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trapped inside the vortex core, with total configurations being 1/4 BPS composite states.
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1 Introduction

The discovery of non-Abelian vortex solutions [1, 2] and the subsequent development [3]–

[21] have led to a substantial improvement of our understanding of non-Abelian solitons in

general, appearing in spontaneously broken gauge theories. Among the techniques used to
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explore these objects are: the string theory construction due to Hanany-Tong [1] which in

turn gave rise to the Kähler quotient construction, the powerful moduli matrix method [10]–

[21] (the determination of the moduli space [10, 11], the moduli space metric [13], low-

energy dynamics [12, 14], generalization to arbitrary gauge groups [15]–[17], etc.), apart

from the standard field-theoretic analyses [2]–[9], have all proven invaluable.

The effective theories of the fluctuations of non-Abelian vortex orientational modes

have been derived in the field-theoretic approach [2, 6]–[8] as well as from string theory [1].

In theories with gauge group U(N) and Nf = N flavors (hypermultiplets), the worldsheet

effective action turns out to be a two-dimensional CPN−1 sigma model.

A particularly interesting result concerns the precise matching of the BPS spectra of

the four dimensional gauge theories (having N = 2 supersymmetry) under study and the

two-dimensional sigma models (having N = (2, 2) supersymmetry) [22, 23]. In a sense the

Abelian monopoles in the Coulomb phase become trapped inside a vortex in the Higgs

phase [3, 5]–[8]. The monopoles are realized as classical kinks along the vortex string when

the unequal squark mass terms are introduced. This in turn induces a potential on the

sigma model, which has now N vacua instead of a continuous CPN−1 degeneracy.

In the theory without the bare quark masses, N vacua appear as a result of quantum

effects. The kinks interpolating different (vortex) vacua correspond to the light monopoles

appearing as the singularities of the Seiberg-Witten curves. More precisely, these N vortex

vacua and the light monopoles connecting them correspond to the physics of the quantum

r = 0 vacua, arising from the classical r = N vacua of the theory with Nf = N massless

flavors [24]–[27].

In a recent development [9], the worldsheet low-energy effective actions of non-Abelian

vortices in gauge theories with U(1)×SO(2n) or U(1)×USp(2n) gauge symmetry and Nf =

2n flavors (hypermultiplets) [15]–[17] have been found explicitly. The effective theories

found are non-linear sigma models on the Hermitian symmetric spaces (HSS): SO(2n)/U(n)

and USp(2n)/U(n), respectively [15]. The construction of the effective action has been

extended to some higher-winding vortices in U(1) × SO(2n) as well as in U(N) theories,

and in all cases the results found agreed with those obtained in a more formal approach

based on symmetry and group-theoretic considerations [28]. The results found reduce to

the known CPN−1 effective action [3, 5, 6, 8] in the case of the U(N) theory.

In this paper we will extend these non-linear sigma models to the case of the mass-

deformed theories. As in the CPN−1 models, a potential is induced on the sigma model.

Such a potential can be obtained either in the bulk theory, or alternatively, in the world-

sheet effective theory by using the Scherk-Schwarz (SS) dimensional reduction.1 We then

construct 1/4 BPS configuration of magnetic monopoles confined in a vortex-string as kinks

in the vortex world-sheet effective theory with mass deformation. By generalizing the op-

erator method to create domain walls in the case of SU(N) gauge theory [19] (in which the

operators are identified with the root vectors [31]), we find the rule of ordering of kinks

(monopoles on the vortex) in SO and USp gauge theories.

1Our analysis follows the method [7] developed to obtain the mass-deformed theory in four space-

time dimensions from a five space-time dimensional massless theory by the Scherk-Schwarz dimensional

reduction [29, 30].

– 2 –



J
H
E
P
1
2
(
2
0
1
1
)
0
1
7

The paper is organized as follows. In section 2 we review the non-Abelian vortex

solutions and their orientational zero modes in the bulk gauge theory and derive the vortex

worldsheet effective action. These serve as the starting point for the discussion of the mass-

deformed systems and the derivation of the massive sigma models in section 3. Section 4

is dedicated to the analysis of the Abelian monopoles which appear along the vortex string

as kinks.2 A comment on the solutions involving domain walls in the bulk is given in

appendix A. The convention used for the Lie algebra is reviewed in appendix B, and some

useful results are collected in appendix C. The case of the effective worldsheet action for

certain doubly wound vortices in SO(2n) theory, which is given by a quadric surface Q2n−2

sigma model, is discussed briefly in appendix D.

2 The bulk theory

2.1 The model

The theory we are considering is the standard N = 2 supersymmetric QCD with gauge

group U(1) ×G with G = SU(N),SO(2n) and USp(2n) (while N denotes in all cases the

dimension of the fundamental representation, i.e. N = 2n for SO,USp). The F-terms are

given by variations of the following superpotential

W = Tr
[
Q̃ΦQ− Q̃QM

]
, (2.1)

where Q, Q̃ are fundamental and anti-fundamental chiral superfields comprising the Nf

hypermultiplets (Q is an N -by-Nf matrix, and Q̃ is an Nf -by-N matrix), while Φ is a chiral

superfield belonging to a vector multiplet, in the adjoint representation. In this paper we

will set the Nf -by-Nf mass matrix to be real: M † = M . Using a flavor rotation we can

diagonalize the mass matrix as M = diag(m1, · · · ,mNf
). Furthermore, the trace part of

M can be absorbed by a shift of the adjoint scalar, so that we can assume that TrM = 0

without loss of generality.

We shall restrict ourselves to the case of Nf = N flavors, for definiteness. This is the

minimum number of flavors which allows for a color-flavor locked vacuum. In the massless

case, then, the theory has an SU(N) flavor symmetry, in all cases, including U(1)×SO(2n)

or U(1) × USp(2n), with Nf = N = 2n flavors.

Finally, we can set Q̃ = 0 and Φ† = Φ for the consideration of the non-Abelian vortex

solutions and small excitations around them.

Due to renormalization group (RG) flow, the gauge coupling constants for U(1) and

for G would become distinct at a lower energy scale even if we start with an equal, common

coupling constant. However, as our results here do not substantially depend on the U(1)

gauge coupling and also because our analysis remains semi-classical throughout, we shall

set e = g for simplicity.

2When this paper was being written, a paper by Arai and Shin [32] appeared which discusses the mass-

deformed sigma models in four (or three) dimensions, without any reference to the non-Abelian vortices,

but based on a similar model with SO(2n) and USp(2n) global symmetries. Their analysis of the domain

walls naturally have some overlap with our analysis of the kink monopoles and, where the comparison is

possible, our results seem to agree.
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The bosonic part of the Lagrangian density is then

L = Tr

[
−

1

2g2
FµνF

µν −
θ

16π2
Fµν F̃

µν +
1

g2
(DµΦ)2 +

∣∣DµQ
∣∣2
]
− VD − VF , (2.2)

where we denote the scalar components of the superfields with the same symbols as the

superfields themselves. The scalar potentials read

VD =
g2

2

∣∣Tr
(
QQ†tα

)
− ξα

∣∣2, (2.3)

VF = Tr
∣∣ΦQ−QM

∣∣2, (2.4)

where α = 0, 1, . . . ,dim(G) and 0 stands for the U(1) part of the gauge group. ξ0 = ξ

is the only non-zero Fayet-Iliopoulos (FI) parameter as G is a simple group. Finally all

generators are normalized as Tr(tαtβ) = δαβ/2.

Since the mass matrix M is diagonal and traceless, it belongs to an element of the

Cartan subalgebra of G. There exists a Higgs vacuum in which the vacuum expectation

values (VEVs) of the scalar fields take the form

〈Φ〉 = M , 〈Q〉 = v1N ,

(
v ≡

4

√
2

N

√
ξ

)
. (2.5)

In this paper we focus our attention on this system.

For the massless case M = 0, the VEV of the adjoint scalar Φ does not break the

U(1)×G gauge symmetry, while the squark VEV breaks it completely, bringing the system

in the Higgs phase. However, the global color-flavor diagonal GC+F symmetry remains

intact.

In the theory with a generic bare mass-matrix M , the gauge group is broken to U(1)r

where r = rankG. As already mentioned, M can be rotated into a diagonal form without

loss of generality. For the G = SU(N) theory, the generic mass matrix M takes the form

M = diag(m1, · · · ,mN ). While in the cases of G = SO(2n) and G = USp(2n), we will be

working in the usual basis UTJU = J , with J = σ1⊗1n and J = iσ2 ⊗1n, respectively. In

this basis the mass matrix reads M = diag(m1, · · · ,mn,−m1, · · · ,−mn). The properties

of the solitons will be seen to depend crucially on how the components of the mass matrix

M is chosen.

There are several kinds of topological solitons in our models. Among them we are

interested in vortices and monopoles. The U(1) symmetry breaking at the energy 〈Q〉 ∼ v

gives rise to vortices, while the breaking of G → U(1)r at the energy 〈Φ〉 ∼ m gives

rise to monopoles. The static 1/4 BPS equations for composite states of the vortex and

monopole [20] can easily be found to be

0 = Dz̄Q , (2.6)

0 = D3Q+ ΦQ−QM , (2.7)

0 = Dz̄Φ + iFz̄3 = [Dz̄,Φ + D3] , (2.8)

0 = D3Φ − F12 + g2
[
Tr
(
QQ†tα

)
tα − ξt0

]
, (2.9)
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where Dz̄ = 1
2 (D1 + iD2) and we have chosen the vortex string to lie on the x3-axis.

It is well known that the last two equations describe t’Hooft-Polyakov monopoles in the

Coulomb phase, Q = ξ = 0 while the first and the third equations describe vortex solutions

if A3 = Φ = M = 0. The second equation, therefore, describes the kinks regarded as

monopoles along the vortex string which appear in the Higgs phase ξ 6= 0 of the mass-

deformed theory. When these first order differential equations are obeyed, the Bogomol’nyi

bound will be saturated

E = Tr

[
1

g2
ǫijk∂i(ΦFjk) − 2ξF12t

0 + 2ξ∂3Φt
0 − iǫnm∂n

[
(DmQ)Q†

]
− ∂3

[
(ΦQ−QM)Q†

]]
,

(2.10)

where i, j, k = 1, 2, 3; while n,m = 1, 2 denote the directions in the transverse plane. The

first two terms in the energy density describe the monopole and vortex, respectively; the

others are boundary terms.

The 1/4 BPS equations (2.6)–(2.9) can be formally solved in terms of the moduli

matrix [10, 11, 20, 21]. The first equation describes distributions of Q in the x1–x2 plane

and the second one determines the x3-dependence of Q for a given set of Ai and Φ. Note

that the third equation is just an integrability condition which tells us only that the first two

equations can be solved simultaneously. The integration constants forQ can be summarized

in an N -by-Nf holomorphic matrix in the complex coordinate z = x1 + ix2, which is

called the moduli matrix. With this moduli matrix, the last equation can only be solved

numerically and tells us about the magnetic flux distribution in the plane transverse to the

vortex string. In this paper, however, we do not treat the 1/4 BPS equations and their

solutions directly. Note that the integrability condition (2.8) allows us to regard the second

equation as a description of the x3-dependence for the moduli of the vortices. We will

consider 1/2 BPS kink solutions in an effective theory on 1/2 BPS vortices corresponding

to the 1/4 BPS composite states. We should remark that the 1/4 BPS equations (2.6)–(2.9)

admit, in general, domain walls and 1/4 BPS composite states of vortices stretched between

domain walls [20, 21, 33], when the VEVs of the scalar fields are different at x3 → −∞

and x3 → ∞. Furthermore, the BPS equations admit 1/2 semi-local [16] and fractional

vortices [34]. In the rest of this paper, we do not discuss such configurations and consider

only configurations of local vortices and monopoles which are invariant under rotations in

the x1–x2 plane. The precise condition for the absence of domain walls, semi-local and

fractional vortices can be found in appendix A.

