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1 Introduction

The computation of the anomalous dimensions of gauge invariant operators is a crucial

problem in non-abelian gauge theories. For example, they are related to the parton distri-

bution function in the DIS regime of QCD. Typically, one can compute such quantities in

perturbation theory at weak coupling. Solving this problem in the strong coupling regime

or even at finite values of the coupling has been a formidable challenge and requires new

insights. In the case of four-dimensional N = 4 super Yang-Mills theory, this seemingly

hopeless task can be attacked using the methods of integrability and exploiting the holo-

graphic duality between gauge theories and superstring theory [1].

In the planar limit of the gauge theory, the interplay between these two approaches led

eventually to the conjecture that the anomalous dimensions of all gauge invariant operators

can be computed at any value of the coupling, using the so called Y-system [2, 3]. This

conjecture has been checked in the sector of long gauge invariant operators, constructed

using an asymptotically large number of elementary fields, both at weak and at strong

coupling [1]. However, it has not been checked in the elusive sector of short operators so far.

In this paper, we devise a new method to compute the anomalous dimensions of oper-

ators in N = 4 super Yang-Mills theory at strong coupling, using the AdS/CFT correspon-

dence. We will describe this new method as applied to short operators, that consist of a

small number of elementary fields. The simplest non-protected supermultiplet is the Kon-

ishi supermultiplet [4, 5], whose anomalous dimension at weak coupling was studied in [6].

According to the AdS/CFT correspondence, short operators at strong coupling are dual

to perturbative string states of type IIB superstring in the AdS5 × S5 background [7–9].

Conformal dimensions of field theory operators are equal to energies of such string states.

The conformal dimension of non-BPS operators, such as operators in the Konishi multiplet,

receive quantum corrections, whose evaluation at strong coupling is the goal of this paper.

By imposing that the worldsheet string state satisfy the superstring physical state

condition at the loop level, we derive an equation for the energy of the corresponding
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string state, which gives in turn the strong coupling expansion of the conformal dimension

of the dual gauge theory operator. We apply our method to the simplest non-BPS operator,

a member of the Konishi multiplet of string states, whose energy at strong coupling has

been predicted in [2, 3] using the conjectured Y-system. Our worldsheet computation of

the energy of a particular element gives the conformal dimension

∆ − ∆0 = 2
4
√

λ − 4 +
2
4
√

λ
+ O(1/

√
λ) , (1.1)

where λ = g2
Y MN is the ’t Hooft coupling. In weak coupling language, the classical dimen-

sion ∆0 of different members of the Konishi multiplet may take different integer values,

but the anomalous dimension (1.1) should be the same for all of them. Hence, we can pick

our favourite member of the multiplet to perform the calculation. The leading term 2 4
√

λ

reproduces the expected leading behaviour for an operator dual to a string state at the first

massive level [8]. The last term 2/ 4
√

λ is the one-loop correction to the string energy of the

Konishi multiplet of string states at strong coupling. The three terms in (1.1) confirm the

numerical fit obtained using the Y-system in [2, 3, 10], while the first two agree with the

bosonic string computation in [11] and with the extrapolation from the semiclassical string

limit in [12, 13].

Our method can be used to solve for the whole energy spectrum of massive states

of type IIB superstring in AdS5 × S5 and can be expanded to any loop order at strong

coupling. This will give an expansion of the conformal dimensions of short operators in

super Yang-Mills theory in inverse powers of 4
√

λ.

2 String theory in AdS

The AdS5×S5 background is described by the supercoset PSU(2, 2|4)/SO(1, 4)×SO(5). A

coset representative g transforms as g → g0gh under global g0 and local h transformations.

