anti-symmetrized product of two spinor singletons (containing a parity-odd scalar in D(2; (0))) have been

conjectured to be dual to free scalars and free fermions [21] implies that the electric-like solutions should

have a direct interpretation in terms of the free holographic conformal field theory (perhaps in terms of

thermal properties).
23As mentioned in the Introduction, the exact solution of [1] was found not via the gauge-function method,

but rather by first solving the equations in first-order approximation and then checking that the non-linear

corrections vanish identically (due to the Kerr-Schild form of the solution).
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The singularities in the individual Weyl tensors at r = 0 is resolved at the level of the

full master-field in twistor space, e.g.

Φ̂1
2 ,

1
2

r→0−→ Φ̂′
1
2 ,

1
2

= ν1
2 ,

1
2
κy−iσ0ȳ = 2πν1

2 ,
1
2

[
δ2(y − iσ0ȳ)

]
Weyl

, (5.13)

which is actually a well-defined distribution viewed as the symbol of an operator (see

Conclusions). For a general π-odd projector 4e−yαvαα̇ȳα̇
we have

e−yαvαα̇ȳα̇

⋆ κy = 2π
[
δ2(y − ivȳ)

]
Weyl

= κy−ivȳ . (5.14)

In this sense, the radial coordinate r appears in the generating functions (5.9) and (5.10)

as the parameter of a limit representation of a δ-function in twistor space.

5.3 Cylindrical symmetry: electric and magnetic Weyl tensors

We now turn to symmetry-enhanced projectors that depend on the difference w2−w1 of the

number operators w1 = E − J , w2 = E + J (i.e., we set ǫ1 = −ǫ2 in (F.29)), thus getting

the projectors Pn(J). Using eqs. (3.109) and (F.29) the corresponding Weyl zero-form

reads

Φ̂ = 2
∞∑

n=1

in+1
∑

ǫ=±1

(−1)
ǫ+1
2 (n−1)µǫn

∮

C(ǫ)

dζ

2πi

(
ζ + 1

ζ − 1

)ǫn [
e−4ζJL

]
Weyl

⋆ κy , (5.15)

for the non-minimal model, and

Φ̂ = 2
∞∑

n=1

(−i)n+1µn

∑

ǫ=±1

∮

C(ǫ)

dζ

2πi

(
ζ + 1

ζ − 1

)ǫn [
e−4ζJL

]

Weyl
⋆ κy , (5.16)

in the case of the minimal model, with e−4ζJL
= L−1 ⋆ e−4ζJ ⋆ L. One can repeat the

same steps of the spherically-symmetric case, beginning this time with the generator J =

−1
8

[
yα(σ12)αβyβ + ȳα̇(σ̄12)α̇β̇ ȳβ̇

]
, i.e., with a κ-type K matrix, with καβ = i(u+

α u−
β +

u−
α u+

β ). The L-rotation gives rise to κ
L and spacelike vL (which corresponds, in fact, to

∂
∂ϕ) that, at any spacetime point, can be brought to the form

vL
αβ̇

= r sin θ (ũ+
a

¯̃u−

β̇
+ ũ−

α
¯̃u+

β̇
) , (5.17)

κ
L
αβ = i

√
1 + r2 sin2 θ (ũ+

α ũ−
β + ũ−

α ũ+
β ) , (5.18)

in global coordinates and on a properly chosen, J-adapted spinor basis ũ±
α (x) (see ap-

pendix E). One has e−4ζJL
⋆ κy|ȳ=0 = 1√

(ζκL)2
exp 1

2ζ yα(κL)−1
αβyβ with (κL)−1

αβ = −i(1 +

r2 sin2 θ)−1/2 D̃αβ and (κL)2 = 1 + r2 sin2 θ, from which it follows that the Weyl tensor

generating function reads

C(y|x) =
2√

1 + r2 sin2 θ

∞∑

n=1

in+1

∮

C(1)

dζ

2πiζ

(
ζ + 1

ζ − 1

)n

×
∑

ǫ=±1

(−1)
1+ǫ
2 (n−1)µǫn

[
e

ǫ
2ζ yακ

−1
L αβ

yβ
]

Weyl

, (5.19)
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for solutions of the non-minimal model, and

C(y|x) =
4√

1 + r2 sin2 θ

∞∑

n=1

(−i)n+1µn

∮

C(1)

dζ

2πiζ

(
ζ + 1

ζ − 1

)n

×
[
cosh

(
1

2ζ
yα

κ
−1
L αβyβ

)]

Weyl

, (5.20)

for solutions of the minimal one. Since the Killing two-form is imaginary, for every fixed n

the electric/magnetic type of the type-D Weyl tensors flips according to whether the spin

is even/odd, for n odd, vicecersa for n even,

C
(n)
α(2s)

∼ in+s+1µn

(1 + r2 sin2 θ)
s+1
2

(ũ+ũ−)sα(2s) . (5.21)

Note that such Weyl tensors do not blow up anywhere and do not vanish at spatial infinity

(they are constant along the z axis, with a behaviour similar to that of the Melvin solution

in General Relativity [47]). As anticipated, these solutions are so(2)J ⊕ so(2, 1)E,M03,P3-

symmetric, and are built on the spacelike AdS Killing vector ∂/∂ϕ in the same way as the

spherically-symmetric ones are based on the timelike vector ∂/∂t, i.e., the so(2, 1) is the

stability subalgebra of ∂/∂ϕ. In other words, here the roles of E and J are exchanged,

with respect to the rotationally-invariant case, and the corresponding solutions are based

on projectors onto combination of states belonging to non-unitary analogues of the (anti-

)supersingleton of fixed J and vanishing energy. Such states belong to the subspace (F−
1 ⊗

F+
2 ) ⊕ (F+

1 ⊗F−
2 ) of the full Fock space.

Note also that the regularity of such Weyl tensors corresponds, at the level of the

internal solution Φ′, to the regularity of the product of a π-even projector with κy, that in

fact reproduces the projector itself up to a sign,

e∓
1
2yακαβyβ+h.c. ⋆ κy = ∓ e−

1
2yακαβyβ+h.c. . (5.22)

6 Strong-field analysis: zero-form charges

Given the huge gauge symmetry of the theory, it is extremely important to have some

quantities that are invariant under the full set of gauge transformations of the theory

and that can be evaluated on the solutions. Such invariants enable one to distinguish

gauge-inequivalent field configurations and to characterize them physically even in regions

of spacetime where the curvatures are large and consequently the weak-field analysis is

not reliable. We shall focus on the evaluation of the zero-form charges (2.79), that, as

anticipated in section 2.4, are finite on the solutions at hand.

Inserting the general expression of the Weyl zero-form (4.38) and using that κy ⋆κy = 1

and the orthogonality and idempotency of the projectors, one gets

I2N := T̂ rR[(Φ̂ ⋆ π(Φ̂))⋆N ⋆ κ̂̂̄κ] = T̂ rR[(Φ̂′ ⋆ π(Φ̂′))⋆N ⋆ κ̂̂̄κ] =
∑

n∈
“

Z+
1
2

”2

ν2N
n

Pn|Y =0 , (6.1)
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for the axisymmetric projectors and analogously, substituting the double index n with the

single index n = ±1,±2, . . . everywhere, for the symmetry-enhanced projectors Pn. From

the forms (F.1) and (F.28) (equivalently (F.11) and (F.29)) of the projectors it thus follows

that

I2N (K(+),K(−)) = 4
∑

n∈
“

Z+
1
2

”2

(−1)n1+n2−1ν2N
n

, (6.2)

for the axisymmetric solutions based on a given Cartan pair (K(+),K(−)), and

I2N (K(q)) = 4
∑

n=±1,±2,...

(−1)n−1|n|ν2N
n , (6.3)

for the symmetry-enhanced ones, where we recall that the relation between (n1, n2) and n

is n := qn1 + n2 (see also appendix F for the notation concerning projectors). Specifying

to the first Cartan pair (K(+) = E, K(−) = J) and recalling the corresponding reality

conditions on the deformation parameters (see (3.104) table 3) one gets

I2N (E, J) = −4q
∑

n∈
“

Z+
1
2

”2

(−1)(N+1)(n1+n2)µ2N
n

, (6.4)

and

I2N (K(q)) = −4q
∑

n=±1,±2,...

|n|(−1)
(N+1)

„

n+
1−q
2

«

µ2N
n . (6.5)

The conclusion is that the zero-form invariants I2N extract, in general, a linear com-

bination of powers of the deformation parameters νn that characterize every solution, and

that can be thought of as the eigenvalues of the expansion of the solution on the (anti-

)supersingleton basis of projectors. For solutions based on a single projector (such as, for

example, the BPS solution (5.12) of [1]), these local invariants capture (even powers of)

the unique deformation parameter sitting in front of the spin-two Weyl tensor as well as

of its higher and lower-spin partners, formally resembling the ADM mass. Note also that,

for any odd N, there is a sign difference between the invariants referred to solutions based

of (anti-)supersingleton projectors (those with ǫ1 = ǫ2, i.e., projectors on states belonging

to the Fock space sectors (F+ ⊗F+)⊕ (F− ⊗F−)) and on its “non-compact” counterpart

(ǫ1 = −ǫ2, i.e., projectors on states in (F+ ⊗ F−) ⊕ (F− ⊗ F+)), which is related to the

opposite reality properties of the deformation parameters. In any case, solutions with de-

formation parameters νn such that the combinations (6.2), (6.3) give different results are

gauge-inequivalent.24

24It is possible, however, to find non-polynomial parameters that transform any projector Pn into any

other Pm (for example, the element g = 11 − |n〉〈n| − |m〉〈m| + |n〉〈m| + |m〉〈n| acts as g−1 ⋆ |n〉〈n| ⋆

g = |m〉〈m|), and that therefore alter the value of the zero-form charges. We shall insist on this set of

invariants to distinguish gauge-inequivalent solutions, and consequently restrict the class of allowed gauge

transformations to the set of “small” gauge parameters that do not permute projectors. The distinction is

similar to the well-known one in Yang-Mills theories between“small” gauge parameters, that do not connect
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It is interesting to notice that (6.3) is not divergent for any choice of (finite) deformation

parameters, at least as long as the examined solution is based on finitely many projectors.

This means that, for instance, although the rotationally-invariant Weyl curvatures (5.11)

asymptotically (where all Weyl tensors are weak and fields of different spins decouple from

each other) resemble those of a collection of “higher-spin Schwarzschild black holes”, the

apparent singularity in r = 0 (i.e., in the strong-curvature region, where the pure spin-2

curvature invariants are no longer good observables) of the individual Weyl tensors does

not actually lead to divergent higher-spin invariant zero-form charges.

Let us note also that, under the same conditions, the interaction ambigu-

ity (2.30)–(2.31) is also well-defined on the solutions here presented. The key point is

again that any product of the basic building block Φ̂ ⋆ π(Φ̂) collapses to a single power

of the projectors, due to the orthogonality properties of the latter. Indeed, assuming for

example (2.82), one has

θ[Φ̂ ⋆ π(Φ̂)] =
∞∑

k=0

∑

n∈
“

Z+
1
2

”2

θ2k(I2N )ν2k
n

Pn , (6.6)

where the coefficients θ2k(I2N ) reduce to functions of the deformation parameters νn ac-

cording to (6.2).

7 Conclusions, comments and outlook

7.1 Summary and comments

In this paper we have presented six infinite families of exact solutions to Vasiliev’s four-

dimensional higher-spin field equations. The solutions are obtained by combining the

gauge-function method, previously used for other exact solutions [28, 31, 32], with an in-

ternal Ansatz generalizing that of [1], based on the separation of the dependence of the

master-fields on Y and Z twistor variables. The resulting solutions are organized in three

pairs, each pair characterized by a biaxial isometry group so(2) ⊕ so(2) embedded into

sp(4; R) in three inequivalent ways. One of the families contains a subset of solutions in

which one of the two so(2) enhances to so(3), while in the remaining families the enhanced

symmetry algebra is so(2, 1). In all of our solutions, all spins are activated for generic

choices of deformation parameters. While each of the symmetry-enhanced solutions con-

tains exclusively Petrov type-D Weyl tensors, the Weyl tensors of the biaxially symmetric

solutions are not type-D but still algebraically special for large enough spin, such that one

may refer to them as “almost type-D”.