2.2 Orientational zero modes of the non-Abelian vortices

Let us first consider the 1/2 BPS solutions of local-vortex strings without monopoles in the

massless case, M = 0, for which Φ = 0, A3 = 0 and ∂3 = 0. Here only the first and the last

equations in the 1/4 BPS equations remain non-trivial. We impose the following boundary

condition for the scalar field Q and the gauge field Aθ such that it has non-trivial winding

in the gauge orbit of the scalar VEV

Q→ v exp(iθλ) , Aθ → −
1

r
λ (r → ∞) , (2.11)

– 5 –
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where reiθ = x1 + ix2. λ is an N -by-N constant matrix, which can be diagonalized as

λ→ UλU † = ν01N + ν̃ · H , U ∈ G , (2.12)

where H = (H1,H2, · · · ,Hr) is a basis of the Cartan subalgebra of G (see appendix B for

the conventions for the Lie algebra). Since the scalar field Q is a single-valued function, all

the eigenvalues of λ should be integers. This condition is satisfied only if ν0 is quantized

in the following way [15]

ν0 = k ×





1

N
for G = SU(N)

1

2
for G = SO(2n)

1

2
for G = USp(2n)

, k ∈ Z . (2.13)

The integer k corresponds to the vortex winding number classifying the topological sectors

of the vortex configurations. In addition to this quantization condition for ν0, the single-

valuedness condition is satisfied only when the coefficient vector ν̃ is a coweight, namely ν̃

should be one of the weight vectors of the dual group G̃. Here G̃ is the dual group whose

root vectors α̃i are related to those of G as

α̃i = 2
αi

αi · αi
. (2.14)

For the single winding configurations (k = 1), the vector ν̃ is given by3

ν̃ = weight vector of





N (fundamental rep. of SU(N)) for G = SU(N)

2n−1 (Weyl spinor rep. of SO(2n)) for G = SO(2n)

2n (spinor rep. of SO(2n + 1)) for G = USp(2n)

. (2.15)

If we choose the highest weight vector ν̃h of each representation, the diagonal matrix

λh = ν01N + ν̃h · H takes the form

λh =

(
1p

0q

)
, (p, q) =





(1, N − 1) for SU(N)

(n, n) for SO(2n)

(n, n) for USp(2n)

, (2.16)

where the subscript of λh stands for the highest weight vector, which we denote by ν̃h.

For the other weight vectors, the matrix λh can be obtained by using the transformations

which exchange the eigenvalues of λ, i.e. the Weyl group elements of G. For the matrices

λh given above, the basic single winding vortex solution takes the following form

Q = v

(
ze−

1

2
ψ1p

1q

)
= v exp

[(
log z −

1

2
ψ

)
λh

]
, (2.17)

Az̄ = −
i

2

(
∂z̄ψ 1p

0q

)
= −

i

2
∂z̄ψ λh , (2.18)

3In the case of G = SO(2n), there are two disjoint topological sectors classified by Z2 topological

charge [17]. For k = 1, the vortices with different Z2 charges are characterized by the weight vectors of the

Weyl spinors with opposite chirality.

– 6 –



J
H
E
P
1
2
(
2
0
1
1
)
0
1
7

where z = x1 + ix2 and ψ is a smooth real function satisfying

4∂z∂z̄ψ = g2v2
(
1 − |z|2e−ψ

)
, (2.19)

with ψ → log |z|2 at spatial infinity. From the solution (2.17)–(2.18) and the asymptotic

behavior of the function ψ, we can see that the matrix λh is nothing but the magnetic flux

of the vortex ∫
dx1dx2 F12 = −2πλh ,

(
F12 = −2∂z∂z̄ψ λh

)
. (2.20)

In the massless theory (M = 0), there exists an unbroken color-flavor symmetry GC+F in

the vacuum. Therefore we can obtain a set of vortex solutions by rotating the configura-

tion (2.17)–(2.18) as

Q→ U †QU , Az̄ → U †Az̄ U , U ∈ GC+F . (2.21)

This set of solutions is parametrized by the orientational moduli, which are the coordinates

of a coset space of the form

Morientation
∼= G/H , (2.22)

where H is a subgroup of G which does not change the solution (2.17)–(2.18), that is

h ∈ H ⇐⇒ h†λhh = λh . (2.23)

The orientational moduli of the vortices can be interpreted as the Nambu-Goldstone zero

modes arising from the breaking of the color-flavor symmetry GC+F due to the vortex

configuration. For the single winding vortex in the G = SU(N), SO(2n) and USp(2n)

theories, the orientational moduli spaces are given by [15]

Morientation
∼=

SU(N)

SU(N − 1) × U(1)
,

SO(2n)

SU(n) × U(1)
,

USp(2n)

SU(n) × U(1)
. (2.24)

The physical meaning of these orientational moduli can be seen from the magnetic

flux (2.20). Under the color-flavor global symmetry GC+F , the magnetic flux transforms as

λh → λ = U †λhU , U ∈ G . (2.25)

This implies that the orientational moduli parametrize the internal direction of the vortex

magnetic flux in the Lie algebra of the gauge group G.

Since the subgroup H is unbroken, not all parameters in the matrix U correspond to

physical zero modes of the vortex. We can parametrize the coset space as follows. Let E−α

be the lowering operators in the Lie algebra of G for which the generator λh has negative

eigenvalues, namely

[λh, E−α] = −(ν̃h · α)E−α , ν̃h · α > 0 . (2.26)

Note that in our convention [H, E−α] = −αE−α. Then the generic matrix U ∈ G con-

taining only physical parameters (i.e. called the reducing matrix) can be constructed as

follows

U = gugl , gl = exp

( ∑

ν̃h·αi>0

biE−αi

)
. (2.27)

– 7 –
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The parameters bi, which are associated with the root vectors αi, can be interpreted as the

complex coordinates which parametrize the orientational moduli space. These parameters

cover the coordinate patch containing the point on the moduli space which corresponds

to the BPS configuration (2.17)–(2.18). The matrix gu is an element of the group P , (a

parabolic subgroup of GC) generated by the Cartan generators H, all the raising operators

Eα and the lowering operators E−α with ν̃h · α = 0. Formally, the matrix gu can be

written as

gu = exp

[
θ · H +

∑

αi∈∆+

ciEαi
+

∑

ν̃h·αi=0

diE−αi

]
∈ P , (2.28)

where ∆+ denotes the set of all positive roots. For a given set of parameters bi, the matrix

gu can be determined up to H transformations gu → hgu from the unitarity condition

UU † = 1N , that is

g†ugu =
(
glg

†
l

)−1
. (2.29)

Note that the choice of h ∈ H is not important since it does not change the BPS vortex

configuration. For the generator λh in eq. (2.16), the matrix
∑

ν̃·αi>0 b
iE−αi

takes the

lower triangular matrix form

∑

ν̃·αi>0

biE−αi
=

(
0p

B 0q

)
. (2.30)

The q-by-p matrix B is an (N − 1)-vector for G = SU(N) and an anti-symmetric and

symmetric n-by-n matrix for G = SO(2n) and USp(2n), respectively

B =




b1
b2
...

bN−1


 ,




0 b12 · · · b1n

−b12 0
. . .

...
...

. . .
. . . bn−1,n

−b1n · · · −bn−1,n 0


 ,




b11 b12 · · · b1n

b12 b22
. . .

...
...

. . .
. . . bn−1,n

b1n · · · bn−1,n bnn


 . (2.31)

Then, the matrix gl is given by

gl = 1N +
∑

ν̃·αi>0

biE−αi
=

(
1p 0

B 1q

)
, (2.32)

where we have used that
(∑

biE−αi

)2
= 0. The corresponding matrix gu takes the follow-

ing form

gu =

(
1p −B†

0 1q

)(
X

1

2

Y − 1

2

)
, (2.33)

where X
1

2 and Y − 1

2 are invertible Hermitian matrices defined by4

X = 1p +B†B , Y = 1q +BB†. (2.34)

4The square root of the matrices X and Y always exists. For G = SO(2n) and USp(2n), it can be

written as X
1

2 = UX(1 + |D|2)
1

2 U†
X and Y

1

2 = UY (1 + |D|2)
1

2 U†
Y where UX and UY are unitary matrices

and D is a diagonal matrix such that B = UY D U†
X .

– 8 –
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Therefore the matrix U containing only the physical parameters bi takes the form

U =

(
1p −B†

0 1q

)(
X

1

2

Y − 1

2

)(
1p 0

B 1q

)
. (2.35)

Such a matrix has been introduced earlier and termed the reducing matrix [35, 36].

Next, let us discuss the effective action for the orientational moduli by using the

matrix given in eq. (2.35). At a sufficiently low energy scale, the dynamics of the zero

modes is described by a non-linear sigma model on the moduli space and its effective

action can be obtained as follows. The fluctuations of the orientational zero modes along

the vortex worldsheet are represented by the matrix U(t, x3) ∈ G which depends weakly

on the worldsheet coordinate t and x3. It induces the fluctuation fields around the “slowly

moving” vortex background. Up to first order in the derivatives ∂α (xα = t, x3), the scalar

field Q and Az̄ are not modified

Q = U(xα)†Q0 U(xα) + O(∂2
α) , (2.36)

Az̄ = U(xα)†A0z̄ U(xα) + O(∂2
α) , (2.37)

where Q0 and A0z̄ are the static BPS configurations. For notational simplicity, we use the

following singular gauge fixing

Q0 = v exp

[(
log |z| −

1

2
ψ

)
λh

]
, A0z̄ = −

i

2

(
∂z̄ψ −

1

z̄

)
λh . (2.38)

The fluctuations of the gauge fields along the vortex worldsheet Aα can be determined by

solving the equations of motion

2

g2
DµFµα = i

[(
DαQ

)
Q† −Q

(
DαQ

†
)]
. (2.39)

In the slowly moving background, the solution is given by5

Aα = −iU †∂αU + iU †
[
Q0

(
δ†αU

)
U †Q−1

0 − h.c.
]
U + O(∂3

α) , (2.40)

where we have decomposed the derivative ∂α into the holomorphic and anti-holomorphic

parts as

∂α = δα + δ†α , δα = ∂αb
i ∂

∂bi
, δ†α = ∂αb̄

ī ∂

∂b̄ī
. (2.41)

Although Q−1
0 is singular at the vortex center, we can check that the gauge field Aα is

non-singular by using the explicit form of U given in eq. (2.35)

Aα = i
(
1 − |z|e−

1

2
ψ
)
U †

(
0 X− 1

2∂αB
†Y − 1

2

−Y − 1

2 ∂αBX
− 1

2 0

)
U , (2.42)

5A general formula for the solution can be obtained by using the moduli matrix approach, see [21, 37]

for the U(N) case.
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where we have used δαB = ∂αB and δαB
† = ∂αB

†. Substituting the scalar field Q and

gauge field Aµ into the bulk action and integrating over the (x1, x2)-plane, we obtain the

effective action of the form

Seff =

∫
dtdx3

(
− Tv + gij̄∂αb

i∂αb̄j̄
)
, (2.43)

where the first term is the tension of the vortex string and gij̄ is the metric of the orienta-

tional moduli space, which is given in terms of the matrices gl and gu by

gij̄ =
4π

g2

∂

∂b̄j̄
Tr

[(
gl
∂

∂bi
g−1
l

)
g−1
u λhgu

]
. (2.44)

If we use the matrix B, the effective action on the vortex worldsheet takes the form [9]

Seff =
4π

g2

∫
dtdx3 Tr

[(
1q +BB†

)−1
∂αB

(
1p +B†B

)−1
∂αB†

]
, (2.45)

where we have ignored the string tension Tv.

