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1 Introduction

In four-dimensional string vacua and gauge theories with N = 2 supersymmetry, BPS

states, more often than not, tend to decay across certain real codimension-one walls in the

space of couplings or moduli za [1–4]. A useful way to keep track of the resulting dependence

of the BPS index Ω(γ, z) on the moduli is to consider the same theory on R3 × S1: for

large but finite radius of S1, the low-energy effective action in three dimensions receives

instanton corrections from four-dimensional BPS states whose Euclidean worldline winds

around the circle [5–8]. Single-instanton corrections are weighted by the BPS index, and

are therefore discontinuous across walls of marginal stability. Multi-instanton corrections

ensure that the low energy effective action is nonetheless regular in the vicinity of the wall,

both in the context of N = 2 gauge theories [9] and N = 2 string vacua [10].

In this work we elucidate the geometric origin of the striking similarity between the

twistorial constructions of the moduli space in N = 2 string and gauge theories on R3 ×
S1, and clarify some aspects of our earlier computation of D-instanton corrections to the

hypermultiplet metric in N = 2 string vacua [10]. In particular, we show that both

metrics are related by an instance of the QK/HK correspondence, a general duality between

quaternion-Kähler (QK) spaces with a quaternionic isometry, and hyperkähler (HK) spaces

with a rotational isometry, equipped with a canonical hyperholomorphic circle bundle. We

show that the BPS invariants determine a canonical hyperholomorphic circle bundle P on

the HK space M′ dual to the hypermultiplet moduli space M, which in turn determines

the D-instanton corrected QK metric on M. The functional equations obeyed by the

Rogers dilogarithm play an essential role in ensuring the consistency of the construction.

To explain our results in more detail, we start with a brief recap of [9, 10].

N = 2 field theory and symplectic geometry. For gauge theories with rigid N = 2

supersymmetry in four dimensions, the discontinuity of the BPS index across walls of

marginal stability is captured by the Kontsevich-Soibelman (KS) wall-crossing formula [11]

(see e.g. [12] for a review of the KS formula and equivalent versions thereof). This claim

can be justified by examining instanton corrections to the non-linear sigma model which

describes the effective low-energy dynamics on R3 × S1 [9]. Due to supersymmetry, the
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target spaceM′ of this sigma model must carry a hyperkähler (HK) metric of real dimension

4n, where n is the rank of the gauge group. Instanton corrections to this metric are

most conveniently formulated in terms of the twistor space Z ′ = CP 1 ×M′ [13–15] (see

section 2.1 for a summary of this approach). Viewing Z ′ as a fibration over CP 1 with

stereographic coordinate ζ, the fiberM′(ζ) is isomorphic to a (twisted) complex symplectic

torus (C×)2n in complex structure J(ζ). Consequently, there exist canonical complex

Darboux coordinates Ξ′ = (ηΛ, µΛ) (which are functions of (ζ, x′µ) ∈ CP 1×M′), such that

the symplectic form ω′(ζ) on M′(ζ) is proportional to

〈dΞ′,dΞ′〉 = 2 dµΛ ∧ dηΛ , (1.1)

and such that the torus action corresponds to integer translations of (ηΛ, µΛ) [16]. As

argued in [9], due to instanton corrections the Darboux coordinates Ξ′ are discontinuous

across certain meridian lines on CP 1, known as BPS rays, whose azimuthal angle is equal

to the phase of the central charge Zγ(z) of the corresponding BPS state. It is natural

to identify the symplectomorphism relating the Darboux coordinate systems Ξ′ across the

BPS ray `γ with the abstract operator Uγ appearing in the KS formula. Upon doing so, the

KS formula ensures the consistency of the construction across walls of marginal stability,

and hence the smoothness of the hyperkähler metric.

N = 2 supergravity and contact geometry. For string vacua with local N = 2

supersymmetry in four dimensions, a similar relation holds between the BPS spectrum

in D = 4 and the target space metric of the non-linear sigma model M describing the

vector multiplet moduli space in D = 3 (or, by T-duality, the hypermultiplet moduli

space in D = 4), but with some important wrinkles [10]. First, unlike in field theory, the

index Ω(γ) of BPS states in string vacua tends to grow exponentially, and the resulting

instantonic series is divergent. This divergence is expected to be resolved by gravitational

instantons (or, in the T-dual set-up, NS5-brane instantons), which have no counterpart in

field theory [17]. These additional corrections are characterized by a non-trivial dependence

on the NUT potential (or Neveu-Schwarz axion) σ, which parametrizes a certain compact

direction in M. However, for small string coupling they are exponentially suppressed

compared to the BPS-instantons. In this paper we restrict to this weak coupling limit

where gravitational (or NS5-) instantons are negligible, so that the metric on M has a

Killing vector field ∂σ, and we ignore the divergence of the instantonic series caused by the

exponential growth of Ω(γ).

Second, unlike the rigid case, the target space M is no longer hyperkähler but rather

quaternion-Kähler (see section 2.1.2 for a reminder of basis properties of QK manifolds). As

a result, and in contrast to the hyperkähler situation, the twistor space Z of a quaternion-

Kähler manifold M is a non-trivial fibration CP 1 → Z → M, and the fiber M(t) of

the opposite local fibration M → Z → CP 1 is not a complex manifold (we denote by t

the stereographic coordinate on CP 1, at this point unrelated to the coordinate ζ in the

HK construction). Nevertheless, the full twistor space Z does admit a canonical complex

structure, in fact a complex contact structure, which serves as a replacement for the complex

symplectic structure in the hyperkähler case [18]. In particular, there still exist canonical
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‘contact-Darboux’ coordinates (Ξ, α) = (ξΛ, ξ̃Λ, α) (which are locally functions of (t, xµ) ∈
CP 1×M), such that the complex contact structure is given by the kernel of the holomorphic

one-form [19]

X = dα+ ξΛdξ̃Λ. (1.2)

The Killing vector field ∂σ onM lifts to a holomorphic vector field on Z which preserves the

contact structure. The Darboux coordinates (ξΛ, ξ̃Λ, α) can be chosen such that this vector

field is the Reeb vector1 ∂α of the contact structure [20]. For this property to hold globally,

the complex contact transformations V [ij] relating the Darboux coordinate systems on the

overlap Ui ∩ Uj of two patches on Z, must descend to complex symplectomorphisms on

the reduced twistor space Z/∂α. Put differently, the complex contact transformations must

decompose into a symplectomorphism U [ij] acting on the Darboux coordinates Ξ = (ξΛ, ξ̃Λ),

and a shift of the Darboux coordinate α,

V [ij] : Ξ[i] = U [ij] · Ξ[j] , α[i] = α[j] − 1

4π2
S[ij](Ξ[j]) , (1.3)

such that the combined transformation preserves the contact one-form (1.2). The func-

tion S[ij](Ξ[j]) is determined by the generating function of the symplectomorphism U [ij]

(see [15, 19]).

As argued in [10] on the basis of duality, mirror symmetry and wall-crossing, it is again

natural to identify the symplectomorphism U [ij] with the KS operator Uγ , such that the

KS wall-crossing formula ensures the consistency of the construction of the reduced twistor

space Z/∂α (if not of the full twistor space Z) across walls of marginal stability. In fact,

upon trading the central charge function (or stability data) Zγ(z) and the BPS invariants

Ω(γ, z) of the N = 2 gauge theory with those relevant for the string compactification, iden-

tifying the canonical Darboux coordinates Ξ′(ζ) and Ξ(t) and ignoring the contact Darboux

coordinate α(t), the construction of the twistor space Z in [10] is formally isomorphic to

the construction given in [9] of the HK metric on the Coulomb branch M′ of N = 2

gauge theories. As a result, the reduced twistor space Z/∂α carries a HK metric, similar

to the HK metric on M′. There are however two notable differences: for prepotentials

arising in Calabi-Yau compactifications, the HK metric on Z/∂α has indefinite signature

(4, 4n− 4); in addition, since the prepotential is homogeneous of degree 2, the HK metric

always admits a Killing vector field ∂θ′ acting by R-symmetry rotations. Keeping these

differences in mind, we henceforth denote byM′ the space Z/∂α equipped with the above

Lorentzian-hyperkähler metric.

QK/HK correspondence, hyperholomorphic bundles and dilogarithm iden-

tities. The fact that the D-instanton corrected QK metric on M is captured by a

(Lorentzian) hyperkähler metric on a different manifoldM′ is a consequence of a general ge-

ometric construction, which we dub the QK/HK correspondence. We study this correspon-

dence for its own sake in section 2, and briefly outline it here (see figure 1 for orientation).

1Recall that the Reeb vector of a contact structure is the generator R of the kernel of dX , normalized

such that X (R) = 1.
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r2 = 4ρ

r2 = 4ρ
vI∂I

Figure 1. Overview of the QK/HK correspondence.

To any QK manifoldM with a quaternionic circle action U(1)A, generated by a Killing

vector field ∂θ, the correspondence associates a HK manifold M′ of the same dimension

with an isometric circle action U(1)R, generated by a rotational Killing vector field ∂θ′ ,

equipped with a canonical hyperholomorphic circle bundle P and a connection λ. This

relation proceeds by lifting the circle action U(1)A on M to a tri-holomorphic action on

the Swann bundle S (or hyperkähler cone) of M, and then constructing the hyperkähler

quotient

M′ ≡ S///U(1)A = S ∩ {~µ = ~m}/U(1)A , (1.4)

where ~µ is the moment map of U(1)A action on S, and ~m is a fixed unit norm vector (the

direction of ~m is immaterial, since it rotates under the SU(2)R isometric action on S). The

result is a hyperkähler manifoldM′ with positive signature ifM has positive scalar curva-

ture, or Lorentzian signature ifM has negative scalar curvature. Moreover,M′ admits an

isometric U(1)R action which rotates the complex structures (here U(1)R is the subgroup

of SU(2)R which preserves the vector ~m). The level set P = S ∩ {~µ = ~m} is generically

a circle bundle P over M, equipped with a connection λ given by the restriction of the

Levi-Civita connection on S. It is well known that this connection is hyperholomorphic, in

the sense that its curvature F = dλ is of type (1,1) in all complex structures. In a fixed

complex structure, the circle bundle P can be extended to a complex line bundle L with
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first Chern class c1(L ) = dλ/(2π). By the standard twistor construction, it can be further

lifted to a holomorphic line bundle LZ′ on the twistor space Z ′, with the property of being

trivial along the CP 1-fiber.

The QK/HK correspondence becomes particularly transparent at the level of the

twistor spaces Z and Z ′. Each of them is determined by an open covering {Ui} (respectively

{U ′i}) and a set of transition functions H
[ij]
QK(Ξ, α) (respectively H

[ij]
HK(Ξ′, ζ)) describing con-

tact (respectively symplectic) transformations between Darboux coordinates in different

patches (see section 2.1). It turns out that the twistor spaces of a dual pair (M,M′) can

be described by isomorphic coverings and identical transition functions

H
[ij]
HK(Ξ) = H

[ij]
QK(Ξ) . (1.5)

This identification in (1.5) is meaningful since the U(1)A isometry on M requires the

transition functions H
[ij]
QK to be independent of α, while the U(1)R isometry onM′ requires

H
[ij]
HK to be independent of the CP 1 coordinate ζ. In such a scheme, the Darboux coordinates

(Ξ, α) onM and (Ξ′,Υ) on LZ′ → Z ′ (where Υ is a holomorphic section of LZ′) are simply

related by2

ηΛ
[i](ζ) = ξΛ

[i](t) , µ
[i]
Λ (ζ) = ξ̃

[i]
Λ (t) , Υ[i](ζ) = e−2iπα[i](t) , (1.6)

while the fiber coordinates t on Z and ζ on Z ′ are related by a phase rotation

t = ζ e−iθ′ . (1.7)

The transition functions for the line bundle LZ′ are furthermore determined by the holo-

morphic section Υ via

fij =
Υ[i]

Υ[j]
= exp

(
i

2π
S[ij](Ξ)

)
, (1.8)

where S[ij] is the same function which governs the shift of α under the contact transforma-

tion (1.3) (the consistency conditions on V [ij] spelled out in [19] ensure that fij is indeed

a Cech cocycle). Thus, the geometry of the twistor space Z of the QK manifold M is

completely encoded in a suitable line bundle over the twistor space Z ′ of the dual HK

manifold M′. As we shall see, one advantage of this dual point of view is that it provides

a rigorous definition of the Darboux coordinates Ξ(t, xµ), α(t, xµ) on Z, which is difficult

on the QK side due to the non-trivial fibration of the twistor sphere CP 1 over M.

On the basis of this correspondence, specifying the D-instanton corrections to the

QK metric on M is therefore equivalent to constructing a specific hyperholomorphic line

bundle L → M′, defined by transition functions of the form (1.8) such that the trans-

formation (1.3) leaves the contact one-form (1.2) invariant. Although not phrased in this

way, this problem was already addressed in [10, 21], where the generating function S[ij] of

the symplectomorphism U [ij] was computed in terms of the Spence dilogarithm function

Li2(z) and the BPS invariants Ω(γ, z). While the formula obtained in [21] (reproduced

2The last relation in (1.6) must be altered in the presence of an anomalous dimension, see (2.50).
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below in (3.27)) was rather unilluminating, one of the main new insights in the present

work is to recognize that the shifted, symplectic invariant coordinate

α̃ = −2α− ξΛξ̃Λ (1.9)

transforms in a much simpler fashion, namely α̃ 7→ α̃+ ∆γα̃ with3

∆γα̃ =
1

2π2
Ω(γ)L

(
e−2πi〈γ,Ξ〉

)
, (1.10)

where L(z) is known as the Rogers dilogarithm,

L(z) = Li2(z) +
1

2
log z log(1− z) . (1.11)

As we shall see, the functional identities obeyed by the Rogers dilogarithm, such as the

five-term relation

L(x)− L
(
x(1− y)

1− xy

)
− L

(
y(1− x)

1− xy

)
+ L(y)− L(xy) = 0 , 0 < x, y < 1, (1.12)

are instrumental for ensuring the consistency of the gluing conditions (1.3) across walls

of marginal stability. In section 3.4 we show that the semi-classical limit of the motivic

wall-crossing formula of Kontsevich and Soibelman [11] (a much more powerful statement

than the usual numerical KS formula) implies a set of functional identities for the Rogers

dilogarithm which guarantee the existence of the line bundle LZ′ . We illustrate the con-

struction on some simple examples of wall-crossing involving a finite number of BPS states

on either side, where consistency is ensured by the famous pentagon identity and perhaps

less known hexagon and octagon identities for the Rogers dilogarithm.

Relation with cluster algebras. Although this point of view is not essential for attain-

ing our results, it should be mentioned that the special wall-crossing identities mentioned

above occur naturally in the context of cluster algebras (specifically, cluster algebras associ-

ated to rank 2 Dynkin quivers). Indeed, cluster algebras provide a powerful method to gen-

erate wall-crossing identities and dilogarithm identities4 [27–31]. In fact, our derivation in

section 3.4 is a simple generalization of the analysis of [32] (in turn generalizing [33]), where

it was pointed out that these functional identities can be obtained as semi-classical limits of

quantum dilogarithm product identities for simply laced quivers established in [34–36]. Our

derivation shows that the conjectural formulas of Nakanishi [29] for cluster algebras associ-

ated to non-simply laced quivers follow in the same manner from the motivic wall-crossing

formula of Kontsevich and Soibelman [11]. In appendix B, we summarize some basic facts

about cluster algebras, cluster transformations and their relation to wall-crossing, and de-

rive the pentagon, hexagon, and octagon identities from periods of the cluster algebras

associated to the A2, B2 and G2 Dynkin quivers.

3This relation holds when the quadratic refinement σ(γ) is equal to +1, see (3.29) for the general

statement.
4Such dilogarithm identities appeared first in studies of two-dimensional integrable models [22–25], see

e.g. [26] for a recent review. Cluster algebras can be regarded as an abstraction of the Y-systems appearing

in these models.

– 6 –



J
H
E
P
1
2
(
2
0
1
1
)
0
2
7

Historical remarks. We close this introduction with some historical remarks and point-

ers to related literature. The basic tenets of the QK/HK correspondence were noticed by

A. Neitzke and the third-named author in 2008 [16], in trying to understand the geo-

metric meaning of the ‘freezing procedure’ used to extract the ‘rigid limit’ of local c-map

spaces [37, 38]. After the main results in this article were obtained, we learned from A.

Neitzke that the QK/HK correspondence had been independently discovered by A. Hay-

dys [39] in 2007 (cf. [40, 41] for further accounts of Haydys’ construction). For completeness,

we shall incorporate some further insights gleaned from [39]. Moreover, the fact that the

local and rigid c-map metrics are related by the QK/HK-correspondence (see section 2.4)

appears to have been noticed independently by O. Macia and A. Swann [41]. Our construc-

tion of the hyperholomorphic line bundle L also seems closely related to work in progress

by V. Fock and A. Goncharov in the context of quantization of cluster varieties [42]. Fi-

nally, A. Neitzke has independently constructed a hyperholomorphic line bundle over the

Coulomb branch of N = 2 gauge theories on R3 × S1 [43].5 His construction appears to

match ours in superconformal cases where the prepotential is homogeneous of degree 2.

Outline. This paper is organized as follows. In section 2 we present the generalities of

the QK/HK correspondence, and illustrate it in the case of four-dimensional HK and QK

metrics with a rotational isometry (which can all be described in terms of solutions to

Toda equation) and in the case of c-map metrics. In particular, we show that the ‘local’

and rigid’ c-map metrics, for the same choice of prepotential, are related by the QK/HK

correspondence. In section 3, we specialize to the hypermultiplet moduli space of N = 2

string vacua, and express the contact transformations (1.3) across BPS rays in terms of

the Rogers dilogarithm. We show that the consistency of the construction across walls of

marginal stability is ensured by the classical limit of the motivic wall-crossing formula. We

illustrate this mechanism on simple examples of wall-crossing, related to cluster algebras of

type A2, B2 and G2. Appendix A recalls the definition and main properties of the Rogers

dilogarithm and some of its variants. Finally, for completeness we review in appendix B

some basic aspects of cluster algebras and their relation to wall crossing.

2 The QK/HK correspondence

In this section we present a general geometric correspondence between QK and HK mani-

folds with a rotational Killing vector field. More precisely, to any real 4n-dimensional QK

manifoldM with a quaternionic isometry, we associate a HK manifoldM′ of the same di-

mension, equipped with a rotational Killing vector field and a canonical hyperholomorphic

circle bundle P →M′ with connection λ. In section 2.1 we start with a brief reminder on

the twistorial description of HK and QK manifolds. In section 2.2 we construct (M′,P) by

lifting the quaternionic isometry on M to a tri-holomorphic action on the Swann bundle

R4/Z2 → S →M, and then taking the hyperkähler quotient. In section 2.3, we study the

correspondence in detail for QK/HK manifolds of real dimension 4, where both sides can be

5We are grareful to A. Neitzke for drawing our attention to [39, 40] and sharing with us an advance

draft of [43].
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described in terms of the same solution to Toda equation. Finally, in section 2.4 we work out

the QK/HK correspondence for c-map spaces, and show that the rigid and the local c-map

(including the one-loop deformation parameter) are related by the QK/HK correspondence.

2.1 Twistorial descriptions of HK and QK manifolds: a reminder

In this section we briefly recall some basic features and relevant formulae for the twistorial

description of HK and QK manifolds (see [15, 19] for more details).

2.1.1 Hyperkähler manifolds and symplectic geometry

A dimension 4n Riemannian manifold M′ is hyperkähler (HK) if it has restricted holon-

omy group USp(n) ⊂ SO(4n). We shall also allow for Lorentzian-HK manifolds, whose

holonomy group lies in USp(1, n− 1) ⊂ SO(4, 4n− 4). In either case,M′ can be described

analytically in terms of its twistor space Z ′ =M′×CP 1. Z ′ admits a complex symplectic

structure, more precisely a closed two-form

ω′ = ω′+ − iζω′3 + ζ2ω′− , ω′± = −1

2
(ω′1 ∓ iω′2) (2.1)

valued in the O(2) line bundle over CP 1, and non-degenerate along the fibers of the pro-

jection Z ′ → M′. Here ω′i are the symplectic forms on M′ associated to the complex

structures Ji, i = 1, 2, 3, satisfying the quaternion algebra and ζ is a complex coordinate

on CP 1 ∼= SU(2)/U(1) parametrizing the complex structure

J(ζ) = i
ζ̄ − ζ

1 + |ζ|2 J1 +
ζ + ζ̄

1 + |ζ|2 J2 +
1− |ζ|2
1 + |ζ|2 J3 . (2.2)

In particular, the pull-back of ω′ to M′ is the Kähler form with respect to J(ζ).