Given the high complexity of higher-spin gravity — a theory describing infinitely many

fields coupled through infinitely non-linear and non-local interactions — we find it rather

interesting that Vasiliev’s remarkable formulation facilitates the systematic construction

different topological sectors of the theory, and “large” gauge transformations, that map sectors with different

winding number into each other. The difference is that in the context of higher-spin gravity the “large”

gauge transformations altering the zero-form charges pick boundary terms in twistor-space rather than in

spacetime.
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of non-trivial exact solutions. This is essentially due to the formal simplicity of Vasiliev’s

equations formulated as an unfolded system in correspondence spaces T ∗X ×T , where T ∗X
contains spacetime and T is a twistor space. The gauge-function solution method, which

locally strips the spacetime dependence off the master-fields, is particularly natural for

this type of unfolded equations that relate the x-dependence of the fields to their internal,

twistor-space behaviour. In this fashion, it has been shown in the paper how the spacetime

properties of the solutions are to a large extent inherited from those of the twistor-space

projectors they are built on.

For example, the solutions with so(2)E ⊕ so(2)J -symmetry that admit spherically-

symmetric enhancements are based on non-polynomial fibre elements that are projectors

Pn1,n2(Y ), with n1n2 > 0, onto (anti-)supersingleton states (as shown in [43]), which are

characterized by |E| > |J |. More precisely, having absorbed the spacetime dependence

into gauge functions, the remaining internal, x-independent master-fields are expanded

over such a basis of projectors, with eigenvalues νn1,n2 playing the role of deformation

parameters. The resulting x-independent Weyl zero-form turns out to be a distribution

in twistor-space (see for example the first of eqs. (3.131)). Reinstating the x-dependence

using a specific, convenient gauge function, its singular behaviour is softened: the radial

coordinate r indeed appears as the parameter of a limit representation of a twistor-space

delta function. The resulting individual Weyl tensors are finite for r > 0 and, in fact,

in the chosen gauge coincide with the linearized Weyl tensors — thereby extending the

well-known Kerr-Schild property of black-hole gravity solutions to the higher-spin context

— depending on r as r−s−1, where s is their spin. In particular, the spin-2 Weyl tensor

exhibits both the singular spacetime behaviour at r = 0 and the algebraic structure of that

of an AdS-Schwarzschild black-hole solution.

On the other hand, the projectors with n1n2 < 0, i.e. the sector where |E| < |J |, give

rise to an internal, x-independent Weyl zero-form master-field that is a regular function on

twistor space, corresponding, after reinstating the x-dependence, to spacetime curvatures

which are regular everywhere and exhibit cylindrical symmetry — in a fashion that is

reminiscent of the Melvin solution of General Relativity (though the fall-off behaviour

with the cylindrical radius is different).

Instead of looking at individual Weyl tensors, in order to characterize the solutions in

strong curvature regions one may instead examine higher-spin invariant observables. As we

have seen, no divergence occurs in the higher-spin invariant zero-form charges that we have

studied in this paper, even in the cases in which the individual spin-s Weyl tensors blow up.

In this sense, the spacetime singularities may be resolved at the level of master-fields living

in correspondence space. Let us examine, as a concrete example, the behaviour of the Weyl

zero-form master-field of the BPS solution (5.12). As can be seen from eq. (5.13), at r = 0

the Weyl-ordered symbol of this master-field is a distribution in twistor space. However,

by moving to normal-ordering the resulting symbol becomes a regular, gaussian function,

as discussed in appendix B (see also eq. (G.3)). This resolution of component-field singu-

larities is tied to the fact that the fibre-space of higher-spin gravity is infinite-dimensional,

which implies that a change of ordering in general gives rise to an infinite “vacuum energy”

that may cancel singularities. Therefore, in this sense it is conceivable that the coupling

– 52 –



J
H
E
P
1
2
(
2
0
1
1
)
0
8
4

of an infinite tower of gauge fields of all spins results in that the singularities of the indi-

vidual Weyl tensors are actually artefacts of the choice of ordering. Indeed, the zero-form

invariants that we have tested are, at least formally, not only invariant under higher-spin

gauge transformations but also under change of ordering (that reduce to total derivatives

in twistor space, see appendix B).

7.2 Outlook

Studying exact solutions to higher-spin gravity poses many stimulating challenges. From a

conceptual point of view, one needs to develop tools and methods to analyze their physical

properties, and in particular the geometry of a theory that, due to the non-locality of

the interactions, represents a departure from the familiar framework of General Relativity,

including perturbative stringy corrections.

A natural question induced by the non-locality of higher-spin interactions is whether

it can suppress short-distance singularities. Rather than examining individual component

fields, it makes more sense to investigate this issue at the level of various higher-spin

observables such as those described in section 2.4 (see also [44] and [45]). The analysis via

the zero-form invariants I2N carried out in this paper is, however, not conclusive: apart

from subtleties related to the treatment of boundary terms in twistor space, arising from

changing the ordering prescription, the singular nature of the solutions at hand remains

to be tested with other invariants, some of which resemble more closely the non-local

observables familiar from General Relativity. Particularly interesting in this respect is the

integral of the on-shell closed two-form (2.83) (with p = 2) over a closed surface surrounding

the singularity at r = 0 of the solutions belonging to our first family. Moreover, higher-spin

invariants involving Weyl curvatures, such as I2N , may turn out to be the proper quantities

for a generalization of the classification criteria of purely gravitational solutions, such as

the Petrov classification.

It is actually possible to have divergent zero-form invariants for solutions of the type

constructed here, possibly signaling a physical singularity, provided they are based on in-

finitely many projectors with not too small deformation parameters. Another noteworthy

fact that we have observed about such solutions is that, at least for certain choices of the de-

formation parameters µn, the poles of the corresponding Weyl tensors generating function,

inherited from the integral realization of the projectors, acquire an imaginary part and move

away from the real axis. This migration of poles may turn out to have interesting physical

effects, not unrelated to the divergence of the zero-form charges. For instance, in the case

of the axisymmetric (E, J) solutions based on supersingleton projectors, this mechanism

implies that the angular dependence in the corresponding Killing two-form κ̆ is no longer

weighted by an evanescent parameter ζ (which would inevitably fix the singularity of the

Weyl tensors in the origin, as in eqs. (5.5) and (5.6), not differently from the spherically-

symmetric case), but rather by a complex, non-vanishing quantity. This gives rise to an

angular dependence of the Weyl-tensor singularities, and the solutions may thus acquire a

non-trivial angular momentum. We plan to report on this effect in a future publication.

It would also be interesting to study in detail the spacetime behaviour of the gauge-

fields generating function Wµ, and in particular the contribution of the Z-space projectors
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resulting from the inclusion of ◦-product projectors in j±
n

(t), especially in the light of the

results of [32] where it was shown that certain specific choices of the parameters θk (see

appendix G) would lead to a degenerate spin-2 component field. While in the present paper

we have mostly been working in what we called K-gauge, where the alignment induced by

L̃K (see section 3.2) ensures that singularities in Ŝ′
α at Z = 0 are resolved in ŜK;α, it would

be important to be able to study the solutions in different gauges — in particular in the

twistor gauge, that can be reached by constructing an appropriate element Ĝv
K acting on

the gauge-function as in (3.10). As far as the spacetime gauge fields are concerned, based

on properties of known exact solutions,25 we expect that the deviation in the asymptotic

behavior of ŴK = L̂−1
K ⋆ dL̂K − K̂K from that of Ŵv = L̂−1

v ⋆ dL̂v − K̂v may remain finite

at Z = 0, that is, WK = ŴK |Z=0 and Wv = Ŵv|Z=0 may exhibit different asymptotic

behaviors, possibly amplified by the aforementioned singularities in Ŝ′
α at Z = 0. We plan

to return to these issues, and the construction of the gauge function Ĝv
K in future studies.

Another open question is whether the candidate higher-spin black-hole solutions pos-

sess horizons and to investigate the associated thermodynamics. This is a subtle issue

in this context, essentially due to the fact that the familiar general-relativistic concepts

involved — the standard metric tensor, invariant length interval, trapped surfaces, etc.

— are not higher-spin invariant, and suitable generalizations need to be defined to probe

the strong-field regions. A class of objects that can be useful in this sense is the set of

higher-spin metrics GM1...Ms = T̂ rR

[
κ̂̂̄κ ⋆ Ê(M1

⋆ · · · ⋆ ÊMs)

]
(s = 2, 4, . . . ), first proposed

in [45]. It would be interesting to evaluate such generalized metrics on our solutions and

to study their behaviour.

Moreover, a natural direction to explore, in the light of the higher-spin gravity/O(N)-

vector models correspondence, is the study of the boundary duals of such solutions — a

direction which would not only be worth pursuing in its own right but may also possibly

shed some light on some of the above-mentioned issues, including the thermodynamics of

such systems. It is an interesting fact, in this sense, that some of our solutions are directly

related, through the projectors Pn1,n2(E, J), to supersingleton states, i.e. to the modes of

boundary conformal scalar and fermion fields.

Due to the non-locality of higher-spin interactions, further surprises may be kept in

store in the context of the generalization to multi-body solutions obtained by dressing

linear combinations of single-body solutions centered at spatially well-separated points.

While in supergravity the existence of such solutions is intuitively physically clear, due

to the locality of the theory, whether or not a large spatial separation leads to negligible

corrections in the higher-spin context is a more non-trivial question. A natural tool at our

disposal to study this issue are the zero-form invariants I2N , that one may think of as some

sort of correlation functions among soliton-like objects and that can be used to test a kind

of cluster decomposition principle (for a related discussion, see also [44]). For example,

25In [31] it was found that in so(3, 1)-invariant solutions with deformation parameter ν, the metric ds2
ν

approaches an AdS4 metric ds2
λ(ν) with deformed inverse radius λ(ν) 6= λ(0) ≡ λ in the asymptotic region

where the Weyl zero-form bΦ goes to zero. In other words, the fact that bΦ falls off in an asymptotic region

does not imply that the weak-field expansion in this region is around the undeformed AdS4 vacuum with

metric ds2
λ.
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for a hypothetical two-body solution of the form Φ̂ = Φ̂1 + Φ̂2 + Φ̂12, where Φ̂i are two

spherically-symmetric solutions (5.12) the centers of which are a distance r12 apart, one

has that I2(Φ) = T̂ rR

[
Φ̂ ⋆ π(Φ̂) ⋆ κκ̄

]
is given by I2(Φ̂1) + I2(Φ̂2) plus small cross-terms

T̂ rR

[
Φ̂1 ⋆ π(Φ̂2) ⋆ κκ̄

]
that decay as (1 + r2

12)
−1/2 (plus small contributions from Φ12 that

we have not analyzed).