2.3 Mass deformation

So far we have discussed the orientational moduli and their effective action in the massless

theory. Next let us discuss the effect of the bulk mass term on the effective action of the

vortex string.

The mass matrix M is taken to be in the Cartan subalgebra of G

M = m ·H , m = (m1,m2, · · · ,mr) . (2.46)

If m is a generic vector, all the mass elements are different and the color-flavor symmetry

is broken to the product of the Cartan subgroups. Then, the F -term condition or eq. (2.7)

requires

[m ·H, Q] = 0 . (2.47)

Therefore, the magnetic flux is forced to be oriented in the particular directions specified by

the weight vectors ν̃. Note that these solutions are invariant under the Cartan subgroups.

The mass deformation breaks the color-flavor symmetry, and the remaining global

symmetry of the system depends on the mass matrix. We will however assume that

ΛNLSM ≪ mi ≪ gv, where ΛNLSM is the intrinsic scale of the sigma model while gv is

the mass of the particles in the bulk theory. This condition allows us to treat the defor-

mation as a shallow potential on the string worldsheet. In general we shall take all the

elements in the mass matrix to be distinct; when some of them coincide, a non-Abelian

subgroup of the color-flavor group will emerge, giving non-Abelian moduli to kinks [38–40]

and monopoles [41].

The potential on the moduli space induced by the mass term can be calculated in

a way similar to the kinetic term of the effective action (2.45) discussed in the previous

section. First let us determine the modification of the fields perturbatively in terms of

the mass parameter. Up to first order in the masses, the background vortex configuration
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is not modified. The adjoint scalar field Φ can be determined by solving the equation of

motion in the vortex background

2

g2
DµD

µΦ = −
(
ΦQ−QM

)
Q† −Q

(
Q†Φ −MQ†

)
. (2.48)

Since Φ is of order mi, DαD
αΦ is of order O(m∂2

α), which is small. We obtain the following

solution to the equation of motion

Φ = M + iU †
(
δm + δ†m

)
U − iU †

[
Q0

(
δ†mU

)
U †Q−1

0 − h.c.
]
U + O(m3,m∂2

α) , (2.49)

where we have defined the derivative operators6

δm = ki
∂

∂bi
, δ†m = k̄ī

∂

∂b̄ī
, ki = i(αi · m) bi , k̄ī = −i(α ī · m) b̄ī. (2.50)

By using the explicit form of the matrix U , we obtain

Φ = M − i
(
1 − |z|e−

1

2
ψ
)
U †

(
0 X− 1

2 (δ†mB†)Y − 1

2

−Y − 1

2 (δmB)X− 1

2 0

)
U . (2.51)

Note that ki can be interpreted as the holomorphic Killing vector on the moduli space. The

corresponding isometry, which we call U(1)M , is a subgroup of G and acts on the matrix

U and the complex coordinates bi as

U → eiMϑUe−iMϑ ⇐⇒ bi → ei(αi·m)ϑ bi (Def. U(1)M ) . (2.52)

Then substituting the configuration into the bulk action and integrating over the (x1, x2)-

plane, we obtain the potential of the form [42, 43]7

Veff = gij̄k
ik̄j̄. (2.53)

This is the squared norm of the Killing vector and has minima at the zeros of ki, viz. the

fixed points of the U(1)M isometry. This implies that the vortex in the massive theory has

minimum energy if it is invariant under U(1)M ⊂ GC+F .

The potential of this form can also be obtained in the following way. First let us

consider the massless sigma model with one additional compact direction ϑ which has

period 2πR

Seff =
1

2πR

∫
dtdx3dϑ gij̄

(
∂αb

i∂αb̄j̄ − ∂ϑb
i∂ϑb̄

j̄
)
. (2.54)

Then we impose the following twisted boundary condition with respect to the U(1)M
symmetry

bi(ϑ+ 2πR) = e2πiR (αi·m)bi(ϑ) , (2.55)

where there is no summation on i. If we ignore the infinite tower of the Kaluza-Klein

modes, the ϑ-dependence of the field can be determined as

bi(t, x3, ϑ) = ei(αi·m)ϑbi(t, x3) . (2.56)

6There is no summation on i in ki = i(αi · m) bi, and k̄ī = −i(α ī · m) b̄ī.
7A similar result has been obtained for 1/4 BPS monopoles in N = 4 theories in ref. [44].
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Substituting this lowest mode into the massless effective action (2.54), we obtain the same

potential term as that of eq. (2.53)

Seff =

∫
dtdx3 gij̄

(
∂αb

i∂αb̄j̄ − kik̄j̄
)
. (2.57)

In the next section, we will use this method to find the explicit potentials on the vortex

worldsheet for G = SU(N), SO(2n) and USp(2n).

In the G = SU(N) case, the generic mass matrix breaks the gauge symmetry to

U(1)N−1 and one observes that the breaking gives rise to monopoles. Turning on the FI

parameter ξ, the monopoles are still there but will be confined to live on the vortex string.

They turn out to be kinks along the vortex [3, 5, 8]. We will study the generalization of

this phenomenon for the G = SO(2n) and USp(2n) theories in section 4.

3 Mass-deformed sigma model

3.1 CPN−1 as a warm up

Let us take a simple example to illustrate the method. In the case of G = SU(2), the

orientational moduli space is the complex projective space CP 1 ∼= SU(2)/U(1). The Kähler

potential for the CP 1 model is

K =
4π

g2
log
(
1 + |b|2

)
, (3.1)

giving rise to the sigma model

L =
4π

g2

|∂αb|
2

(1 + |b|2)2
, (3.2)

where b ∈ C is the inhomogeneous coordinate on CP 1. Now let us use the method of

ref. [7] to generate the twisted mass potential on the vortex worldsheet induced by the

bulk mass term

M = 2

(
m 0

0 −m

)
. (3.3)

First we have to use the U(1)M global symmetry of the system at hand. In the case of the

CP 1 model, the U(1)M symmetry acts on the coordinate b as a global phase rotation

b→ e−i2mϑb , (3.4)

which leaves the Lagrangian (3.2) invariant. Taking advantage of an argument similar to

that of the last section, we obtain

b(t, z, ϑ) = e−i2mϑb(t, z) . (3.5)

Plugging this field back into the Lagrangian (3.2) leaves us with the following mass-

deformed theory [6, 45–47]

L =
4π

g2

|∂αb|
2 − 4m2|b|2

(1 + |b|2)2
. (3.6)
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The theory is known to have two vacua. The description we have used above uses the

inhomogeneous coordinates on CP 1 and hence we need two patches to describe the theory.

On each patch the vacuum is seen to be given by b = 0, which corresponds to b → ∞ on

the other patch. As we have seen in the previous section, the potential is the squared norm

of the Killing vector of U(1)M . Indeed the vacua b = 0 and b→ ∞ are the fixed points of

the U(1)M symmetry. Hence we have checked (trivially) that the number of vacua found

is indeed two, in accord with the literature.

Generalizing the above discussion to the case of G = SU(N), we have the following

Kähler potential for the sigma model on CPN−1

K =
4π

g2
log
(
1 + b†b

)
, (3.7)

where b is an (N−1)-component complex column vector. The Lagrangian reads [1, 8, 48, 49]

L =
4π

g2

[
∂αb

†∂αb

1 + b†b
−

(b†∂αb)(∂
αb†b)

(1 + b†b)2

]
. (3.8)

The U(1)M global symmetry of the Lagrangian is expressed as

b→ exp(−im1ϑ) exp(iMN−1ϑ)b , (3.9)

where we have assumed that the bulk mass is

M =

(
m1

MN−1

)
. (3.10)

Keeping only the lowest mode

b(t, z, ϑ) = eiM0ϑb0(t, z) , (3.11)

where M0 = −m11N−1 +MN−1. Insertion of this field into the Lagrangian and dropping

the suffix of b gives us the deformed sigma model

L =
4π

g2

[
∂αb

†∂αb− b†M2
0 b

1 + b†b
−

(b†∂αb)(∂
αb†b) − (b†M0b)

2

(1 + b†b)2

]
. (3.12)

A vacuum satisfying the fixed point condition M0b = 0 is just the origin of this coordinate

patch. Hence, there will be N vacua corresponding to N patches covering CPN−1,

nSU(N)
vacua = N. (3.13)

3.2 The SO(2n)/U(n) and USp(2n)/U(n) sigma models

Let us now apply the aforementioned technique to the SO(2n)/U(n) and USp(2n)/U(n)

sigma models on the vortex worldsheet. We will treat them on the same footing in the

following. For SO(2n)/U(n) the field BT = −B is an anti-symmetric matrix valued field

while for USp(2n)/U(n) it is symmetric BT = B. The Kähler potential

K =
4π

g2
Tr log

(
1n +BB†

)
, (3.14)
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gives rise to the Lagrangian which we found in the previous section, i.e.,

L =
4π

g2
Tr
{(

1n +B†B
)−1

∂αB
†
(
1n +BB†

)−1
∂αB

}
. (3.15)

Since we have assumed that M is in the Cartan subalgebra of G, the mass matrix takes

the form

M =

(
Mn

−Mn

)
, Mn = diag(m1,m2, · · · ,mn) . (3.16)

The U(1)M action on B can be seen from U → e−iϑMUeiϑM to be

B → eiMnϑBeiMnϑ. (3.17)

As above, we expand the field in modes and keep just the lowest mode giving rise to

B(t, z, ϑ) = eiMnϑB0(t, z)e
iMnϑ. (3.18)

Upon inserting this field in the Lagrangian (3.15) and dropping the suffix, we obtain the

following mass-deformed sigma model

L =
4π

g2
Tr
{(

1n +B†B
)−1

∂αB
†
(
1n +BB†

)−1
∂αB

−
(
1n +B†B

)−1{
Mn, B

†
}(

1n +BB†
)−1{

Mn, B
}}

. (3.19)

As the mass matrix is Hermitian, the vacuum equation reads

{Mn, B} = 0 , (3.20)

which in general can only be satisfied for B = 0.8 However, there exist other vacua in the

coordinate patches which are not covered by B. In the next section we will see that the

numbers of vacua of the SO(2n)/U(n) and USp(2n)/U(n) sigma models are

nSO(2n)
vacua = 2n−1, nUSp(2n)

vacua = 2n, (3.21)

respectively. Although our analysis here is limited to the worldsheet action of the single

winding vortex (k = 1), we can generalize the discussion to higher winding cases. In the

case of k ≥ 2, we have various choices for the representation of the coweight ν̃, which

determines the orbit of the GC+F symmetry. As an example, the mass-deformed sigma

model on the quadric surface Q2n−2 (G = SO(2n), k = 2, ν̃ = vector representation) is

discussed in appendix D.