Locally, on a patch U ′i of an open covering ∪U ′i of Z ′, there exist complex Darboux

coordinates (ηΛ
[i], µ

[i]
Λ ) such that6

ω′ = κi dηΛ
[i] ∧ dµ

[i]
Λ . (2.3)

The complex symplectic structure is conveniently encoded in a set of holomorphic functions

H
[ij]
HK(η[i], µ

[j], ζ) which generate symplectomorphisms between the Darboux coordinates

(ηΛ
[i], µ

[i]
Λ ) on the overlap U ′i ∩ U ′j [15]. The functions H

[ij]
HK are subject to certain cocycle

and reality conditions. Moreover, since ω′ is defined only up to closed two-forms which

vanish on the fiber of the projection Z ′ → M′, H [ij]
HK may in general depend explicitly

on ζ. To obtain the metric, one needs to ‘parametrize the twistor lines’, i.e. to find the

Darboux coordinates (ηΛ, µΛ) as functions of ζ and of the coordinates onM′. The Darboux

coordinates are determined by the following integral equations [21]

ηΛ
[i](ζ) = xΛ + ζ−1vΛ − ζv̄Λ − 1

2

∑
j

∮
Cj

dζ ′

2πiζ ′
ζ ′ + ζ

ζ ′ − ζ ∂µ[j]
Λ

H
[ij]
HK(ζ ′),

µ
[i]
Λ (ζ) = %Λ +

1

2

∑
j

∮
Cj

dζ ′

2πiζ ′
ζ ′ + ζ

ζ ′ − ζ ∂ηΛ
[i]
H

[ij]
HK(ζ ′),

(2.4)

6We use a patch-dependent normalization, such that in the patch U ′+ around the north pole of CP 1

(ζ = 0) it is given by κ+ = iζ/4.
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where Cj is the contour surrounding the projection of U ′j on CP 1 in the counterclockwise

direction, while the complex variables vΛ and real variables xΛ, %Λ serve as coordinates on

M′. The sums in (2.4) run over all patches including those which do not intersect with

U ′i — the corresponding transition functions are obtained by analytic continuation and

by applying the cocycle condition. Once the Darboux coordinates are known, the Kähler

potential in complex structure J3 ≡ J(ζ = 0) is given by the contour integral [21, 44]

KM′ =
1

8π

∑
j

∮
Cj

dζ

ζ

[
H

[ij]
HK − ηΛ

[i]∂ηΛ
[i]
H

[ij]
HK +

(
ζ−1vΛ − ζv̄Λ

)
∂ηΛ

[i]
H

[ij]
HK

]
. (2.5)

A set of complex coordinates on M′ in this complex structure is given by the leading

Laurent coefficients in the expansion of ηΛ
[+] and µ

[+]
Λ at small ζ, namely vΛ and

wΛ ≡
i

2
µ

[+]
Λ |ζ=0 =

i

2
%Λ +

1

8π

∑
j

∮
Cj

dζ

ζ
∂ηΛ

[i]
H

[+j]
HK . (2.6)

For HK manifolds with a rotational isometry, the transition functions H
[ij]
HK must have no

explicit dependence on the fiber coordinate ζ.

2.1.2 Quaternion-Kähler manifolds and contact geometry

A 4n-dimensional Riemannian manifold M is quaternion-Kähler (QK) if it has restricted

holonomy group USp(n) × SU(2) ⊂ SO(4n). The Ricci scalar R is then constant, and

the curvature of the SU(2) part of the Levi-Civita connection, rescaled by 1/R, provides

a triplet of quaternionic 2-forms ~ω. While R can take either sign, hypermultiplet moduli

spaces in N = 2 supergravity or string theory models have R < 0. The degenerate limit

R→ 0 recovers the case of HK manifolds discussed in section 2.1.1.

A QK manifold M can be described analytically in (at least) two equivalent ways,

either in terms of its twistor space Z, or in terms of the Swann bundle S (and its twistor

space ZS). The Swann bundle, or HK cone, is the total space S of the R4/Z2 bundle

over M twisted with the SU(2) part of the Levi-Civita connection on M [45, 46]. It is a

HK manifold7 with a homothetic action of R+ and an isometric action of SU(2)R (here R

stands for R-symmetry). The twistor space ZS of the Swann bundle provides an analytic

description of the QK space M in terms of a homogeneous complex symplectic structure.

On the other hand, the twistor space Z is the total space of the CP 1 bundle overM twisted

with the projectivized SU(2)R connection on M. Z is a Kähler-Einstein space equipped

with a canonical complex contact structure, given by the kernel of the one-form

Dt = dt+ p+ − ip3t+ p−t
2, (2.7)

where t is a complex coordinate on CP 1, and p±, p3 is the SU(2) part of the Levi-Civita

connection onM. The curvature of the latter is related to the triplet of covariantly constant

two-forms by (we set the cosmological constant Λ = −6)

ω+ = −1

2
(dp+ + ip+ ∧ p3) , ω3 = −1

2
(dp3 − 2ip+ ∧ p−) . (2.8)

7More precisely, S carries a hyperkähler metric if M has positive scalar curvature, or a pseudo-

hyperkähler metric with signature (4, 4n) if M has negative scalar curvature.
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Note that Dt is defined only projectively, as it rescales under SU(2) rotations. More

precisely, it is valued in the O(2) line bundle on CP 1 [18].

The two descriptions of M outlined above are closely related, since the twistor space

Z is the quotient of the Swann bundle S by the C× action which combines the dilation

and U(1)R ⊂ SU(2)R rotation. The complex contact structure on Z is then simply the

projectivization of the homogeneous complex symplectic structure on S. The HKC metric

on S and the Kähler-Einstein metric on Z are related to the quaternion-Kähler metric on

M by [19]

ds2
S = dr2 + r2

[
1

4

(
Dθ′

)2
+ ds2

Z

]
, ds2

Z =
|Dt|2

(1 + tt̄)2
− 1

2
ds2
M , (2.9)

where (r, θ′) parametrizes the C× fiber and

Dθ′ = dθ′ +
i

1 + tt̄
[tdt̄− t̄dt− i(1− tt̄)p3 + 2tp− − 2t̄p+] . (2.10)

Moreover, the Kähler forms on S and Z are given by

ω3
S =

1

2
r dr ∧Dθ′ + r2 ωZ , ωZ =

i

2

Dt ∧Dt̄
(1 + tt̄)2

− (1− tt̄)ω3 + 2itω− − 2it̄ω+

2(1 + tt̄)
(2.11)

while the complex symplectic form on S is

ω+
S = − r2eiθ′

2(1 + tt̄)

[
ω+ − itω3 + t2ω− −

(
i

2
Dθ′ +

dr

r

)
∧Dt

]
. (2.12)

Locally, on a patch of an open covering {Ui} of Z, one can always find complex Dar-

boux coordinates (ξΛ
[i], ξ̃

[i]
Λ , α

[i]) such that the contact one-form (2.7), suitably rescaled by a

function eΦ[i]
, takes the form

X [i] ≡ 4 eΦ[i] Dt

it
= dα[i] + ξΛ

[i]dξ̃
[i]
Λ . (2.13)

The function Φ[i], which we refer to as the ‘contact potential’, is holomorphic along the

CP 1 fiber, and defined up to an additive holomorphic function on Ui. It provides, among

other things, a Kähler potential for the Kähler-Einstein metric on Z [19]:

K
[i]
Z = log

4(1 + tt̄)

|t| + Φ[i] . (2.14)

Globally, the complex contact structure on Z can be specified by a set of generating

functions H
[ij]
QK(ξΛ

[i], ξ̃
[j]
Λ , α[j]) for complex contact transformations between Darboux coor-

dinates on overlaps Ui ∩ Uj , subject to cocycle and reality conditions [19]. Unlike the HK

case, the transition functions H
[ij]
QK are independent of the coordinate t on the CP 1 fiber.

In the case when the QK-manifoldM has a quaternionic isometry ∂θ, one may choose the

Darboux coordinates such that the Killing vector lifts to the holomorphic action ∂α. As

a result, the transition functions H
[ij]
QK become independent of the coordinate α[j], and the
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contact potential Φ[i] becomes constant on CP 1 [10].8 In this case the Darboux coordinates

are determined by the following system of integral equations:

ξΛ
[i](t) = AΛ + t−1Y Λ − t Ȳ Λ − 1

2

∑
j

∮
Cj

dt′

2πit′
t′ + t

t′ − t ∂ξ̃[j]
Λ

H
[ij]
QK,

ξ̃
[i]
Λ (t) = BΛ +

1

2

∑
j

∮
Cj

dt′

2πit′
t′ + t

t′ − t ∂ξΛ
[i]
H

[ij]
QK, (2.15)

α[i](t) = Bα +
1

2

∑
j

∮
Cj

dt′

2πit′
t′ + t

t′ − t
(
H

[ij]
QK − ξΛ

[i]∂ξΛ
[i]
H

[ij]
QK

)
+ 4ic log t.

Here the complex variables Y Λ, up to an overall phase rotation which can be absorbed

into a phase rotation of t, and the real variables AΛ, BΛ, Bα serve as coordinates onM. It

is convenient to fix the phase freedom in Y Λ by requiring Y 0 ≡ R to be real. Moreover,

Bα is related to the coordinate θ along the isometric direction by ∂Bα = 1
4∂θ. Finally, c

is a real constant known as an anomalous dimension [19], which characterizes the singular

behavior of the Darboux coordinate α at the north and south poles of CP 1. It plays an

important physical role in describing the one-loop correction to the hypermultiplet moduli

space metric in type II string compactifications.9

The procedure to extract the metric from the solutions of (2.15) was outlined in [10, 19].

Similarly to KM′ , the contact potential can be computed from the transition functions H
[ij]
QK

and the solutions of (2.15) using

eΦ =
1

16π

∑
j

∮
Cj

dt

t

(
t−1Y Λ − t Ȳ Λ

)
∂ξΛ

[i]
H

[ij]
QK − c. (2.16)

2.2 The QK/HK correspondence

We start from a QK manifold M of real dimension 4n, with a quaternionic Killing vector

field10 which we denote by ∂θ. We assume that the action of ∂θ exponentiates to a circle

action of a group which we denote by U(1)A (A stands for axion). By the moment map

construction [47, 48], the vector field ∂θ lifts to a tri-holomorphic Killing vector field on the

Swann bundle S. We abuse notation and denote by the same symbol ∂θ the vector field on

M and its tri-holomorphic lift to S, and by ~µ its moment map.

Let us now perform the hyperkähler quotient of S by U(1)A. This proceeds by first

restricting to a fixed level set of the moment map,

P(~m) = S ∩ {~µ = ~m} (2.17)

8As we shall see, eΦ is related to the norm of the moment map of ∂θ on M, or to the moment map of

∂θ′ on the dual HK manifold M′.
9In fact, there are other anomalous dimensions, called cΛ, which introduce logarithmic singularities in

ξ̃Λ and further affect α [19]. In this work we restrict ourselves to the case of vanishing cΛ because they do

not seem to play any role in physical applications. From the point of view of the QK/HK correspondence,

it appears that their inclusion does not affect the dual HK metric, but does affect the hyperholomorphic

connection.
10Recall that a quaternionic vector field is a vector field which preserves the canonical closed 4-form ~ω∧~ω

on the QK manifold M.

– 11 –



J
H
E
P
1
2
(
2
0
1
1
)
0
2
7

and then performing the usual Riemannian quotient by U(1)A. For ~m 6= 0, the action of

U(1)A on P(~m) has at most a finite stabilizer, and the quotient

M′ = P(~m)/U(1)A (2.18)

is a hyperkähler orbifold. Due to the SU(2)R and dilation symmetries on S, the spaces

P(~m) (respectively,M′(~m)) for varying ~m 6= 0 are canonically isomorphic, and the induced

(respectively, quotient) metric depends only on the norm of ~m, by an overall factor. We

shall set |~m| = 1 in the following and omit the dependence on the vector ~m.

As usual, the hyperkähler quotient may be decomposed in three steps: (i) impose

µ+ = 0, where µ+ is the complex valued projection of the moment map ~µ on the plane

orthogonal to ~m, (ii) impose µ3 = 1, where µ3 = ~µ · ~m, and (iii) mod out by U(1)A. Step

(i) defines a complex submanifold of S in complex structure ~m · ~J . Steps (ii) and (iii) are

equivalent to modding out by the complexification C×A of U(1)A, which equips M′ with

a complex structure which we continue to denote by ~m · ~J . Since M′ is independent of

the direction ~m, it admits an S2 worth of complex structures, and is indeed hyperkähler,

with positive signature if M has positive scalar curvature, or Lorentzian signature is M
has negative scalar curvature. Moreover, since P is invariant under the U(1)R subgroup of

SU(2)R which leaves invariant the direction of the vector ~m, and since U(1)A commutes

with SU(2)R, the action of U(1)R descends to an isometric action on the quotientM′. We

denote by ∂θ′ the corresponding vector field. Denoting by J3 the projection of ~J along

~m and by J+ the orthogonal projection, the U(1)R action rotates the complex structure

according to

J3 7→ J3, J+ 7→ eiθ′J+ . (2.19)

By construction, the level set P is the total space of a circle bundle over M′. It

is equipped with a canonical connection one-form λ, namely the restriction of the Levi-

Civita connection on S. It is a well-known fact that this connection is hyperholomorphic,

i.e. that the curvature F = dλ is of type (1,1) in all complex structures on M′ [49–51].

The complex line bundle L associated to the circle bundle P in complex structure J3 is

isomorphic to the locus {µ+ = 0} ∩ S referred to above. The connection λ on P defines a

unitary connection on L which we continue to denote by the same symbol.

2.2.1 From QK to HK

Let us now perform the quotient procedure discussed above using the explicit formula for

the metric on the Swann bundle (2.9). To this end, note that any QK metric with a

quaternionic Killing vector ∂θ can be written as

ds2
M = τ (dθ + Θ)2 + ds2

M/∂θ
, (2.20)

where Θ is a connection one-form and τ is a function onM invariant under ∂θ.
11 We choose

an SU(2) frame such that the Lie derivative of ~p with respect to ∂θ vanishes, and such that

the QK moment map ~µM for ∂θ is aligned along the third axis. Denoting by 1/(4ρ2) its

11Note that θ and Θ depend on the choice of coordinate but τ and Dθ ≡ dθ+Θ are defined unambiguously.
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squared norm, so that ~µM = (0, 0, 1)/(2ρ), from (2.8) it follows that the component p3 of

the SU(2) connection on M must take the form

p3 = −1

ρ
(dθ + Θ) + Θ′ (2.21)

for a certain one-form connection Θ′ onM/∂θ. For later convenience, we further trade the

function τ in (2.20) for a function ν such that

τ =
ν + ρ

2ρ2ν
. (2.22)

From (2.9), one then finds the following metric on the Swann bundle

ds2
S = dr2 + r2

[
1

4

(
Dθ′

)2
+
|Dt|2

(1 + tt̄)2
− τ

2
(dθ + Θ)2 − 1

2
ds2
M/∂θ

]
. (2.23)

We now perform the hyperkähler quotient of S with respect to the tri-holomorphic

action of ∂θ. From (2.11) and (2.12), one finds that the components of the moment map ~µ

on the Swann bundle are given by

µ3 = −1− tt̄
1 + tt̄

r2

4ρ
, µ+ =

it eiθ′

1 + tt̄

r2

4ρ
. (2.24)

Therefore, the level set P(~m) in (2.17), with ~m a fixed unit norm vector, is obtained by

setting

r = 2
√
ρ, t = ζe−iθ′ , (2.25)

and holding ζ constant. As we shall see momentarily, ζ parametrizes the twistor fiber ofM′,
and the last equality in (2.25) establishes the relation (1.7) between the CP 1 coordinates

on Z and Z ′. After completing squares, the restriction to P(~m) of the metric on S can be

written

ds2
P = ds2

M′ −
1

ν
(dθ + λ)2 , (2.26)

where ds2
M′ is a metric which is degenerate along ∂θ and invariant under ∂θ′ ,

ds2
M′ =

dρ2

ρ
+ 4ρ |p+|2 + (ν + ρ)

(
dθ′ + Θ′

)2 − 2ρds2
M/∂θ

(2.27)

and λ is the one-form

λ = ν
(
dθ′ + Θ′

)
+ Θ . (2.28)

Performing the quotient with respect to ∂θ′ , the metric (2.27) gives the metric on the HK

spaceM′ dual to the QK spaceM, while the one-form λ on the circle bundle P(~m) is the

hyperholomorphic connection afforded by the QK/HK correspondence. It is noteworthy

that both the metric (2.27) and connection (2.28) are independent of the parameter ζ.

To check that the metric (2.27) is hyperkähler, one may construct the Kähler

form ω′3(ζ) and complex symplectic form ω′+(ζ) on M′ by restricting the corresponding
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forms (2.11), (2.12) on S to P(~m). With some further efforts, one finds that ω′3(ζ), ω′+(ζ)

can be integrated to the one-forms

p′3(ζ) =
(1− ζζ̄)p′3 + 2iζp′− − 2iζ̄p′+

1 + ζζ̄
, p′+(ζ) =

p′+ − iζp′3 + ζ2p′−
1 + ζζ̄

, (2.29)

where p′3, p
′
+ are related to the SU(2) connection on M by

p′3 = ρ
(
dθ′ + p3

)
+ dθ, p′+ = ρ eiθ′p+. (2.30)

In the first of these equations, the last term dθ was chosen so as to cancel the contraction

∂θ ·p′3. In particular, these formulae identify the parameter ζ as the standard stereographic

coordinate on the twistor space of M′, as anticipated below (2.25). They also show that

the Killing vector ∂θ′ on M′ leaves the complex structure J3 = J(ζ = 0) on M′ invariant,

and rotate J± = J±(ζ = 0) according to (2.19). Furthermore, they identify the coordinate

ρ as the moment map of the Killing vector ∂θ′ with respect to ω′3 = ω′3(ζ = 0). By the usual

argument, this implies that the coefficient of dρ2 in the metric (2.27) must be inversely

related to the coefficient of (dθ′ + Θ′)2, namely

ds2
M′ =

dρ2

ν + ρ
+ (ν + ρ)

(
dθ′ + Θ′

)2
+ ds2

M′//∂θ′
(2.31)

where ds2
M′//∂θ′

is the metric on the Kähler quotient of M′ by U(1)R. In particular, the

complex structure J3 maps the one-form dρ to (ν + ρ) (dθ′ + Θ′), and as a result

i(∂ − ∂̄)ρ = −(ν + ρ)
(
dθ′ + Θ′

)
, (2.32)

where ∂ is the Dolbeault derivative in complex structure J3. Combin-

ing (2.21), (2.28), (2.30) and (2.32), we see that the hyperholomorphic one-form λ

can be rewritten as

λ = −i(∂ − ∂̄)ρ− p′3 , (2.33)

with curvature

F = dλ = 2i ∂∂̄ρ− ω′3 , (2.34)

in agreement with eq. (14) in [39]. In particular, the hyperholomorphic curvature F can

be derived from the Kähler potential

KL = 2ρ−KM′ , (2.35)

where KM′ is a Kähler potential for ω′3 in complex structure J3.

2.2.2 From HK to QK

The above construction can be inverted as follows. Let M′ be a HK manifold with a

rotational Killing vector ∂θ′ , which lifts to a U(1)R circle action, and acts on the Kähler

form ω′3 and complex symplectic form ω′+ (in a fixed complex structure J3) via

L∂θ′ω
′
3 = 0 , L∂θ′ω

′
± = ±iω′± . (2.36)
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We assume that ω′3 lies in an integer cohomology class. Let ρ be the moment map of ∂θ′ with

respect to ω′3. As explained in [40], the two-form F ≡ 2i ∂∂̄ρ−ω′3, where ∂ is the Darboux

derivative in complex structure J3, is of type (1,1) in all complex structures, hence it defines

a hyperholomorphic circle bundle P on M′ with first Chern class c1(P) = F/(2π). Let λ

be a connection on M′, such that dλ = F .

Since ρ is the moment map for the circle action, the hyperkähler metric on M′ can

always be written in the form (2.31) for some function ν and connection 1-form Θ′ with

∂θ′ · ν = ∂θ′ ·Θ′ = 0. Here, ρ and ν are defined up to an additive constant, but their sum

ρ + ν is unambiguous. In addition, θ′ and Θ′ depend on the choice of coordinate but the

combination dθ′ + Θ′ is unambiguous. Since λ satisfies (2.34), it can be written as (2.33)

for some one-form p′3 such that dp′3 = ω′3. Using (2.32), this can be further decomposed

into

p′3 = ρ
(
dθ′ + Θ′

)
−Θ, λ = ν

(
dθ′ + Θ′

)
+ Θ (2.37)

for some connection Θ with ∂θ′ ·Θ = 0.

We now equip the circle bundle P with the metric (2.26), invariant under the U(1)A
action generated by the Killing vector ∂θ. The U(1)R isometric action on M′ lifts to a

U(1)R isometric action on P generated by the Killing vector ∂θ′ (indeed, any other lift of

the form ∂θ′ + ν0∂θ can be brought to this form by tuning the additive constant in ν).