Furthermore, we claim it is possible to further exploit the Ansätze based on Fock-space

projectors to obtain other types of exact solutions, with different physical and algebraic

properties. For instance, one possibility is to study the inclusion of other Weyl zero-form

moduli such as massless particle states (belonging to the sp(4; R) representation D(±),

mentioned in section 2.3, spanned by the twisted-adjoint action on the lowest-weight state

projector P1(E), as shown in [43]) in the solutions along with the soliton-like, coherent

states here treated. Moreover, suitable limits of the Ansätze here presented could be

studied, and in particular the possibility of having solutions of Petrov-type N seems within

reach, leading to field configurations where the distributions in twistor-space appearing in

the Ansatz actually lead to distributions in spacetime and to generalizations of impulsive-

wave solutions of General Relativity.
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A Spinor conventions and AdS4 background

We use the conventions of [43] in which SO(3, 2) generators MAB with A,B = 0, 1, 2, 3, 0′

obey

[MAB ,MCD] = 4iη[C|[BMA]|D] , (MAB)† = MAB , (A.1)

which can be decomposed using ηAB = (ηab;−1) with a, b = 0, 1, 2, 3 as

[Mab,Mcd]⋆ = 4iη[c|[bMa]|d] , [Mab, Pc]⋆ = 2iηc[bPa] , [Pa, Pb]⋆ = iλ2Mab , (A.2)

where Mab generate the Lorentz subalgebra so(3, 1), and Pa = λM0′a with λ being the

inverse AdS4 radius related to the cosmological constant via Λ = −3λ2. Decomposing

further under the maximal compact subalgebra, the AdS4 energy generator E = P0 =

λM0′0 and the spatial so(3) rotations are generated by Mrs with r, s = 1, 2, 3. In terms of

the oscillators Yα = (yα, ȳα̇) defined in (2.10), their realization is taken to be

MAB = −1
8(ΓAB)αβ Y α ⋆ Y β , (A.3)

Mab = −1

8

[
(σab)

αβyα ⋆ yβ + (σ̄ab)
α̇β̇ ȳα̇ ⋆ ȳβ̇

]
, Pa =

λ

4
(σa)

αβ̇yα ⋆ ȳβ̇ , (A.4)
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using Dirac matrices obeying (ΓA)α
β(ΓBC)βγ = ηABCαγ+(ΓABC)αγ , and van der Waerden

symbols obeying

(σa)α
α̇(σ̄b)α̇

β = ηabδβ
α + (σab)α

β , (σ̄a)α̇
α(σb)α

β̇ = ηabδβ̇
α̇ + (σ̄ab)α̇

β̇ , (A.5)

1
2ǫabcd(σ

cd)αβ = i(σab)αβ , 1
2ǫabcd(σ̄

cd)α̇β̇ = −i(σ̄ab)α̇β̇ , (A.6)

((σa)αβ̇)† = (σ̄a)α̇β = (σa)βα̇ , ((σab)αβ)† = (σ̄ab)α̇β̇ . (A.7)

and raising and lowering spinor indices according to the conventions Aα = ǫαβAβ and

Aα = Aβǫβα where

ǫαβǫγδ = 2δαβ
γδ , ǫαβǫαγ = δβ

γ , (ǫαβ)† = ǫα̇β̇ . (A.8)

The so(3, 2)-valued connection

Ω :=−i

(
1

2
ωabMab + eaPa

)
:=

1

2i

(
1

2
ωαβ yα ⋆ yβ + eαβ̇ yα ⋆ ȳβ̇ +

1

2
ω̄α̇β̇ ȳα̇ ⋆ ȳβ̇

)
, (A.9)

ωαβ = −1
4(σab)

αβ ωab , ωab = 1
2

(
(σab)

αβωαβ + (σ̄ab)
α̇β̇ω̄α̇β̇

)
, (A.10)

eαα̇ = λ
2 (σa)

αα̇ ea , ea = −λ−1(σa)
αα̇eαα̇ , (A.11)

and field strength

R := dΩ + Ω ⋆ Ω := −i

(
1

2
RabMab + RaPa

)

:=
1

2i

(
1

2
Rαβ yα ⋆ yβ + Rαβ̇ yα ⋆ ȳβ̇ +

1

2
R̄α̇β̇ ȳα̇ ⋆ ȳβ̇

)
, (A.12)

Rαβ = −1
4(σab)

αβ Rab , Rab = 1
2

(
(σab)

αβRαβ + (σ̄ab)
α̇β̇R̄α̇β̇

)
, (A.13)

Rαα̇ = λ
2 (σa)

αα̇ Ra , Ra = −λ−1(σa)
αα̇Rαα̇ . (A.14)

In these conventions, it follows that

Rαβ = dωαβ − ωγ
αωγβ − eγ̇

αēγ̇β , Rαβ̇ = deαβ̇ + ωαγ ∧ eγ
β̇ + ω̄β̇δ̇ ∧ eα

δ̇ , (A.15)

Rab = Rab + λ2ea ∧ eb , Rab := dωab + ωa
c ∧ ωcb , (A.16)

Ra = T a := dea + ωa
b ∧ eb , (A.17)

where Rab := 1
2ecedRcd,ab and Ta := ebecT a

bc are the Riemann and torsion two-forms. The

metric gµν := ea
µeb

νηab. The AdS4 vacuum solution Ω(0) = e(0) + ω(0) obeying dΩ(0) +

Ω(0) ⋆ Ω(0) = 0, with Riemann tensor R(0)µν,ρσ = −λ2
(
g(0)µρg(0)νσ − g(0)νρg(0)µσ

)
and

vanishing torsion, can be expressed as Ω(0) = L−1 ⋆ dL where the gauge function L ∈
SO(3, 2)/SO(3, 1). The stereographic coordinates xµ defined by (3.29), are related to the

coordinates XA of the five-dimensional embedding space with metric ds2 = dXAdXBηAB ,

in which AdS4 is embedded as the hyperboloid XAXBηAB = − 1
λ2 , as

xµ =
Xµ

1 +
√

1 + λ2XµXµ

, Xµ =
2xµ

1 − λ2x2
, µ = 0, 1, 2, 3 . (A.18)

– 56 –



J
H
E
P
1
2
(
2
0
1
1
)
0
8
4

The global spherical coordinates (t, r, θ, φ) in which the metric reads

ds2 = −(1 + λ2r2)dt2 +
dr2

1 + λ2r2
+ r2(dθ2 + sin2 θdφ2) , (A.19)

are related locally to the embedding coordinates by

X0 =
√

λ−2 + r2 sin t , X0′ =
√

λ−2 + r2 cos t ,

X1 = r sin θ cos φ , X2 = r sin θ sin φ , X3 = r cos θ , (A.20)

providing a one-to-one map if t ∈ [0, 2π), r ∈ [0,∞), θ ∈ [0, π] and φ ∈ [0, 2π) defining

the single cover of AdS4. This manifold can be covered by two sets of stereographic

coordinates, xµ
(i), i = N,S, related by the inversion xµ

N = −xµ
S/(λxS)2 in the overlap

region λ2(xN )2, λ2(xS)2 < 0, and the transition function T S
N = (LN )−1 ⋆ LS ∈ SO(3, 1).

The map xµ → −xµ/(λx)2 leaves the metric invariant, maps the future and past time-like

cones into themselves and exchanges the two space-like regions 0 < λ2x2 < 1 and λ2x2 > 1

while leaving the boundary λ2x2 = 1 fixed. It follows that the single cover of AdS4 is

formally covered by taking xµ ∈ R
3,1.

Petrov’s invariant classification of spin-2 Weyl tensors [37–39] is based on their alge-

braic properties at any spacetime point. Generalized to the higher-spin context and by

making use of spinor language, it amounts to study the roots of the degree-2s polynomial

Ω(ζ) := Cα(2s)ζ
α1 . . . ζα2s , where Cα(2s) ≡ Cα1α2...α2s = C(α1α2...α2s) is the self-dual part

of the Weyl tensor and ζα an arbitrary non-vanishing two-component spinor. Factoriz-

ing the polynomial in terms of its roots defines a set of 2s spinors which one refers to as

principal spinors, viz. Ω(ζ) = u1
α1

ζα1 . . . u2s
α2s

ζα2s , so Cα(2s) = u1
(α1

. . . u2s
α2s). If Ω(ζ) has

multiple roots, the corresponding principal spinors are collinear. The classification then

amounts to distinguish how many different roots Ω(ζ) has, i.e., how many non-collinear

principal spinors enter the factorization of the spin-s Weyl tensor. Clearly, this classifica-

tion can be given in terms of the partitions {p1, . . . , pk} (k ≤ 2s) of 2s in integers obeying

p1 + p2 + . . . + pk = 2s and pi > pi+1. In the spin-2 case, this singles out the familiar six

different possibilities: {1, 1, 1, 1} (type I in Petrov’s original terminology); {2, 1, 1} (type

II); {2, 2} (type D); {3, 1} (type III); and {4} (type N) plus the trivial case of a vanish-

ing Weyl tensor (type O). The type-D case is related to gravitational field configurations

surrounding isolated massive objects; for arbitrary spin-s, we refer to the type {s, s} as

generalized type D.

B Properties of the doubled oscillator algebra

B.1 Orderings and symbols

The algebra Ω̂[0](Y × Z) in which the master fields takes their values consist of non-

polynomial completions of the enveloping algebra U [Y,Z] = U [Y ] ⊗ U [Z], consisting of

arbitrary ⋆-polynomials P̂ (Y,Z) subject to the commutation rules

[Yα, Yβ]⋆ = 2iCαβ , [Yα, Zβ ]⋆ = 0 , [Zα, Zβ ]⋆ = −2iCαβ . (B.1)
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Such completions can be analyzed using different ordering prescriptions, that is, differ-

ent bases B =
{

Êi
B(Y,Z)

}
i∈S

for U [Y,Z] consisting of basis elements Êi
B that are ⋆-

polynomials in Y and Z labelled by discrete indices i. These elements can be expanded in

terms of totally symmetric ⋆-monomials as

Êi
B(Y,Z) = M̂ i

B(Y,Z) + L̂i
B(Y,Z) , (B.2)

where M̂ i
B denotes the monomial of maximal degree and L̂i

B consists of the remainders.

We call B symbolizable if M̂ i
B 6= M̂ j

B for i 6= j so that there exists a linear map [·]B :

U [Y,Z] → U [Y,Z], referred to as the Wigner map, defined by

Symbolizable ordering :
[
M̂ i

B(Y,Z)
]

B
:= Êi

B(Y,Z) . (B.3)

In particular, the totally-symmetric, or Weyl-ordered, basis for U [Y,Z] is defined by

L̂i
Weyl(Y,Z) = 0, i.e.

Êi
Weyl(Y,Z) ≡

[
M̂ i

Weyl(Y,Z)
]
Weyl

= M̂ i
Weyl(Y,Z) (B.4)

The symbol [P̂ ]B ∈ U [Y,Z] of P̂ ∈ U [Y,Z] is the Weyl-ordered element defined by the

inverse Wigner map, viz.

[[
P̂ (Y,Z)

]B]

B

:= P̂ (Y,Z) , (B.5)

that is, if P̂ =
∑

i∈S PB
i Êi

B, with PB
i ∈ C, then P̂ =

∑
i∈S PB

i [M̂ i
B ]B =

[∑
i∈S PB

i M̂ i
B

]
B

from which it follows that [P̂ ]B =
∑

i∈S PB
i M̂ i

B . We note that
[
Êi

B

]B
= M̂ i

B and that if

B and B′ are two bases related by

Êi
B = (tB

′

B )ijÊ
j
B′ , M̂ i

B = M̂ i
B′ =: M̂ i , (B.6)

with (tB
′

B )ij ∈ C, then
[
Êi

B

]B′

= (tB
′

B )ijM̂
j . (B.7)

The ⋆-product of U [Y,Z], which does not refer to any specific order, induces a composition

rule between symbols also denoted by ⋆, viz.

[
[P̂ ]B⋆[Q̂]B

]
B

:= P̂ ⋆ Q̂ . (B.8)

B.2 Universal orders

An ordering B is said to be universal if

Universal ordering :
[
UαYα + V αZα , P̂

]
⋆

= 2i
[
(Uα∂(Y )

α − V α∂(Z)
α )P̂B

]
B

(B.9)
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for all P̂ ∈ U [Y,Z] and classical spinors (Uα, V α). The transition (B.6) between two

universal orderings B and B′ are generated by symmetric bi-vector fields, viz.

[
Êi

B

]B′

= tB
′

B (∆)M̂ i , tB
′

B (∆) = 1 +

∞∑

n=1

(tB
′

B )n∆n , (tB
′

B )n ∈ C , (B.10)

∆̂ = ∆α̂,β̂∂α̂∂β̂ , ∂α̂ := (∂(Y )
α , ∂(Z)

α ) . (B.11)

Requiring sp(4, R)Y × sp(4, R)Z -invariance implies the Weyl order, while requiring

sp(4, R)diag-invariance leaves a family of

diagonal Weyl orders : ∆ = Cαβ ∂(Y )
α ∂

(Z)
β , (B.12)

that reduces to the Weyl order in U [Y ] or U [Z], viz.

[P (Y )]Weyldiag = [P (Y )]Weyl , [P (Z)]Weyldiag = [P (Z)]Weyl . (B.13)

The outer anti-automorphism τ induces a local action on symbols diagonal Weyl orders,

viz.