We have now considered a few worldsheet sigma models which are all low-energy effec-

tive descriptions of non-Abelian vortex systems. For the sigma models we are considering,

the number of vacua in the classical regime is equal to the Euler number of the target

space χ(Morientation) [9], see table 1. This is consistent with the Witten index [50, 51] and

expected to remain the same in the quantum regime. In the next section we will consider

the kinks interpolating the different vacua of the vortex worldsheet theory, viz. the sigma

model.
8We assume that mi 6= ±mj to break the color-flavor group to Cartan generators.
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moduli space Morientation χ(Morientation)

SO(2n)
U(n) 2n−1

USp(2n)
U(n) 2n

CPN−1 = SU(N)
SU(N−1)×U(1) N

GrN,k = SU(N)
S(U(k)×U(N−k))

(
N
k

)

Q2n−2 = SO(2n)
SO(2)×SO(2n−2) 2n

Table 1. The Euler characteristics of various orientational moduli spaces.

4 Monopoles as kinks on the vortex

In this section we discuss kink configurations in the effective action on the worldsheet of

the U(1) × SO(2n) and U(1) ×USp(2n) vortices. We will see that the kinks on the vortex

worldsheet can be interpreted as the SO(2n) and USp(2n) monopoles from the viewpoint

of the bulk theory.

4.1 SU(2) monopole

For illustration, let us first review the 1/4 BPS configuration of the kink monopole in the

G = SU(2) case [3].

The orientational moduli of the U(2) vortex is CP 1 ∼= SU(2)/U(1). In the presence of

the mass term M = mσ3, the potential is induced and only two configurations are left to

be the minimal energy configurations (which we call the vortex vacua). At these points,

the magnetic flux λ = − 1
2π

∫
dx1dx2 F12 is given by

λhighest =

(
1

0

)
, λlowest =

(
0

1

)
. (4.1)

The 1/4 BPS equations (2.6)–(2.8) do admit configurations of vortices which approach the

vortex vacua at x3 → ±∞ as

lim
x3→−∞

λ = λhighest , lim
x3→∞

λ = λlowest . (4.2)

For such a configuration, the energy (2.10) is given by the difference between the magnetic

fluxes at x3 → ±∞, i.e. the magnetic charge inside the vortex

E = −
4π

g2

∫
dx3 ∂x3

Tr[λΦ] +

∫
dx3 Tv =

8πm

g2
+

∫
dx3 Tv , (4.3)

where the second term represents the vortex tension. Note that the adjoint scalar Φ

approaches the VEV 〈Φ〉 = M at spatial infinity

lim
x3→±∞

Φ = mσ3 . (4.4)

– 15 –



J
H
E
P
1
2
(
2
0
1
1
)
0
1
7

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

x3

ÈzÈ

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

x3

ÈzÈ

(a) energy density (b) Tr[Bi(1 + σ3)] (c) Tr[Bi(1 − σ3)]

Figure 1. (a) The energy density profile of the vortex-monopole configuration (numerical solution

of the 1/4 BPS equations). The energy is localized along the vortex (|z| = |x1 + ix2| = 0) and

around the monopole (|z| = x3 = 0). (b, c) The magnetic flux projected onto 1 + σ3 ∝ λhighest

and 1 − σ3 ∝ λlowest. The monopole is attached to two vortices with magnetic flux λhighest and

λlowest, respectively. The plots for negative |z| are simply mirror images in order to illustrate the

cross section of the configuration.

The energy of eq. (4.3) is given by the mass of the monopole and the vortex tension. Hence

we can interpret this as the energy of the 1/4 BPS configuration of the confined monopole

attached to two vortices having magnetic flux λhighest and λlowest, respectively (see figure 1).

Figure 1 is the first full numerical solution of a confined monopole.

We can discuss the same configuration using the worldsheet effective action of the

vortex. Using the effective action (3.6) for the U(2) vortex in the massive theory, we can

easily find the BPS equation for the kink by rewriting the energy of the static configuration

as follows

E =

∫
dx3

4π

g2

|∂x3
b− 2mb|2

(1 + |b|2)2
+

∫
dx3

4π

g2
∂x3

σ ≥
4π

g2
[σ(∞) − σ(−∞)] , (4.5)

where σ is the standard height function of CP 1 which is given by

σ = −m
1 − |b|2

1 + |b|2
. (4.6)

The BPS equation and its solution are given by

∂x3
b− 2mb = 0 =⇒ b(x3) = b0 e

2mx3 , (4.7)

where b0 is a complex constant which corresponds to the position and phase moduli of

the kink. Although the solution b → ∞ at x3 → ∞, this is an artifact of the choice of

the coordinate. The moduli field b is the inhomogeneous coordinate on CP 1. In order to

see the other vacuum, one needs to change the patch, say b′ = 1/b (b 6= 0). This BPS

configuration saturates the bound (4.5) and the kink mass is given by

E =
4π

g2
[σ(∞) − σ(−∞)] =

8πm

g2
. (4.8)
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This kink mass is in precise agreement with the monopole mass. In this way, we can identify

the kink interpolating between the distinct vortex vacua with the monopole confined inside

the vortex [3].

4.2 SO(2n) and USp(2n) monopoles

4.2.1 BPS kink equations

We will use the following convention for the Cartan generators

H =

(
Hn

−Hn

)
, Hn =




e1

. . .

en


 , (4.9)

where {ei} is the standard orthonormal basis. With this normalization, the highest weight

vector of the (Weyl) spinor representation of SO(2n) and SO(2n+ 1) is given by

ν̃h =
1

2
(e1 + · · · + en) . (4.10)

The mass matrix takes the form

M = m · H =

(
Mn

−Mn

)
. (4.11)

Without loss of generality, we can always choose the ordering of the masses by using the

SO(2n) and USp(2n) rotations as

m = (m1,m2, · · · ,mn) , m1 ≥ m2 ≥ · · · ≥ mn ≥ 0 . (4.12)

If some of the masses are equal, a non-Abelian subgroup of GC+F is unbroken, while the

symmetry is maximally broken to U(1)n for a non-degenerate mass matrix. For simplicity,

we restrict ourselves to the case of maximal symmetry breaking m1 > m2 > · · · > mn > 0,

which implies that

m · αi > 0 , (4.13)

for all positive root vectors αi. In other words, m is a vector in the interior of the positive

Weyl chamber.

The time-independent energy density of the effective sigma model can be decomposed

into a positive semi-definite term and a total derivative term

E =
4π

g2
Tr
[
X−1

(
∂x3

B† − {Mn, B
†}
)
Y −1

(
∂x3

B − {Mn, B}
)]

+
4π

g2
∂x3

σ , (4.14)

where X and Y are the matrices given in eq. (2.34). The function σ, which is called the

moment map of the U(1)M action, is given by

σ = Tr
[
Mn −X−1Mn − Y −1Mn

]
. (4.15)

Note that σ satisfies

∂x3
σ = Tr

[
X−1∂x3

B†Y −1{Mn, B} +X−1{Mn, B
†}Y −1∂x3

B
]
. (4.16)
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The first term in the energy density (4.14) is positive semi-definite and vanishes if the

matrix B satisfies

∂x3
B = {Mn, B} . (4.17)

This is the BPS equation for the kinks on the vortex worldsheet. If the matrix B satisfies

the BPS equation, the energy of the configuration, which can be interpreted as the total

mass of the BPS kinks, is given by the boundary values of the function σ

Mkink =
4π

g2

∫ ∞

−∞

dx3 ∂x3
σ =

4π

g2

[
σ(∞) − σ(−∞)

]
. (4.18)

The physical meaning of the function σ can be seen by using eqs. (2.20), (2.49) and (2.35)

1

2π

∫
dx1dx2 Tr[F12Φ] = −Tr

[
U †λhUM

]
= σ . (4.19)

This implies that the function σ is the magnetic flux of the vortex projected onto the

internal direction specified by the adjoint scalar Φ. The total mass (4.18) is proportional

to the difference of the magnetic flux, i.e. the magnetic charge inside the vortex string

Mkink =
4π

g2
m · g , (4.20)

where we have defined the magnetic charge vector g as

g ≡

∫
dx3 Tr

[
X−1∂x3

B†Y −1{Hn, B} +X−1{Hn, B
†}Y −1∂x3

B
]

=

∫
dx3 ∂x3

Tr
[
Hn −X−1Hn − Y −1Hn

]
. (4.21)

Therefore the kinks on the vortex worldsheet are magnetically charged objects, i.e. they

are the magnetic monopoles.

The general solution to the BPS equation (4.17) can be easily obtained as

B = eMnx3 B0 e
Mnx3, (4.22)

where the matrix elements of B0 are the integration constants, namely the moduli param-

eters of the BPS configurations. Although the solution (4.22) diverges at spatial infinity

x3 → ∞, this is an artifact of the choice of the coordinates as in the example of the SU(2)

monopole.

In order to see the configuration at x3 → ∞, we need to change the patch specified

by B to other patches. To this end, let us use the fact that the target space SO(2n)/U(n)

and USp(2n)/U(n) can be embedded into the complex Grassmannian Gr(2n, n). As is

well known, the complex Grassmannian can be described by an n-by-2n matrix Λ with the

following equivalence relation

Λ ∼ V Λ , V ∈ GL(n,C) . (4.23)
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The coset spaces SO(2n)/U(n) and USp(2n)/U(n) are subspaces in the complex Grass-

mannian Gr(2n, n) defined by the following constraint9 on the matrix Λ [52]

ΛJΛT = 0 , J =

(
0 1n

ǫ1n 0

)
, (4.24)

where ǫ = 1 for SO(2n) and ǫ = −1 for USp(2n). Since the group G transitively acts on

the coset space, any point on the coset space can be obtained from a specific matrix Λ by

the G transformations

Λ → ΛU , U ∈ G . (4.25)

Let us take the base point at B = 0 as the corresponding matrix

Λh ≡
(

0n 1n

)
, (4.26)

where the suffix of Λh stands for the vortex configuration (2.17)–(2.18) which is associated

with the highest weight vector ν̃h. Then, any point on the coset space is given by

Λ = ΛhU , U ∈ G . (4.27)

Note that the action of the subgroup H ∼= U(n) is trivial on Λh, so that the whole set of

matrices Λ is identified with the coset space G/H. If we multiply by the group element

U ∈ G given in eq. (2.35), the matrix Λ takes the form

Λ = Λhgugl ∼ Λhgl =
(
B 1n

)
. (4.28)

This shows that the element of the parabolic subgroup gu ∈ P trivially acts on Λh, while

the action of the complexified group element gl ∈ GC, generated by the lowering operators

E−α with ν̃h · α > 0, is non-trivial.