Using the formulae (2.20) and (2.27), the metric on P can be rewritten as

ds2
P = −2ρ ds2

M +
dρ2

ρ
+ 4ρ |p+|2 + ρ (dθ′ + p3)2 , (2.38)

where the metric element ds2
M is degenerate along the direction ∂θ′ , and expressed in terms

of the HK metric on M′ and connection λ via

ds2
M =

(dρ)2

4τρ4
+ τ (dθ + Θ)2 + 2

|p′+|2
ρ2
− 1

2ρ
ds2
M′//∂θ′

, (2.39)

where the function τ is defined in terms of ν and ρ by (2.22). The metric element (2.39)

defines a non-degenerate QK metric on the quotient P/U(1)R, whose SU(2) connection

~p is obtained in terms of the Kähler and complex symplectic connections p′3, p′+ on M′
by inverting (2.30). Note that the metric (2.39) on P/U(1)R differs from the standard

Riemanniann quotient metric ds2
P − ρ (dθ′+ p3)2 due the second and third terms in (2.38),

as well as the conformal rescaling by −1/(2ρ). The fact that the metric (2.39) is quaternion-

Kähler follows from the Swann bundle construction in section 2.2.1.

It is also important to emphasize that the QK metric (2.39) depends on the hyperholo-

morphic connection λ, and not only on its curvature. In particular, shifting λ 7→ λ+ cdθ′

where c is an arbitrary constant does not affect the curvature F = dλ, but does in general

affect the functions ν and τ and therefore the dual QK metric, leading to a one-parameter

family of inequivalent QK metrics. On the other hand, a shift of λ (and, simultaneously, an

opposite shift of p′3 such that (2.33) is preserved) by a closed one-form dφ with ∂θ′ ·dφ = 0

can be reabsorbed by a redefinition of the coordinate θ and one-form Θ, such that the dual

QK space is unaffected.
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Finally, to make contact with [39] we observe that (2.39) can alternatively be written

as

ds2
M = − 1

2ρ

[
ds2
M′ −

1

ν
(dθ + λ)2

]
+

1

2ρ2

[
(dθ + λ−K0)2 + ~K2

]
, (2.40)

where K0 and ~K = ∂θ′ · ~ω′ the one-forms obtained by contracting ∂θ′ with the HK metric

and the triplet of symplectic forms ~ω′, respectively:

K0 = (ν + ρ)
(
dθ′ + Θ′

)
, K3 = dρ, K+ = ip′+. (2.41)

Eq. (2.40) reproduces eq. (18) in [39] (after correcting a misprint in this reference, namely

ψ2 should appear outside the bracket).

2.2.3 Darboux coordinates and transition functions

In this subsection we shall relate the twistorial descriptions of the QK manifold M and of

the HK manifold M′ together with the hyperholomorphic line bundle L . The relation is

provided by the formulae (1.5) and (1.6) previewed in the introduction. Here we establish

them from the quotient procedure underlying the QK/HK correspondence.

Let us choose Darboux coordinates (ξΛ, ξ̃Λ, α) on Z such that the isometry ∂θ lifts to

the holomorphic action ∂α on Z. Denoting by
√
v[ the complex coordinate on the fiber of

the Swann bundle C× → S → Z (following the notations of [19, 20]), one can choose the

following combinations

v[, vΛ = v[ξΛ, wΛ =
i

2
ξ̃Λ, w[ =

i

2
α+ 2c log v[ (2.42)

as complex Darboux coordinates on S in complex structure J3, such that ω+
S = dvI ∧ dwI

with I = [, 0, 1, . . . . The coordinate v[ is related to the moment map ~µ by µ+ = −iv[.

We now consider the hyperkähler quotientM′ = S///∂θ at level ~m. A set of complex

coordinates on M′ in complex structure J3 can be obtained by restricting the complex

coordinates vΛ, wΛ to the locus µ+ = const. Thus, we can identify the complex Darboux

coordinates Ξ′ = (ηΛ, µΛ) on M′ with the complex Darboux coordinates Ξ = (ξΛ, ξ̃Λ) on

Z. On the other hand, it was shown in [19] that the coordinate t on the CP 1 fiber of

Z is related to the coordinate ζ on the CP 1 fiber of ZS by t = (π̄2ζ + π1)/(−π̄1ζ + π2),

where (π1, π2) are coordinates on the C2/Z2 fiber of the bundle S → M. Since we work

in complex structure J3 on S, we have π1 = 0 and therefore t = (π̄2/π
2)ζ. Using (3.43)

in [19], we arrive at the following identifications of the Darboux coordinates on Z ′ and Z,

ηΛ
[i](ζ) = ξΛ

[i](t) , µ
[i]
Λ (ζ) = ξ̃

[i]
Λ (t) , t = ζ e−iθ′ . (2.43)

This identification implies that the patches on Z and Z ′ are in one-to-one correspondence

and allows to conclude that the same transition functions and covering which define the

complex contact structure on Z also define the complex symplectic structure on Z ′, i.e.

H
[ij]
HK(Ξ) = H

[ij]
QK(Ξ). (2.44)

In particular, the fact thatM′ admits a rotational isometry follows from the independence

of H
[ij]
HK on the CP 1 coordinate ζ. Moreover, the coordinates (vΛ, xΛ, %Λ) on M′ which
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appear in the integral equations (2.4) for M′ are naturally identified with the coordinates

(Y Λ, AΛ, BΛ) appearing in the integral equations (2.15) for M through

vΛ = Y Λeiθ′ , xΛ = AΛ, %Λ = BΛ. (2.45)

Together with the identification of the CP 1 variables in (2.43), this allows to relate the

coverings Ui and U ′i of the two dual twistor spaces.

Having identified the Darboux coordinates ξΛ = ηΛ, ξ̃Λ = µΛ onM andM′ via (2.45),

it is natural to apply the same identifications to the contact Darboux coordinate α[i]

in (2.15), which gives

α[i](ζ) = Bα +
1

2

∑
j

∮
Cj

dζ ′

2πiζ ′
ζ ′ + ζ

ζ ′ − ζ
(
H

[ij]
HK − ηΛ

[i]∂ηΛ
[i]
H

[ij]
HK

)
+ 4c (θ′ + i log ζ), (2.46)

and ask about its meaning on the HK side. We first restrict to the case with no anomalous

dimension, c = 0. By construction, α[i] is holomorphic in complex structure J(ζ) in the

patch U ′i , and on the overlap of two patches U ′i ∩ U ′j , satisfies

S[ij] ≡ 1

(2π)2

(
α[j] − α[i]

)
=

1

(2π)2

(
H

[ij]
HK − ηΛ

[i]∂ηΛ
[i]
H

[ij]
HK

)
. (2.47)

Thus, Υ[i] ≡ e−2iπα[i]
can be viewed as a holomorphic section of a line bundle LZ′ over

the twistor space Z ′, with transition functions given by S[ij]. The restriction of the line

bundle LZ′ to the fibers of the fibration Z ′ → M′ is trivial, since it admits a nowhere-

vanishing section Υ. By the usual twistor correspondence (see e.g. [52]) this descends to

a hyperholomorphic line bundle L on M′, and therefore to a hyperholomorphic circle

bundle P, whose fiber is parametrized by Bα. The connection λ on L can be obtained

by requiring that the covariant derivative DΥ ≡ (d + 8πiλ)Υ be of type (1,0) in complex

structure J(ζ) [53]. Equivalently,

λ =
1

4

(
∂̄(ζ)α[i] + ∂(ζ)ᾱ[i]

)
, (2.48)

where ∂(ζ) is the Dolbeault derivative in complex structure J(ζ). In particular, the r.h.s.

of (2.48) is independent of ζ, since the connection λ is. Moreover, a Kähler potential12 for

F = dλ in complex structure J(ζ) is given by the log-norm of Υ,

F = i∂(ζ)∂̄(ζ)K
[i]
L (ζ), K

[i]
L (ζ) =

1

2
Imα[i]. (2.49)

Let us now discuss the effect of the anomalous dimension. In this case α[+] and α[−]

are no longer regular in their respective patches, but have a logarithmic singularity 4ic log ζ

at ζ = 0 and ζ = ∞, respectively. This singularity can however be cancelled by singling

out one of the Darboux coordinates, say η0, and defining

Υ[i] ≡ (η0
[i])

8π c[i]e−2iπα[i]
, (2.50)

12It should be noted that 1
2ı

(∂(ζ)−∂̄(ζ))K
[i]
L (ζ) in general differs from λ by a closed, ζ-dependent one-form.
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where c[+] = −c[−] = c and c[i] = 0 otherwise. This defines a section of a holomorphic

line bundle LZ′ on Z ′ which is trivial along the real twistor lines, and therefore again a

hyperholomorphic curvature F = dλ on M′ with Kähler potential

K
[i]
L (ζ) =

1

2
Im
[
α[i] + 4ic[i] log η0

[i]

]
. (2.51)

On the other hand, comparing (2.21) with the expression following from (2.13), one finds

that the moment map ρ of the U(1)R action on M′ coincides with the contact potential

onM, ρ = eΦ. Plugging these results into (2.35), one obtains, in particular, that a Kähler

potential for the HK metric on M′ in complex structure J3 is given by

KM′(0) = 2eΦ − 1

2
lim
ζ→0

Im [α− 4ic log ζ]− c log v0v̄0 . (2.52)

This indeed agrees with (2.5), (2.15) and (2.16) up to a Kähler transformation given by

the last term.

Thus, we see that the twistorial description of the QK manifold M is completely

equivalent to the twistorial description of the HK manifoldM′ endowed with a hyperholo-

morphic circle bundle P → M′ with connection (2.33). The advantage of the description

in terms of (M′,P) is that the twistor space Z ′ is trivially fibered over CP 1, so that the

Darboux coordinates (2.4) are valid globally on Z ′, whereas Z is a non-trivial fibration by

CP 1’s, and therefore does not admit such coordinates globally. In the rest of this paper,

we shall use t and ζ interchangeably for the twistor coordinate on Z ′, and similarly Ξ and

Ξ′ for the Darboux coordinates on M′, keeping in mind the identifications (2.43).

2.3 The QK/HK correspondence in one quaternionic dimension

In this subsection we consider the QK/HK correspondence for one-dimensional quaternionic

manifolds. Recall that in one quaternionic dimension, HK and QK manifolds correspond

to self-dual Einstein spaces with zero and non-zero cosmological constant, respectively.

Moreover, the triplet of hyperkähler forms is self-dual, while hyperholomorphic connections

are connections with anti-self dual curvature. In addition, self-dual Einstein metrics with

one rotational Killing vector field are classified by solutions of the continual Toda equation

∂z∂z̄T + ∂2
ρ eT = 0 . (2.53)

We shall see that the QK/HK correspondence relates QK and HK manifolds associated to

the same solution of (2.53).

2.3.1 Tod Ansatz for one-dimensional QK manifolds with one isometry

On the QK side, self-dual Einstein metrics with one Killing vector field can be cast locally

into the form of Tod’s Ansatz [54]

ds2
M =

1

2

[
P

ρ2

(
dρ2 + 4eTdzdz̄

)
+

1

Pρ2
(dθ + Θ)2

]
, (2.54)
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where (ρ, z, z̄, θ) are local coordinates, with ∂θ coresponding to the Killing vector field.

Here T is a solution of the Toda equation (2.53), P ≡ 1 − 1
2 ρ∂ρT , and Θ is a connection

one-form such that

dΘ = i(∂zPdz − ∂z̄Pdz̄) ∧ dρ− 2i ∂ρ(P eT )dz ∧ dz̄ . (2.55)

This condition is integrable by virtue of (2.53) and gauge transformations of the one-form

Θ can be reabsorbed into redefinitions of the coordinate θ. The self-dual part of the Levi-

Civita connection can be chosen as

p3 = −1

ρ
(dθ + Θ) + Θ′ , p+ =

eT/2

ρ
dz = (p−)∗ , (2.56)

where we introduced another one-form

Θ′ ≡ i

2
(∂zTdz − ∂z̄Tdz̄) . (2.57)

The triplet of quaternionic two-forms (2.8) is then covariantly constant, verifying the

quaternion-Kähler property of the metric.

It will be important to note that the Toda equation (2.53) is invariant under the

symmetry

T (ρ, z, z̄) 7→ T̃ (ρ, z, z̄) = T (ρ+ c, g(z), ḡ(z̄)) + log |dg/dz|2, (2.58)

where g(z) is any holomorphic function of z and c any real constant. The effect of the

function g(z) can be absorbed by a holomorphic change of coordinates, but this is not so

for the constant c. Thus, QK metrics with one Killing vector come (at least locally) in

one-parameter families. For later reference we note that under the symmetry (2.58), the

one-forms Θ and Θ′ vary by

Θ 7→ Θ− cΘ′, Θ′ 7→ Θ′ − Im d log
dg

dz
, (2.59)

where all quantities on the right hand side are understood as functions of ρ+c and g(z). As

a result of (2.59), the curvature of the circle bundle generated by ∂θ receives a contribution

proportional to dΘ′.

2.3.2 Toda Ansatz for one-dimensional HK manifolds with one rotational

isometry

On the HK side, self-dual Ricci-flat metrics with one rotational Killing vector field can be

cast into the Boyer-Finley Ansatz [55–58],

ds2
M′ =

1

2

[
∂ρT

(
dρ2 + 4eTdzdz̄

)
+

4

∂ρT

(
dθ′ + Θ′

)2]
, (2.60)

where T (ρ, z, z̄) is again a solution of the Toda equation (2.53), and Θ′ is the connection

one-form (2.57). We choose

u =

√
∂ρT

2
dρ+

i√
∂ρT

(
dθ′ + Θ′

)
, v = e

1
2
T+iθ′

√
∂ρTdz (2.61)
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as a basis of the space of (1, 0) forms in complex structure J3. The self-dual two-forms

ω′3 = i (u ∧ ū + v ∧ v̄) = dρ ∧
(
dθ′ + Θ′

)
+ i eT∂ρT dz ∧ dz̄ (2.62)

ω′+ = u ∧ v = d
(
eT/2+iθ′

)
∧ dz , ω′− = (ω′+)∗ , (2.63)

are closed by virtue of the Toda equation, and the corresponding complex structures satisfy

the quaternion algebra, verifying the hyperkähler property. They can be integrated to one-

forms

p′3 = ρ
(
dθ′ + Θ′

)
−Θ, p′+ = eT/2+iθ′ dz , (2.64)

where Θ is the same connection which features in the QK metric (2.54). In fact, the one-

forms p′3, p
′
+ are related to the SU(2) connection (2.56) of the QK metric by exactly the

same equations as (2.30).

The Kähler connection p′3 can be further integrated to a Kähler potential [55]. For

this purpose, one must first integrate the Toda potential T (ρ, z, z̄) to a function L(ρ, z, z̄)

such that

∂ρL = T , ∂z∂z̄L+ ∂ρ eT = 0 . (2.65)

This determines the function L up to the addition of the real part of a holomorphic function

of z. We fix this ambiguity by requiring that

Θ = ρΘ′ − i

2
(∂zLdz − ∂z̄L dz̄) . (2.66)

Indeed, any solution of (2.55) can be put in this form. Then the Legendre transform of L
with respect to ρ

KM′(z, z̄, u, ū) = 〈ρ log(uū)− L(ρ, z, z̄)〉ρ , (2.67)

provides a Kähler potential for the HK metric in the complex structure J3 [55], with

complex coordinates z, u. Using (2.65), one verifies that the Kähler potential (2.67) satisfies

the Monge-Ampère equation

∂2
zz̄KM′ ∂

2
uūKM′ − ∂2

zūKM′ ∂
2
uz̄KM′ = 1 (2.68)

and reproduces the metric (2.60) provided one identifies u = eT/2+iθ′ . Moreover, us-

ing (2.66) one may check that it also reproduces the connection (2.64),

p′3 =
1

2i
(∂ − ∂̄)KM′ = ρdθ′ +

i

2
(∂zL dz − ∂z̄Ldz̄) . (2.69)

2.3.3 Hyperholomorphic connection and QK/HK correspondence

Using the general prescription in section 2.2.1 with

τ =
1

2Pρ2
, ν =

2P

∂ρT
, ν + ρ =

2

∂ρT
(2.70)

it is immediate to check that the HK metric (2.60) is related to the QK metric (2.54)

with the same Toda potential under the QK/HK correspondence. The hyperholomorphic

connection afforded by this correspondence is given by (2.28),

λ =
2P

∂ρT

(
dθ′ + Θ′

)
+ Θ. (2.71)
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Indeed, one may check that the curvature F = dλ is a linear combination of anti-self-dual

forms,

F =
2i

(∂ρT )2

[
e−

1
2
T−iθ′∂2

ρzT ū ∧ v − e− 1
2
T+iθ′∂2

ρz̄T u ∧ v̄

+

(
1

2
(∂ρT )2 + e−T∂2

zz̄T

)
(u ∧ ū− v ∧ v̄)

]
,

(2.72)

and derives from the Kähler potential (2.35) where KM′ is given in (2.67).

Under the symmetry (2.58), we note that the HK metric (2.60) is invariant, up to a

change of coordinates (ρ, z, θ′) 7→ (ρ̃ = ρ + c, z̃ = g(z), θ̃′ = θ′ − Im log g′(z)). However,

the hyperholomorphic connection, Kähler connection and Kähler potential do transform,

λ 7→ λ+ cdθ̃′ , p′3 7→ p′3 − cdθ̃′ , KM′ 7→ KM′ − c log(uū) . (2.73)

The parameter c determines how the U(1)R action on M′ lifts to an action on the total

space of the circle bundle P, and leads to a one-parameter family of dual QK metrics.

It is also worth noting that in one quaternionic dimension, unlike in higher dimensions

(cf. (2.27)), the quotients of the QK and HK manifold by their respective U(1) action are

related by a conformal rescaling,

ds2
M/∂θ

∝ ds2
M′//∂θ′

∝ dρ2 + 4eTdz dz̄ . (2.74)

The QK/HK correspondence also provides a relation between the above description

based on the Toda equation and the twistor framework. This can be done using expressions

of the Toda coordinates ρ, z and potential T in terms of the data on the twistor space Z
found in [59] and the dictionary (2.45) between the coordinates on the dual QK and HK

spaces. As a result, one finds that

T = log(vv̄/4), ρ = eΦ, z =
i

2
%+

1

8π

∑
j

∮
Cj

dt

t
∂ξ[i]H

[ij], (2.75)

where Φ given in (2.16) is understood as a function of v and %. Note that here z coincides

with w defined in (2.6). Using these identifications, one can also show that the Kähler

potential obtained by the Legendre transform (2.67) differs from the one given in (2.5) by

a Kähler transformation proportional to the anomalous dimension c log(vv̄/4).

2.3.4 Examples

Let us now illustrate the general formulae obtained in this subsection on three simple

examples of QK manifolds, the sphere S4, hyperbolic space H4, and the ‘perturbative

universal hypermultiplet moduli space’ (a deformation of a non-compact version of CP 2).

The latter is a special case of the local c-map spaces discussed in section 2.4. As it turns

out, these three QK manifolds are dual to the same HK manifold, namely R4 with its flat

metric (with negative definite signature when M = H4), but equipped with a different

hyperholomorphic connection.
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S4 and H4 vs. flat space. The standard round metric on S4 (respectively, the standard

metric on the four-dimensional hyperbolic space H4) can be cast into the Tod Ansatz (2.54)

by choosing

T = 2 log
ε(4ρ− 1)

4 cosh(z + z̄)
, Θ′ = 4Θ = −i tanh(z + z̄)(dz − dz̄) , (2.76)

where ε = 1 for M = S4 and ε = −1 for M = H4, and ρ lies in the range where

ε(4ρ− 1) > 0 [59]. By changing coordinates to

ρ =
1

4
(1 + εR2), z =

1

2
(log tan δ + i(β − γ)) , θ′ = β + γ, (2.77)

the metric on the dual HK space (2.60) can be written as

ds2
M′ = ε

[
dR2 +R2

(
dδ2 + sin2 δ dβ2 + cos2 δ dγ2

)]
, (2.78)

which is recognized as the flat metric on R4 in Hopf coordinates, with positive signature for

ε = 1, or negative signature for ε = −1. The hyperholomorphic connection (2.71) evaluates

to the flat connection

λ = −1

4
dθ′ = −1

4
d(β + γ), F = 0. (2.79)

It may be checked explicitly that it derives from the Kähler potential (2.35), where

KM′ = 2ε|u| cosh(z + z̄) +
1

4
log uū = 2ρ+

1

4
log uū− 1

2
(2.80)

follows by Legendre transform from the potential

L =
1

2
(4ρ− 1)

(
log

ε(4ρ− 1)

4 cosh(z + z̄)
− 1

)
. (2.81)

The twistor space associated toM is Z = CP 3 for ε = 1, or CP 2,1 for ε = −1. In either

cases Z can be described in the language of section 2.1 by three open patches U+,U−,U0

where U± covers a neighborhood of t = ∓εe±(z+z̄) and U0 covers the rest of CP 1, with

transition functions and anomalous dimension [59]

H [0±] = ±1

2
ξ log ξ , c = −1

4
. (2.82)

The Darboux coordinates (2.15) in the patch U0 are then given by

ξ = ε(4ρ− 1)

(
t−1 − t

2 cosh(z + z̄)
− ε tanh(z + z̄)

)
,

ξ̃ = − i

(
2z + log

1 + εte−z−z̄

1− εtez+z̄
)
,

α = 4θ − i log t.