τ([P̂ (Y,Z)]Weyldiag
) = [P̂ (iY,−iZ)]Weyldiag

. (B.14)

Two particular diagonal Weyl orders are the normal order N̂+ and the anti-normal order

N̂− with respect to the complexified Heisenberg algebra

[Â−
α , Â+β]⋆ = δ

β
α , Â−

α =
1

2
(Yα + Zα) , Â+

α =
1

2i
(Yα − Zα) . (B.15)

In terms of (Yα, Zα), one has

Yα ⋆ Yβ = [YαYβ]
bN±

± iCαβ , Yα ⋆ Zβ = [YαZβ]
bN±

∓ iCαβ , (B.16)

Zα ⋆ Yβ = [ZαYβ]
bN±

± iCαβ , Zα ⋆ Zβ = [ZαZβ ]
bN±

∓ iCαβ , (B.17)

which decompose under SL(2, C), using Yα = (yα, ȳα̇), Zα = (zα,−z̄α̇) and Cαβ =(
ǫαβ 0

0 ǫα̇β̇

)
into

yα ⋆ yβ = [yαyβ]
bN±

± iǫαβ , yα ⋆ zβ = [yαzβ]
bN±

∓ iǫαβ , (B.18)

zα ⋆ yβ = [zαyβ]
bN±

± iǫαβ , zα ⋆ zβ = [zαzβ]
bN±

∓ iǫαβ , (B.19)

ȳα̇ ⋆ ȳβ̇ = [ȳα̇ȳβ̇]
bN±

± iǫα̇β̇ , ȳα̇ ⋆ z̄β̇ = [ȳα̇z̄β̇]
bN±

± iǫα̇β̇ , (B.20)

z̄α̇ ⋆ ȳβ̇ = [z̄α̇ȳβ̇]
bN±

∓ iǫα̇β̇ , z̄α̇ ⋆ z̄β̇ = [z̄α̇z̄β̇]
bN±

∓ iǫα̇β̇ . (B.21)

B.3 Chiral integration domain

Upon presenting the induced ⋆-products among symbols using auxiliary integration vari-

ables, a generic order requires 16 real variables while the N̂±-order is distinguished by only

requiring 8 real variables that can be taken to be either complex or chiral as follows:

[
F̂1(Y,Z)

]
bN±

⋆
[
F̂2(Y,Z)

]
bN±

(B.22)

=

∫

RC

d4Ud4V

(2π)4
e±iV αUα

[
F̂1(Y,Z)

]
bN±

∣∣∣∣
(Y,Z)→(Y +U,Z+U)

[
F̂2(Y,Z)

]
bN±

∣∣∣∣
(Y,Z)→(Y +V,Z−V )

,
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with

Complex (C = C) :RC = {(Uα, Vα) = (uα, ūα̇; vα, v̄α̇) : (uα)† = ūα̇ , (vα)† = v̄α̇} , (B.23)

Chiral (C = R) :RR = {(Uα, Vα) = (uα, ūα̇; vα, v̄α̇) : (Uα, Vα)† = (Uα, Vα)} . (B.24)

These presentations are equivalent for F̂1,2 ∈ U [Y,Z] while they may give different results

for the composition of non-polynomial elements.

Upon splitting into sl(2, C)-doublets one has

[
F̂1 ⋆ F̂2

]
bN±

=

∫

RC

d4Ud4V

(2π)4
e±i(vαuα+v̄α̇ūα̇)

[
F̂1

]
bN±

(y + u, ȳ + ū; z + u, z̄ − ū)

×
[
F̂2

]
bN±

(y + v, ȳ + v̄; z − v, z̄ + v̄) . (B.25)

Correspondingly, there are two trace operations

T̂rC [Ô] =

∫

RC

d4Ud4V

(2π)4
[Ô]B(U, V ) , (B.26)

which are formally independent of B, while the two choices for C are not equivalent

in general.

In this paper, we always use the chiral integration domain, deferring the issue of the

physical meaning of the two choices of C for future studies.

B.4 Chiral delta functions and inner Kleinians

Working with the chiral integration domain RR, it makes sense to define the following

real-analytic delta functions (Mβ
α ∈ GL(2; C)):

δ2(yα) := δ(y1)δ(y2) , δ2((My)α) =
1

det M
δ2(yα) (B.27)

δ2(zα) := δ(z1)δ(z2) , δ2((Mz)α) =
1

detM
δ2(zα) . (B.28)

Their hermitian conjugates are defined by δ2(ȳα̇) = (δ2(yα))† and δ2(z̄α̇) = (δ2(zα))†. By

splitting yα and zα into a complexified Heisenberg algebras

[y−, y+]⋆ = 1 , y± = u± · y , u+ · u− = − i

2
, (B.29)

[z−, z+]⋆ = 1 , z± = v± · z , v+ · z− =
i

2
, (B.30)

one can define idempotent inner Kleinian operators

κy := (−1)
Ny
⋆ , Ny := y+ ⋆ y− , (B.31)

κz := (−1)Nz
⋆ , Nz := z+ ⋆ z− , (B.32)

using the notation (c ∈ C)

c
bP
⋆ = exp⋆(P̂ log c) , exp⋆ P̂ =

∞∑

n=0

1

n!
P̂ ⋆n , P̂ ⋆n = P̂ ⋆ · · · ⋆ P̂︸ ︷︷ ︸

n times

, (B.33)
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and representing (−1)
Ny
⋆ as

(−1)
Ny
⋆ = lim

ǫ→0
exp⋆(i(π + ǫ)Ny) =: [κy,B(ǫ)]B , (B.34)

idem (−1)Nz
⋆ . The broken SL(2, C)-invariance is restored in the limit ǫ → 0 provided B is

a diagonal Weyl order, such as B = Weyl , N̂±, which reduces to Weyl order for operators

depending only on Y or Z, i.e.

κy = [2πδ2(yα)]Weyl , κz = [2πδ2(zα)]Weyl . (B.35)

We also define

κ̄ȳ := (κy)
† = (−1)

N̄ȳ
⋆ = [2πδ2(ȳα̇)]Weyl , (B.36)

κ̄z̄ := (κz)
† = (−1)N̄z̄

⋆ = [2πδ2(z̄α̇)]Weyl , (B.37)

using

N̄ȳ := (Ny)
† = ȳ+ ⋆ ȳ− , ȳ± := (y∓)† = ū± · ȳ , ū±

α̇ := (u∓
α )† , (B.38)

N̄z̄ := (Nz)
† = z̄+ ⋆ z̄− , z̄± := (z∓)† = v̄± · z̄ , v̄±α̇ := (v∓α )† , (B.39)

such that [ȳ−, ȳ+]⋆ = [z̄−, z̄+]⋆ = 1 and ū+ · ū− = −v̄+ · v̄− = − i
2 . The inner Kleinian

elements generate the involutive automorphisms

πy(F̂ ) := κy ⋆ F̂ ⋆ κy , πz(F̂ ) := κz ⋆ F̂ ⋆ κz , (B.40)

π̄ȳ(F̂ ) := κ̄ȳ ⋆ F̂ ⋆ κ̄ȳ , πz(F̂ ) := κ̄z̄ ⋆ F̂ ⋆ κ̄z̄ , (B.41)

acting locally on ⋆-composites, viz.

πy(F̂ (y, ȳ; z, z̄)) = F̂ (−y, ȳ; z, z̄) , (B.42)

idem κz, κ̄ȳ and κ̄z̄. The induced action on symbols, defined by πy([F̂ ]B) := [πy(F̂ )]B ,

idem κz, κ̄ȳ and κ̄z̄, acts locally in Weyl order, viz.26

πy([F̂ ]Weyl(y, ȳ; z, z̄)) = [F̂ ]Weyl(−y, ȳ; z, z̄) . (B.43)

idem κz, κ̄ȳ and κ̄z̄. The inner automorphisms π = πyπz and π̄ = π̄ȳπ̄z̄ act locally in

general Weyldiag-orders, viz.

π([F̂ ]Weyldiag(y, ȳ; z, z̄)) = [F̂ ]Weyldiag(−y, ȳ;−z, z̄) . (B.44)

This action is generated by conjugation by the elements

κ̂ = κy ⋆ κz , ̂̄κ = κȳ ⋆ κz̄ . (B.45)

Their Weyl-ordered and normal-ordered symbols are given by

[κ̂]Weyl = (2π)2δ2(y)δ2(z) , [̂̄κ]Weyl = (2π)2δ2(ȳ)δ2(z̄) , (B.46)

[κ̂]
bN+ = eiyαzα , [̂̄κ]

bN+ = e−iȳα̇z̄α̇ , (B.47)

where we note the fact that one and the same operator can be completely factorized over

U [Y ] ⊗ U [Z] in one order and completely entangled in another order.

26In diagonal Weyl orders one has πy([ bF ]Weyldiag(y, ȳ; z̄) = [ bF ]Weyldiag(−y, ȳ; z̄), while the action of πy on

a symbol is non-local if the symbol depends non-trivially on both yα and zα.
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C Terminology and basic properties of unfolded systems

Vasiliev’s formalism [2] provides a fully nonlinear and background-independent unfolded

description of classical higher-spin gravities27 in a certain duality picture; for a maximal

duality extension in the case of four-dimensional bosonic models related to an action prin-

ciple with non-trivial Poisson structures, see [8]. The aforementioned statements are to

a large extent drawn from basic properties of unfolded dynamics, for which we use the

following terminology:

Unfolded dynamics is the formulation of field theory based on free-differential algebras

(FDAs), Â (see for example [4, 5, 14, 15] and references therein). Such an algebra is

an N-graded space of differential forms that remain invariant under the composition under

degree-preserving n-ary products, possibly modulo further algebraic constraints. The latter

can be supplemented either by hand or by compatibility requirements in which cases the

algebra is referred to as being constrained or quasi-free, respectively. Depending on the level

of complexity exhibited by the n-ary products, one distinguishes between FDAs that are

graded-commutative (or exterior for short), associative and strongly-homotopy associative

(or sh-associative for short); the former two are of relevance to supergravities and Vasiliev’s

higher-spin gravities, respectively, and one may expect that the latter are of relevance

to extensions of Vasiliev’s theories by mixed-symmetry fields and to tensionless closed

strings.28 Loosely speaking, sh-associative FDAs have perturbative expansions in terms of

associative FDAs each of which in its turn has perturbative expansions in terms of exterior

FDAs, leading to the notion of dualities.

Associative FDAs are algebras of elements, referred to as differential forms, closed

under i) an associative non-commutative binary product ⋆, i.e. Â ⋆ Â ⊆ Â; and ii) the

action of an exterior derivative d̂ assumed to obey Leibniz’ rule, i.e.29 d̂Â ⊆ Â where

d̂(f̂ ⋆ĝ) = (d̂f̂)⋆ĝ+(−1)deg bf f̂ ⋆(d̂ĝ). Their generating elements, say Ẑ î, are thus differential

forms, referred to as master fields for short, obeying R̂î := d̂Ẑ î + Qî
⋆(Ẑ

ĵ) = 0, referred

to as generalized-curvature constraints and which one may think of as the fundamental

equations of motion of the unfolded system (possibly in a given duality picture). The

structure functions Qî, which are built using ⋆-product compositions, define a Q-structure−→
Q := Qî−→∂ î, which is a ⋆-vector field of degree one acting on Â. Compatibility, sometimes

referred to Cartan integrability, requires (Qî−→∂ î) ⋆ Qĵ, that is (L−→
Q

)⋆2 or
−→
Q⋆2 for short, to

vanish; depending on whether integrability requires additional purely algebraic constraints

or not, Â is referred to as being quasi-free or free, respectively; if integrability does not

require any truncation in form degree from above, the (quasi-)FDA is referred to as being

27For a review of the four-dimensional theory and its lower-dimensional avatars, see [4, 7]; for the natural

generalization to symmetric tensor gauge fields in higher dimensions, see [3] for the original work and [5]

for a review.
28A key feature of sh-associative algebras is that the binary product [·, ·]2 may have an internal negative

degree (a first-quantized ghost number), say 1 − p̂, such that the basic Yang-Mills-like curvature takes

the form bd bA + 1
2
[ bA, bA]2 + n-ary corrections where thus bA is a p̂-form; for example, in the application to

first-quantized open membranes and second-quantized five branes one naturally has p̂ = 2.
29The algebra bA is called minimal if bd bA ⊆ bA ⋆ bA.
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universal. A variant of the quasi-free case is when algebraic constraints are supplemented

by hand, referred to as constrained FDAs.