In the following, we discuss the vacua and kink configurations in the SO(2n)/U(n)

and USp(2n)/U(n) sigma models in terms of the n-by-2n matrix Λ. Since these sigma

models can be regarded as the low energy effective theories of a U(n) gauge theory with

2n flavors obeying the F-term constraint (4.24), the discussion below can be viewed as a

generalization of the construction of the domain walls in the U(n) gauge theory (or the

Grassmann sigma model) discussed in ref. [18, 19, 53, 54].

4.2.2 Vacua on the vortex worldsheet

Now let us discuss the vacuum configurations in terms of the matrix Λ. The vacuum

condition {Mn, B} = 0 implies that the vacua are fixed points of the U(1)M transformation

B → eiMnϑB eiMnϑ = B . (4.29)

In terms of the matrix Λ, this condition of the fixed points can be rewritten as

Λ → Λ eiMϑ ∼ Λ . (4.30)

9In the case of SO(2n)/U(n), the set of the solutions to the constraint (4.24) consists of two disjoint

copies of SO(2n)/U(n), one of which can be identified with the moduli space of vortices of definite chirality.
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We can easily show that Λh is one of the fixed points of U(1)M

Λhe
iMϑ = e−iMnϑΛh ∼ Λh . (4.31)

The other matrices corresponding to fixed points can be found by multiplying matrix Λh
by Weyl group transformations of G as follows

Λ = Λhw , w = wαi
wαj

· · ·wαk
∈ G , (4.32)

where wαi
are the generators of the Weyl group corresponding to reflections with respect

to the simple roots αi

wαi
≡ exp

[
−
π

2
(Eαi

− E−αi
)

]
∈ G . (4.33)

We can check that the Λ’s given by eq. (4.32) are fixed points by using the fact that the

mass matrix transforms as10

M → wαi
Mw†

αi
=
[
m− (m · α̃i)αi

]
· H , α̃i = 2

αi

αi · αi
. (4.34)

For example, Λhwαi
transforms under U(1)M as

Λhwαi
eiMϑ = Λhe

iwαi
(M)ϑwαi

= e−iwαi
(Mn)ϑΛhwαi

∼ Λhwαi
, (4.35)

where wαi
(M) and wαi

(Mn) are 2n-by-2n and n-by-n matrices given by

wαi
(M) =

(
wαi

(Mn)

−wαi
(Mn)

)
=
[
m− (m · α̃i)αi

]
·H . (4.36)

Let us now calculate the magnetic flux σ defined in eq. (4.15) at each vacuum point.

In terms of Λ, the flux σ can be rewritten as

σ = Tr
[
(ΛΛ†)−1ΛMΛ†

]
. (4.37)

For the highest weight vacuum Λh, the flux σ is given by

σ = −TrMn = −2m · ν̃h . (4.38)

Similarly, the flux σ in the vacua Λhwαi
can be obtained by using eq. (4.34) as

σ = Tr
[(

ΛhΛ
†
h

)−1
Λhwαi

(M)Λ†
h

]
= −2m · wαi

(ν̃h) , (4.39)

where wαi
(ν̃h) is the coweight vector obtained from ν̃h by the Weyl reflection with respect

to the simple root αi

wαi
(ν̃h) ≡ ν̃h − (ν̃h · αi)α̃i . (4.40)

10Note that wαi
acts on any element of the Cartan subalgebra as the Weyl reflection of the coefficient

vector wαi
(v · H)w†

αi
= [v − (v · α̃i)αi] · H.
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As this example shows, the values of the magnetic flux at the vacuum points are specified

by the coweights related to ν̃h via Weyl reflections. In the case of a single vortex in

G = SO(2n), USp(2n) theory, the orbit of ν̃h under Weyl reflections coincides with the

whole set of weight vectors of the (Weyl) spinor representation of G̃ = SO(2n), SO(2n+1).

Therefore the number of the vacua is the dimension of the representation11

nvacua =

{
2n−1 (Weyl spinor rep. of G̃ = SO(2n)) for G = SO(2n)

2n (spinor rep. of G̃ = SO(2n + 1)) for G = USp(2n)
. (4.41)

Example 1: vacua of the USp(4)/U(2) sigma model. Let us take the USp(4)/U(2)

case as an example.12 The Weyl group is generated by the following elements corresponding

to the simple roots α1 = e1 − e2 and α2 = 2e2

wα1
=




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 , wα2

=




1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0


 . (4.42)

By using these group elements and GL(n,C) transformations, we obtain the following

vacuum matrices

Λ++ =

(
0 0 1 0

0 0 0 1

)
, Λ+− =

(
0 0 1 0

0 1 0 0

)
, (4.43)

Λ−+ =

(
1 0 0 0

0 0 0 1

)
, Λ−− =

(
1 0 0 0

0 1 0 0

)
, (4.44)

where we have used the Weyl group elements in the following way

Λ++ = Λh
α2→ Λ+− ∼ Λ++wα2

α1→ Λ−+ ∼ Λ+−wα1

α2→ Λ−− ∼ Λ−+wα2
. (4.45)

The symbol ∼ denotes that we have used the equivalence relation (4.23). For each vacuum

point on the target space, the coweight ν̃ and the magnetic flux, respectively, are given by

ν̃±± =
±e1 ± e2

2
, σ±± = −(±m1 ±m2) . (4.46)

Note that the signatures ± correspond to the spins of the SO(5) spinor representation. In

general, the vacuum matrices for G = USp(2n) has the following form

Λ±···± =



a1− a1+

. . .
. . .

an− an+


 , (4.47)

where ai+ = 1 (ai+ = 0) and ai− = 0 (ai− = 1) if the i-th signature of Λ±···± is +(−).

11We can also see that the number of vacua is the Euler characteristics of the target manifold [9]

χ

„

SO(2n)

U(n)

«

= 2n−1, χ

„

USp(2n)

U(n)

«

= 2n.

12Note that SO(6)/U(3) ∼= USp(4)/U(2) ∼= CP 3.
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Example 2: vacua of the SO(6)/U(3) sigma model. In the case of G = SO(6),

the Weyl group is generated by the following elements corresponding to the simple roots

α1 = e1 − e2, α2 = e2 − e3 and α3 = e2 + e3

wα1
=




0 −1 0
1 0 0
0 0 1

0 −1 0
1 0 0
0 0 1



, wα2

=




1 0 0
0 0 −1
0 1 0

1 0 0
0 0 −1
0 1 0



, wα3

=




1
0 −1

0 1

1
−1 0

1 0



.

Combining these group elements with GL(n,C) transformations (i.e. the equivalence rela-

tion), we obtain the following vacuum matrices

Λ+++ =

(
0 1

0 1
0 1

)
, Λ+−− =

(
0 1

1 0
1 0

)
, (4.48)

Λ−+− =

(
1 0

0 1
1 0

)
, Λ−−+ =

(
1 0

1 0
0 1

)
. (4.49)

Here we have used the Weyl group elements in the following way

Λ+++ = Λh
α3→ Λ+−− ∼ Λ+++wα3

α1→ Λ−+− ∼ Λ+−−wα1

α2→ Λ−−+ ∼ Λ−+−wα2
.

(4.50)

In these vacua, the coweight ν̃ and the magnetic flux are given by

ν̃±±± =
±e1 ± e2 ± e3

2
, σ±± = −(±m1 ±m2 ±m3) , (4.51)

where the signatures ± are the spins of the SO(6) Weyl spinor representation. In general,

the vacuum matrices for G = SO(2n) have the following form

Λ±···± =



a1− a1+

. . .
. . .

an− an+


 , (4.52)

where the number of “−”s in Λ±···± is even while ai+ = 1 (ai+ = 0) and ai− = 0 (ai− = 1)

if the i-th signature is +(−).

4.2.3 Single monopole configurations

We have seen that the total mass of the BPS kinks is determined by the difference of the

magnetic flux σ at x3 → ±∞, which is specified by the coweights, i.e. the weight vectors

of the dual group G̃. It follows that the total mass of the kinks interpolating between two

vacua labeled by ν̃± is given by

Mkink =
4π

g2
m · g = −

8π

g2
m · (ν̃+ − ν̃−) . (4.53)

This shows that the magnetic charge vector g is proportional to the difference of the vectors

ν̃− − ν̃+, which is an element of the coroot lattice, i.e. the lattice generated by the root
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Figure 2. A schematic picture of the composite of the vortices labeled by the coweight vectors ν̃+

and ν̃− and the monopole with the coroot α̃ = ν̃− − ν̃+.

vector of the dual group G̃. Since any element of the coroot lattice is a linear combination

of the simple roots of G̃ with integer coefficients, the total mass can be decomposed into

the masses of “the elementary kinks”, which are given by the simple roots of the dual group

Mi =
8π

g2
m · α̃i , (i = 1, 2, . . . , r̃ = rank G̃) . (4.54)

These BPS masses of the elementary kinks coincide with those of the elementary monopoles

appearing in the 4d gauge theory with maximal gauge symmetry breaking

SO(2n) → U(1)n, USp(2n) → U(1)n. (4.55)

A schematic picture is shown in figure 2.

As we can see from the BPS solution (4.22), the kink configuration is a one parameter

flow on the target space parametrized by x3. Similarly, this BPS flow can be rewritten in

terms of Λ as

Λ(x3) = Λ0 e
Mx3 , (4.56)

where Λ0 is a constant n-by-2n matrix which specifies the kink configuration.13 As well as

Λ, the matrix Λ0 should obey the constraint and equivalence relation

Λ0JΛT
0 = 0 , Λ0 ∼ V Λ0 , V ∈ GL(n,C) . (4.57)

For example, the matrix Λ0 for the BPS solution (4.22) is given by

Λ0 =
(
B0 1n

)
. (4.58)

By using the matrix Λ0, the magnetic flux σ for the kink configurations can be expressed as

σ = Tr
[(

ΛΛ†)−1ΛMΛ†
]

=
1

2
∂x3

log det
(
Λ0e

2Mx3Λ†
0

)
. (4.59)

In the following, we will discuss the kink configurations for a given matrix Λ0. First

let us consider the case with Λ0 = Λh. Since eMx3 acts trivially on Λh, the configuration

is independent of x3

Λ(x3) = Λh e
Mx3 ∼ Λh . (4.60)

Therefore Λ0 = Λh corresponds to the highest weight vortex vacuum. In general, the fixed

points of U(1)M (generated by the Killing vectors ki) correspond to those of the BPS flow

(generated by iki)

Λ0 e
iMϑ ∼ Λ0 ⇐⇒ Λ0 e

Mx3 ∼ Λ0 . (4.61)

13This n-by-2n matrix Λ0 is called the moduli matrix for domain walls [18, 19].
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This means that if Λ0 is one of the vacuum matrices, there is no kink in the configuration.