(2.83)

After performing the replacement (2.43), the same formulae provide Darboux coordinates

η, µ on Z ′ and a holomorphic section Υ = e−2πiα of LZ′ . Indeed, one may check that

the one-forms dξ,dξ̃ and dα− 4λ are of type (1,0) in complex structure J(ζ), consistently

with (2.48).
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Perturbative universal hypermultiplet. We now consider the family of QK met-

rics [60]

ds2
M =

ρ+ 2c

4ρ2(ρ+c)
dρ2 +

ρ+ 2c

16ρ2

(
(dζ0)2 + 4(dζ̃0)2

)
+

ρ+ c

64ρ2(ρ+2c)
(dσ + ζ̃0 dζ0 − ζ0 dζ̃0)2,

(2.84)

where c is a real parameter, and ρ lies in the range ρ > max(0,−2c). The metric (2.84)

describes the weak coupling limit of the hypermultiplet moduli space in type IIA string

theory compactified on a rigid Calabi-Yau three-fold X, where c is determined by the Euler

number of X (see section 2.4 and section 3.2 for further details on this set-up). For c = 0,

the metric (2.84) reduces to the SU(2, 1)-invariant metric on CP 1,1 (a non-compact version

of CP 2). The metric (2.84) may be cast into Tod’s Ansatz (2.54) by choosing

z = −1

4
(ζ0 − 2iζ̃0), θ = −1

8
σ, T = log(ρ+ c). (2.85)

Using

P =
ρ+ 2c

2(ρ+ c)
, Θ = − i

2
(zdz̄ − z̄dz) =

1

8
(ζ0dζ̃0 − ζ̃0dζ0) , Θ′ = 0 , (2.86)

we find the dual HK metric (2.60) and hyperholomorphic connection (2.71)

ds2
M′ =

dρ2

2(ρ+ c)
+ 2dz dz̄ + 2(ρ+ c)(dθ′)2, λ = (ρ+ 2c)dθ′ − i

2
(zdz̄ − z̄dz). (2.87)

By changing coordinates to (ρ, z) = (1
2 R

2 − c, R̃eiθ̃′/
√

2), we recognize (2.87) as the flat

metric on R4 in bi-polar coordinates, equipped with a constant anti-self dual field,13

ds2
M′ = dR2 +R2(dθ′)2 + dR̃2 + R̃2(dθ̃′)2, λ =

1

2

(
R2 dθ′ − R̃2 dθ̃′

)
+ cdθ′. (2.88)

One may check that λ derives from the Kähler potential

KL = −zz̄ + uū+ c log uū , (2.89)

related via (2.35) and (2.67) to the function L and Kähler potential KM′

L = (ρ+ c) log(ρ+ c)− ρ− zz̄ , KM′ = zz̄ + uū− c log(uū) . (2.90)

Although the logarithmic term inKM′ andKL can be removed by a Kähler transformation,

it is needed in order to correctly reproduce the hyperholomorphic connection and, as a

consequence, the dual QK metric (2.84).

The twistor space Z can be covered by three patches U+,U− and U0, covering the

north pole (t = 0), south pole (t = ∞), and equator in CP 1, respectively, with transition

functions [19, 59]

H [+0] = − i

4
ξ2 , H [−0] =

i

4
ξ2 , (2.91)

13Since the metric (2.84) has a curvature singularity at ρ = −2c when c < 0, this example shows that the

HK dual of a smooth QK manifold need not be geodesically complete.
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and anomalous dimension c. The Darboux coordinates (2.15) in the patch U0 read

ξ/2 =− (z + z̄) +
√
ρ+ c

(
t−1 − t

)
iξ̃ = z − z̄ +

√
ρ+ c

(
t−1 + t

)
−2α− ξξ̃ =− 8θ + 4i

√
ρ+ c

(
z t−1 + z̄ t

)
− 8ic log t .

(2.92)

Upon performing the replacement (2.43), the same formulae provide Darboux coordinates

η, µ on Z ′ and a holomorphic section Υ = e−2πiα of LZ′ . As in the previous example, one

may check that the one-forms dξ,dξ̃ and dα−4λ are of type (1,0) in complex structure J(ζ).

2.4 Local c-map vs. rigid c-map

In this subsection we demonstrate that the 4n-dimensional QK space M, obtained by the

local c-map procedure [61] from a (2n− 2)-dimensional projective special Kähler manifold

SK with homogeneous prepotential F (XΛ), is dual via the QK/HK correspondence to the

HK manifold M′ obtained by the rigid c-map [62] from the 2n-dimensional rigid special

Kähler manifold with the same (homogeneous) prepotential F (XΛ). The correspondence

continues to hold for the one-loop deformed local c-map [19, 63], which is dual to the same

HK manifold but with a different hyperholomorphic connection. The universal hypermul-

tiplet manifold considered above is a particular example with quadratic prepotential. The

main results in this subsection were obtained in [16].

2.4.1 Local c-map

We start by describing a one-parameter family of QK metrics associated to any special

Kähler space SK. Its relevance to physics comes from the fact that this family describes the

perturbative hypermultiplet moduli space in type II string theory compactified on a Calabi-

Yau threefold (see section 3.2). Let F (XΛ) be a holomorphic function of n coordinates XΛ,

Λ = 0, . . . , n−1, homogeneous of degree 2, which encodes the geometry of SK. The family

of QK metrics, parametrized by a real constant c is given in coordinates ρ, za, ζΛ, ζ̃Λ, σ

by [63, 64]

ds2
M=

ρ+ 2c

4ρ2(ρ+c)
dρ2 +

ρ+ c

2ρ
ds2
SK +

ds2
T

4ρ
+

c

2ρ2
eK |XΛdζ̃Λ − FΛdζΛ|2 +

ρ+ c

64ρ2(ρ+2c)
Dσ2 ,

(2.93)

where ds2
SK = 2Kab̄dzadz̄b is the projective special Kähler metric with Kähler potential

and Kähler connection

K = − log[i(X̄ΛFΛ −XΛF̄Λ)], AK =
i

2
(Kadza −Kādz̄ā), (2.94)

ds2
T is the Kähler metric on the torus T

ds2
T = −1

2
(dζ̃Λ − N̄ΛΛ′dζ

Λ′) ImNΛΣ(dζ̃Σ −NΣΣ′dζ
Σ′), (2.95)
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NΛΛ′ is the ‘Weil period matrix’14

NΛΛ′ = τ̄ΛΛ′ + 2i
[ Im τ ·X]Λ[ Im τ ·X]Λ′

XΣ Im τΣΣ′XΣ′
, τΛΣ = ∂XΛ∂XΣF , (2.96)

and

Dσ ≡ dσ + ζ̃ΛdζΛ − ζΛdζ̃Λ + 8cAK . (2.97)

For prepotentials F arising in Calabi-Yau compactifications, the quadratic forms ImN
and Im τ have signature (0, n) and (n − 1, 1), respectively. In the one-modulus case with

F = − i
4 (X0)2, SK is trivial and the metric (2.93) reduces to (2.84).

The twistor space Z can be read off from the Legendre transform construction

of (2.93) [37, 64]. It can be covered by three patches U+,U−,U0 around the north pole

(t = 0), south pole (t =∞) and equator, respectively, with transition functions

H [+0] = F (ξΛ), H [−0] = F̄ (ξΛ) , (2.98)

and anomalous dimension c. The canonical Darboux coordinates on Z in the patch U0 are

given by [20]

ξΛ = ζΛ + 2eK/2
√
ρ+ c

(
t−1XΛ − t X̄Λ

)
,

ξ̃Λ = ζ̃Λ + 2eK/2
√
ρ+ c

(
t−1FΛ − t F̄Λ

)
,

α̃ = σ + 2eK/2
√
ρ+ c

[
t−1(FΛζ

Λ −XΛζ̃Λ)− t (F̄Λζ
Λ − X̄Λζ̃Λ)

]
− 8ic log t ,

(2.99)

where α̃ is related to α by (1.9). Unlike the latter, the former is invariant under simulta-

neous symplectic transformations of the vectors (XΛ, FΛ) and (ζΛ, ζ̃Λ). The metric (2.93)

is invariant under the Killing vector field ∂σ (as well as translations along ζΛ, ζ̃Λ, which we

ignore in this section). The vector field ∂σ lifts to the holomorphic vector field ∂α on Z.

2.4.2 Rigid c-map

On the other hand, the same prepotential F , via the rigid c-map construction15 produces

the following hyperkähler metric [62]

ds2
M′ =

1

4
ds2
RSK +

1

2
ds2
Trig , (2.100)

where

ds2
RSK = −4 Im τΛΣdZΛdZ̄Σ (2.101)

is the metric on the rigid special Kähler manifold RSK with prepotential F (ZΛ), and

ds2
Trig = −1

2

(
dζ̃Λ − τ̄ΛΣdζΣ

)
Im τΛΛ′

(
dζ̃Λ′ − τΛ′Σ′dζ

Σ′
)

(2.102)

with τΛΣ = ∂ZΛ∂ZΣF (Z) is the flat metric on its cotangent space.

14This terminology is borrowed from the context of Type IIA string theory compactified on a Calabi-Yau,

where NΛΛ′ corresponds to the period matrix of the Weil intermediate Jacobian, while τΛΛ′ is the period

matrix of the Griffiths intermediate Jacobian.
15The rigid c-map construction does not require that F be homogeneous, but we restrict to this case as

it is the one relevant for the QK/HK correspondence.
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For prepotentials F arising in Calabi-Yau compactifications, the metric (2.100) has

signature (4, 4n− 4). In complex structure J3 where ZΛ and

WΛ =
i

2
(ζ̃Λ − τΛΣζ

Σ) (2.103)

are complex coordinates, the Kähler form and holomorphic symplectic form are

ω′3 =
1

2i
Im τΛΣdZΛ ∧dZ̄Σ +

1

2i
[ Im τ−1]ΛΣDWΛ ∧DW̄Σ, ω′+ =

1

2
dZΛ ∧dWΛ, (2.104)

where DWΛ are the (1,0)-forms

DWΛ ≡ dWΛ −
1

2i
∂ZΛτKL[ Im τ−1]KK

′
(WK′ + W̄K′)dZ

L . (2.105)

It is straightforward to check that ω′3, ω
′
± are closed and that the associated complex

structures J3 = ω′3 g
−1, J± = ω′± g

−1 satisfy the quaternion algebra. The Kähler form

ω′3 = i∂∂̄KM′ derives from the Kähler potential

KM′ =
1

4i

(
ZΛḠΛ − Z̄ΛGΛ

)
− 1

4
(WΛ + W̄Λ)[ Im τ−1]ΛΣ(WΣ + W̄Σ), (2.106)

where GΛ ≡ ∂F (ZΛ)/∂ZΛ. The metric (2.100) is invariant under (ZΛ,WΛ) 7→
(eiθ′ ZΛ,WΛ), while the complex structures transform as in (2.19).

The twistor space Z ′ can again be read off from the Legendre transform construction

of (2.100) [65]. It involves three patches U ′+,U ′−,U ′0 around ζ = 0, ζ = ∞ and around the

equator, and the same transition functions as in (2.98),

H [+0] = F (ηΛ), H [−0] = F̄ (ηΛ) . (2.107)

In fact, the Legendre construction of the HK metric (2.100) is closely similar to that of the

Swann bundle S of the QK metric (2.93). To wit, the Legendre construction of S involves

one additional O(2) multiplet η[, known as the superconformal compensator, and the gen-

eralized prepotential for S is just obtained by rescaling the generalized prepotential forM′
by a factor of 1/η[, ensuring the proper homogeneity degree for superconformal invariance.

Thus, in this Legendre construction procedure, the rigid c-map M is obtained from S by

freezing the O(2) multiplet to a fixed value, which determines the complex structure in

which M′ is obtained. Mathematically, this freezing corresponds to performing the HK

quotient with respect to the U(1)A isometry. As a result, the Darboux coordinates (2.4)

obtained from (2.107) are closely similar to (2.99),

ηΛ = ζΛ + ζ−1ZΛ − ζZ̄Λ ,

µΛ = ζ̃Λ + ζ−1GΛ − ζḠΛ .
(2.108)

The use of the same variables ζΛ, ζ̃Λ as in the local c-map metric (2.93) will be justified

in (2.109) below.
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2.4.3 QK/HK-correspondence for c-map spaces

The fact that the local c-mapM and rigid c-mapM′ are described by identical transition

functions (2.98), (2.107) shows, by itself, that M and M′ are dual under the QK/HK

correspondence. To confirm this, we note that the Darboux coordinate systems (2.99)

and (2.108) are related under the general identification (2.43), provided the coordinates

ZΛ,WΛ on M′ are related to ρ, za, ζΛ, ζ̃Λ on M/∂σ via

ZΛ =
√

2Reiθ′+K/2XΛ(za), WΛ =
i

2

(
ζ̃Λ − τΛΣζ

Λ
)
, (2.109)

where, as in (2.88), we define R =
√

2(ρ+ c).

Moreover, by applying the procedure of section 2.2.1 to the QK metric (2.93) with

τ =
ρ+ c

ρ2(ρ+ 2c)
, ν = ρ+ 2c , dθ + Θ = −1

8
Dσ , Θ′ = AK , (2.110)

and using (2.27), (2.109) one finds that the HK metric dual to (2.93) is given by

ds2
M′ = dR2 − 1

2
R2 ds2

SK +R2(dθ′ +AK)2 − 1

2
ds2
T +

1

2R2
|ZΛdζ̃Λ −GΛdζΛ|2 . (2.111)

It is straightforward to check that this agrees with the rigid c-map metric (2.100). The

hyperholomorphic connection afforded by the QK/HK correspondence is easily obtained

from (2.28),

λ = (ρ+ c)(dθ′ +AK) +
1

8

(
ζΛdζ̃Λ − ζ̃ΛdζΛ

)
+ cdθ′ . (2.112)

Its curvature can be expressed as

F =
1

2i
Im τΛΣdZΛ ∧ dZ̄Σ − 1

2i
[ Im τ−1]ΛΣDWΛ ∧DW̄Σ , (2.113)

and is indeed of type (1,1) in all complex structures. It is worthwhile to note that it differs

from the Kähler form in (2.104) by a flip of sign (and a rescaling). Indeed, it can be derived

from the Kähler potential

KL =
1

4i

(
ZΛḠΛ − Z̄ΛGΛ

)
+

1

4
(WΛ + W̄Λ)[ Im τ−1]ΛΣ(WΣ + W̄Σ) (2.114)

in complex structure J3, which differs also from (2.106) by a flip of sign. Furthermore, it

can be checked that the Darboux coordinate

α̃ = σ + 2i
(
ζ−1ZΛWΛ + ζZ̄ΛW̄Λ

)
− 8c

(
θ′ + i log ζ

)
, (2.115)

obtained by replacing t by ζe−iθ′ in the third equation of (2.99), satisfies

λ = −1

2

(
∂̄(ζ)α̃+ ∂(ζ) ¯̃α

)
(2.116)

in any complex structure. This of course agrees with (2.48), since α and −1
2 α̃ differ by a

holomorphic function. Thus, Υ̃ ≡ eiπα̃ provides a holomorphic section of the bundle LZ′ ,

related to Υ = e−2iπα by a (complexified) gauge transformation.
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3 D-instantons, wall-crossing and contact geometry

In this section we apply the general correspondence discussed in section 2 to the geom-

etry of the hypermultiplet moduli space M in N = 2 string vacua. As indicated in the

introduction, the twistorial construction of the QK manifoldM presented in [10] is closely

similar to the twistorial construction of the HK moduli space M′ of the Coulomb branch

of N = 2 rigid field theories in [9]. In this section, we shall show thatM arises by applying

the QK/HK correspondence to the HK manifold M′ constructed in [9] (using the central

charge function and BPS invariants relevant for the string vacuum at hand), equipped with

a suitable hyperholomorphic line bundle L . After reviewing the construction ofM′,M in

section 3.1 and section 3.2, we show in section 3.3 that the requisite line bundle L can be

constructed by lifting the KS-symplectomorphisms Uγ across BPS rays on Z ′ to contact

transformations Vγ on Z (or to gauge transformations of the hyperholomorphic line bundle

L onM′), using the Rogers dilogarithm function. Generalizing the techniques of Kashaev

and Nakanishi [32], building on earlier work by Faddeev and Kashaev [33], we show in sec-

tion 3.4 that the classical limit of the motivic KS wall crossing formula implies a set of func-

tional identities for the Rogers dilogarithm which ensure the consistency of the construction.

In section 3.5 we give a detailed illustration of the general contact wall crossing formula

for the so called pentagon, hexagon and octagon relations for the Rogers dilogarithm.

3.1 Wall-crossing in N = 2 gauge theories and symplectic geometry

In this section we briefly review the construction of the Coulomb branch of N = 2 gauge

theories on R3 × S1 with emphasis on the phenomenon of wall-crossing [9].

3.1.1 The Coulomb branch of four-dimensional N = 2 gauge theories

Let us first focus on the Coulomb branch of an N = 2 gauge theory on R4 with rank n

gauge group G. For simplicity we restrict to the case where the flavor symmetry is trivial

and, as in section 2.4, assume that the theory is superconformal, as it is the case relevant

for the QK/HK correspondence. The moduli space B is an n-dimensional rigid special

Kähler manifold parametrized by n complex valued scalar fields zi, i = 1, . . . , n, specifying

the vevs of the vector multiplet scalars. At a generic point on B the gauge group G is

broken to U(1)n and there are correspondingly n massless gauge fields. The electric and

magnetic charges γ = (pΛ, qΛ) are sections of a local system Γ → B of rank 2n lattices

Γz ∼= Z2n fibered over each point zi ∈ B. The lattice Γz is even and self-dual with respect

to the symplectic inner product 2〈·, ·〉,〈
γ, γ′

〉
= qΛp

′Λ − q′ΛpΛ ∈ Z . (3.1)

In what follows we identify Γ with its dual Γ?.

The geometry of B can be encoded in a holomorphic Lagrangian section

Ω(z) = (ZΛ(z), GΛ(z)), (3.2)

Λ = 0, 1, . . . , n − 1, of the symplectic vector bundle Γ ⊗ C over B. The Lagrangian prop-

erty 〈dΩ, dΩ〉 = 0 implies that GΛ is locally given by ∂ZΛF (Z) for some holomorphic
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function F (ZΛ) known as the prepotential. Superconformal invariance implies that F is

homogeneous of degree 2. The Kähler metric on B derives from the Kähler potential

KB = i〈Ω, Ω̄〉 = i(Z̄ΛGΛ − ZΛḠΛ), (3.3)

while the complexified gauge coupling (or period matrix) is given by the second derivative

of the prepotential, τΛΣ. A key object in the study of N = 2 theories is the central charge

function (or stability data) Z ′ : Γ→ C, defined as the inner product:

Z ′γ(z) = 〈γ,Ω(z)〉 = qΛZ
Λ(z)− pΛGΛ(z). (3.4)

3.1.2 Compactification to three dimensions and the semi-flat metric

Upon compactification on a circle, the low-energy dynamics is described by an N = 4

supersymmetric sigma model on R3, with complex 2n-dimensional hyperkähler target space

M′. Topologically, M′ is a twisted torus bundle Tz →M′ → B over the four-dimensional

Coulomb branch B. The torus fiber Tz = Γ⊗ZR/Z over each point zi ∈ B parametrizes the

holonomies C = (ζΛ, ζ̃Λ) of the electric and magnetic Abelian gauge fields around the circle.

Invariance under large gauge transformations requires that the holonomies are valued in

R/Z, i.e. are periodic under integer translations

ζΛ 7→ ζΛ + nΛ, ζ̃Λ 7→ ζ̃Λ +mΛ, H = (nΛ,mΛ) ∈ Z2n. (3.5)

In the infinite radius limit,16 the HK metric on M′ is given by the rigid c-map met-

ric (2.100), with B playing the role of the rigid special Kähler manifold. In this context,

the rigid c-map metric (2.100) is also known as the ‘semi-flat’ metric on M′.
The corresponding twistor space Z ′ admits a canonical set of complex Darboux coor-

dinates Ξ′ = (ηΛ, µΛ) given in (2.108). Defining, for any γ ∈ Γ,

Ξ′γ ≡ 〈γ,Ξ′〉, Θγ = 〈γ,C〉, (3.6)

these Darboux coordinates can then be written as

Ξ′sfγ ≡ Θγ + ζ−1Z ′γ − ζZ̄ ′γ . (3.7)

The translations (3.5) of (ζΛ, ζ̃Λ) then lift to a holomorphic action on Z ′:

ηΛ 7→ ηΛ + nΛ, µΛ 7→ µΛ +mΛ. (3.8)

This twistorial description of the semi-flat metric will play an important role in what

follows.