A particular type of associative quasi-FDAs are those in which Ẑ î = (Ẑi, Ĵr) where

Ĵr are central and closed elements of strictly positive (and even) degree, that is, R̂i =

d̂Ẑi + Qi
⋆(Ẑ

j ; Ĵr) = 0, d̂Ĵr = 0 and Ĵr ⋆ Ẑi = Ẑi ⋆ Ĵr. In the latter case, which contains

the free case, the locally-defined solution space can be made explicit as [8]

Ẑi
Z′;bλ

=
[
(exp⋆

−→
T
bZ;bλ

) ⋆ Ẑi
]∣∣∣
bZ=Z′

, (C.1)

where Z ′ are reference solutions which represent local degrees of freedom; λ̂i are gauge

functions for the fields in strictly positive form degree; and the ⋆-vector field
−→
T
bZ;bλ

:=

(d̂λ̂i−−→
λ ⋆Qi)

−→
∂ i with

−→
λ = λ̂i−→∂ i is the generator of the Cartan gauge algebra ĝ (represented

softly in Â).

Given a generalized structure group Ĝ = exp⋆ t̂ generated by an unbroken sub-algebra

t̂ ⊆ ĝ (with = in the unbroken phase) and a non-commutative symplectic manifold C =⋃
I CI with two-form Γ consisting of charts CI and with boundary ∂C, globally-defined

solutions are obtained by using transition functions T̂ I′

I ∈ Ĝ to glue together a set of

locally-defined configurations {Ẑi
I}, and factoring out ĜI from each local configuration

space leading to gauge equivalence classes [T̂ I′
I ]

bG
, [Z ′i

I ]
bG

and [λ̂i
I ] bG of which the latter form

(generalized) sections. Classical observables, in the form of intrinsically-defined functionals

O[{Ẑ î
I}; T̂ I′

I ], depend on moduli of three types: i) local moduli in the form of the reference

solutions {Z ′i
I } (and Ĵr); ii) the boundary values

(
[λ̂i]

bG

)
|
∂ bC

; and iii) global data contained

in [T̂ I′
I ]

bG
, monodromies and other constructions.

Thinking of C as a sort of multiple fibration, or correspondence space, projections

down to symplectic sub-manifolds provide unfolded sub-systems in different dual pictures.

In the free case, where Z ′ can be taken to be integration constants for the zero-forms, such

projections preserve Z ′, i.e. the local degrees of freedom of the system, while truncating the

moduli associated with the master fields in their kernel. This results in the notion of dual

pictures: each picture consists of sectors labelled by boundary conditions in dual pictures,

i.e. by frozen dual moduli of type (ii) and (iii); each such sector consists of the remaining

variable moduli, i.e. the Z ′-moduli and the moduli of type (ii) and (iii) that remain visible

in the picture in question.

The aforementioned notion of dual pictures may be enriched by duality extensions [8]:

given a quasi-FDA Â with master fields Ẑ î of fixed degrees pî ∈ N a larger quasi-FDA Â↑

can be formed by replacing each Ẑi by Ẑ↑i consisting of master fields of degrees {pi, pi +

2, pi +4, . . . }, and each free parameter (real number) in Qi by a real element in the central

algebra generated by the Ĵr.

Using the above terminology, higher-spin gravities are based on universal, associative,

quasi-FDAs with twisted-central terms and fermionic zero-modes in Ω(C) associated with

a fibre sub-manifold Y; see eqs. (2.25)–(2.26). In the four-dimensional case, Vasiliev’s

original twistorial formulation is in terms of Ẑ î = (Φ̂, Â; Ĵ , ̂̄J) of degrees (0, 1; 2, 2); for a

duality-extended formulation and a related action principle, see [8]. The total manifold
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C
loc∼= T ∗X×T , where T ∗X is universal and T = Z×Y ∼= C

2×C
2, has the structure of a sort

of double fibration on which operates a generalized Penrose twistor transform [38, 39]; see

also [48]. The twisted-central elements (Ĵ , ̂̄J) ≡ (Ĵ , ̂̄J)|Tp for any Tp := {p ∈ T ∗X}×Z×Y.

If the full system can be projected down to an unfolded subsystem on Č :
loc∼= X × T (e.g.

by imposing eq. (D.1)), the latter describes deformations of Γ|Tp generated by Φ̂|Tp ⋆ Ĵ

and its hermitian conjugate. Further projection down to Č4 :
loc∼= X4 × T , where X4 ⊂ X

is a four-manifold, provides the minimal type of picture on which operates a Penrose-

style transform:

Projection to C4 :
loc∼= X4 × {Z = 0} × Y, yields an exterior FDA on X4 consisting of

Φ = Φ̂|C4 and W = (Â − K̂)|C4 , with K̂ containing the canonical Lorentz connection (see

eq. (2.48)), and with soldering one-form E = 1
2(1 − π)W (see section 2.4.2). The variable

spacetime moduli, to be extracted via classical observables as discussed in section 2.4,

consist of initial data Φ′ = Φ|p0 representing local degrees of freedom; diffeomorphism-

invariant boundary data contained in the gauge function of E, representing global metric

structures on ∂X4; and other global data contained in W and the transition functions (see

discussion in section 2.3).

Projection to Tp0 for some fixed p0 ∈ X4 yields an associative quasi-FDA on Z consisting

of Φ̂′ := Φ̂|Tp0
and V̂ ′ := Â|Tp0

and (Ĵ , ̂̄J) ≡ (Ĵ , ̂̄J)|Tp0
. The variable twistor-space moduli

consist of Φ′ = Φ̂′|Z=0 and boundary values for V̂ ′ describing deformations of Γ|Tp0
.

Thus, the zero-form moduli Φ′ are visible in both pictures while the spacetime W -moduli

and twistor-space V̂ ′-moduli label inequivalent twistor-space and spacetime pictures, re-

spectively; these pictures are related via uplifts to C where all one-form moduli become

visible;30 as far as the “direction” of the twistor-map is concerned, the asymmetry between

X4 and T implies that standard algebraic methods facilitate starting in C′
p0

, uplifting to

Č4 via gauge functions, and then reducing to X4.

D Dynamical equations in spacetime

In this appendix we outline the derivation of the generally-covariant equations of motion

for dynamical component fields in four-dimensional spacetime starting from the full master

equations [40].

D.1 Graded-commutative free-differential algebra on X

The master fields on C consists of totally-symmetric poly-vector fields on X valued in

algebras of differential forms on X ×Z ×Y. This system can be truncated consistently to

a system on C by setting all such poly-vector fields of strictly positive rank equal to zero

30On top of them, there are further moduli associated with T ∗X → X → X4 that we leave for future

investigations; for example, in the case of spherically symmetric type-D solutions, where we shall activate

all moduli on C4 and C′
p0

, one may consider evaluating the abelian p-form charges (2.83) on p-spheres in

generalized spacetimes X .
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by imposing31

ÛM = 0 , ∂M (Φ̂, ÛM , Ŝα) = 0 . (D.1)

Further projection down to a graded-commutative free-differential algebra on C := X ×
{Zα = 0} × Y can be achieved by choosing an ordering scheme B and imposing

[
Φ̂
]B∣∣∣

Z=0
=
[
Φ(X,Y )

]B
,

[
Û
]B∣∣∣

Z=0
= dXM

[
UM (X,Y )

]B
, V̂α|Φ=0 = 0 , (D.2)

i.e. assuming trivial boundary conditions on Z, and by assuming expansions of the form

Φ̂ =

∞∑

n=1

Φ̂(n) , Ŝα = Zα − 2i

∞∑

n=1

V̂ (n)
α , Û =

∞∑

n=0

Û (n)(X,Y,Z) , (D.3)

where
(
Φ̂(n), V̂

(n)
α , Û (n)

)
are nth order in Φ (with Φ̂(1) ≡ Φ and Û (0) ≡ U); for generic

values of XM , these perturbative building blocks are assumed to have symbols in B-

order that are real-analytic in Y α and Zα and to belong to an associative subalgebra

Â ⊂ Ω(Z) ⊗ Ω[0](Y) (which requires [Φ]B to take values in suitable classes of functions in

Ω[0](Y) [5, 16, 27]). Defining the homotopy contractor ρv = iv(Lv)
−1, where Lv = {iv, q},

q = dZα∂α, v = vα(Z)∂α, ∂α := ∂
∂Zα and vα(0) = 0, it follows that if f̂ , ĝ ∈ Â and Lvf̂ = ĝ

then f̂ = f + (Lv)
−1ĝ where f ∈ Ω[0](Y). Thus, eqs. (2.42)–(2.45) are perturbatively

equivalent to32

Φ̂(n) = δn1Φ − ρv

∑

n1+n2=n

[V̂ (n1), Φ̂(n2)]π , (D.4)

V̂ (n) = qλ̂(n) − ρv

∑

n1+n2=n

(
V̂ (n1) ⋆ V̂ (n2) + B(n1) ⋆ Φ̂(n2) ⋆ Ĵ + B(n1)

⋆ Φ̂(n2) ⋆ ̂̄J
)

, (D.5)

Û (n) = dρvqλ̂
(n) − ρv

∑

n1+n2=n

[
V̂ (n1), Û (n2)

]
⋆

, (D.6)

where λ̂(n) ∈ Â are gauge artifacts which can be eliminated by imposing the

twistor gauge condition: ivV̂
!
= 0 , (D.7)

which implies λ̂(n) = 0 and

Û = (1 +

∞∑

n=1

L̂(n))−1U , L̂(n)(·) := ρv

[
V̂ (n), ·

]
⋆

. (D.8)

The residual gauge symmetries are given by

ǫ̂ = (1 +

∞∑

n=1

L̂(n))−1ǫ , (D.9)

31A Maurer-Cartan form Ω(0)(XM , PM ; dXM , dPM ; Y α) depending non-trivially on both XM and PM

cannot be restricted to sp(4; C); in this sense, the extension from X to T ∗X , which is natural from the

point-of-view of seeking underlying first-quantized origins of second-quantized field theory, is also naturally

connected to higher-spin extensions of gravity.
32For the perturbative regularization of (B(n),B

(n)
), see discussion at the end of section 2.4.1.
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where in the case of the minimal bosonic model, ǫ ∈ hs(4), the minimal-bosonic higher-

spin Lie algebra given by arbitrary polynomials in Y α obeying τ(ǫ) = ǫ† = −ǫ; and in the

case of the non-minimal-bosonic model, ǫ ∈ hs1(4), the non-minimal extension of hs(4) in

which ǫ obeys the weaker conditions ππ̄(ǫ) = ǫ and ǫ† = −ǫ. The resulting reduced albeit

perturbatively defined unfolded system on X is then given by the reduction of (2.52) to

Z = 0, viz.

[
∇Ŵ + Ŵ ⋆ Ŵ +

1

4i

(
rαβM̂αβ + r̄α̇β̇̂̄M α̇β̇

)]∣∣∣∣
Z=0

= 0 , (D.10)

[
∇Φ̂ + Ŵ ⋆ Φ̂ − Φ̂ ⋆ π(Ŵ )

]∣∣∣
Z=0

= 0 , (D.11)

with Ŵ given in (2.48), the full Lorentz-generators in (2.49)–(2.51) and the Riemann

two-form and Lorentz-covariant derivatives are defined above and in eqs. (2.57)–(2.60),

respectively; assuming (ωαβ , ω̄α̇β̇) = (ωαβ , ω̄α̇β̇)(0), the manifest Lorentz-invariance implies

that33

Ŵ =

∞∑

n=0

Ŵ (n) = (1 +

∞∑

n=1

L̂(n))−1W , W = dXMWM (X,Y ) . (D.12)

Using vα = Zα and the normal order defined by eqs. (B.18)–(B.21), eqs. (D.10) and (D.11)

take on the manifestly Lorentz-covariant form

∇W + W ⋆ W + r +
∞∑

n=1

J (n)(W,W ; Φ, . . . ,Φ) = 0 , (D.13)

∇Φ + [W,Φ]π +

∞∑

n=2

P (n)(W,W ; Φ, . . . ,Φ) = 0 , (D.14)

where r := dω+ω⋆ω with ω := 1
4i

(
ωαβyα ⋆ yβ + ω̄α̇β̇ ȳα̇ ⋆ ȳβ̇

)
, and the curvature corrections

J (n) =
∑

n1+n2=n

(Ŵ (n1) ⋆ Ŵ (n2) + i(rαβ V̂ (n1)
α ⋆ V̂

(n2)
β + r̄α̇β̇ ̂̄V

(n1)

α̇ ⋆ ̂̄V
(n2)

β̇ ))

∣∣∣∣
Z=0

, (D.15)

P (n) =
∑

n1+n2=n

[Ŵ (n1), Φ̂(n2)]π

∣∣∣
Z=0

. (D.16)

By construction, eqs. (D.13) and (D.14) are Cartan integrable order by order in the

Φ-expansion and define an exterior (or graded-commutative) free differential algebra on

X , that can be written on standard form by imposing (2.62) and eliminating (rαβ, r̄α̇β̇)

from J (n).