Superstring propagation in this background is described in terms of a worldsheet non-linear

sigma model with values in such a supercoset. Since we want to keep covariance manifest,

we will make use of the pure spinor action for the superstring in the AdS background (we

follow the notations in [14])

S =

√
λ

2π

∫

Str

[

1

2
J2J̄2 +

3

4
J3J̄1 +

1

4
J1J̄3 + w∇̄l + w̄∇l̄ − NN̄

]

, (2.1)

where the worldsheet metric is in the conformal gauge. The matter sector of the pure spinor

action is constructed in terms of the left-invariant currents J = g−1dg =
∑4

i=1 Ji, which

take values in the super Lie-algebra psu(2, 2|4). This algebra admits a Z4 grading, that

we used to label the currents Ji. The grading zero part of the current describes the gauge

degrees of freedom in the supercoset, namely the local Lorentz rotations, while the even J2

and the odd J1, J3 describe respectively the ten bosonic and thirty-two fermionic directions

of AdS5 ×S5. In addition, the action contains a couple of pure spinor ghosts l, l̄ of grading

one and three respectively, which satisfy the pure spinor constraint {l, l} = 0 = {l̄, l̄}, and

their conjugate momenta w, w̄. N and N̄ are the Lorentz generators in the ghost sector.
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The pure spinor BRST charge is Q =
∮

dσ Str[lJ3 + l̄J̄1] and it is nilpotent on the pure

spinor constraint, up to a gauge transformation. Physical states are in the cohomology of

the BRST charge and satisfy the Virasoro constraint T + T̄ = 0, where T and T̄ are the

left- and right- moving worldsheet stress tensors.

The massless sector of type IIB superstring in AdS is described in terms of unintegrated

vertex operators of ghost number (1, 1) and weight zero, that are in one-to-one correspon-

dence with the type IIB supergravity spectrum in AdS5 × S5 [15]. In order to study the

massive string spectrum, we will expand the sigma model around a classical string config-

uration, describing a point-like string sitting at the center of AdS. This is analogous to the

usual flat space bosonic string theory, where one expands around the vacuum with momen-

tum k, with wavefunction eikX . Using the metric of AdS in Lorentzian global coordinates

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dS2
3 , our string configuration sits at ρ ∼ 0 and evolves

in time as eiEt. In the static gauge, this is described by the coset element

g̃(σ, τ) = exp[−τET/
√

λ] , (2.2)

that solves the worldsheet equations of motion coming from the action (2.1), where T is

the anti-hermitian PSU(2, 2|4) generator corresponding to the AdS time translations and τ

is the worldsheet time. The only non-vanishing left-invariant current in this background is

J̃τ = g̃−1∂τ g̃ = −ET/
√

λ. Hence, such classical configuration has vanishing BRST charge.

The Noether charges for the global PSU(2, 2|4) symmetry of the string sigma model is

given by QPSU =
∮

dσ jτ , where

jτ =

√
λ

2π
g[J1 + J2 + J3 + N + N̄ ]τg

−1 . (2.3)

In particular, the AdS energy operator E evaluated on the string configuration (2.2) gives

E =

∮

dσ StrTj̃τ = E , (2.4)

where we used Str(TT) = −1. Since we consider positive energy configurations, we can

take E to be positive in the following.

The classical Virasoro constraint for a such configuration reads

T + T̄ =

√
λ

2
Str J̃τ J̃τ = − E2

2
√

λ
. (2.5)

The classical Virasoro constraint (2.5) will be modified by quantum effects, which are going

to allow for a non-zero solution for E in the rest of the paper. Since for massive string

states, such as the one we are considering, the energy scales as E ∼ 4
√

λ, the classical

contribution to (2.5) is of order one and may be canceled against quantum effects.

3 Quantization

Let us quantize the action (2.1) around the classical configuration (2.2) using the back-

ground field method. We parameterize the coset element by g = g̃eX , where X = X1+X2+
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X3 are the quantum fluctuations and g̃ is given in (2.2). We choose a coset gauge in which

the grading zero part of the fluctuations vanishes. The left invariant currents are given by

Jτ = e−X(∂τ − ET/
√

λ)eX , Jσ = e−X∂σeX . (3.1)

By expanding the action (2.1) using the psu(2, 2|4) structure constants up to quadratic

order, we can read the spectrum of fluctuations around the background (2.2). The AdS5

time direction as well as the five sphere directions remain massless, while the remaining

four bosonic directions of AdS5 acquire a mass squared (E/
√

λ)2. The fermionic spec-

trum consists of sixteen massless fermions and sixteen massive fermions with mass squared

(E/2
√

λ)2. The ghosts remain massless. There is no relation between the bosonic and

fermionic spectrum, reflecting the fact that this background is not BPS.