While the metric (2.100) is correct in the strict R =∞ limit, at finite radius it fails to

take into account instanton effects arising from D = 4 BPS states whose Euclidean world-

line winds around the circle. These effects are particularly important near singularities in B
where these BPS states become massless, and are expected to resolve the singularity of the

semi-flat metric (2.100). As shown in [9], the corresponding quantum corrections to the HK

metric onM′ are largely dictated by consistency with wall-crossing, to which we now turn.

16We set the radius of the circle to r = 2 using superconformal invariance. The infinite radius limit then

corresponds to the boundary of B where ZΛ is scaled to infinity.
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3.1.3 BPS-instantons and wall-crossing

The Hilbert space H(z) of single-particle states in a four-dimensional gauge theory depends

on the values of the scalar fields zi and is graded by the charge lattice Γ,

H(z) =
⊕
γ∈Γ

Hγ(z). (3.9)

The index (or second helicity supertrace)

Ω(γ, z) = −1

2
TrHγ(z)(2J3)2(−1)2J3 ∈ Z , (3.10)

where J3 is generator of the little group in D = 4, is sensitive only to BPS states, i.e. to

single-particle states whose mass M saturates the bound M ≥ |Z ′γ(z)|, which is determined

by the central charge function (3.4). The index Ω(γ, z) is a locally constant function of

z ∈ B but may jump at co-dimension one subspaces corresponding to walls of marginal

stability:

W (γ1, γ2) = {z ∈ B : arg[Z ′γ1
(z)] = arg[Z ′γ2

(z)]} , (3.11)

where (γ1, γ2) are two primitive charge vectors. Across the wall W (γ1, γ2), BPS bound

states of particles with charges γ(m) lying in the two-dimensional sublattice spanned by γ1

and γ2 become unstable, leading to a jump in the index Ω(γ, z) for γ =
∑

m γ
(m). The jump

of Ω(γ, z) across the wall is determined by the Kontsevich-Soibelman (KS) wall-crossing

formula [11].

The KS wall-crossing formula holds the key to the construction of the twistor space Z ′
for the instanton-corrected metric on M′ as follows [9, 11]. At a fixed point zi on the 4D

Coulomb branch, the instanton correction from a BPS state with total charge γ induces

a discontinuity in the canonical Darboux coordinates Ξ′ across a meridian line `γ on the

twistor fiber, also known as a BPS ray, which extends from the north (ζ = 0) to the south

(ζ =∞) pole at a longitude determined by the phase of the central charge Z ′γ(z):

`γ = {ζ ∈ C× : Z ′γ(z)/ζ ∈ iR−} . (3.12)

The discontinuity in Ξ′ is given by the action of a (twisted) complex symplectomorphism

Uγ which is most conveniently represented in terms of its action on (twisted) holomorphic

Fourier modes X ′γ (with respect to the abelian translation group (3.8)), defined by

X ′γ ≡ σ(γ) e−2πi〈γ,Ξ′〉 . (3.13)

Here σ(γ) is a quadratic refinement of the intersection form on Γ, i.e. a homomorphism

σ : Γ→ U(1) satisfying the cocycle relation

σ(H +H ′) = (−1)〈H,H
′〉 σ(H)σ(H ′) . (3.14)

In the basis where H = (nΛ,mΛ) the quadratic refinement can be parametrized by char-

acteristics Θ = (θΛ, φΛ) ∈ (Γ⊗ R)/Γ such that [66]

σΘ(H) = e−πimΛn
Λ+2πi(mΛθ

Λ−nΛφΛ) . (3.15)

– 30 –



J
H
E
P
1
2
(
2
0
1
1
)
0
2
7

We shall restrict ourselves to the case where σΘ(H) is real, i.e. where the characteristics

are half integer. The action of the symplectomorphism Uγ on X ′γ is then

Uγ(z) : X ′γ′ 7−→ X ′γ′(1−X ′γ)Ω(γ,z)〈γ,γ′〉 . (3.16)

The symplectomorphisms Uγ are naturally identified with the abstract operators fea-

turing in the KS wall-crossing formula, which we are now ready to state: as z ∈ B crosses

the wall W (γ1, γ2), the jump in the index Ω(γ, z) for γ lying in the two-dimensional sub-

lattice spanned by γ1, γ2 should be such that the following product of symplectomorphisms

stays constant:

A(γ1, γ2; z) =
∏

γ=m1γ1+m2γ2
m1,m2≥0

Uγ(z), (3.17)

where the factors are ordered so that arg(Z ′γ) decreases from left to right (corresponding

to a clockwise ordering of the BPS rays `γ). Equivalently, this may be rewritten as∏
m1≥0,m2≥0,
m1/m2↓

Um1γ1+m2γ2(z+) =
∏

m1≥0,m2≥0,
m1/m2↑

Um1γ1+m2γ2(z−), (3.18)

where z± denote points infinitesimally close on opposite sides of the wall. By applying

the Baker-Campbell-Hausdorff formula repeatedly, one may rewrite the product of factors

appearing on the l.h.s. in the opposite order and express the BPS index Ω(γ) on one side

of the wall in terms of its value on the other side (see e.g. [12] for more details). With this

twistorial interpretation of the operators Uγ , it is now clear that the KS formula ensures that

the complex symplectic structure on Z ′ defined by the collection of symplectomorphisms

{Uγ(z), γ ∈ Γ} is unchanged as z ∈ B crosses the wall.

According to a standard procedure, the HK metric can be obtained by ‘parametrizing

the twistor lines’, i.e. determining the Darboux coordinates Ξ′γ in terms of the coordinates

XΛ, ζΛ, ζ̃Λ on M′ and of the coordinate ζ on the twistor fiber, and plugging them into

the complex symplectic two-form (1.1). The gluing conditions (3.16) for the Darboux

coordinates across the BPS rays, as well as the boundary conditions at ζ = 0 and ζ =∞,

can be summarized in the following system of integral equations [9, 21]:

X ′γ = X ′sfγ exp

 1

4πi

∑
γ′

Ω(γ′) 〈γ, γ′〉
∫
`γ′

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′ log
(
1−X ′γ′(ζ ′)

) . (3.19)

Solving (3.19) iteratively with respect to increasing number of instantons (by first plug-

ging in X ′sfγ on the r.h.s. and successively repeating this procedure) generates an infinite

series of multi-instanton corrections to the semi-flat metric. The one-instanton corrections

correspond to the first correction in this iterative scheme and are weighted by a factor

Ω(γ, z)e−4π|Z′γ(z)|−2πi〈γ,C〉, which is discontinuous across walls of marginal stability. Never-

theless, multi-instanton corrections conspire so as to produce a smooth metric across the

walls. In addition, these instanton corrections resolve the codimension 2 singularities arising

from BPS states becoming massless, at least when the BPS state has primitive charge [9].
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3.2 Wall-crossing in N = 2 supergravity and contact geometry

We now turn to wall-crossing in the context of four-dimensional N = 2 supergravities

arising as low-energy limits of type II string compactifications on compact Calabi-

Yau threefolds.

3.2.1 The hypermultiplet sector of N = 2 string vacua

In string theory the analogue of the hyperkähler Coulomb branch M′ is the vector multi-

plet moduli space M in type IIA/B on X × R3 × S1, where X is a compact Calabi-Yau

threefold. By T-duality along the compactification circle, the same spaceM also describes

the hypermultiplet moduli space in type IIB/A on X × R4. In either case local N = 2

supersymmetry requires thatM be quaternion-Kähler [67]. For definiteness we shall use a

terminology adapted to the hypermultiplet sector of type IIA string theory. The dictionary

for translating to other set-ups can be found in [10, 68].

In this language, M is parametrized by the expectation value ρ of the dilaton, the

NS-axion σ (the 4D dual of the B-field), the periods (ζΛ, ζ̃Λ) of the RR 3-form C along

a symplectic basis (AΛ,BΛ) of the (D-brane) charge lattice Γ ≡ H3(X,Z), together with

n − 1 complex scalars za, a = 1, . . . , n − 1, corresponding to coordinates on the complex

structure moduli spaceMX of the Calabi-Yau. In the weak coupling limit, to all orders in

1/ρ, the metric on M is given by the c-map metric (2.93) after identifying the projective

special Kähler manifold SK with the complex structure moduli space MX , and fixing the

parameter c to

c = −χ(X)/(192π) , (3.20)

where χ(X) is the Euler number of X. The twisted torus T is then identified with the

intermediate Jacobian H3(X,R)/H3(X,Z) in the Weil complex structure, with metric

given in (2.95). This torus is in turn fibered over MX with total space JX →MX known

as the relative intermediate Jacobian. Similarly as in field theory the torus coordinates

C ≡ (ζΛ, ζ̃Λ) are periodic with integer periods, due to large gauge transformations of the

RR 3-form. However now the large gauge transformations involve an additional shift of

the NS-axion σ:

ζΛ 7→ ζΛ + nΛ, ζ̃Λ 7→ ζ̃Λ +mΛ, σ 7→ σ + 2κ+ 〈C − 2Θ, H〉 − nΛmΛ, (3.21)

where (nΛ,mΛ, κ) ∈ Z2n × Z. The characteristics Θ = (θΛ, φΛ) ∈ H3(X,R)/H3(X,Z)

appearing in (3.21) are conjecturally identified with those appearing in the quadratic re-

finement (3.15) [69]. Due to the periodicity under σ → σ+ 2, the NS-axion σ parametrizes

the fiber of a circle bundle over JX . Hence, at fixed large value of ρ (weak-coupling limit)

the manifold Mρ is the total space of the fibration [68, 69]:

S1
σ −→ Mρ −→ JX , (3.22)

equipped with a connection Dσ given by (2.97). The fibration (3.22) is the stringy gener-

alization of the twisted torus bundle Tz →M′ → B in N = 2 field theories on R3 × S1.

As explained in section 2.4.1, the perturbative metric (2.93) onM is most conveniently

described in terms of its twistor space, with Darboux coordinates Ξ = (ξΛ, ξ̃Λ) and α̃ given
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in (2.99). In particular, the large gauge transformations (3.21) lift to the holomorphic

action on Z,

ξΛ 7→ ξ + nΛ, ξ̃Λ 7→ ξ̃Λ +mΛ, α̃ 7→ α̃+ 2κ+ 〈Ξ− 2Θ, H〉 − nΛmΛ, (3.23)

leaving invariant the holomorphic Fourier modes

Xγ = σ(γ) e−2πi〈γ,Ξ〉 , (3.24)

which are the direct analogues of the holomorphic Fourier modes (3.13) in the field the-

ory case.

3.2.2 D-brane instantons and wall-crossing

Similarly to the semi-flat metric on M′, the perturbative metric on M is only physically

valid in the strict weak-coupling limit where ρ =∞. At finite values of the coupling there

are additional effects arising from D-brane instantons, i.e. Euclidean D-branes wrapping

supersymmetric cycles in the internal manifold. For type IIA compactified on a Calabi-

Yau X these correspond to D2-branes wrapping special Lagrangian 3-cycles (sLags) in X,

with homology class γ = [qΛAΛ − pΛBΛ] ∈ H3(X,Z). In the weak coupling limit ρ → ∞
and in the one-instanton approximation, corrections to the metric on M are of the form

Ω(γ, z)e−8π|Zγ |/gs−2πi〈γ,C〉, where gs ≡ ρ−1/2 is the string coupling, Zγ(z) is the central

charge function given by a period integral of the holomorphic 3-form Ω3,0 ∈ H3,0(X,C):

Zγ(z) = eK/2
∫
γ

Ω3,0 = eK/2
(
qΛX

Λ(z)− pΛFΛ(z)
)
∈ C , (3.25)

and Ω(γ, z) is the generalized Donaldson-Thomas (DT) invariant, counting the number of

stable sLags in homology class γ. Just like the BPS indices in rigid N = 2 field theories,

the DT invariants Ω(γ) are locally constant functions of za ∈ MX but may jump on

codimension 2 subspaces W (γ1, γ2) defined as in (3.11) (with B replaced by MX), with a

jump determined by the KS wall-crossing formula (3.18). Importantly, D-brane instanton

corrections (unlike NS5-instanton corrections) are independent of the NS-axion σ, and

therefore preserve the Killing vector ∂σ.

The D-instanton corrected metric onM, or rather its twistor space Z, was constructed

in [10, 21], based on consistency with S-duality and mirror symmetry. The construction

is formally identical to the construction of the twistor space Z ′ of instanton corrected

Coulomb branchM′ in N = 2 gauge theories, in particular the holomorphic Fourier modes

Xγ satisfy the same discontinuities (3.16) across BPS rays and integral equations (3.19) as

in the field theory case.17 In addition, the discontinuity of the contact coordinate α was

specified in [10, 21] in terms of the Spence dilogarithm function, ensuring that the combined

transformation of (ξΛ, ξ̃Λ, α̃) preserves the contact one-form. However, this construction

was unsatisfactory on two counts: i) requiring that the change of Darboux coordinates is

a contact transformation determined the shift of α̃ only up to an additive constant, and

there could have been a global obstruction in choosing these constants, and ii) the notion of

17The quadratic refinement σ(γ) was ignored in [10, 21], but has been included later in [68].
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Darboux coordinates being discontinuous across BPS rays ignored the fact that, unlike the

field theory twistor space Z ′, the stringy twistor space Z is not trivially fibered over CP 1,

but rather is a non-trivial CP 1 bundle overM. In the rest of this section, we shall use the

QK/HK correspondence to put the construction of [10, 21] on a more rigorous basis.

3.3 D-brane instantons, QK/HK correspondence and Rogers dilogarithm

As outlined in section 1, our approach is based on the fact that D-instanton corrections pre-

serve the continuous isometry ∂σ corresponding to shifts along the NS-axion σ. Therefore,

the D-instanton corrected quaternion-Kähler metric on M can be equivalently described

in terms of the dual HK metric on M′ and hyperholomorphic line bundle L . At the

level of twistor spaces, the complex contact geometry on the twistor space Z over M is

then equivalently described by the complex symplectic geometry of Z ′, equipped with the

holomorphic line bundle LZ′ .

The results of section 2.2.3 imply that the Darboux coordinates Ξ′ = (ηΛ, µΛ) on Z ′ are

identified with the Darboux coordinates Ξ = (ξΛ, ξ̃Λ) on the reduced twistor space Z/∂α,

while the additional contact coordinate Υ = e−2iπα on Z parametrizes the C×-fiber of

LZ′ → Z ′. The construction of the twistor space Z obtained in [10] can now be rephrased

as follows:

i) The dual twistor space Z ′ is given by the same construction as in N = 2 field theory,

with the appropriate central charge function (3.25) and BPS invariants Ω(γ, z). In

other words, Z ′ is described by complex symplectomorphisms Uγ (3.16) relating the

Darboux coordinates Ξ′ across the BPS rays (3.12).

ii) The holomorphic line bundle LZ′ over Z ′ is defined by transition functions (1.8)

evaluated on the dual coordinates Ξ′ = (ηΛ, µΛ):

fγ =
Υ+

Υ−
= exp

(
i

2π
Sγ(Ξ′)

)
, (3.26)

where Sγ(Ξ′) can be computed from eq. (3.32) in [21] and reads

Sγ(Ξ′) = Ω(γ)

[
Li2
(
X ′γ
)
−2πi qΛη

Λ log
(
1−X ′γ

)
+

1

2
Ω(γ)pΛqΛ

[
log
(
1−X ′γ

)]2]
. (3.27)

To elucidate the transition function (3.27), it is useful to change coordinates and use

the symplectic invariant coordinate α̃ (1.9) in place of α. Eq. (3.27) can then be rewritten

as

∆γα̃ = α̃+ − α̃− =
1

2π2
S̃γ(Ξ′), (3.28)

where the function S̃γ is defined by

S̃γ(Ξ′) = Ω(γ)Lσ(γ)(X ′γ) . (3.29)

Here, Lε(z) is a variant of the Rogers dilogarithm L(z) (1.11) defined by

Lε(z) ≡ Li2(z) +
1

2
log(ε−1z) log(1− z) . (3.30)
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To check that the combination of the shift (3.28) and the symplectomorphism (3.16) pre-

serves the contact one-form

X = −1

2

(
dα̃+

〈
Ξ′,dΞ′

〉 )
, (3.31)

we note that under the complex symplectomorphism Uγ ,

Uγ :
〈
Ξ′, dΞ′

〉
7→

〈
Ξ′, dΞ′

〉
− Ω(γ)

2πi

[
Ξ′γ d log(1−X ′γ)− log(1−X ′γ) dΞ′γ

]
, (3.32)

and use the following properties18 of the function Lε(z):

Lε(z) = L(z)− 1

2
log ε log(1− z) , (3.33)

dLε(z) = −1

2

(
log(1− z)

z
+

log(ε−1z)

1− z

)
dz . (3.34)

It is also important to note that the shift (3.28) is consistent with the invariance under the

large gauge transformations (3.23) thanks to the monodromy of the Rogers dilogarithm

around z = 0. Indeed, consider the action (3.23) on the Darboux coordinates (Ξ′−, α̃−) on

one side of a BPS ray. Under this action, the Fourier mode X ′γ rotates by e−2πi〈γ,H〉, where

H = (nΛ,mΛ) ∈ Z2n. On the other side, the Darboux coordinates (Ξ′+, α̃+) determined

by (3.36) will transform the same way as in (3.23) provided S̃γ transforms as

S̃γ 7→ S̃γ − iπΩ(γ) 〈γ,H〉 log
(
1−X ′γ

)
. (3.35)

This property is indeed ensured by the last term in (3.30).

Postponing the issue of consistency with wall-crossing to the next subsection, we con-

clude that the geometry of the D-instanton corrected hypermultiplet moduli space M is

obtained via the QK/HK correspondence from the HK manifoldM′ and hyperholomorphic

connection λ, whose twistor space Z ′ is governed by the discontinuity conditions

Vγ : (Ξ′, α̃) 7−→
(
Uγ · Ξ′, α̃+

1

2π2
S̃γ(Ξ′)

)
(3.36)

across the BPS ray (3.12). These discontinuities can be viewed either as contact transfor-

mations on Z, or as a combination of a complex symplectomorphism on Z ′ and a gauge

transformation on LZ′ . These gluing conditions together with the regularity conditions

at ζ = 0 and ζ = ∞ can be summarized by the same integral equations (3.19) for the

holomorphic Fourier modes X ′γ , supplemented by an integral formula for the holomorphic

section Υ̃ ≡ eiπα̃ of L ′
Z

Υ̃ = exp

[
iπ
(
σ + ζ−1W − ζW̄

)
− χX

24

(
log ζ − iθ′

)
+

1

8π2

∑
γ

∫
`γ

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′ S̃γ (Ξ)

]
, (3.37)

where we defined

W = GΛζ
Λ − ZΛζ̃Λ +

1

8π2

∑
γ

Ω(γ)Z ′γ(z)

∫
`γ

dζ ′

ζ ′
log
(
1−X ′γ

)
. (3.38)

18See (A.29), (A.32) for a precise statement of these properties.
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This result can be easily translated into an expression for the contact coordinate α̃ on the

QK side using (1.6) and (2.109). This expression is equivalent to the one obtained in [21],

eq. (3.32), but is considerably simpler thanks to the use of the Rogers dilogarithm. By

plugging the solution of (3.19) and (3.37) (after implementing the identifications (2.43))

into the contact one-form (3.31) and matching to (2.7), one may extract the D-instanton

corrections to the perturbative metric (2.93) in a systematic fashion.

3.4 Dilogarithm identities and wall-crossing

We now return to the issue of the consistency of the set of discontinuities (3.36) with

wall-crossing. For the construction to be independent of the value of the moduli z ∈MX ,

the transformations Vγ should satisfy the obvious generalization of the KS wall-crossing

identity, ∏
m1≥0,m2≥0,
m1/m2↓

Vm1γ1+m2γ2(z+) =
∏

m1≥0,m2≥0,
m1/m2↑

Vm1γ1+m2γ2(z−) . (3.39)

By construction this formula reduces to (3.18) when projecting onto the base of the fibration

LZ′ → Z ′. This implies in particular that the left and right-hand sides of (3.39) differ at

most by a translation α̃ → α̃ + ∆α̃ along the C×-fiber, which is given by the cumulative

effect of the translations in (3.36). To present the explicit form of this shift it is useful to

first rewrite the wall-crossing formula (3.39) by assembling all the operators on one side:∏
s

V εs
γs = 1 , (3.40)

where the product runs over all charge vectors appearing in (3.39), and εs is a sign which

changes from +1 on the right of the product (corresponding to the r.h.s. of (3.39)) to −1

on the left (corresponding to the inverse of the l.h.s. of (3.39)). The total translation along

the fiber of LZ′ → Z ′ is now given by

∆α̃ =
1

2π2

∑
s

εs Ω(γs)Lσ(γs)

(
Xγs(s)

)
, (3.41)

where Xγs(s) denotes the Fourier mode Xγs successively acted upon by all preceding gauge

transformations:

Xγs(s) = Uγs−1 ◦ Uγs−2 ◦ · · · ◦ Uγ2 ◦ Uγ1 · Xγs . (3.42)

We thus need to show that the total shift ∆α̃ in (3.41) vanishes modulo the natural peri-

odicity of the variable α̃,

∆α̃ = 0 mod 2 . (3.43)

Fortunately, we shall now see that the motivic wall-crossing formula of Kontsevich and

Soibelman [11] ensures that the non-trivial functional identity (3.43) for the Rogers diloga-

rithm indeed holds. Our strategy will be to consider the semi-classical limit of the motivic

wall-crossing formula, using the techniques of [32, 33].