33By definition, cW = bU− bK = (1+
P∞

n=1 L(n))−1U−ω−
P∞

n=1
bK(n) where ω = 1

4i
(ωαβyα⋆yβ+ω̄α̇β̇ ȳα̇⋆ȳβ̇).

It follows that cW (0) = U − ω =: W such that cW = W + ((1 +
P∞

n=1
bL(n))−1 − 1)(W + ω) −

P∞
n=1

bK(n).

Since both cW and W consists of canonical Lorentz tensors, it follows that the terms proportional to ω must

cancel, which yields (D.12).
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D.2 Dynamical field equations on X4

Reducing the universal system (D.13)–(D.14) down to a four-dimensional sub-manifold

X4 ⊂ X with local coordinates xµ and assuming that

eµ,αα̇ := 2iλ−1 ∂2

∂yα∂ȳα̇
[Wµ(x|Y )]Weyl |Y =0 (D.17)

is invertible yields a dynamical field content given by

non-minimal-bosonic model : φ , aµ , gµν , {φµ1...µs}s=3,4,5,6,... , (D.18)

minimal-bosonic model : φ , gµν , {φµ1...µs}s=4,6,... , (D.19)

where the (pseudo-)scalar φ, Maxwell potential aµ and metric gµν are given by

φ = Φ(x|Y )|Y =0 , aµ = Wµ(x|Y )|Y =0 , gµν = eµ
a(x)eν a(x) , (D.20)

and the Fronsdal fields are given by (s > 3)

φµ1...µs = 2iλ−1e(µ1

α1α̇1 · · · eµs−1
αs−1α̇s−1

∂2

∂yα1∂ȳα̇1
· · · ∂2

∂yαs−1∂ȳα̇s−1
Wµs)(x|Y )|Y =0 . (D.21)

The dynamical equations of motion read

(∇2
g + 2λ2)φ = T , ∇µ

gfµν = Tν , (D.22)

Gµν + 3λ2gµν = Tµν , Gµ1...µs = Tµ1...µs , (D.23)

where ∇g is the standard metric connection; fµν = 2∂[µaν]; Gµν is the Einstein tensor;

Gµ1...µs are the covariantized, self-adjoint Fronsdal operators (containing the standard min-

imal metric couplings); and the composite sources (s = 0, 1, 2, . . . )34 Tµ(s) =
∑∞

n=2 T<n>
µ(s)

where T<n>
µ(s) are nth order in the weak fields, i.e. (φ, aµ, {φµ1...µs}). For fixed n, the quanti-

ties T<n>
µ(s) and r<n>

µ(s) have derivative expansions35 to all orders in λ−1∇µ. These dimension-

less operators become large when acting on localizable weak-field fluctuations; by examining

⋆-products at Z = 0, one can show that the derivative expansions are indeed strongly cou-

pled and actually formally divergent for fluctuations fields belonging to lowest-weight and

highest-weight spaces [43].

We note that, while the reduced equations of motion on X4 are manifestly generally

covariant, their invariance under spin-one and higher-spin gauge transformations, which

can be read off (á la Cartan) from (D.13) and (D.14) and take the form

δaµ = ∂µǫ + rµ , δφµ1...µs = ∇(µ1
ǫµ2...µs) + rµ1...µs , (D.24)

δφ = r , δgµν = rµν , (D.25)

with rµ(s) given by double expansions in weak fields and derivatives, is subtle in the sense

that in order to verify it one would have to collect an infinite number of terms at each fixed

order in the double expansion.

34The algorithm for calculating the composite sources is spelled out in [40]; it amounts to iterative

elimination of auxiliary fields and imposition of generalized holonomic gauges which can be reached at

every order in the weak-field expansion under the usual assumptions of perturbation theory.
35For example, the nonlocal quadratic scalar-field stress-energy tensor T

(2)
µν [φ], that depends quadratically

on φ and all its derivatives, was calculated in [11].
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E Spin-frames adapted to K-matrices

E.1 Canonical forms of L-rotated K-matrices

The van der Waerden symbols can be realized in a given spin-frame

U = (u±
α , ū±

α̇ ) , ū±
α̇ = (u±

α )† , u+αu−
α = 1 = ū+α̇ū−

α̇ , (E.1)

ǫαβ = (u−u+ − u+u−)αβ , ǫ0123 = 1 , (E.2)

as

σ0|U = u+ū+ + u−ū− , σ1|U = u+ū− + u−ū+ , (E.3)

σ2|U = i(u−ū+ − u+ū−) , σ3|U = u+ū+ − u−ū− , (E.4)

σ01|U = u+u+ − u−u− , σ02|U = −i(u+u+ + u−u−) , σ03|U = −(u+u− + u−u+) (E.5)

σ12|U = iσ03|U , σ23|U = iσ01|U , σ31|U = iσ02|U , (E.6)

with σ̄ab|U given by complex conjugates. In what follows we shall let U denote a well-defined

spin-frame at the base-point p0 where (Φ̂′, Ŝ′
α) are evaluated.

For a given K = E, J, iB, iP (E = P0 = M0′0, J = M12, iB = iM03, iP = iP1 = iM0′1)

there exists an adapted spin-frame Ũ ≡ Ũ(K) in which KL ≡ L−1 ⋆ K ⋆ L ≡ 1
2Y αKL

αβY β

assumes the following canonical form (Υ ∈ R for EL and JL, while it can be real or

imaginary, depending on the spacetime region, for iBL and iPL, see table 1):

EL :

[
2Υũ+ũ−

√
1 + Υ2(ũ+ ˜̄u+ + ũ− ˜̄u−)√

1 + Υ2(˜̄u+ũ+ + ˜̄u−ũ−)2Υ˜̄u+ ˜̄u−

]
= Υ Γ03|

eU
−
√

1 + Υ2 Γ0|
eU

,

JL :

[
2i
√

1 + Υ2ũ+ũ−Υ(ũ+ ˜̄u− + ũ− ˜̄u+)

Υ(˜̄u+ũ− + ˜̄u−ũ+) − 2i
√

1 + Υ2 ˜̄u+ ˜̄u−

]
= −

√
1 + Υ2 Γ12|

eU + Υ Γ1|
eU ,

iBL :

[
2i
√

1 + Υ2ũ+ũ−iΥ(ũ+ ˜̄u+ + ũ− ˜̄u−)

iΥ(˜̄u+ũ+ + ˜̄u−ũ−)2i
√

1 + Υ2 ˜̄u+ ˜̄u−

]
= −i

(√
1 + Υ2 Γ03|

eU + Υ Γ0|
eU

)
,

iPL :

[
2Υũ+ũ−i

√
1 + Υ2(ũ+ ˜̄u− + ũ− ˜̄u+)

i
√

1 + Υ2(˜̄u+ũ− + ˜̄u−ũ+) − 2Υ˜̄u+ ˜̄u−

]
= i
(
Υ Γ12|

eU −
√

1 + Υ2 Γ1|
eU

)
. (E.7)

The K-adapted spin-frames Ũ(K) may have ill-defined limits at p0 while

(ΓA)αβ |
eU(K)

|p→p0 = (ΓA)αβ . (E.8)

In the remainder of this appendix we collect the transformations from the fixed spin-frame

U to Ũ(E) and Ũ(J).

E.2 E-adapted and J-adapted spin-frames

The decomposition (3.17) of the matrix

EL
αβ := Lα

α′
Lβ

β′

(Γ0)α′β′ =

[
κ

L
(E)αβ vL

(E)αβ̇

v̄L
(E)α̇β κ̄

L
(E)α̇β̇

]
, (E.9)
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with Lαβ(xµ) given in stereographic coordinates by (3.31), takes the following form in the

global embedding coordinates XA defined in (A.18) (q(X) :=
√

1 + XµXµ):

κ
L
(E)αβ = X(α

α̇
(
u+ū+ + u−ū−

)
β)α̇

(E.10)

= X3(u
+u− + u−u+)αβ + (X1 + iX2)(u

−u−)αβ − (X1 − iX2)(u
+u+)αβ

vL
(E)αβ̇

=
1 + q

2

[(
1 +

X2
0 + XiXi

(1 + q)2

)
(u+ū+ + u−ū−)αβ̇

− 2
X0

(1+q)2

(
X3(u

+ū+−u−ū−)αβ̇+X1(u
+ū−+u−ū+)αβ̇ +iX2(u

−ū+−u+ū−)aβ̇

)]
,

obeying κ
L
(E)αβ |Xi=0 = 0 and vL

(E)αβ̇
|Xi=0 = (σ0)αβ̇ . In global spherical coordinates

(t, r, θ, φ), as defined in (A.20), one has

κ
L
(E)αβ = r

[
cos θ(u+u− + u−u+)αβ + sin θeiφ(u−u−)αβ − sin θe−iφ(u+u+)αβ

]
. (E.11)

For r > 0, the canonical form with Υ = r is assumed on the E-adapted spin-frame

ũ+
(E)α =

p√
2

[√
1 + cos θ u+

α +
√

1 − cos θ eiφ u−
α

]
(E.12)

ũ−
(E)α =

p−1

√
2

[
−
√

1 − cos θ e−iφ u+
α +

√
1 + cos θ u−

α

]
, (E.13)

where

p(x) =

(√
1 + r2 + | cos t| + r sin t√
1 + r2 + | cos t| − r sin t

)1/4

, (E.14)

leading to (4.17) and (4.18).

Analogously, the L-rotation of K = J = M12 yields

vL
(J)αβ̇

= −i
[
(X1 + iX2)u

−
α ū+

β̇
− (X1 − iX2)u

+
α ū−

β̇

]
, (E.15)

κ
L
(J)αβ = i

[(
1 +

X2
1 + X2

2

1 + q

)
(u+

α u−
β + u−

α u+
β )

+
(X0 − X3)(X1 + iX2)

1 + q
u−

α u−
β +

(X0 + X3)(X1 − iX2)

1 + q
u+

α u+
β

]
, (E.16)

which obey κ
L
(J)αβ |Xi=0 = −(σ12)αβ and vL

(E)αβ̇
|Xi=0 = 0, and that acquire the canonical

form with Υ =
√

1 + r2 sin2 θ on the J-adapted spin-frame

ũ+
(J)α =

ei
π
4√
2

[
f+ e−iφ/2 ũ+

(E)α − f− ei
φ
2 ũ−

(E)α

]
(E.17)

ũ−
(J)α =

e−i
π
4√
2

[
f− e−i

φ
2 ũ+

(E)α + f+ ei
φ
2 ũ−

(E)α

]
, (E.18)

where ũ±
(E)α is the E-adapted spin-frame and

f±(r, θ) =

√
1 ± cos θ√

1 + r2 sin2 θ
. (E.19)
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F Weyl-ordered and regular presentation of projectors

Given the complexified Heisenberg algebra (3.87), a set of (diagonal) projectors Pn ≡ Pn,n

obeying the orthonormality condition (3.38) and with eigenvalues n = (n1, n2), ni ∈ Z+ 1
2 ,

as in (3.86), is (for details, see for example [43])

Pn = Pn1(w1) ⋆ Pn2(w2) , (F.1)

wi = y+
i y−i = y+

i ⋆ y−i + 1
2 = y−i ⋆ y+

i − 1
2 (no sum over i) , (F.2)

with single-Fock-space projectors having the following Weyl-ordered regular presentation

(n ∈ Z + 1
2 , ε := n/|n|, w := y−y+)

Pn(w) = 2(−1)|n|−
1
2

∮

C(ε)

ds

2πi

(s + 1)n−
1
2

(s − 1)n+
1
2

[
e−2sw

]
Weyl

, (F.3)

where C(ε) is prescribed to be a small contour encircling ε. With this prescription, and

writing Pn ≡
∮
C(ε) dsfn(s|w), the ⋆-product composition Pn ⋆ Pn′ ≡ (

∮
C(ε) dsfn(s|w)) ⋆

(
∮
C(ε′) ds′fn′(s′|w)) is, by the very definition of regular presentations, performed by ex-

changing the auxiliary integrals with the ⋆-product, performing the latter and then per-

forming the auxiliary integrations one after the other, say the s′ integral while keeping s

fixed, viz.