The first example of the matrix Λ0 which represents single kink configurations can be

obtained by multiplying the highest weight vortex vacuum by the lowering operators E−α as

Λ0 = Λh exp
[
bE−α

]
, (4.62)

where b is a complex parameter. There is a caveat though, i.e. the action of the lowering

operator E−α is non-trivial if and only if the inner product of ν̃h and α is positive

ν̃h · α > 0 . (4.63)

In that case, the matrix Λ(x3) is given by

Λ(x3) = Λh exp
[
bE−α

]
eMx3 ∼ Λh exp

[
b e(α·m)x3E−α

]
, (4.64)

where we have used that

e−Mx3E−αe
Mx3 = e(α·m)x3E−α . (4.65)

Eq. (4.64) shows that the vortex configuration at x3 → −∞ is in the highest weight vacuum

Λh. Note that we have fixed the ordering of the masses so that m ·α > 0 for all the positive

roots α. To see the vortex configuration at x3 → ∞, let us use the following decomposition

of the group element

exp
[
aE−α

]
= exp

[
a−1Eα

]
exp

[
− log a α̃ ·H

]
wα exp

[
a−1Eα

]
. (4.66)

Since the raising operator Eα and the generator of the Cartan subalgebra H act on Λh
trivially, the matrix Λ(x3) can be rewritten as

Λ(x3) ∼ (Λhwα) exp
[
b−1e−(α·m)x3Eα

]
. (4.67)

Therefore the matrix Λ(x3) represents the kink between the vacua specified by ν̃h and

wα(ν̃h)

lim
x3→−∞

Λ(x3) ∼ Λh , lim
x3→∞

Λ(x3) ∼ Λhwα . (4.68)

Note that if ν̃h ·α ≤ 0, there does not exist any kink in the configuration since Λhwα ∼ Λh.

As we have seen in eq. (4.53), the mass of the kink is given by the difference of the coweights

ν̃± specifying the vacua at x3 → ±∞. For x3 → −∞, the vacuum is specified by the highest

weight vector ν̃+ = ν̃h, while ν̃− is given by Weyl reflection of ν̃h with respect to α. Since

ν̃h ·α ≤ 1 for any root α, the Weyl reflection wα(ν̃h) with respect to α satisfying ν̃h ·α > 0

is given by

wα(ν̃h) = ν̃h − (ν̃h · α)α̃ = ν̃h − α̃ . (4.69)

Therefore, Λ(x3) represents the set of configurations of kinks interpolating between the

vacua ν̃h and ν̃h − α̃, whose mass is given by

Mkink =
8π

g2
α̃ ·m . (4.70)
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The physical meaning of the parameter b can be read off the profiles of the magnetic flux

σ and the energy density E = 4π
g2
∂x3

σ

σ = α̃ · m
[
1 + tanh[α ·m(x3 − r0)]

]
− 2 ν̃h ·m , (4.71)

E =
4π

g2
(α̃ · m)(α ·m) sech2[α ·m(x3 − r0)] , (4.72)

where we have redefined the parameter b as (see eq. (4.62))

b = exp
[
− (α · m) r0 + iη

]
, r0, η ∈ R . (4.73)

Since the kink profile of σ and the energy density are functions of x3 − r0 and independent

of η, the parameters r0 and η can be interpreted as the position and internal phase moduli

of the kink. The phase can be interpreted as the Nambu-Goldstone zero mode of the

U(1)M symmetry broken by the kink. Note that the phase η transforms under the U(1)n

symmetry as

exp[iθ ·H] : η → η + θ · α . (4.74)

As already mentioned, the kinks specified by the simple roots correspond to the ele-

mentary monopoles in the 4d theory. There exists only one simple root14 which satisfies

the non-triviality condition ν̃h · α > 0. Therefore only α = αn corresponds to the sin-

gle elementary monopole for Λ0 of the form (4.62). As we will see in the next section, the

other cases are the coincident monopoles, which can be decomposed into several elementary

monopoles.

Next, let us consider the action of the lowering operator on another vacuum

Λ0 = (Λhw) exp
[
bE−α

]
= Λh exp

[
bE−w(α)

]
w , (4.75)

where w(α) is the root vector obtained by the Weyl reflection. The action of E−α on Λhw

is non-trivial if and only if

ν̃h · w(α) = w(ν̃h) · α > 0 . (4.76)

As in the previous case, we can show that

Λ(x3) ∼ Λhw exp
[
b e(α·m)x3E−α

]
∼ Λhwwα exp

[
b−1e−(α·m)x3E−α

]
. (4.77)

Therefore the matrix Λ(x3) corresponds to the kink between the vacua specified by the

vectors w(ν̃h) and w(ν̃h) − α̃

lim
x3→−∞

Λ(x3) ∼ Λhw , lim
x3→∞

Λ(x3) ∼ Λhwwα . (4.78)

The difference between this and the previous cases is that the vacua Λh and Λhw can admit

different types of elementary monopoles (see eqs. (4.63) and (4.76)). In general, the i-th

elementary monopole can exist if and only if i-th Dynkin label l̃i of the coweight ν̃ at

x3 → −∞ is positive

l̃i ≡ ν̃ · αi ∈ Z+ . (4.79)

Indeed, we can easily show that if the i-th Dynkin label is not positive, the action of the

lowering operator exp[bEαi
] is trivial

l̃i ≤ 0 ⇐⇒ (Λhw) exp
[
bEαi

]
∼ Λhw . (4.80)

14αn = en−1 + en and αn = 2en for G = SO(2n) and G = USp(2n), respectively.
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Example 1: elementary kinks in the USp(4)/U(2) sigma model. Let us first

consider the elementary kinks in the USp(4)/U(2) sigma model. The Dynkin labels of the

vacua l̃i = αi · ν̃ are given by

ν̃++ =
e1 + e2

2
↔

[
l̃1, l̃2

]
= [0, 1] , ν̃+− =

e1 − e2

2
↔

[
l̃1, l̃2

]
= [1,−1] , (4.81)

ν̃−+ =
−e1 + e2

2
↔

[
l̃1, l̃2

]
= [−1, 1] , ν̃−− =

−e1 − e2

2
↔

[
l̃1, l̃2

]
= [0,−1] . (4.82)

Therefore there is no elementary BPS kink between (−−) and another vacuum.15 The

lowering operators for the simple roots α1 = e1 − e2 and α2 = 2e2 are given by

exp
[
bE−α1

]
=




1 0 0 0
b 1 0 0

0 0 1 −b
0 0 0 1


 , exp

[
bE−α2

]
=




1 0 0 0
0 1 0 0

0 0 1 0
0 b 0 1


 . (4.83)

By using the vacuum matrices given in eqs. (4.43) and (4.44), we find the following matrices

Λ0 for single elementary monopole configurations

Λ(++,+−) = Λ++ exp
[
bE−α2

]
=

(
0 0 1 0

0 b 0 1

)
, (4.84)

Λ(+−,−+) = Λ+− exp
[
bE−α1

]
=

(
0 0 1 −b

b 1 0 0

)
, (4.85)

Λ(−+,−−) = Λ−+ exp
[
bE−α2

]
=

(
1 0 0 0

0 b 0 1

)
. (4.86)

For these matrices, Λ(x3) = Λ0e
Mx3 correspond to the kinks interpolating between the

vacua given in eqs. (4.43) and (4.44). For example, Λ(++,+−) represents the elementary

kink between the (++) and the (+−) vacua

Λ(x3) = Λ(++,+−)e
Mx3 ∼





(
0 0 1 0

0 a 0 1

)
−→

x3→−∞
Λ++

(
0 0 1 0

0 1 0 1
a

)
−→
x3→∞

Λ+−

, a ≡ b e2m2x3 , (4.87)

where M = diag(m1,m2,−m1,−m2).

Example 2: elementary kinks in the SO(6)/U(3) sigma model. In the case of

the SO(6)/U(3) sigma model, the Dynkin labels of the vacua l̃i = αi · ν̃ are

ν̃+++ =
e1 + e2 + e3

2
↔ [l̃1, l̃2, l̃3] = [0, 0, 1] , (4.88)

ν̃+−− =
e1 − e2 − e3

2
↔ [l̃1, l̃2, l̃3] = [1, 0,−1] , (4.89)

ν̃−+− =
−e1 + e2 − e3

2
↔ [l̃1, l̃2, l̃3] = [−1, 1, 0] , (4.90)

ν̃−−+ =
−e1 − e2 − e3

2
↔ [l̃1, l̃2, l̃3] = [0, 0,−1] . (4.91)

15The kinks between (−−) and the other vacua are anti-BPS monopoles.

– 26 –



J
H
E
P
1
2
(
2
0
1
1
)
0
1
7

The lowering operators for the simple roots α1 = e1 − e2, α2 = e2 − e3 and α3 = e2 + e3

are given by

ebE−α1 =




1
b 1

1

1 −b
1

1



, ebE−α2 =




1
1
b 1

1
1 −b

1



, ebE−α3 =




1
1

1

1
−b 1

b 1



.

By using these group elements and the vacuum matrices given in eqs. (4.48) and (4.49),

we find the following Λ0 corresponding to the elementary monopoles

Λ(+++,+−−) = Λ+++ exp
[
bE−α3

]
=

(
0 1

0 −b 1
b 0 1

)
, (4.92)

Λ(+−−,−+−) = Λ+−− exp
[
bE−α1

]
=

(
0 1 −b
b 1 0

1 0

)
, (4.93)

Λ(−+−,−−+) = Λ−+− exp
[
bE−α2

]
=

(
1 0

0 1 −b
b 1 0

)
. (4.94)

4.2.4 Multi-monopole configurations

As we have seen in the previous section, the lowering operators for the simple roots are

“creation operators” of the elementary monopoles. Now let us consider the matrix Λ0 with

two lowering operators for different simple roots

Λ0 = (Λhw) exp
[
biEαi

]
exp

[
bjEαj

]
, i 6= j . (4.95)

In this case, we have the following three expressions for the matrix Λ(x3)

Λ(x3) ∼





(Λhw) exp
[
bie

(αi·m)x3E−αi

]
exp

[
bje

(αj ·m)x3E−αj

]

(Λhwwαi
) exp

[
b−1
i e−(αi·m)x3Eαi

]
exp

[
bje

(αj ·m)x3E−αj

]

(Λhwwαi
wαj

) exp
[
b−1
j e−(αj ·m)x3Eαj

]
exp

[
b−1
i e−(αi·m)x3Eαi

] , (4.96)

where we have used the fact that [Eαi
, E−αj

] = 0 for any simple roots αi and αj (i 6= j).

If we set the moduli parameters as16

log bi = −(αi · m)ri + iηi , log bj = −(αj ·m)rj + iηj , (4.97)

we find that the matrix Λ(x3) flows though the following three vacua

Λ(x3) ∼





Λhw x3 ≪ ri
Λhwwαi

ri ≪ x3 ≪ rj
Λhwwαi

wαj
rj ≪ x3

, (4.98)

16There is no summation on i and j in eq. (4.97).
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where we have assumed ri ≪ rj . Eq. (4.98) shows that Λ(x3) corresponds to the configu-

ration of two elementary kinks α̃i and α̃j located at x3 = ri and x3 = rj , respectively

(Λhw)-vortex
x3≪ri

→ α̃i-monopole
x3=ri

→ (Λhwwαi
)-vortex

ri≪x3≪rj

→ α̃j-monopole
x3=rj

→ (Λhwwαi
wαj

)-vortex
rj≪x3

.