Recall that the motivic wall-crossing formula pertains to the ‘refined index’ [70] (more

accurately, the protected spin character [71])

Ω(γ, y, za) = Tr ′(−y)2J3 =
∑
n∈Z

(−y)nΩn(γ, za) (3.44)
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(here Tr ′ denotes a trace on the space orthogonal to the bosonic and fermionic translational

zero-modes). Although this quantity is not protected in string theory, it is nevertheless a

useful construct, since its behavior under wall-crossing can be computed using localization

methods which would break down at y = 1. The motivic wall-crossing formula takes a

similar form as (3.18),∏
m1≥0,m2≥0,
m1/m2↓

Ûm1γ1+m2γ2(z+) =
∏

m1≥0,m2≥0,
m1/m2↑

Ûm1γ1+m2γ2(z−) (3.45)

but the operators Ûγ are now given by [11, 72]19

Ûγ =
∏
n∈Z

[
Ψq1/2(ynX̂γ)

]−(−1)nΩn(γ,za)
, y = −q1/2 = eiπ~, (3.46)

where Ψq1/2(x) is the quantum dilogarithm defined in (A.33), and X̂γ are generators of the

quantum torus

X̂γ X̂γ′ = (−y)〈γ,γ
′〉 X̂γ+γ′ . (3.47)

In particular, for a hypermultiplet BPS state with Ω(y) = 1, Ûγ = Ψ−1
q1/2(X̂γ). In the

classical limit y → 1, the adjoint action

Ad Ûγ : X̂γ′ 7→ ÛγX̂γ′(Ûγ)−1 (3.48)

reduces to the usual twisted symplectomorphism (3.16). Thus, the motivic wall-crossing

formula (3.45) implies the numerical wall-crossing formula (3.18). However, we shall see

that it also implies a functional identity for the Rogers dilogarithm, which yields the

stronger contact wall-crossing formula (3.39).

To see this, we proceed as in [32, 33], and realize the generators of the quantum

torus (3.47) as unitary operators acting on L2(R2r):

X̂γ = σ(γ) exp
(
Qi(p̂i + εij û

j)
)
, (3.49)

where γ = Qiei (so Qi contains both the electric and magnetic charges), 〈γ, γ′〉 = εijQ
iQ′j ,

and [
ûi, ûj

]
= [p̂i, p̂j ] = 0 ,

[
p̂i, û

j
]

= −iπ~δij . (3.50)

It will be convenient to use a complete basis of wave functions 〈u| and |p〉 which diagonalize

the action of ûi and p̂i, respectively:

〈u| ûi = ui 〈u| , 〈u| p̂i = −iπ~ ∂ui 〈u| (3.51)

and similarly

p̂i |p〉 = pi |p〉 , ûi |p〉 = iπ~ ∂pi |p〉 . (3.52)

19We use the conventions of [73]. Note that ~ differs by a factor of π from the one used in [32], and that

y differs by a sign from the one used in [71].
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The inner products and completeness relations are

〈u|p〉 = 〈p|u〉−1 = e
i
π~u

ipi ,

∫
du |u〉〈u| = 1

(2π2~)n

∫
dp |p〉〈p| = 1 . (3.53)

We now assume that both sides of (3.45) have a finite number of factors, and rewrite

it in a similar way as (3.40):

Û ≡
N∏
s=1

Û εsγs = 1 , (3.54)

where, as before, εs changes from +1 on the right of the product (corresponding to the

r.h.s. of (3.45)) to −1 on the left (corresponding to the inverse of the l.h.s. of (3.45)).

Thus, for any u, p, we have 〈u|Û |p〉/〈u|p〉 = 1. Inserting a complete basis of states between

each of the factors in (3.54), we arrive, as in eq. (5.10) of [32], at

(2π2~)−n(N−1)

∫
dp(1)du(2)dp(2) . . . du(N)

〈p(0)|u(1)〉
〈u(1)|Û ε1γ1

|p(1)〉
〈u(1)|p(1)〉 〈u(1)|p(1)〉 × 〈p(1)|u(2)〉

〈u(2)|Û εsγ2
|p(2)〉

〈u(2)|p(2)〉 〈u(2)|p(2)〉 (3.55)

· · · × 〈p(N − 1)|u(N)〉
〈u(N)|Û εNγN |p(N)〉
〈u(N)|p(N)〉 〈u(N)|p(N)〉 = 1 ,

where u ≡ u(1) ≡ u(N + 1), p ≡ p(N) ≡ p(0). Now, we use the fact that

〈u|Û εγ |p〉
〈u|p〉 =

∏
n∈Z

(
Ψq1/2

[
ynσ(γ) exp

(
Qi(pi + εiju

j
)])(−1)n+1Ωn(γ) ε

. (3.56)

In the semi-classical limit ~ → 0, the integral (3.55) can be evaluated in the saddle point

approximation. Using (A.36), we arrive at

(2π2~)−n(N−1)

∫
dp(1)du(2)dp(2) . . . du(N) exp

(
1

πi~
S

)
∼ 1 , (3.57)

where

S =

N∑
s=1

[εs
2

Ω(γs)Li2 [σ(γs)Ys]− ui(s)(pi(s)− pi(s− 1))
]

(3.58)

and we defined Ys ≡ eQ
i
s[pi(s)+εijuj(s)].

We thus need to extremize S with respect to pi(s), s = 1 . . . N−1, and ui(s), s = 2 . . . N .

Using (A.3), we arrive at

pi(s)− pi(s− 1) =
1

2
εijQ

j
s εs Ω(γs) log [1− σ(γs)Ys] , s = 2, . . . , N

ui(s)− ui(s+ 1) = − 1

2
Qis εs Ω(γs) log [1− σ(γs)Ys] , s = 1, . . . , N − 1.

(3.59)

From this we conclude that for s = 2, . . . , N the quantity δi(s) ≡ pi(s − 1) − εijuj(s) is

independent of s. Furthermore, we can choose the initial and final states to satisfy the
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same relation, i.e. pi(0) − εiju
j(1) = δi. On the other hand, the same quantity can be

evaluated using the saddle point equations (3.59). Equating the result to δi, one arrives at

the following requirement

N∑
s=1

εijQ
j(s) εs Ω(γs) log [1− σ(γs)Ys] = 0. (3.60)

The left-hand side is recognized as the product of KS factors corresponding to the prod-

uct (3.54) of quantum dilogarithms, provided that we can identify σ(γs)Ys with Xγs . To

establish this identification, note that for all s one has

Qisεiju
j(s) = Qis(pi(s)− δi). (3.61)

Therefore, for arbitrary charge γ we can define Yγ(s) ≡ eQi(2pi(s)−δi) such that Yγs(s) = Ys.
The advantage of these new functions is that for all s they satisfy the following recurrence

relation

Yγ′(s− 1) = Yγ′(s) (1− σ(γs)Ys)εs〈γs,γ
′〉Ω(γs) . (3.62)

This is precisely the symplectomorphism (3.16) for εs = 1, or its inverse for εs = −1, which

allows to identify Xγ = σ(γ)Yγ .

Given these results, in particular the constraint (3.60), it is now easy to show that the

action S at the saddle point can be rewritten as

S =
1

2

N∑
s=1

εs Ω(γs)

[
Li2 (σ(γs)Ys) +

1

2
Qis (2pi(s)− δi) log (1− σ(γs)Ys)

]
. (3.63)

Thus, the vanishing of S at the saddle point leads to the dilogarithm identity

N∑
s=1

εs Ω(γs)Lσ(γs)

(
σ(γs)Ys

)
= 0 . (3.64)

This formula generalizes the “non-simply laced” Rogers dilogarithm identities (B.23),

proven and conjectured in [29–31] using techniques from the theory of cluster categories.

The general identity (3.64) shows that the constant shift (3.41) vanishes identically, at

least on the slice where all the Fourier modes Xγ are real. By analytic continuation,

it will continue to vanish on the universal cover of the complex torus. In the next

subsection, we carry out this analytic continuation in detail for some simple examples of

wall-crossing, where (3.64) reduces to the known 5-term, 6-term and 8-term relations for

the Rogers dilogarithm.

3.5 Analytic continuation of the pentagon, hexagon and octagon identities

In this subsection, we show the consistency of the prescription (3.29) with wall-crossing

in three simple examples which involve only a finite number of BPS states on either side

of the wall. Since wall-crossing involves only a two-dimensional sublattice of the total
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charge lattice, we can restrict to the rank 2 case, and parametrize the complex torus by

two C×-valued variables

x = e2πiξ̃ = eu, y = e−2πiξ = eũ. (3.65)

The KS symplectomorphism (3.16) acts as on x, y as

U (Ω)
p,q : [x, y] 7→ [(1−Xp,q)qΩx, (1−Xp,q)−pΩy], Xp,q ≡ σp,qxpyq , (3.66)

preserving the symplectic form

dξ ∧ dξ̃ =
1

4π2

dx

x
∧ dy

y
. (3.67)

When Ω = 1, we omit the superscript and denote Up,q = U
(1)
p,q . The inverse of U

(Ω)
p,q is U

(−Ω)
p,q .

The contact transformation Vγ ≡ V
(Ω)
p,q is obtained by supplementing the action (3.66) by

a translation of the contact variable α̃ ≡ z/(2π2),

α̃ 7→ α̃+
Ω

2π2
Lσp,q (Xp,q) . (3.68)

More accurately, one should choose logarithms up,q, vp,q, such that

eup,q = Xp,q , evp,q = 1−Xp,q , up,q = pu+ qũ+ 2πicp,q , (3.69)

where cp,q is an element of R/Z such that σp,q = (−1)2cp,q , and express the variation of

α̃ in terms of the enhanced Rogers dilogarithm, whose definition and basic properties are

recalled in appendix A:

α̃ 7→ α̃+
Ω

2π2
[L(up,q, vp,q)− iπcp,qvp,q] . (3.70)

By construction, V
(Ω)
p,q preserves the contact one-form

− 2X = dα̃+ ξ̃dξ − ξdξ̃ =
1

2π2

(
dz +

1

2
(udũ− ũdu)

)
. (3.71)

Moreover, the inverse of V
(Ω)
p,q is V

(−Ω)
p,q .

The simplest example involves a single BPS state of charge γ1 + γ2 with 〈γ1, γ2〉 = 1

decaying into its components of charge γ1 and γ2. The corresponding product of KS

symplectomorphisms is the usual ‘pentagon identity’

U−1
0,1 U

−1
1,0 U0,1 U1,1 U1,0 = 1 , (3.72)

which holds whenever σ1,0σ0,1 = −σ1,1, as required by the quadratic refinement condi-

tion (3.14). The successive images (xs, ys)s=0,...4 of (x0, y0) ≡ (x, y) under the sequence

of symplectomorphisms (3.72) (from right to left), as well as the monomials Xs ≡ X−εsγs

and 1 − Xs are displayed in table 1. Upon extending the range of s from 0, . . . 4 to Z by
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s εs xs ys Xs 1−Xs
0 1 x y

σ1,0

x
x−σ1,0

x

1 1 x y
1−σ1,0x

σ1,1(1−σ1,0x)
xy −σ1,1(1−σ1,0x−σ1,1xy)

xy

2 1
x(1−σ1,0x−σ1,1xy)

1−σ1,0x
y

1−σ1,0x−σ1,1xy
σ0,1(1−σ1,0x−σ1,1xy)

y
(σ1,0x−1)(σ0,1−y)

y

3 −1 x(1− σ0,1y) y
1−σ1,0x−σ1,1xy

σ1,0x(1− σ0,1y) 1− σ1,0x− σ1,1xy

4 −1 x(1− σ0,1y) y σ0,1y 1− σ0,1y

5 1 x y
σ1,0

x
x−σ1,0

x

Table 1. The sequence of symplectomorphisms Uγ corresponding to the pentagon identity.

requiring periodicity modulo 5, one easily checks that Xs satisfies the recursion relation

Xs−1Xs+1 = 1−Xs , (3.73)

with periodicity 5. As we discuss in appendix B, this recursion relation finds its origin in

the periodicity of mutations of the cluster algebra associated to the Dynkin quiver A2. The

cluster algebras associated to B2 and G2 lead to two other simple examples of wall-crossing

described by the ‘hexagon formula’

U
(−2)
0,1 U

(−1)
1,0 U

(2)
0,1U

(1)
1,2U

(2)
1,1U

(1)
1,0 = 1 (3.74)

and the ‘octagon formula’

U
(−3)
0,1 U

(−1)
1,0 U

(3)
0,1U

(1)
1,3U

(3)
1,2U

(1)
2,3U

(3)
1,1U

(1)
1,0 = 1, (3.75)

respectively. Using (3.66), it is straightforward to check that the products of symplec-

tomorphisms (3.74) and (3.75) are indeed equal to the identity. In fact, the monomials

Xs ≡ X−εsγs in all three cases satisfy the recursion relation

Xs−1Xs+1 = (1−Xs)Ωs , (3.76)

with periodicity N = 5, 6, 8 in the A2, B2, G2 cases, respectively. Here Ωs = 1 if s is even

and Ωs = 1, 2, 3 if s is odd, respectively. In the rest of this section, we shall show that

the corresponding product of contact transformations Vγ is indeed the identity for these

three cases.

For this purpose, let us denote by us, vs, u
′
s, v
′
s the logarithms of (Xs)±1 and 1−(Xs)±1:

eus = Xs , evs = 1−Xs , eu
′
s = 1/Xs , ev

′
s = 1− 1/Xs . (3.77)

The logarithms (us, vs) and (u′s, v
′
s) are related by

u′s = −us + 2πiηs, v′s = vs − us + iπηs, (3.78)

where ηs are odd integers. We choose the logarithms (3.77) such that the recursion rela-

tion (3.76) lifts to

Ωs vs = us−1 + us+1 − iπ(ηs−1 + ηs+1) . (3.79)
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Now, according to (3.70), the total variation of z under the composition of the contact

transformations Vγ is given by

∆z =
∑
s:εs=1

Ωs

(
L(u′s, v

′
s)− iπcs v

′
s

)
−

∑
s:εs=−1

Ωs (L(us, vs)− iπcs vs) , (3.80)

where we recall that cs is a half integer chosen such that σ(γs) = (−1)2cs . Since the

symplectomorphisms Uγ compose to the identity, ∆z is constant. We shall now show that

this constant vanishes modulo 4π2, provided the odd integers ηs are suitably chosen. Since

z is related to the contact coordinate α̃ by z = 2π2α̃, this 4π2-ambiguity is consistent with

the mod 2 periodicity of α̃.

To show that (3.80) vanishes modulo 4π2, we combine (A.24) together with (A.18) to

obtain

L(us, vs) + L(u′s, v
′
s) =

iπηs
2

(2vs − us)− π2η2
s + 2L(1) . (3.81)

Now, we use the key property∑
s=0...N−1

ΩsL(us, vs) =
iπ

2

∑
s=0...N−1

Ωsηsvs −N+ L(1) , (3.82)

where N+ is the total BPS index in the “positive chamber”,

N+ =
∑

s=0...N−1
εs=1

Ωs . (3.83)

In the A2 case, the relation (3.82) agrees with (A.22) upon using (A.18). More gener-

ally, (3.82) can be justified as follows. First we note that the differential of the same

sum as on the l.h.s. of (3.82) for the variant L−1(u, v) of Rogers dilogarithm vanishes, i.e.

d
(∑

s ΩsL−1(us, vs)
)

= 0, and hence this sum must be constant:∑
s=0...N−1

ΩsL−1(us, vs) = −N+L(1). (3.84)

The precise value of the constant can be easily verified for the A2, B2, G2-examples analyzed

in section B.5, and in fact for finite Dynkin quivers the formula (3.84) follows directly

from the dilogarithm identities proven in [29–31]. We do not know how to establish the

identity (3.84) in complete generality, but we note that it is consistent with the conjectural

eqs. 6.35 and 6.36 in [29] (reproduced in (B.23)). The desired formula (3.82) now follows

from (3.84) by using eq. (A.32).

Combining (3.80), (3.81) and (3.82), we can rewrite the total variation of z as

∆z =
iπ

2

∑
s:εs=1

Ωs (ηs − 2cs)v
′
s −

iπ

2

∑
s:εs=−1

Ωs (ηs − 2cs)vs +
π2

2

∑
s:εs=1

Ωs (1− η2
s) . (3.85)

Since the ηs are odd, the last term vanishes modulo 4π2. Using the recursion rela-

tion (3.79), (3.85) can be rewritten as

∆z =
iπ

2

N−1∑
s=0

εs(ηs − 2cs)
(
us−1 + us+1 − iπ(ηs−1 + ηs+1)

)
− iπ

2

∑
s:εs=1

Ωs(ηs − 2cs)(us − iπηs) ,

(3.86)
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where the equality holds modulo 4π2. In the special case where 2cs is odd for all s (cor-

responding to σ(γ) = −1 for all BPS states), one may simply choose ηs = 2cs for all s,

so that ∆z indeed vanishes. More generally, however, we find that the condition that ∆z

should vanish (modulo 4π2) for all us, vs subject to (3.79) selects a two-dimensional linear

subspace20 in the space of the ηs. E.g. in the pentagonal case one has

η0 − η3 = 2(c0 − c3), η2 − η4 = 2(c2 − c4), η1 − η3 − η4 = 2(c1 − c3 − c4) (3.87)

while in the hexagonal case we find

η0 − η4 = 2(c0 − c4) , η1 − η4 − η5 = 2(c1 − c4 − c5),

η2 − η4 − 2η5 = 2(c2 − c4 − 2c5), η3 − η5 = 2(c3 − c5),
(3.88)

and, finally, in the octagonal case one has

η0 − η6 = 2(c0 − c6) , η1 − η6 − η7 = 2(c1 − c6 − c7),

η3 − η6 − 2η7 = 2(η3 − c6 − 2c7), η4 − η6 − 3η7 = 2(η4 − c6 − 3c7),

η2 − 2η6 − 3η7 = 2(η2 − 2c6 − 3c7), η5 − η7 = 2(c5 − c7).

(3.89)

In all these cases, a solution with odd ηs’s can be shown to exist for any half integer cs
obeying the quadratic refinement condition (3.14). Thus, at least in these cases, we have

shown that the product of KS symplectomorphisms can be lifted to a product of contact

transformations consistent with wall-crossing.

4 Discussion

In the first part of this work we have presented a general duality between quaternion-Kähler

and hyperkähler manifolds with isometric circle actions. More precisely, this QK/HK

correspondence associates, to a real 4n-dimensional QK manifold M with a quaternionic

S1-isometry, a HK manifold M′ of the same dimension with a rotational S1-isometry,

equipped with a hyperholomorphic circle bundle P and a connection λ. The construction

proceeds by lifting the S1-isometry of M to a triholomorphic isometry of the associated

Swann bundle S →M, and then performing the standard hyperkähler quotient at non-zero

level ~r. The circle bundle P is the level set ~µ = ~r, and λ is induced from the Levi-Cevita

connection on S. P arises as the unit circle bundle in a holomorphic line bundle L over

M′ with unitary connection λ in complex structure determined by ~r. By the usual twistor

correspondence, L can be lifted to a holomorphic line bundle LZ′ on the twistor space Z ′
over M′. Unlike the twistor space Z over M, the former is a trivial product CP 1 ×M′.
Thus, the QK/HK correspondence gives a way to bypass the non-trivial topology of the

twistor space Z, at least for QK spaces with a quaternionic circle action.