Pn ⋆ Pn′ :=

∮

C(ε)
ds

[∮

Cs(ε′)
ds′
(
fn(s|w) ⋆ fn′(s′|w)

)
]

, (F.4)

where thus Cs(ε
′) = {s′ : |s′ − ε′| ≪ |s − ε| ≪ 1}. Using the ⋆-product lemma

[
e−2sw

]
Weyl

⋆
[
e−2s′w

]
Weyl

=
1

1 + ss′

[
exp

(
−2

s + s′

1 + ss′
w

)]

Weyl

, (F.5)

which holds by analytical continuation for all s and s′ such that ss′ 6= −1, and changing

variables from s′ to

u(s′) = (s + s′)(1 + ss′)−1 at fixed s ∈ C(ε) , (F.6)

it follows that36 u ∈ C(ε′) for all s ∈ C(ε); as a result, the auxiliary s-integral factorizes

out and one has

Pn ⋆ Pn′ =

[
2(−1)|n|+n′−1

∮

C(ε)

ds

2πi

(s+1)n−n′−1

(s−1)n−n′+1

]

×2(−1)|n
′|−

1
2

∮

C(ε′)

du

2πi

(u+1)n−
1
2

(u+1)n+
1
2

[
e−2uw

]
Weyl

= δn,n′Pn′ . (F.7)

36If ε = ε′ then u ∈ C(ε′) provided |s′ − ε′| ≪ 1 and |s− ε| ≪ 1 while if ε = −ε′ then u ∈ C(ε′) provided

|s′ − ε′| ≪ |s − ε| ≪ 1.
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We note that this orthonormalization is consistent with associativity, which requires

P
−

1
2

⋆ P1
2

= 2P
−

1
2

⋆ (w ⋆ P1
2
) = −P

−
1
2

⋆ P1
2

= 0, as can be seen from yε ⋆ P−
ε
2

= 0 =

P−
ε
2

⋆ y−ε (ε = ±). Moreover, it can be seen from the above calculation that the or-

der in which the auxiliary integrals is performed is immaterial for the final result and

that one may also choose to replace one of the two auxiliary integrals by its residues

prior to performing the ⋆-product, which is equivalent to collapsing the closed contour

Cs(ε
′) = {s′ : |s′ − ε′| ≪ |s − ε| ≪ 1} above. Using the latter, slightly simplified, prescrip-

tion, the space A := A+ ⊕A− spanned by the generalized Fock-space (+) and anti-Fock-

space (−) projectors

Pn|n′ := 1
r

“

|n|−
1
2

”

!
“

|n′|−
1
2

”

!

(εyε)
⋆
“

|n|−
1
2

”

⋆ P ε
2

⋆ (y−ε′)
⋆
“

|n′|−
1
2

”

(F.8)

(which are non-trivial only if ε = ε′ and inherit a regular presentation from P ε
2
) can

be equipped with a ⋆-product rule whereby one auxiliary integral is introduced for each

composition. Thus, given Oi ∈ A (i = 1, . . . , N), their N -fold ⋆-products, namely (· · · (O1⋆

O2) ⋆ · · · ⋆ON−1) ⋆ON and all other arrangements obtained by permuting the composition

order, are to be evaluated by introducing one auxiliary integral prior to each ⋆-product;

the former integrals can then be factored out, one after the other, as in eq. (F.7). By

induction, it follows that all nestings yield the same answer, viz.

(· · · (O1 ⋆ O2) ⋆ · · · ⋆ ON−1) ⋆ ON =
∑

n,n′

Pn|n′(Ǒ1 · · · ǑN )n|n′ , (F.9)

using the notation Oi :=
∑

n,n′ Pn|n′Ǒi;n|n′ and (ǑǑ′)n|n′ :=
∑

m Ǒn|mǑ′
m|n′ and the lemma

Pn|n′ ⋆ Pm|m′ = δn′,mPn|m′ . (F.10)

Hence, in particular, one has (O ⋆ O′) ⋆ O′′ = O ⋆ (O′ ⋆ O′′) manifesting associativity.

As for the double-Fock-space projectors in (F.1), their regular presentation reads (εi :=

ni/|ni|)

Pn1,n2 = 4(−1)
P

i |ni|−1

∮

C(ε1)

ds1

2πi

(s1 + 1)n1−
1
2

(s1 − 1)n1+
1
2

∮

C(ε2)

ds2

2πi

(s2 + 1)n2−
1
2

(s2 − 1)n2+
1
2

[
e−2

P

i siwi

]
Weyl

.

(F.11)

As each Fock-space projector has the form (F.24) and Yα ⋆ κyκ̄ȳ = −κyκ̄ȳ ⋆ Yα, one has

Pn1,n2 ⋆ κyκ̄ȳ = κ(K(ε1ε2)) (−1)|n1|+|n2|−1 Pn1,n2 , (F.12)

where the sign factors κ(K) for K = E, J, iB, iP , which are collected in table 1, are

determined using Gaussian integration. In the two π-even cases, J = M12 and iB = iM03,

the integrals factorize into holomorphic and anti-holomorphic pieces as follows (assuming

Weyl order):

e∓4J ⋆ κyκ̄ȳ = (e∓iy+y−
⋆ κy) ⋆ (e±iȳ+ ȳ−

⋆ κ̄ȳ) , (F.13)

e∓4iB ⋆ κyκ̄ȳ = (e∓iy+y−
⋆ κy) ⋆ (e∓iȳ+ ȳ−

⋆ κ̄ȳ) , (F.14)
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using the spin-frames in eqs. (E.1)–(E.6) and y± := u±y and ȳ± := ū±ȳ. From the chiral

⋆-product

e∓iy+y−
⋆ κy = i e∓iy+y−

, (F.15)

it follows that

e∓4J ⋆ κyκ̄ȳ = i (−i) e∓4J ⇒ κ(J) = +1 , (F.16)

e∓4iB ⋆ κyκ̄ȳ = i2 e∓4iB ⇒ κ(iB) = −1 . (F.17)

In the two π-odd cases, E = P0 and iP = iP3, say, the integrals factorize in a similar

fashion as follows:

e∓4E ⋆ κyκ̄ȳ = (e∓y+ ȳ+
⋆ κ+) ⋆ (e∓y−ȳ−

⋆ κ−) , (F.18)

e∓4iP ⋆ κyκ̄ȳ = (e∓iy+ ȳ+
⋆ κ+) ⋆ (e±iy−ȳ−

⋆ κ−) , (F.19)

where we have defined κ± := 2π[δ(y±)δ(ȳ±)]Weyl. It follows that

κ(iP ) = κ(J) = +1 , (F.20)

while κ(E) can be brought back to the case of κ(iB) by analytical continuation leading to

κ(E) = i2κ(iB) = −1 . (F.21)

Concerning the rank-|n| projectors (K(q) := 1
2(qw1 + w2), q = ±1)

Pn(K(q)) :=
∑

n2 + qn1 = n
ǫ1ǫ2 = q

Pn1,n2 , n ∈ {±1,±2, . . . } , (F.22)

they are invariant under the centralizer csp(4;C)(K(q)). In particular, the ground-state pro-

jectors

Pε1
2 ,

ε2
2

= Pε2(K(ε1ε2)) . (F.23)

To perform the sum in (F.22) one may first perform the closed-contour integrals in the

single-Fock-space projectors, which yields

Pn(w)=
1(

|n|− 1
2

)
!
(εyε)|n|−

1
2 ⋆ P ε

2
⋆ (y−ε)|n|−

1
2 =2(−1)|n|−

1
2

[
e−2wL

n−
1
2
(4w)

]

Weyl

, (F.24)

where L
n−

1
2
(x) ≡ L

(0)

n−
1
2

(x) and

L
(α)

n−
1
2

(x) =
x−α ex

(
n − 1

2

)
!

dn−
1
2

dxn−
1
2

(
e−xxn−

1
2+α

)
(F.25)

are the generalized Laguerre polynomials with n >
1
2 . We note that (F.24) holds for all n

by virtue of Kummer’s transformation

L
(α)

n−
1
2

(x) =
ex sin((n − 1

2)π)

sin((n − 1
2 + α)π)

L
(α)

−n−
1
2−α

(−x) . (F.26)

– 72 –



J
H
E
P
1
2
(
2
0
1
1
)
0
8
4

From the recurrence relation
∑

p+q=r L
(α)
p (x)L

(β)
q (y) = L

(α+β+1)
r (x + y) for p, q, r ∈ N

and Kummer’s transformation it follows that (n = ±1,±2, . . . ; ε := n/|n| = ε2 using

n2 + qn1 = ε2(|n1| + |n2|))

Pn(K(q)) =
∑

n2 + qn1 = n
ǫ1ǫ2 = q

4(−1)|n|−1

[
e−2(w1+w2)L

n1−
1
2
(4w1)L

n2−
1
2
(4w2)

]

Weyl

(F.27)

= 4(−)n−
1+ε
2

[
e−4K(q)L

(1)
n−1(8K(q))

]
Weyl

(F.28)

= 2(−)n−
1+ε
2

∮

C(ε)

ds

2πi

(
s + 1

s − 1

)n [
e−4sK(q)

]
Weyl

. (F.29)

G Details of the deformed oscillators

In this appendix, we spell out various details of solving the deformed-oscillator problem in

eqs. (3.65) and (3.66) by casting it via the Laplace transformation (3.70) into the solvable

◦-product equation (3.75) [27] leading to the solution given in eqs. (3.76) and (3.77). In

the first part, we retrieve the ◦-product equation (3.75) by a different route than that taken

in section 3.4, namely by Laplace transforming the deformed oscillators in (anti-)normal-

ordered bases rather than in the Weyl-ordered basis used in (3.70). In the second part,

we solve eq. (3.75) taking into account the splitting into even and odd Laplace transforms

on [−1, 1] as well as non-trivial contributions distributions supported at the mid-point

corresponding to Fock-space projectors [31, 32].