If the lowering operators E−αi
and E−αj

commute with each other, we have another

expression for the matrix Λ(x3)

Λ(x3) ∼ (Λhwwαj
) exp

[
b−1
j e−(αj ·m)x3Eαj

]
exp

[
bie

(αi·m)x3E−αi

]
(4.99)

≈ Λhwwαj
(ri ≫ x3 ≫ rj) . (4.100)

Therefore the ordering of the monopoles can be exchanged if the corresponding operators

satisfy [E−αi
, E−αj

] = 0

(Λhw)-vortex
x3≪rj

→ α̃j-monopole
x3=rj

→ (Λhwwαj
)-vortex

rj≪x3≪ri

→ α̃i-monopole
x3=ri

→ (Λhwwαi
wαj

)-vortex
ri≪x3

.

On the other hand, if the lowering operators do not commute [E−αi
, E−αj

] 6= 0, the

monopoles have a fixed ordering, which was found for the Grassmannian sigma model [19].

To see this, let us consider the following example in the USp(4)/U(2) sigma model

Λ(x3) = Λ++ exp
[
b2E−α2

]
exp

[
b1E−α1

]
eMx3 ∼

(
a2

1a2 a1a2 1 0

a1a2 a2 0 1

)
, (4.101)

where a1 and a2 are given by

a1 = b1e
(m1−m2)x3 = e(m1−m2)(x3−r1)+iη1 , (4.102)

a2 = b2e
2m2x3 = e2m2(x3−r2)+iη2 . (4.103)

In this configuration, there are two monopoles at x3 = r2 and x3 = r1 if r2 < r1. Let us

take the limits r2 → ∞ and r1 → −∞ while keeping a2
1a2 fixed

Λ(x3) ∼

(
a1+2 0 1 0

0 0 0 1

)
∼ Λ++ exp

[
a1+2E−(α1+α2)

]
, (4.104)

where a1+2 takes the form a1+2 = exp[(m1+m2)(x3−r1+2)+iη1+2]. Eq. (4.104) corresponds

to a single monopole with root vector α̃1 + α̃2. Therefore the monopoles with α̃1,2 cannot

be exchanged and become a single monopole with α̃1 + α̃2 in the coincident limit.

To understand the ordering of the monopoles, it is convenient to introduce the following

matrix17

Σ(x3) ≡ (ΛΛ†)−1ΛMΛ† . (4.105)

17The definition of Σ here is different from that is used in the Grassmannian sigma model [18, 19] by a

matrix conjugation Σ → S−1ΣS.
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Figure 3. The eigenvalues of Σ as functions of x3 (G = USp(4), m1 = 2, m2 = 1).

Since Tr Σ = σ is the magnetic flux which has a kink profile, the eigenvalues of Σ also have

kink profiles, which contain more information on the ordering of the kinks, as in the case

of Grassmannian sigma model [53]. Figure 3 shows the coincident limit of the α1- and

α2-monopoles in the USp(4) case.

In general, the matrix Σ has the following properties:

1. The eigenvalues of Σ are increasing functions of x3.

2. At the vacuum points, all of the eigenvalues are different and given by the mass

parameters ±mi.

3. If mi (−mi) is one of the eigenvalues, −mi (mi) is not contained in the set of eigen-

values.

4. For the vacuum Λs1···sn (si = ±), the eigenvalues are −s1m1 , · · · ,−snmn.

With these rules in mind, we can draw the generic kink profiles of eigenvalues diagram-

matically in the thin wall limit18 (see USp(6) and SO(8) examples in figures 4 and 5).

In the SU(N) case, the profiles of eigenvalues of Σ were interpreted as kinky D-brane

configurations [53].

Finally, let us discuss the most generic configurations of kinks. The matrix Λ0 for the

generic configuration can be obtained from Λh by multiplying as many lowering operators

as possible

Λ0 = Λh exp
[
bi1E−αi1

]
· · · exp

[
bipE−αip

]
, (4.106)

where αij are simple roots. Since the multiplication of the lowering operators becomes

trivial at a finite number p, there exist “maximal kink configurations” containing the

maximal number of kinks. As shown in appendix C, we can always rewrite the matrix Λ0 as

Λ0 ∼ (Λhwαi1
) exp

[
b′i2E−αi2

]
· · · exp

[
b′ipE−αip

]
exp

[
b′i1

−1
Eαi1

]
(4.107)

∼ (Λhwαi1
wαi2

) exp
[
b′′i3E−αi3

]
· · · exp

[
b′′ipE−αip

]
exp

[
b′′i2

−1
Eαi2

]
exp

[
b′′i1

−1
Eαi1

]

∼ · · · .
18The thin wall limit can be interpreted as the large mass limit in which the kink profile becomes a step

function limm→∞[1 + tanh(mx)] = 2θ(x) where θ(x) stands for the step function. In the SU(N) case a

different limit was taken in ref. [55] to obtain kinks with constant slopes, in order to study the statistical

mechanics of non-Abelian vortices.
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Figure 4. The USp(6) maximal kink configuration in the thin wall limit. The eigenvalues of Σ

(solid lines) and their mirror image (dashed lines) with respect to the line Σ = 0 (dotted line) are all

different in each vortex vacuum (the regions are separated by vertical dashed lines). The sequence

of Dynkin labels of the SO(7) spinor is assigned so that the subsequent labels are obtained by

subtracting the row of the Cartan matrix C̃ corresponding to the coroot of the monopole between

the vacua. The branch of the sequence corresponds to commutative monopoles.

Figure 5. The SO(8) maximal kink configuration in the thin wall limit and the sequence of Dynkin

labels of the SO(8) Weyl spinor. Each eigenvalue (solid lines) can cross the dotted line Σ = 0 only

if it is paired with another eigenvalue. Because of the vacuum condition, two kinks must go up

simultaneously across the dotted line.

Repeating this procedure, we can read off the vortex-monopole configuration from x3 →

−∞ to x3 → ∞

Λh-vortex → α̃i1-monopole → (Λhwαi
)-vortex → · · · → (Λhwαi1

· · ·wαip
)-vortex .

The lowering operator exp[biE−αi
] creates the α̃i-monopole if the vortex has the coweight

ν̃ with a positive Dynkin label l̃i = ν̃ · αi. Then it is connected to the vortex with the
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coweight ν̃−α̃i whose Dynkin labels are l̃′j = l̃j− C̃ij. Here C̃ij is an element of the Cartan

matrix

C̃ij ≡ α̃i · αj . (4.108)

Therefore, the most generic SO(2n) and USp(2n) vortex-monopole configurations can be

constructed in the same way as the (Weyl) spinor representation of SO(2n) and SO(2n+1)

(see the USp(6) and SO(8) examples given in figures 4 and 5).

Example 1: maximal kink configuration in the USp(6)/U(3) sigma model. Let

us consider the maximal kink configuration in the USp(6)/U(3) sigma model. The most

generic form of the matrix Λ0 is given by

Λ0 = Λh exp
[
b3,1E−α3

]
exp

[
b2,1E−α2

]
exp

[
b1,1E−α1

]

× exp
[
b3,2E−α3

]
exp

[
b2,2E−α2

]

× exp
[
b3,3E−α3

]
. (4.109)

The number of moduli parameters bi,j is in accordance with the number of the matrix

elements of the symmetric matrix B0. The corresponding kink profile and the sequence of

Dynkin labels of the SO(7) spinor representation are given in figure 4.

In general, the matrix Λ0 for the maximal kink configurations in the USp(2n)/U(n)

sigma model is given by

Λ0 = Λh exp
[
bn,1E−αn

]
· · · exp

[
b2,1E−α2

]
exp

[
b1,1E−α1

]

× exp
[
bn,2E−αn

]
· · · exp

[
b2,2E−α2

]

...

× exp
[
bn,nE−αn

]
. (4.110)

There are i (i = 1, . . . , n) α̃i-monopoles in the maximal configuration and the complex

parameters bi,j (j = 1, . . . , i) are the position and phase moduli of j-th α̃i-monopole.

Example 2: maximal kink configuration in the SO(8)/U(4) sigma model. The

matrix Λ0 for the maximal kink configuration in the SO(8)/U(4) sigma model is given by

Λ0 = Λh exp
[
b4,1E−α4

]
exp

[
b2,1E−α2

]
exp

[
b1,1E−α1

]

× exp
[
b3,2E−α3

]
exp

[
b2,2E−α2

]

× exp
[
b4,3E−α4

]
. (4.111)

As in the case of USp(6)/U(3), the number of moduli parameters bi,j is in accordance with

that of the matrix elements of the anti-symmetric matrix B0. The kink profiles and the

sequence of Dynkin labels of the SO(8) Weyl spinor representation are given in figure 5.
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Figure 6. The SO(4) kink configurations on the vortices with opposite Z2 topological charge.

The generic form of the matrix Λ0 for the maximal kink configurations in the

SO(2n)/U(n) sigma model is given by

Λ0 = Λh exp
[
bn,1E−αn

]
exp

[
bn−2,1E−αn−2

]
· · · exp

[
b2,1E−α2

]
exp

[
b1,1E−α1

]

× exp
[
bn−1,2E−αn−1

]
· · · exp

[
b2,2E−α2

]

× exp
[
bn,3E−αn

]
exp

[
bn−2,3E−αn−2

]
· · · exp

[
b3,3E−α3

]

× exp
[
bn−1,4E−αn−1

]
· · · exp

[
b4,4E−α4

]

...

×L , (4.112)

where the last operator L is

L =

{
exp

[
bn,nE−αn

]
for SO(4n′ + 4)

exp
[
bn−1,nE−αn−1

]
for SO(4n′ + 2)

. (4.113)

For SO(4n′ + 2) (SO(4n′ + 4)), the numbers of α̃i-monopoles in the maximal configura-

tion are

#α̃i-monopoles =





i for i = 1, · · · , n− 2

n′ for i = n− 1

n′ (n′ + 1) for i = n

. (4.114)

We can also discuss the kinks on the vortex with opposite Z2 topological charge (chi-

rality) by starting from the following highest weight vacuum

Λ′
h =

(
0n−1 1n−1

1 0

)
. (4.115)

In the case of SO(4), the vortices with different Z2 topological charge admit different types

of elementary monopoles (see figure 6)

Λ(++,−−) = Λh exp
[
bE−α1

]
=

(
0 −b 1 0

b 0 0 1

)
, (4.116)

Λ(+−,−+) = Λ′
h exp

[
bE−α2

]
=

(
0 0 1 −b

b 1 0 0

)
, (4.117)

where α1 = e1 − e2 and α2 = e1 + e2.
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5 Witten’s effect on the vortex worldsheet

In this section we consider the dyonic configuration. The bulk θ-term induces a θ-term on

the vortex worldsheet, which can be obtained by substituting the solution (2.40) into the

bulk θ-term

Lθ =
θ

32π2
ǫµνρσ

∫
d4xTr(FµνFρσ) =

θ

2π

∫
d2x

ig2

4π
gij̄ǫ

αβ∂αb
i∂β b̄

j̄ , (5.1)

where ǫtx3 = −ǫx3t = 1. This induced θ-term on the vortex worldsheet is proportional to

the pullback of the Kähler form onto the vortex worldsheet. For the SO(2n)/U(n) and

USp(2n)/U(n) cases, the explicit form of the induced θ-term is given by

Lθ = −i
θ

2π
ǫαβTr

[
X−1∂αB

†Y −1∂βB
]
. (5.2)

For the U(N) theory this reduces to the θ-term in the worldsheet CPN−1 sigma model,

discussed by Gorsky et al. [8]. Thus the total effective Lagrangian becomes

L = Tr

[(
4π

g2
ηαβ − i

θ

2π
ǫαβ
)
X−1∂αB

†Y −1∂βB −
4π

g2
X−1{Mn, B

†}Y −1{Mn, B}

]

= Tr

[
Im
(
τ X−1∂−B

†Y −1∂+B
)
−

4π

g2
X−1{Mn, B

†}Y −1{Mn, B}

]
, (5.3)

where τ is the complex coupling constant

τ ≡
θ

2π
+ i

4π

g2
, ∂± ≡ ∂t ± ∂x3

. (5.4)

Although the θ-term (5.2) does not change the equation of motion, it shifts the conserved

Noether charges of the U(1)n global symmetry (Hn is defined in eq. (4.9))

q = i
4π

g2

∫
dx3Tr

[
X−1∂tB

†Y −1{Hn, B} −X−1{Hn, B
†}Y −1∂tB

]

−
θ

2π

∫
dx3Tr

[
X−1∂x3

B†Y −1{Hn, B} +X−1{Hn, B
†}Y −1∂x3

B
]
. (5.5)

Recalling eqs. (4.11) and (4.21), the shift of the U(1)n charges, can be written as

∆q = −
θ

2π
g . (5.6)

By using eq. (4.16) the shift of the U(1)M charge can be expressed as

∆(m · q) = −
θ

2π

∫
dx3 ∂x3

σ . (5.7)

These represent the Witten effect [56] for the monopoles on the vortex worldsheet.