In the second part of the paper, we have applied this correspondence to the hyper-

multiplet moduli space M in type II string theory on a Calabi-Yau threefold. In the

absence of NS5-brane or Kaluza-Klein monopole corrections (i.e. for weak coupling, or

20These conditions are essentially equivalent to the flattening conditions in [74, 75].
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large radius), the latter has a quaternionic circle action corresponding to shifts of the NS-

axion (respectively, NUT scalar). We have shown that the twistorial construction of the

D-instanton corrected metric on M given in [10] can be reformulated as the construction

of a certain hyperholomorphic circle bundle P over the dual hyperkähler manifold M′ (or

equivalently, a holomorphic line bundle LZ′ on the twistor space Z ′), whose transition

functions are expressed in terms of the BPS degeneracies Ω(γ) by means of the Rogers

dilogarithm function. The existence of LZ′ is ensured by the semi-classical limit of the

motivic Kontsevich-Soibelman wall-crossing formula. This reformulation clarifies the ge-

ometric origin of the similarity with the construction of the HK metric on the Coulomb

branch of N = 2 gauge theories in 3 dimensions [9]. In particular, it provides a rigorous

basis for the notion of ‘complex contact transformations across BPS rays’ used in [10],

which should be interpreted as transition functions for the holomorphic line bundle LZ′

over the twistor space Z ′ of the HK space M′ which is dual to the QK-space M.

Our work also reveals new aspects of the intriguing links between wall-crossing in

N = 2 theories, dilogarithm identities and cluster algebras, which have emerged in re-

cent years (see [11, 36, 71, 76]). The generalized wall-crossing formula (3.39) for gauge

transformations Vγ acting on LZ′ generates a wealth of new functional identities (3.64)

for the Rogers dilogarithm L(x), which generalize the identities established (or conjec-

tured) in [29–31] using cluster algebra techniques. Moreover, as mentioned in section 1,

our construction of the line bundle LZ′ is very reminiscent of recent work of Fock and Gon-

charov [42], pertaining to the geometric quantization of cluster A-varieties (see section B),

where the Rogers dilogarithm also plays the central role. This suggests that the complex

torus M′(ζ) ∼= (C×)2n, constructed from M via the QK/HK correspondence, should be

identified with a cluster seed torus whose associated cluster variety A is equipped with

a hyperkähler metric. In this picture the holomorphic fibration LZ′ → Z ′ arises as the

prequantum line bundle over the A-cluster variety. Further support for this relation is

found in the fact that the contact one-form X in (3.31) defines a holomorphic connection

on the line bundle LZ′ , whose curvature dX is proportional to the holomorphic symplectic

form ω′(ζ) on the torus M′(ζ), as is characteristic for geometric quantization. The fact

that LZ′ is equipped with a connection goes beyond the standard relation between hyper-

holomorphic connections onM′ and holomorphic line bundles on Z ′, which usually do not

carry a natural connection [52].

It is natural to speculate that other semi-classical limits of the motivic KS formula,

where the quantization parameter q = e2πi~ approaches other roots of unity, may ensure

the existence of higher rank hyperholomorphic bundles on M′ (which would be Morita-

equivalent to the rank 1 bundle constructed in this work). Indeed, on the cluster algebra

side, the limit ~→ s/k ∈ Q produces a holomorphic vector bundle V~ → A of rank k
1
2

rkB,

where B is the exchange matrix of A (see section B.1), and first Chern class proportional

to s. Specializing for simplicity to s = 1 and rkB = 2, holomorphic sections of V~ have a

‘non-Abelian’ Fourier expansion with respect to translations along the cluster seed torus

and along the C×-fiber, which is equivalent to the Fourier expansion

Hk(ξ, ξ̃)Υ
k =

∑
`∈Z/(|k|Z)

∑
m∈Z+`/|k|

Ψ̃k,`(ξ̃ −m)e−2πikmξ̃Υk (4.1)
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of the holomorphic sections of H1(Z,O(2)) which parametrize deformations of M consis-

tent with invariance under the large gauge transformations (3.23) [68, 77–79] (see [80] for

a recent survey). Thus, the hyperholomorphic vector bundle on M′ arising from a variant

of our construction at ~ = 1/k appears to be the right framework to discuss instanton

corrections from k NS5-branes consistently with wall-crossing, at least perturbatively away

from the D-instanton corrected geometry.

Finally, we note that our construction of the hyperholomorphic line bundle L makes

sense also in the context of the Hitchin moduli space of Higgs bundles, and more generally

in the context of N = 2 gauge theories in 3 dimensions. It would be very interesting to

understand their physical significance.
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A Properties of the Rogers and quantum dilogarithms

In this appendix we recall the definition and main properties of the Rogers dilogarithm

and its variants. More details can be found in [81, 82] and references therein. We

also include a brief summary of the most important properties of the (non-compact)

quantum dilogarithm.

A.1 The Rogers dilogarithm and its analytic continuations

The Spence dilogarithm Li2(z) is defined for |z| < 1 by the absolutely convergent series

Li2(z) =
∞∑
n=1

zn

n2
. (A.1)

By analytic continuation, it defines a multi-valued function on C, with a logarithmic branch

cut from z = 1 to z = +∞ (more precisely, a univalued function on the universal cover of

C\{1}) . For a given contour γ extending from 0 to z, Li2(z) is given by

Li2(z) = −
∫
γ

log(1− y)

y
dy, (A.2)

where − log(1− y) is the analytic continuation of the series
∑∞

n=1 y
n/n along the path γ.

In particular,

dLi2(z) = − log(1− z)
z

dz , Li2(0) = 0 , Li2(1) =
π2

6
. (A.3)

The Spence dilogarithm satisfies many functional relations, which however take a more

pleasant form when expressed in terms of the Rogers dilogarithm.
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For |z| < 1 and |1− z| < 1, the Rogers dilogarithm is defined by

L(z) = Li2(z) +
1

2
log z log(1− z) . (A.4)

In particular, L(z) takes the special values

L(0) = 0 , L(1/2) =
π2

12
, L(1) =

π2

6
. (A.5)

By checking that the derivative of the left-hand side vanishes and evaluating L(z) at one

of these special values, one easily shows that for x, y, z close to the real interval [0, 1], such

that all arguments of L below satisfy |z|, |1− z| < 1, the following functional relations are

obeyed:

L(z) + L(1− z) = L(1), (A.6)

L(x)− L
(
x(1− y)

1− xy

)
− L

(
y(1− x)

1− xy

)
+ L(y)− L(xy) = 0 . (A.7)

Using (A.6), one may rewrite this last relation as

L(x) + L

(
1− x
1− xy

)
+ L

(
1− y

1− xy

)
+ L(y) + L(1− xy) = 3L(1) , (A.8)

which has the advantage of making all terms appear with the same sign. Moreover, the

arguments zs of L appearing from left to right in (A.8) satisfy the period 5 recursion

relation

1− zs = zs−1zs+1 . (A.9)

It is possible to extend L(z) from the interval [0, 1] to the real axis such that the above

relations, together with the additional identity L(z)+L(1/z) = 2L(1), are satisfied modulo

3L(1), but we shall not make use of this extension in this work, as we instead need an

analytic extension of L(z) modulo 24L(1) into the full complex plane. Let us also record

the nine-term relation, which follows by applying the five-term relation three times [83]:

L(abc) + L

(
a(b− 1)c

1− ac

)
+ L

(
c(b− a)

1− ac

)
+ L

((
1− 1

a

)
(1− ac)(

1− 1
b

)
(1− bc)

)

+L

(
a(bc− 1)

1− a

)
+ L

(
b

a

)
+ L

(
b− a
1− a

)
+ L

(
− b

1− b

)
= 0 . (A.10)

This reduces to the five-term relation upon setting a = b = x, c = y/x.

By analytic continuation, the Rogers dilogarithm extends to a multi-valued function

on C, with two logarithmic branch cuts, from z = 1 to z = +∞ and from z = 0 to

z = −∞ (more precisely, a univalued function on the universal cover of C\{0, 1}). For a

given contour γ extending from 1/2 to z, L(z) is given by

L(z) =
π2

12
− 1

2

∫
γ

[
log(1− y)

y
+

log(y)

1− y

]
dy, (A.11)
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where log(1 − y), log(y) are analytically continued away from y = 1/2. In particular, the

derivative of L(z) is given by

dL(z) = −1

2

[
log(1− z)

z
+

log(z)

1− z

]
dz. (A.12)

If one is interested only in the value of L(z) modulo Z(2) ≡ (2πi)2Z = 24L(1)Z (which

suffices for the purpose of this work), one may trade the universal cover of C\{0, 1,∞} for

the Abelian cover Ŷ+ of Y+ = CP 1\{0, 1,∞}, defined as

Ŷ+ = {(u, v) ∈ C2 | eu + ev = 1}, (A.13)

with covering map Ŷ+ → Y+ given by

(u, v) 7→ eu = z = 1− ev . (A.14)

In other words, u and v run over all possible choices of logarithms of z and 1 − z. The

analytically continued Rogers dilogarithm (sometimes referred to as ‘enhanced’) is then

the univalued function

L : Ŷ+ → C/Z(2), (A.15)

defined by

L(u, v) = Li2(eu) +
1

2
uv . (A.16)

The enhanced Rogers dilogarithm is ambiguous modulo Z(2), due to the fact that the

derivative

dL =
1

2
(udv − vdu) (A.17)

(subject to the relation (A.13)) has simple poles at v ∈ 2πiZ with residues belonging

to 2πiZ. Under covering transformations Ŷ+ → Y+ (i.e. upon changing the choice of

logarithms of z and 1− z) one has

L(u+ 2πir, v + 2πis) = L(u, v) + iπ(rv − su) + 2π2rs . (A.18)

This construction of the enhanced Rogers dilogarithm L(u, v) is essentially identical

to the one presented in [74, 75] in the context of Chern-Simons invariants of hyperbolic

three-manifolds. We recall that the Bloch-Wigner dilogarithm D(u, v), defined by

D(u, v) = Im

[
L(u, v) +

1

2
ūv

]
, (A.19)

is invariant under the covering transformations (A.18), so descends to a univalued function

D : Y+ → R, which computes the volume of an ideal hyperbolic tetrahedron with vertices

at 0, 1,∞, z. In contrast, the real part of L/(2π) is inherently ambiguous modulo 2π,

as it computes the Chern-Simons invariant of the same tetrahedron (see e.g. [74] and

references therein).
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At the special points (0,∞) and (∞, 0), corresponding to z = 1 and z = 0, the enhanced

Rogers dilogarithm is continuous and takes the values

L(0,∞) = L(1) =
π2

6
, L(∞, 0) = L(0) = 0 . (A.20)

The functional relations (A.6), (A.8), transcribed as

L(u, v) + L(v, u) = L(1) mod Z(2), (A.21)

vs = us−1 + us+1 ⇒
∑

smod 5

L(us, vs) = 3L(1) mod Z(2) , (A.22)

now hold throughout the Abelian cover Ŷ+, as one can check by differentiation and evalu-

ating the l.h.s at

(u1, v1) = (u4, v4) = (∞, 0), (u2, v2) = (u3, v3) = (u5, v5) = (0,∞). (A.23)

In addition, the analogue of the functional relation L(z) + L(1/z) = 2L(1) alluded to

below (A.9) becomes

L(u, v) + L(−u, v − u+ iπη) = 2L(1) +
iπη

2
u mod Z(2) , (A.24)

where η is any odd integer (as is necessary for the argument to belong to Ŷ+).

As explained in section 3.2, it is also advantageous to introduce a variant of the Rogers

dilogarithm defined for |z|, 1− |z| < 1 by

L−1(−z) = Li2(−z) +
1

2
log(z) log(1 + z) . (A.25)

As before, one may analytically continue this to a function L−1 : Ŷ− → C/Z(2), defined

by

L−1(û, v̂) = Li2
(
eû
)

+
1

2
ûv̂ (A.26)

where

Ŷ− = {(u, v) ∈ C2 | eû − ev̂ = −1}, (A.27)

is the Abelian cover of Y− = CP 1\{0,−1,∞}, with covering map

z = −eû = ev̂ − 1 . (A.28)

The function L−1(û, v̂) satisfies properties analogous to (A.17), (A.24), (A.22):

dL−1(û, v̂) = −1

2
(ûdv̂ − v̂dû) mod Z(2) , (A.29)

L−1(û, v̂) + L−1(−û, v̂ − û) = −L(1) mod Z(2) , (A.30)

v̂s = ûs−1 + ûs+1 ⇒
∑

smod 5

L(ûs, v̂s) = −3L(1) mod Z(2) . (A.31)

The relation between L(u, v) and L(û, v̂) is given by

û = u− iπη , v̂ = v ⇒ L−1(û, v̂) = L(u, v)− iπη

2
v mod Z(2) (A.32)

whenever ηs is an odd integer.
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A.2 The quantum dilogarithm

We now turn to the quantum dilogarithm, defined by [33]

Ψq1/2(x) =

∞∏
n=0

(1 + qn+ 1
2x)−1 =

1(
−xq1/2; q

)
∞

(A.33)

where (x; q)∞ ≡
∏∞
n=0(1− qnx). Alternatively,

Ψq1/2(x) =

∞∑
n=0

(−q1/2x)n

(1− q) · · · (1− qn)
= exp

[ ∞∑
n=1

(−q1/2x)n

n(1− qn)

]
. (A.34)

The main property of the quantum dilogarithm is the pentagon identity

Ψq1/2(x1)Ψq1/2(x2) = Ψq1/2(x2)Ψq1/2(x12)Ψq1/2(x1), (A.35)

where x1x2 = qx2x1 and x12 = q−1/2x1x2. In the classical limit ~ → 0, q1/2 = −eiπ~, the

quantum dilogarithm reduces to the ordinary dilogarithm,

Ψq1/2(x) = exp

(
− 1

2iπ~
Li2(x) +

iπ~x
12(1− x)

+O(~3)

)
. (A.36)

In this limit, the pentagon identity (A.35) reduces to the five-term relation (A.7) [33].

B Cluster varieties and dilogarithm identities

In this appendix we will introduce and apply some technology from the theory of clus-

ter algebras and cluster varieties, as developed by Fomin-Zelevinsky [84, 85] and Fock-

Goncharov [27, 34]. This formalism gives powerful algorithmic methods of finding dilog-

arithm identities, and consequently wall crossing formulas. We begin by reviewing some

basic properties of cluster varieties and cluster mutations. In section B.3 we discuss cluster

transformations over a tropical semi-field, a point of view which elucidates the periodicity

properties of sequences of cluster transformations. In section B.4 we introduce the notion

of a framed quiver, which is useful for extracting a particular class of (quasi-)periodic mu-

tation sequences, called ν-periods. This allows us to give an explicit expression for the

Kontsevich-Soibelman symplectomorphisms Uγ in terms of certain birational cluster auto-

morphisms, conjugated by products of simple monomial transformations. In section B.5

we discuss some explicit examples corresponding to the cluster algebras of type A2, B2 and

G2, which are associated with the pentagon, hexagon and octagon dilogarithm identities

studied in section 3.5.

B.1 Cluster varieties

The defining data for a cluster variety (or, more generally, a cluster ensemble) consists of

a finite set I of cardinality n, a subset I0 ⊂ I of cardinality n0, a Q-valued function Bij
on I × I, such that Bij ∈ Z unless (i, j) ∈ I0 × I0, and a set of coprime integers di such

that the function B̂ij = Bij/dj is antisymmetric [27]. The function Bij is often called the
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exchange matrix. It is customary to represent this data by a quiver diagram Q with n

nodes, |Bij/dj | arrows going from node i to node j if Bij > 0, or from j to i if Bij < 0, and

with each node decorated by the integer di. The nodes associated to I0 are called frozen

nodes. In addition, we introduce a set of distinguished C×-coordinates {xi}i∈I and {ai}i∈I
on two complex n-dimensional tori X and A, which respectively carry a Poisson structure

P = d−1
j Bijxixj

∂

∂xi

∂

∂xj
, (B.1)

and a pre-symplectic structure (i.e. possibly degenerate) given by the closed 2-form

ω = diBij
dai
ai
∧ daj
aj

. (B.2)

The data (I, I0,Bij , di,X ,A) together with the distinguished coordinates (xi, ai) are some-

times called the initial seed.

For any initial seed (I, I0,Bij , di,X ,A;xi, ai) and any choice of k ∈ I\I0, one may

construct a new seed (I, I0,B′ij , di,X ′,A′;x′i, a′i) with the same set of nodes and multipliers,

but with a new exchange matrix given by the explicit formula

B′ij =


−Bij i = k or j = k

Bij BikBkj < 0

Bij + Bik|Bkj | BikBkj ≥ 0

, d′i = di , (B.3)

and new distinguished C×-coordinates related by the birational transformation

x′i =

{
xi
(
1 + x

−sgn(Bik)
k

)−Bik i 6= k

x−1
k i = k

, a′i =

{
ai i 6= k

a−1
k

(
A+
k + A−k

)
i = k

, (B.4)

where we defined

A+
k ≡

∏
j:Bkj>0

a
Bkj
j , A−k ≡

∏
j:Bkj<0

a
−Bkj
j . (B.5)

The combined transformation (B.3), (B.4) is involutive and preserves the Poisson struc-

ture (B.1) and closed 2-form (B.2). Such transformations were first introduced by Fomin

and Zelevinsky [84, 85]21 and are called cluster transformations. We shall denote the com-

bination of (B.3) and (B.4) by µk, and refer to it as the mutation along the node k. Since

I, I0, di are invariant under mutation, we shall henceforth omit them.

Starting from an initial seed (Bij(0),X (0),A(0);xi(0), ai(0)) and applying sequences

of mutations, we arrive at a collection of seeds (Bij(s),X (s),A(s);xi(s), ai(s)) attached to

the vertices of an ‘exchange graph’, whose edges correspond to mutations. The seed tori

(X (s),A(s)) together with the mutations µk between neighboring vertices of the exchange

graph form an atlas for the cluster varieties (X ,A) introduced by Fock and Goncharov.

21In [84, 85],the coordinates ai and xi are called cluster variables and principal coefficients and are denoted

by xi and yi, respectively. The action on the variables ai given in (B.4) corresponds to the case where the

coefficients are set to one; moreover, the exchange matrix in [84, 85] is the transpose of the one in [27],

whose conventions we follow.
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The former carries a Poisson structure given locally by (B.1), while the latter carries a

(possibly degenerate) symplectic structure given locally by (B.2). In addition, there exists

a homomorphism from A to X , which maps the local coordinates on seed tori as

p : (ai)i∈I 7→ (xi)i∈I , xi =
∏
j∈I

a
Bij
j = A+

i /A
−
i . (B.6)

The fibers of the map p are the leaves of the null-foliation of the 2-form ω, while the

subtorus p(A) is a symplectic leaf of the Poisson structure P . The spaces A and X are

in some sense “Langlands-dual” to each other [27]. It is worth noting that the cluster

variables ai(s) satisfy the Laurent phenomenon, in that they always turn out to be finite

Laurent polynomials in the initial cluster variables ai(0) [86].

B.2 Monomial transformations and birational automorphisms

In order to relate the cluster transformations (B.3) with the KS symplectomorphisms Uγ
of section 3.1, the first step is to decompose the birational transformation (B.3) into a

‘birational automorphism’, which preserves the symplectic form (B.2) for fixed exchange

matrix Bij , and a ‘monomial map’, which acts by a simple change of basis on the seed tori.

For this purpose, it is useful to rewrite x′i (i 6= k) and a′k in (B.4) as

x′i = xi x
[Bik]+
k

(
1 + xk

)−Bik = xi x
[−Bik]+
k

(
1 + 1/xk

)−Bik (B.7)

a′k = a−1
k A−k

(
1 + xk

)
= a−1

k A+
k

(
1 + 1/xk

)
, (B.8)

where we defined [z]+ = max(0, z) and identified xk with p(ak) = A+
k /A

−
k in the second

line. It is then apparent that µk can be decomposed in two different ways,

µk = τ+ ◦ µk,+ = τ− ◦ µk,− , (B.9)

where µk,ε, ε = ±1, acts via the birational map

µk,ε : xi 7→
{
xi
(
1 + xεk

)−Bik i 6= k

xk i = k
, ai 7→

{
ai i 6= k

ak
(
1 + xεk

)−1
i = k

, (B.10)

keeping Bij unchanged, while τε acts by the monomial map

τk,ε : xi 7→
{
xi x

[εBik]+
k i 6= k

1/xk i = k
, ai 7→

{
ai i 6= k

A−εk /ak i = k
(B.11)

accompanied by the transformation Bij 7→ B′ij in (B.3). Importantly, µk,ε preserves the

symplectic form (B.2), while τk,ε is still involutive.

B.3 Tropicalization and framed quivers

It is important that the action of µk on xi does not involve any subtraction, implying that

the variables xi(s) effectively lie in the universal semi-field spanned by subtraction-free

rational expressions in the initial variables xi(0). Another natural semi-field is the tropical
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semi-field Trop({xi(0)}), i.e. the free Abelian multiplicative group generated by elements

xi(0) with the usual addition rule + replaced by the tropical addition ⊕, defined by∏
j

x
aj
j ⊕

∏
j

x
bj
j :=

∏
j

x
min(aj ,bj)
j . (B.12)

There is a canonical homomorphism x 7→ xT from the universal semi-field to the tropi-

cal semi-field, obtained by replacing xi(s) by its leading Laurent monomial in the limit

where all the initial variables xi(0) are scaled to zero at the same rate. This homomor-

phism, sometimes known as the tropicalization, commutes with the mutations, and one

may therefore ask how mutations act at the tropical level. It turns out that at each step,

the tropicalisation of the variable xi(s) is a monomial of either positive degree in all ini-

tial variables xi(0), or of negative degree in all xi(0) (Conj. 5.4 and Prop. 5.6 in [85])).