We will compute the spectrum as follows. We canonically quantize the theory impos-

ing the usual equal time commutation relations for the fluctuations and their conjugate

momenta. We expand coordinates and ghosts into modes following the equations of mo-

tion; this will also set the commutation relations between their modes. The vacuum has

energy E and it is analogous to the vacuum with momentum k in bosonic string theory.

We will construct a particular string state at the first massive level, by acting with two

massive oscillators on the vacuum. We will impose that this state satisfies the physical

state condition and evaluate the various contributions up to one loop. Finally, by solving

the physical state condition we will derive the energy of the string state.

The vacuum is a scalar and is annihilated by all positive modes, including the zero

modes of w, w̄. This last requirement ensures that the Lorentz generators for the ghosts

N and N̄ annihilate the vacuum. We can choose sixteen fermionic zero modes as creation

operators. Since we are using global AdS coordinates, these are linear combinations of

supercharges and superconformal transformations. In the rest of the paper, we will evaluate

the leading quantum contributions to the physical state condition T + T̄ = 0, applied to a

particular state to be introduced below. T + T̄ is computed using 3.1, so it depends both

on the quantum fluctuations and the classical solution. The computation of T + T̄ should

be done carefully. For example, it has a term E/
√

λT∂τX
0. In order to write it in terms of

oscillators, we should replace τ derivatives using the definition of the momenta. Including

higher orders in the background expansion, this term will also contribute to the quadratic

part of T + T̄ . These higher order corrections will be important in the next section as well.

The first quantum correction to (2.5) comes from the central charge. Even if for

E = 0, namely in empty AdS, the central charge vanishes [16], there is a normal ordering

contribution coming from the quadratic part of the stress tensor when E 6= 0. This is given

by the sum of the energies of the oscillator modes

2E√
λ

+
1

2

∞
∑

n=1

(

6
√

n2 + 4

√

n2 + (E/
√

λ)2 − 16
√

n2 − 16

√

n2 + (E/2
√

λ)2 + 22
√

n2

)

. (3.2)

The first term is the contribution from the zero modes of the bosons; by looking at the

commutation relations of the fermionic zero modes, one can easily see that they do not

contribute to (3.2). Inside the sum, the first two terms come from the bosonic oscillators,
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the second two terms from the fermionic ones and the last term from the ghosts. We have

not computed the precise value of E yet, but we want it to correspond to a stringy state,

whose energy scales as E ∼ 4
√

λ, which gives E/
√

λ ∼ 1/ 4
√

λ ≪ 1, obtaining from (3.2)

the total contribution 2 E√
λ
− 3

16
ζ(3)( E√

λ
)4. We can drop the second term as it does not

contribute to the energy at the order we are considering, so we are left with the contribution

2E/
√

λ . (3.3)

Note that at order ( E√
λ
)2 the four massive bosonic modes cancel with the massive sixteen

fermionic modes. The contribution 2 E√
λ
, which would vanish in a BPS background, will af-

fect the one-loop correction to the energy of the string, contributing to the last term in (1.1).

Let us consider now a specific worldsheet state. All of the members of the Konishi

multiplet have the same anomalous dimension (in the weak coupling sense) and they are

in one to one correspondence with the string states at the first massive level [12, 17]. Thus

we will choose a particularly simple state in the first massive string level, that will sim-

plify the computation. Physical states are given by unintegrated vertex operators of ghost

number (1, 1). The simplest one is Str ll̄ and it corresponds to the radius modulus at zero

momentum [18]. We will denote the corresponding state as |ll̄〉 ≡ Str(ll̄)|0〉.
We choose the simple state

|V 〉 = x+
−1x̄

+
−1|ll̄〉 , (3.4)

where x+
−1 and x̄+

−1 are the first left- and right-moving oscillators coming from the fluc-

tuations of the AdS “space-cone” coordinate x+ = x1 + ix2. Although it does not look

covariant, we can interpret this state as being created by non-zero modes of the global sym-

metry right invariant currents. We should emphasize that this is not a global PSU(2, 2|4)
transformation. We identify the state (3.4) to a particular member of the Konishi multiplet

of string states with classical dimension ∆0 = 6 at weak coupling, Lorentz spin two and

singlet of SU(4). The operator |ll̄〉, corresponding to the radius changing operator, is dual

to the Yang-Mills lagrangian and it has ∆0 = 4, so it is natural to expect that (3.4) has

two units more of classical dimension. The same type of state was discussed in [18], where

it is argued that such states are physical, i.e. they are annihilated by the BRST charge.