G.1 Laplace transforming in (anti-)normal-ordered bases

Instead of relying on the limit (3.74), the deformed-oscillator equations (3.65) and (3.66)

can be mapped to the ◦-product equation (3.75) by performing the Laplace transformation

using either normal order : · :+ or anti-normal order : · :− with respect to the complexified

Heisenberg algebra z± = u±αzα obeying [z−, z+] = −2i, where the ⋆-product is represented

by

: f(z−, z+) :+ ⋆ : g(z−, z+) :+ =

∫
dξ−dη+

4π
e

i
2 ξ−η+

: f(z+, z− + ξ−)g(z+ − η+, z−) : , (G.1)

: f(z−, z+) :− ⋆ : g(z−, z+) :− =

∫
dξ+dη−

4π
e−

i
2 ξ+η−

: f(z++ξ+, z−)g(z+, z−−η−) : . (G.2)

The (anti-)normal-ordered form of the inner Klein operator κz is given by

κz = (−1)Nz
⋆ =: e−2σNz :σ , Nz := i

2z+ ⋆ z− , (G.3)

which breaks manifest SL(2; C)-covariance as well as τ -covariance in the sense that τ(κz) =

−κz while τ(: e−2σNz :σ) =: e2σNz :−σ. The deformed oscillator problem gets the form

(Nz = i
2wz − 1

2 ; wz = 1
2{z+, z−}⋆)

[Σα , Σβ]⋆ = −2iǫαβ

(
1 − Bν : e−iσwz :σ

)
, (G.4)
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where the index n has been suppressed. One proceeds by making the Ansatz

Σ±
σ := u±αΣα =

∫ 1

−1
dt f±

σ (t) : z±e
iσ
2 (t−1)wz :σ (G.5)

= −2i
∂

∂ρ±

∫ 1

−1
dt : e

i
2 (σ(t−1)wz+ρ+z++ρ−z−) :σ f±(t)

∣∣∣∣
ρ±=0

. (G.6)

chosen such that f±
σ (t) shall turn out to be the same as in (3.70). From the lemma

: exp i
2

(
σ(t − 1)wz + ρ+z+ + ρ−z−

)
:σ ⋆ : exp i

2

(
σ(t′ − 1)wz + ρ′+z+ + ρ′ −z−

)
:σ

=: exp i
2

(
σ(tt′ − 1)wz + ρ̃+z+ + ρ̃−z− + 1

2(1 + σ)ρ−ρ′+ − 1
2(1 − σ)ρ′−ρ+

)
:σ , (G.7)

ρ̃± := 1
2(1 ± σ)(ρ± + tρ′±) + 1

2(1 ∓ σ)(ρ′± + t′ρ±) , (G.8)

one gets
[
: z− e

iσ
2 (t−1)wz :σ , : z+ e

iσ
2 (t′−1)wz :σ

]

⋆

= −2i :
(
1 + iσ

2 (tt′ − 1)wz

)
e

iσ
2 (tt′−1)wz :σ , (G.9)

that is,
∫ 1

−1
dt

∫ 1

−1
dt′f−

σ (t)f+
σ (t′)

[
1 + iσ

2 (tt′ − 1)wz

]
: e

iσ
2 (tt′−1)wz :σ= 1 − Bν : e−iσwz :σ . (G.10)

Inserting 1 =
∫ 1
−1 du δ(tt′ − u) into left-hand side and using hσ(u) := (f−

σ ◦ f+
σ )(u) with ◦

given by the convolution defined in (3.73), one obtains the integral equation

∫ 1

−1
duh(u)

[
(u − 1)

∂

∂u
+ 1

]
: e

iσ
2 (u−1)wz :σ= 1 − Bν : e−iσwz :σ , (G.11)

with the unique solution hσ(u) = δ(u−1)− σBν
2 . The original problem is therefore mapped

to the ◦-product equation (3.75). Going back to Weyl order using37

: e
i
2 (σ(t−1)z+z−+ρ+z++ρ−z−) :σ=

2

t + 1

[
e

i
t+1(σ(t−1)z+z−+ρ+z++ρ−z−−

σ
2 ρ+ρ−)

]

Weyl

,(G.12)

one then retrieves the Ansatz given in (3.70). In order to derive the re-ordering formula

above, it is convenient to Fourier-transform the left-hand side as

: e
i
2 (sz+z−+ρ+z++ρ−z−) :+=

∫
dkdk̄

4π
: e−

1
2 (skz++k̄z−)+

i
2 (kk̄+ρ+z++ρ−z−) :+ . (G.13)

Then, the Baker-Campbell-Hausdorff formula can be used to write the normal-ordered,

z-dependent part of the integrand as

: e−
1
2 (skz++k̄z−)+

i
2 (ρ+z++ρ−z−) :+= e

i
2 (ρ++isk)z+

⋆ ⋆ e
i
2 (ρ−+ik̄)z−

⋆

= e
i
2 (ρ++isk)z++

i
2 (ρ−+ik̄)z−+

i
4 (skk̄−ρ+ρ−)+

1
4 (skρ−+k̄ρ+)

⋆

=

[
e

i
2 (ρ++isk)z++

i
2 (ρ−+ik̄)z−+

i
4 (skk̄−ρ+ρ−)+

1
4 (skρ−+k̄ρ+)

]

Weyl

, (G.14)

37The ρ+ρ−-term does not contribute to (G.6).
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where the last equality follows from the fact that e
f(z)
⋆ =

[
ef(z)

]
Weyl

if f is linear in z (as

any linear combination Aizi, with i = −,+, satisfies Ai1zi1 ⋆ · · · ⋆ Ainzin = Ai1zi1 · · ·Ainzin

since any contraction is proportional to ǫij with ǫ−+ = 1 = −ǫ+−, ǫ++ = 0 = ǫ−−).

Inserting now the Weyl-ordered result (G.14) in (G.13) and performing the integration one

obtains (G.12) for σ = +. The case of σ = − is treated analogously.

G.2 Solving the ◦-product equation

In order to solve the ◦-product equation (3.75), i.e.

(f+
σ ◦ f−

σ )(u) = δ(u − 1) − σBν

2
, (G.15)

one begins by observing that the space of functions on the interval [−1, 1] decompose under

the ◦-product into even and odd functions, viz.

f (π) ◦ g(π′) = δππ′f (π) ◦ g(π′) , f (π)(−s) = πf (π)(s) , π, π′ = ±1 . (G.16)

Therefore (G.15) separates into the following two independent equations:

(f−(+)
σ ◦ f+(+)

σ )(u) = I
(+)
0 (u) − σBν

2
, (G.17)

(f−(−)
σ ◦ f+(−)

σ )(u) = I
(−)
0 (u) , (G.18)

where

I
(±)
0 :=

1

2
[δ(u − 1) ± δ(u + 1)] , (G.19)

acts as the identity in the ◦-product algebra. Equations (G.17) and (G.18) can be cast into

algebraic equations by expanding (t ∈ [−1, 1])

f±(π)
σ (t) := m±(π)

σ (t) +
∞∑

k=0

λ±
σ,kp

(π)
k (t) , m±(π)

σ :=
∞∑

k=0

µ±
σ,k I

(π)
k , (G.20)

in terms of I
(±)
0 and (k > 1)

I
(π)
k (u) := [sign(u)]

1
2
(1−π)

∫ 1

−1
ds1 · · ·

∫ 1

−1
dsk δ(u − s1 · · · sk)

= [sign(u)]
1
2
(1−π)

(
log 1

u2

)k−1

(k − 1)!
, (G.21)

obeying the algebra (k, l > 0)

I
(π)
k ◦ I

(π)
l = I

(π)
k+l , (G.22)

and p
(π)
k (t) (k > 0) are the ◦-product projectors

p
(π)
k (s) :=

(−1)k

k!
δ(k)(s) , π = (−1)k , (G.23)
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obeying

p
(π)
k ◦ f = Lk[f ]p

(π)
k , Lk[f ] =

∫ 1

−1
ds skf(s) . (G.24)

The property (G.22) implies that m
(π)
− ◦ m

(π)
+ can be mapped to the algebraic product

m̃
(π)
− (ξ)m̃

(π)
+ (ξ) between the symbols (ξ ∈ C)

m̃±(π)
σ (ξ) :=

∞∑

k=0

µ
±(π)
σ,k ξk . (G.25)

Therefore, substituting (G.20) into (G.17) and (G.18) and using (G.22) and (G.24) one is

left with the algebraic equations

m̃−(+)
σ m̃+(+)

σ = 1 − σBν

2
ξ , m̃−(−)

σ m̃+(−)
σ = 1 , (G.26)

and the following condition on the projector part of the expansion (G.20):

λ
−(π)
σ,k Ln[m+(π)

σ ] + λ
+(π)
σ,k Ln[m−(π)

σ ] + λ
−(π)
σ,k λ

+(π)
σ,k = 0 . (G.27)

The solution space to (G.26) is parameterized by an undetermined function g̃
(π)
σ as follows:38

m̃±(+)
σ = (g̃(+)

σ )±1

√
1 − σBν

2
ξ , m̃±(−)

σ = (g̃(−)
σ )±1 . (G.28)

Likewise, the solution space to (G.27) contains an undetermined set of coefficients, say

λ
+(π)
σ,k . One can show that these undetermined quantities are gauge artifacts. One natural

gauge choice is to work with symmetric solutions

f±
σ = fσ ⇒ µ

±(π)
σ,k = µ

(π)
σ,k , λ

±(π)
σ,k = λ

(π)
σ,k . (G.29)

and we shall hence drop the ± referring to the spin-frame henceforth. Thus

m̃(+)
σ = ε(+)

σ

√
1 − σBν

2 ξ , m̃±(−)
σ = ε(−)

σ , (G.30)

where (ε
(±)
σ )2 = 1, and (π = (−1)k)

λ
(π)
σ,k

(
λ

(π)
σ,k + 2Lk[m

(π)
σ ]
)

= 0 . (G.31)

It follows that

m(+)
σ = ε(+)(I

(+)
0 (s) + q(+)

σ (s)) , m(−)
σ = ε(−)I

(−)
0 (s) , (G.32)

and that either λ
(π)
σ,k = 0, and the projectors pk do not contribute to the internal connection,

or λ
(π)
σ,k = −2Lk[m

(π)
σ ] = −2Lk[m

(π)
σ ], i.e.,

λ
(π)
σ,k = −2θσ,kLk[m

(π)
σ ] , θσ,k = {0, 1} . (G.33)

38Note that, differently from the Lorentz-covariant solutions in [27, 31, 32], the algebraic equations involve

the product of two different functions rather than the square of a single one.
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Requiring that Σα = zα for ν = 0 and θσ,k = 0, that is, f±
σ (s)|ν=0=θσ,k

= δ(s − 1) =

I
(+)
0 (s) + I

(−)
0 (s), which implies that

ε(±)
σ = 1 , µ

(π)
σ,0 = 1 , q̃(+)

σ = m̃(+)
σ − 1 =

∞∑

k=1

µ
(π)
σ,kξk =

√
1 − σBν

2 ξ − 1 . (G.34)

The result is the confluent hypergeometric function

q(+)
σ (s) =

∞∑

k=1

(1
2

k

)(
−σBν

2

)k

(
log 1

s2

)k−1

(k − 1)!
= −σBν

4
1F1

[
1

2
; 2;

σBν

2
log

1

s2

]
. (G.35)

In order to determine the projector-dependent part of (G.20), all one has to do at this

point is to compute the expansion coefficients λ
(π)
σ,k from (G.33), i.e. to calculate

Lk[mσ] = Lk

[
δ(s − 1) + q(+)

σ (s)
]

= 1 + Lk[q
(+)
σ ] ,

Lk[q
(+)
σ ] = −1 + (−1)k

2

(
1 −

√
1 − σBν

1 + k

)
, (G.36)

which shows that λ
(π)
σ,k are ν-dependent only for even k. The holomorphic solutions can

thus be given in normal order as follows:

Σ±
σ = z± − 2iV ±

σ , V ±
σ = V ±(part)

σ + V ±(proj)
σ , (G.37)

V ±(part)
σ =

i

2

∫ 1

−1
ds q±σ (s) : z± e

iσ
2 (s−1)z+z− :σ , (G.38)

V ±(proj)
σ = −i

∞∑

k=0

θσ,kLk[m
±
σ ] : z±Pσ,k(z

+z−) :σ , (G.39)

where

Pσ,k(z
+z−) =

∫ 1

−1
ds : e

iσ
2 (s−1)z+z− :σ pk(s) =

(iσ/2)k

k!
: (z+z−)ke−

iσ
2 z+z− :σ , (G.40)

are projectors in the ⋆-product algebra (G.1), viz.

Pσ,k ⋆ Pσ,l = δklPσ,k , (G.41)

and the symmetric gauge is reached by taking

m±
σ (s) := δ(s − 1) + q±σ (s) = δ(s − 1) + qσ(s) , (G.42)

with qσ given by (G.35). The anti-holomorphic solution Σ̄±
σ = (Σ±

σ )† implying that θ̄σ,k =

θσ,k. In the symmetric case, the projector part (G.39) of the internal connection can be

written as

A±(proj)
σ = −i : z±

∞∑

k=0

[
θσ,kPσ,k −

(
1 −

√
1 − σBν

1 + 2k

)
θσ,2kPσ,2k

]
: . (G.43)
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Independently of the values of θσ,k, the branch-cut can be chosen such that the internal

connection is analytic for Re(σBν) < 1, where also the particular solution can be shown to

be real analytic [31]. In particular, at ν = 0 one has the undeformed oscillators

Σ±(proj)
σ =: z±

(
1 − 2

∑

k

θσ,kPσ,k

)
:σ ,

[
Σ−(proj)

σ ,Σ−(proj)
σ

]

⋆
= −2i , (G.44)

as can be seen by defining Pσ :=
∑

k θσ,kPσ,k and using (1−2Pσ)⋆2 =1 and [z+ ⋆ z−, Pσ ]⋆ =0.
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