Equivalently, the ‘c-vectors’ c(s) with components

ci(s) =

(
∂ log xTi (s)

∂ log xTj (0)

)
j∈I

(B.13)

satisfy the ‘sign-coherence’ property, i.e. all non-zero entries in the vector c(s) have the

same sign [87]. Following the terminology of [32], we refer to this sign as the tropical sign

of xi(s), and denote it by ε(xi(s)). The sign-coherence property of the c-vectors will play

a crucial role below for establishing dilogarithm identities.

Upon replacing + by ⊕ in the birational automorphism (B.10) and choosing ε =

ε(xk), it is then clear that µk,ε(xk) acts trivially at the tropical level, and therefore the

tropicalization of µk reduces to the action of the monomial map τk,ε(xk):

µTk ≡ τk,ε(xk) : xi 7→
{
xi x

[ε(xk)Bik]+
k i 6= k,

1/xk i = k
, ai 7→

{
ai i 6= k

A−ε(xk)
k /ak i = k.

(B.14)

Correspondingly, the action on the c-vectors is obtained by

logµTk : ci 7→
{
ci + [ε(xk)Bik]+ck i 6= k

−ck i = k
, (B.15)

which provides the gluing conditions for the tropical variety in [27]. As we shall see momen-

tarily, the birational automorphism µk,ε(xk), suitably conjugated by a product of monomial

transformations, is the one to be identified with the KS symplectomorphism Uγ .

A useful way to compute the tropical variables xTi (s) is to extend the set of nodes

Iu = I\I0 by a copy I ′u, and extend the exchange matrix B into B̃ such that B̃ij = Bij
when i, j ∈ I, Bii′ = Bi′i = 1 between a node in i ∈ Iu and its copy in i′ ∈ I ′u, and Bi′i′ = 0

for i′, j′ ∈ I ′u. The full set of nodes is then Ĩ = Iu ∪ I ′u ∪ I0, where Ĩ0 = I ′u ∪ I0 are frozen

(this construction is in fact the main reason for introducing the notion of frozen node).

We refer to B̃ as the framed exchange matrix, and to the corresponding quiver Q̃ as the

framed quiver. One can then show that the c-vectors are given by the off-diagonal part of

the framed exchange matrix, namely ci(s) = B̃ii′ei′ where ei′ is the unit vector in the i′-th

direction [85]. In particular, the sign ε(xi(s)) can be read off straightforwardly from the

sign of the i-th row in the upper-right hand block of the framed exchange matrix (which

is independent of the column by the sign-coherence property).
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B.4 Wall crossing and dilogarithm identities from ν-periods

For a sequence of N mutations µk ≡ µkN ◦ · · · ◦µk2 ◦µk1 with k = (k1, k2, . . . kn) ∈ (I\I0)N ,

we shall denote by

(Bij(s), xi(s), ai(s)) = µks(Bij(s− 1), xi(s− 1), ai(s− 1)) (B.16)

the associated sequence of seeds, with (Bij(0), xi(0), ai(0)) corresponding as before to the

initial seed. More generally, for s ≤ N we denote by ks = (k1, . . . , ks) the subsequence

formed by the first s mutations. It is sometimes the case that a sequence of N mutations

µk composes to the identity transformation, µk(Bij , xi, ai) = (Bij , xi, ai). More generally,

it may happen that

µk(Bij , xi, ai) = ν(Bij , xi, ai), (B.17)

where ν is an automorphism of the seed, i.e. a permutation of the nodes i ∈ I (with the

corresponding action on Bij , xi, ai) which fixes the frozen nodes i ∈ I0. Such sequences

of mutations are called ν-periods of length N . An important theorem asserts that µk is

ν-periodic if and only if its tropicalization µTk is ν-periodic [30, 88].

The ν-periods provide a powerful source of wall-crossing identities, as we will now

demonstrate. As proposed in [11] and further elaborated upon in [71, 89], we can identify

the s:th birational automorphism22 inside the sequence µk with a KS symplectomorphism

Uγs for a suitable charge vector γs and index Ω(s), up to conjugation by a product of

monomial maps. More precisely, let {ei} be an integer basis of vectors of the “charge

lattice” Γ equipped with the antisymmetric product23

〈ei, ej〉 = Bij/dj , (B.18)

let µTks be the following product of monomial transformations

µTks = µTks−1
◦ · · · ◦ µTk1

, (B.19)

and let γs be the c-vector cks(s). Now denote an arbitrary monomial by Yγ =
∏
xcii where

ci are the components of the c-vector c ≡ γ. One may then show that the birational

automorphism µks,ε(xk(s)), conjugated by µTks , acts on any monomial Yγ′ according to

(µTks)
−1 ◦ µks,ε(xk(s)) ◦ µTks : Yγ′ 7−→ Yγ′ (1 + Yγs)dksεs〈γs,γ

′〉 , (B.20)

where εs = ε(xks(s)) and Yγs = (xks(s))
εs . If we now identify Yγ ≡ σ(γ)−1Xγ as in

section 3.4, this agrees precisely with the KS symplectomorphism Uγs defined in (3.16)

when εs = 1, or with its inverse (Uγs)
−1 when εs = −1, in the special case where the BPS

index and quadratic refinement are taken to be

Ω(γs) = dks , σ(γs) = −1 . (B.21)

22We consider only the action of µks,ε(xks ) on xi, the variables ai seem to play no role at this stage.
23Although the integrality of this antisymmetric product does not seem to be guaranteed by the axioms,

it appears to hold in all cases of interest.
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Under this identification, the periodicity ν of the mutation sequence µk and of its tropi-

calization µTk imply that the following product is the identity:

N−1∏
s=0

U εsγs = 1, (B.22)

where the product is ordered from right to left. Moreover, it was shown24 in [29] that the

following dilogarithm identity holds:

N−1∑
s=0

εs dks L

(
(xks(s))

εs

1 + (xks(s))
εs

)
= 0 . (B.23)

This is recognized as a special case of the general formula (3.64).

B.5 Wall-crossing and dilogarithm identities for rank 2 Dynkin quivers

To illustrate the general construction, we now consider the rank 2 cases with seed

I = {1, 2} , I0 = ∅ , B±ij = ±
(

0 c

−1 0

)
, (d1, d2) = (1, c) , (B.24)

where c = 1, 2 or 3. The associated quiver then corresponds to the Dynkin diagram of A2,

B2 or G2, respectively. A mutation with respect to either of the nodes maps B±ij to B∓ij .
The framed exchange matrix corresponding to the choice of lower sign in (B.24), which we

shall take as the initial seed, is then

Ĩ = {1, 2, 3, 4}, Ĩ0 = {3, 4}, B̃−ij =


0 −c 1 0

1 0 0 1

−1 0 0 0

0 −1 0 0

 , (di) = (1, c, 1, 1). (B.25)

The upper-right 2 × 2 block of B(s) then gives the tropicalization of the variables xi(s)

as row vectors. We shall denote by µ±i the mutations with respect to the node i for the

exchange matrix ±Bij . Moreover, for convenience we define

µ±]i = µ±i,+, µ±[i = µ±i,−, µ′±i = τi,+, µ′′±i = τi,−. (B.26)

Clearly µ′′±i = µ′∓i when acting on the x-variables, while µ+
i = µ−i when acting on the

a-variables. The action of these transformations is summarized in table 2.

B.5.1 Example: A2

We now consider the A2 case, corresponding to c = 1 in (B.24). The sequence of five

mutations µk = µ−1 µ
+
2 µ
−
1 µ

+
2 µ
−
1 is a ν-period of length 5, where ν exchanges the nodes 1

and 2, as is evident from table 3. According to a general result of [30, 88] quoted above, the

24This statement was proven for antisymmetric exchange matrix Bij , and conjectured to hold in the

antisymmetrizable case.
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a1 a2 x1 x2

µ+
1

1+ac2
a1

a2
1
x1

x2(1 + x1)

µ]+1
a1

1+ac2
a2 x1 x2(1 + x1)

µ′+1 1/a1 a2 1/x1 x2

µ[+1
a1

1+a−c2

a2 x1 x2(1 + 1/x1)

µ′′+1 a1/a
c
2 a2 1/x1 x1x2

µ+
2 a1

1+a1
a2

x1
(1+1/x2)c

1
x2

µ]+2 a1
a1a2
1+a1

x1/(1 + x2)c x2

µ′+2 a1 a1/a2 x1x
c
2 1/x2

µ[+2 a1
a2

1+a1

x1
(1+1/x2)c x2

µ′′+2 a1 a1a2 x1 1/x2

µ−1
1+ac2
a1

a2
1
x1

x1x2
1+x1

µ]−1
a1

1+a−c2

a2 x1 x2/(1 + x1)

µ′−1 ac2/a1 a2 1/x1 x1x2

µ[−1
a1

1+ac2
a2 x1

x1x2
1+x1

µ′′−1 1/a1 a2 1/x1 x2

µ−2 a1
1+a1
a2

x1(1 + x2)c 1
x2

µ]−2 a1
a2

1+a1
x1(1 + x2)c x2

µ′−2 a1 1/a2 x1 1/x2

µ[−2 a1
a1a2
1+a1

x1(1 + 1/x2)c x2

µ′′−2 a1 a2/a1 x1x
c
2 1/x2

Table 2. Mutation sequences for rank 2 quivers of type A2, B2, G2, corresponding to c = 1, 2, 3.

periodicity of µk follows from the periodicity of its tropicalization, i.e. from the identity

(1+)(2−)(1−)(2+)(1−) = ν, (B.27)

where we abbreviated the monomial transformation µ′±i = µ′′∓i acting on the x-variables

by (i±). The tropical sequence is

xTks(s) = (x1, x1x2, x2, 1/x1, 1/x2), (B.28)

so the tropical sign sequence is εs = (+,+,+,−,−). Thus, one may construct the sequence

of symplectomorphisms

U1,0 = µ]−1 ,

U1,1 = (1−)µ]+2 (1−),

U0,1 = (1−)(2+)µ]−1 (2+)(1−), (B.29)

U−1
1,0 = (1−)(2+)(1−)µ[+2 (1−)(2+)(1−),

U−1
0,1 = (1−)(2+)(1−)(2−)µ[−1 (2−)(1−)(2+)(1−)

so that the ν-periodicity of µk translates exactly into the pentagonal identity (3.72).
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s B̂ij(s) x1(s) x2(s) xT1 (s) xT2 (s) a1(s) a2(s)

0


0 −1 1 0

1 0 0 1

−1 0 0 0

0 −1 0 0

 x1 x2 x1 x2 a1 a2

1


0 1 −1 0

−1 0 1 1

1 −1 0 0

0 −1 0 0

 1
x1

x1x2
1+x1

1/x1 x1x2
1+a2
a1

a2

2


0 −1 0 1

1 0 −1 −1

0 1 0 0

−1 1 0 0

 x2
1+x1x2+x1

1+x1
x1x2

x2 1/x1x2
1+a2
a1

1+a1+a2
a1a2

3


0 1 0 −1

−1 0 −1 0

0 1 0 0

1 0 0 0

 1+x1x2+x1
x2

1
x1(1+x2) 1/x2 1/x1

1+a1
a2

1+a1+a2
a1a2

4


0 −1 0 −1

1 0 1 0

0 −1 0 0

1 0 0 0

 1
x2

x1(1 + x2) 1/x2 x1
1+a1
a2

a1

5


0 1 0 1

−1 0 1 0

0 −1 0 0

−1 0 0 0

 x2 x1 x2 x1 a2 a1

Table 3. The ν-period µk = µ−
1 µ

+
2 µ

−
1 µ

+
2 µ

−
1 of length 5 for A2.

Upon identifying the coordinates x, y with the initial variables x1, x2, one may check

that the generators Uγ take the standard form given in (3.66) with quadratic refinement

σp,q = (−1)pq+p+q:

U1,0 : [x, y] 7→ [x,
y

1 + x
], U1,1 : [x, y] 7→ [(1 + xy)x,

y

1 + xy
], (B.30)

U0,1 : [x, y] 7→ [(1 + y)x, y], U−1
1,0 : [x, y] 7→ [x, y(1 + x)], U−1

0,1 : [x, y] 7→ [
x

1 + y
, y].

The dilogarithm identity (B.23) specializes to

L

(
x

x+ 1

)
+ L

(
xy

xy + x+ 1

)
+ L

(
y

(x+ 1)(y + 1)

)
− L

(
x(y + 1)

xy + x+ 1

)
− L

(
y

y + 1

)
= 0 .

(B.31)

The validity of this formula can be most easily verified by taking the limit y → 0 and using

the fact that L(0) = 0. Setting x′ = x(1+y)/(1+x+xy), y′ = y/(1+y), one recovers (A.7).

As a side remark, we note that the tropical sequence xTks , or equivalently the charge

vector γs, is in one-to-one correspondence with the positive roots α1, α1 + α2, α2 and the

negative simple roots −α1,−α2 of the finite Lie algebra A2.
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s x1(s) x2(s) xT1 (s) xT2 (s) a1(s) a2(s)

0 x1 x2 x1 x2 a1 a2

1 1
x1

x1x2
1+x1

1/x1 x1x2
1+a2

2
a1

a2

2
x1x2

2
(1+x1+x1x2)2

1+x1
x1x2

x1x
2
2 1/(x1x2)

1+a2
2

a1

1+a1+a2
2

a1a2

3 (1+x1+x1x2)2

x1x2
2

x2
1+x1(1+x2)2 1/(x1x

2
2) x2

(1+a1)2+a2
2

a1a2
2

1+a1+a2
2

a1a2

4 1
x1(1+x2)2

1+x1(1+x2)2

x2
1/x1 1/x2

(1+a1)2+a2
2

a1a2
2

1+a1
a2

5 x1(1 + x2)2 1
x2

x1 1/x2 a1
1+a1
a2

6 x1 x2 x1 x2 a1 a2

Table 4. The length 6 mutation sequence (µ+
2 µ

−
1 )3 for B2.

B.5.2 Example: B2

We now turn to the B2 case, corresponding to c = 2 in (B.24). The sequence of mutations

(µ+
2 µ
−
1 )3 is a period of length 6, as displayed in table 4. The tropical sequence is

xTks(s) = (x1, x1x2, x1x
2
2, x2, 1/x1, 1/x2) (B.32)

so the tropical sign sequence is εs = (+,+,+,+,−,−). Setting x = x1, y = x2, the

dilogarithm identity (B.23) reads

L

(
x

x+ 1

)
+ 2L

(
xy

xy + x+ 1

)
+ L

(
xy2

(x+ 1) (x(y + 1)2 + 1)

)
+2L

(
y

(y + 1)(xy + x+ 1)

)
− L

(
x(y + 1)2

x(y + 1)2 + 1

)
− 2L

(
y

y + 1

)
= 0 . (B.33)

This is in fact a consequence of the nine-term relation (A.10) with a = −x−y−xy, b = −x,

c = 1. The associated wall-crossing identity (consistent with eq. C.1 in [73]) reads

U
(−2)
0,1 U

(−1)
1,0 U

(2)
0,1U

(1)
1,2U

(2)
1,1U

(1)
1,0 = 1 (B.34)

where we denote the BPS index in superscript. This arises from the mutations by identi-

fying

U
(1)
1,0 = µ]−1 ,

U
(2)
1,1 = (1−)µ]+2 (1−),

U
(1)
1,2 = (1−)(2+)µ]−1 (2+)(1−),

U
(2)
0,1 = (1−)(2+)(1−)µ]+2 (1−)(2+)(1−),

U
(−1)
1,0 = (1−)(2+)(1−)(2+)µ[−1 (2+)(1−)(2+)(1−),

U
(−2)
0,1 = (1−)(2+)(1−)(2+)(1+)µ[+2 (1+)(2+)(1−)(2+)(1−),

(B.35)
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s x1(s) x2(s) xT1 (s) xT2 (s) a1(s) a2(s)

0 x1 x2 x1 x2 a1 a2

1 1
x1

x1x2
1+x1

1/x1 x1x2
1+a3

2
a1

a2

2
x2

1x
3
2

(1+x1+x1x2)3
1+x1
x1x2

x2
1x

3
2 1/x1x2

1+a3
2

a1

1+a1+a3
2

a1a2

3 (1+x1+x1x2)3

x2
1x

3
2

x1x2
2

1+x2
1(1+x2)3+x1(2+3x2)

1/(x2
1x

3
2) x1x

2
2

(1+a1)3+(2+3a1)a3
2+a6

2

a2
1a

3
2

1+a1+a3
2

a1a2

4
x1x3

2
(1+x1(1+x2)2)3

1+x2
1(1+x2)3+x1(2+3x2)

x1x2
2

x1x
3
2 1/(x1x

2
2)

(1+a1)3+(2+3a1)a3
2+a6

2

a2
1a

3
2

(1+a1)2+a3
2

a1a2
2

5 (1+x1(1+x2)2)3

x1x3
2

x2
(1+x1(1+x2)3 1/(x1x

3
2) x2

(1+a1)3+a2
2

a1a3
2

(1+a1)2+a3
2

a1a2
2

6 1
x1(1+x2)3

(1+x1(1+x2)3

x2
1/x1 1/x2

(1+a1)3+a2
2

a1a3
2

1+a1
a2

7 x1(1 + x2)3 1
x2

x1 1/x2 a1
1+a1
a2

8 x1 x2 x1 x2 a1 a2

Table 5. The mutation sequence (µ+
2 µ

−
1 )4 for G2.

and the identity (B.34) then follows from the tropical identity

(2−)(1+)(2+)(1−)(2+)(1−) = 1 . (B.36)

Finally, we note that the factors in (B.34) are in one-to-one correspondence with the

positive roots α1, α1+α2, α1+2α2, α2 and negative simple roots −α1,−α2 of the Lie algebra

B2. We also note that the cluster algebra for the quiver B2 can be obtained by folding the

cluster algebra for the quiver A3, i.e. by specializing to the locus x1 = x3, a1 = a3.

B.5.3 Example: G2

Finally, we turn to theG2 case, corresponding to c = 3 in (B.24). The sequence of mutations

(µ+
2 µ
−
1 )4 is now a period of length 8, as displayed in table 5. The tropical sequence is now

xTks(s) = (x1, x1x2, x
2
1x

3
2, x1x

2
2, x1x

3
2, x2, 1/x1, 1/x2) (B.37)

so the tropical sign sequence is εs = (+,+,+,+,+,+,−,−). Setting x = x1, y = x1, the

dilogarithm identity (B.23) reads

L

(
x

x+ 1

)
+ 3L

(
xy

xy + x+ 1

)
+ L

(
x2y3

1 + x+ xy)3 + x2y3

)
+3L

(
xy2

(xy + x+ 1) (x(y + 1)2 + 1)

)
+ L

(
xy3

(x(y + 1)2 + 1)3 + xy3

)
(B.38)

+3L

(
y

(y + 1) (x(y + 1)2 + 1)

)
− L

(
x(y + 1)3

x(y + 1)3 + 1

)
− 3L

(
y

y + 1

)
= 0 .

As in the previous case, we expect that this identity can be obtained by specializing a

16-term identity in 4 variables arising from periods of mutations of the D4 quiver, and
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presumably accessible by repeated use of the five-term relation. The associated wall-

crossing identity is

U
(−3)
0,1 U

(−1)
1,0 U

(3)
0,1U

(1)
1,3U

(3)
1,2U

(1)
2,3U

(3)
1,1U

(1)
1,0 = 1, (B.39)

which arises from the mutations by identifying

U
(1)
1,0 = µ]−1 ,

U
(3)
1,1 = (1−)µ]+2 (1−),

U
(1)
2,3 = (1−)(2+)µ]−1 (2+)(1−),

U
(3)
1,2 = (1−)(2+)(1−)µ]+2 (1−)(2+)(1−),

U
(1)
1,3 = (1−)(2+)(1−)(2+)µ]−1 (2+)(1−)(2+)(1−),

U
(3)
0,1 = (1−)(2+)(1−)(2+)(1−)µ]+2 (1−)(2+)(1−)(2+)(1−),

U
(−1)
1,0 = (1−)(2+)(1−)(2+)(1−)(2+)µ[−1 (2+)(1−)(2+)(1−)(2+)(1−),

U
(−3)
0,1 = (1−)(2+)(1−)(2+)(1−)(2+)(1+)µ[+2 (1+)(2+)(1−)(2+)(1−)(2+)(1−).

(B.40)

The identity (B.39) then follows from the simpler tropical identity

(2−)(1+)(2+)(1−)(2+)(1−)(2+)(1−) = 1. (B.41)

As before, the factors in (B.39) are in one-to-one correspondence with the positive roots

α1, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2 and negative simple roots −α1,−α2 of the Lie

algebra G2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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