This state is created by acting on the vacuum with two oscillators of mass E/
√

λ, whose

contribution to the physical state condition is

2

√

1 + (E/
√

λ)2 . (3.5)

4 Quartic corrections

Other possible contributions to the physical state condition at this order may come from

the terms in the stress tensor T + T̄ , expanded to quartic order in fluctuations around the

classical background (2.2) and acting on the specific state (3.4). Let us analyze the possible

terms.

The factor of 2 in front of the square root in (3.5) may get corrected by quartic terms

in T + T̄ of the form (∂X)2X2, due to normal ordering. However, there is no normal

– 5 –
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ordering due to this term. This comes from the fact that any correction to this term has

to be proportional to the one-loop beta function, which vanishes [19]. The same type of

normal ordering contribution was discussed in [20, 21], where they argued it should be zero

using PSU(2, 2|4) symmetry (the same reason why the beta function vanishes). There are

other corrections that are not protected by the beta function argument, but they are of the

form (E/
√

λ)∂XX3 and (E/
√

λ)2X4. They give higher order contributions to the energy

and we can safely neglect them.

Since the background field expanded action is an interacting massive theory defined

on the cylinder, one might expect in principle that finite size corrections to the mass of

the excitations appear. However, the AdS pure spinor sigma model is conformal for any

background, such as ours, that satisfies the classical equations of motion [14, 19]. Since in

a conformal worldsheet theory the “size” of the string has no physical meaning, we do not

expect that any physical quantity, such as the space-time energy, to depend on it. Even

though our on-shell background is guaranteed to give a conformally invariant theory, it is

still an important question to understand how conformal invariance is realized in detail.

The last possible contribution comes from the fact that the operator (3.4) might mix

with other operators due to quartic terms in T + T̄ . In order to study the mixing, we have

to compute the momenta conjugate to the fields up to quartic terms in the action, then

plug these back in the stress tensor [20, 21]. The conjugate momenta are given by

Pi =
δS

δ∂τXi
= ∂τXi + . . . (4.1)

where ’. . .’ are higher order terms in the fluctuations Xi. In this way we eliminate all the

time derivatives in the stress tensor. For the particular state (3.4) we may only consider

the terms with four bosonic or two bosonic and two fermionic fields. Terms quartic in

bosons can both introduce mixing and also correct the energy of our state. Terms with

two fermions and two bosons will only give mixing. For the particular choice of the “space-

cone” polarization in (3.4), it is easy to see that there will be no mixing with other bosonic

states, nor mixing with states created by two fermions, since the stress tensor will only have

commutators and products of gamma matrices, which vanish for this choice of polariza-

tion. Another way to see this is to note that since T + T̄ is a scalar only terms that match

the spin of out initial state can mix with it. However, there is a non-vanishing correc-

tion to the physical state condition, proportional to the state itself, coming from the term
1

6
(Str [P2,X2]

2 − Str [∂σX2,X2]
2) in the stress tensor. Expanding T + T̄ into modes and

computing the relevant terms one finds that the corresponding correction is (it coincides

with the result in [20, 21])

− 2/
√

λ . (4.2)

5 Conformal dimension

Summing up the contributions (2.5), (3.3), (3.5), and (4.2) to the Virasoro constraint, we

find that the physical state condition

(T + T̄ )|V 〉 = 0 , (5.1)

– 6 –
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gives

− E(E − 4)

2
√

λ
+ 2

√

1 +

(

E√
λ

)2

− 2√
λ

= 0 . (5.2)

The positive energy solution of this equation gives the energy of our string state (3.4).

According to the AdS/CFT dictionary, the energy operator on the string side of the corre-

spondence is mapped to the dilatation operator on the field theory side, whose eigenvalues

are the conformal dimensions of operators. Above, we identified the field theory dual

to the string state (3.4) as a member of the Konishi multiplet with classical dimension

∆0 = 6, Lorentz spin two and singlet of SU(4). Its conformal dimension at strong coupling

is therefore

∆ = E = 2
4
√

λ + 2 +
2
4
√

λ
+ O(λ−1/2). (5.3)

Hence we derived (1.1) with ∆0 = 6.
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