Now let us consider the dyonic configuration. For given values of the conserved Noether

charge q and the topological charge g, the energy can be rewritten as

E =
4π

g2

∫
dx3Tr

[
X−1

(
∂tB

† + i sin µ{Mn, B
†}
)
Y −1

(
∂tB − i sinµ{Mn, B}

)]

+
4π

g2

∫
dx3Tr

[
X−1

(
∂x3

B† − cosµ{Mn, B
†}
)
Y −1

(
∂x3

B − cosµ{Mn, B}
)]

+
4π

g2
m · g cosµ+ m ·

(
q +

θ

2π
g

)
sinµ . (5.8)
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The quantity in the third line is extremized by

tanµ =
g2

4π

(
m · q

m · g
+

θ

2π

)
. (5.9)

Therefore, the energy is bounded from below by the central charge as

E ≥

√[
4π

g2
m · g

]2

+

[
m ·

(
q +

θ

2π
g

)]2

=
∣∣m · (q + τg)

∣∣ = |Z| . (5.10)

The inequality (5.10) is saturated if the following BPS equations are satisfied

∂tB − i sinµ{Mn, B} = 0 , ∂x3
B − cosµ{Mn, B} = 0 . (5.11)

The general solution is given by

B(t, x3) = exp
[
Mn(it sinµ+ x3 cosµ)

]
B0 exp

[
Mn(it sin µ+ x3 cosµ)

]
. (5.12)

We can also express this solution in terms of the matrix Λ

Λ(t, x3) =
(
B0 1n

)
exp

[
Mn(it sin µ+ x3 cosµ)

]
= Λ0 exp

[
Mn(it sin µ+ x3 cosµ)

]
.

As an example, let us take the matrix Λ0 for the single monopole configuration

Λ(t, x3) = Λh exp
[
bE−α

]
exp

[
M(it sin µ+ x3 cosµ)

]

∼ Λh exp
[
b exp[m · α(it sin µ+ x3 cosµ)]E−α

]
. (5.13)

Since arg b is the phase moduli of the monopole, this dyonic solution can be interpreted as

the α̃-monopole with a rotating phase

η(t) = arg b+ sinµ (m · α) t . (5.14)

We have seen in the previous section that the monopole phase transforms under the U(1)n

symmetry as η → η + θ · α. This transformation property implies that the conjugate

momentum of the phase pη and the Noether charge q are related by q = pη α. Upon semi-

classical quantization of the monopole moduli, the conjugate momentum of the phase,

which has period 2π, is quantized as pη ∈ Z. Therefore, the Noether charge q should be

an integer multiple of the root α

q = nq α , nq ∈ Z . (5.15)

The BPS spectrum of the monopoles and dyons with the magnetic charge g = 2α̃ is

therefore given by

Mα,nq =

∣∣∣∣m · α

(
nq +

4

α · α
τ

)∣∣∣∣ . (5.16)

This spectrum is invariant under a 2π rotation of the θ-angle (τ → τ + 1) since the length

of the root vectors are normalized by

4

α · α
=

{
1 for the long roots of USp(2n) ;

2 for the other roots.
(5.17)

– 34 –



J
H
E
P
1
2
(
2
0
1
1
)
0
1
7

-4 -2 0 2 4

-4

-2

0

2

4

x3

ÈzÈ

(a) Tr[EiΦ] (b) ∂iTr[EiΦ] (c) iTr[QMD0Q
†−D0QMQ†]

Figure 7. (a) The electric flux of the SU(2) vortex-dyon configuration. The electric flux decays

with the Yukawa type behavior e−gvx. (b) The electric charge density. (c) The global U(1) charge.

The plots for negative |z| are simply mirror images in order to illustrate the cross section of the

configuration.

Note that the Noether charge q cannot be interpreted as the electric charge of a dyon,

whether or not it gets Witten’s correction due to the vacuum angle θ. This is because the

electric flux is screened by the scalar field Q and decays with the Yukawa type behavior

e−gvx, so that the total electric charge should be zero. On the other hand, the scalar field

is charged under the unbroken global U(1)n symmetry and accordingly the vector q can be

interpreted as the associated conserved charges. Indeed, we can see that the global U(1)n

charges contribute to the BPS mass by rewriting the energy in the following way:

E =

∫
d3xTr

[
1

g2

∣∣Bi − cosµDiΦ − δi3g
2
(
Tr[Q†tαQ]tα − ξt0

)∣∣2 +
1

g2

∣∣Ei − sinµDiΦ
∣∣2

+ 4
∣∣Dz̄Q

∣∣2 +
∣∣D3Q+ cosµ(ΦQ−QM)

∣∣2 +
∣∣D0Q+ i sinµ(ΦQ−QM)

∣∣2

+
1

g2

∣∣D0Φ
∣∣2 − sinµΦ

(
2

g2
DiEi +

i2

g2
[Φ,D0Φ] + i

[
Q(D0Q)† −D0QQ

†
])

− v2B3 +
2

g2
Di[ΦBi] cos µ+ sinµ

(
2

g2
Di[ΦEi] + i

[
QM(D0Q)†−D0QMQ†

])]

≥

∫
dx3 Tv + m ·

[
4π

g2
g cosµ+ (qe + qf ) sin µ

]
, (5.18)

where the charges are defined by

g ≡
1

2π

∫
d3x ∂iTr(BiH) , qe ≡

2

g2

∫
d3x ∂iTr(EiH) , (5.19)

qf ≡ i

∫
d3xTr

[
QH(D0Q)† −D0QHQ†

]
. (5.20)

Since the electric charge qe should be zero for θ = 0 (see figure 7), the BPS mass is given

by the magnetic charge g and the U(1)n global charges qf . The relation between q in

eq. (5.5) and qf in eq. (5.20) is q = qe + qf .

The dyonic configurations discussed in this section have parallel charge vectors: q and

g are proportional to the root vectors α and the coroot vectors α̃, respectively. We can
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construct dyonic configurations with q 6∝ g if we introduce complex mass parameters

M = M1 + iM2 = (m1 + im2) ·H . (5.21)

By using a method similar to that discussed in section 2.3, we can easily check that the

potential of the effective theory becomes

Veff =
4π

g2

2∑

a=1

Tr
[
X−1{ma · Hn, B

†}Y −1{ma · Hn, B}
]
. (5.22)

In this case, we can rewrite the energy of the effective theory as

E =
4π

g2

∫
dx3Tr

[
X−1

(
∂x3

B† − {m̃1 ·Hn, B
†}
)
Y −1

(
∂x3

B − {m̃1 · Hn, B}
)

+X−1
(
∂tB

† + i{m̃2 ·Hn, B
†}
)
Y −1

(
∂tB − i{m̃2 · Hn, B}

)]

+
4π

g2
m̃1 · g + m̃2 ·

(
q +

θ

2π
g

)
, (5.23)

where m̃i (i = 1, 2) are defined by
(

m̃1

m̃2

)
=

(
cosµ − sinµ

sinµ cosµ

)(
m1

m2

)
. (5.24)

Since the quantity in the last line of eq. (5.23) is extremized by

tanµ = −

4π
g2

m2 · g − m1 ·
(
q + θ

2πg
)

4π
g2

m1 · g + m2 ·
(
q + θ

2πg
) , (5.25)

the lower bound on the energy is given by the central charge

E ≥ |Z| = |(m1 + im2) · (g + τq)| . (5.26)

The BPS equations can be easily solved as

B = e(m̃1x3+im̃2t)·HnB0 e
(m̃1x3+im̃2t)·Hn . (5.27)

The n-by-n constant matrix B0 is related to the conserved charge q via eq. (5.5). The

right hand side of eq. (5.5) is a function of the kink positions and phases contained in B0,

so that the parameters should obey some constraints determined by the conserved charge

q. This means that some of the kinks form bound states, which correspond to the 1/4

BPS dyons [57–59] attached to vortex strings. We can also show that if the angle between

g and q takes on a generic value, the right hand side of eq. (5.5) has an upper bound

determined by the mass parameters. Therefore, there is a finite number of elements of

the root lattice q in a generic direction19 and the number of BPS bound states changes as

we vary the mass parameters. This is also analogous to the case of the corresponding 4d

theory. The composite configurations should be 1/4 BPS [60] while explicit checks remain

a future problem.

19Note that there exist infinite towers of the conserved charge vector q in some specific directions such

as q ∝ g.

– 36 –



J
H
E
P
1
2
(
2
0
1
1
)
0
1
7

6 Summary and discussion

In this paper we have studied the effects of mass deformation on the vortex effective

worldsheet actions in U(1)×G gauge theories with G = SO(2n), USp(2n), and SU(N). The

moduli spaces of the vortex solutions, SO(2n)/U(n), USp(2n)/U(n), and SU(N)/U(N −1)

∼ CPN−1, respectively, arising from the exact color-flavor symmetries broken by vortex

configurations, are replaced under mass deformation by a finite number of minimum-tension

vortex solutions (vortex vacua). Kinks develop along the vortex string, connecting different

vortex vacua, which turn out to be the ordinary three-dimensional monopoles trapped

inside the vortex core. The structure of these kinks (monopoles) have been analyzed

systematically here (see also [32]).

In the case of the U(N) theory this 2d-4d correspondence was shown to survive quan-

tum mechanically in the theory with no mass deformation [5, 8], thus providing a highly

non-trivial realization of the 2d-4d duality proposed earlier by Dorey et al. [22, 23]. In the

case explicitly examined from this point of view, the massless U(1) × SU(N) theory with

Nf = N flavors, the vortex CPN−1 fluctuations dynamically Abelianize at low energies,

in perfect agreement [27] with the physics of quantum r = 0 vacuum of four-dimensional

N = 2 SQCD [24, 25]. In the case of SO(2n) and USp(2n) gauge theories such a check is

the subject of a future study.

We have studied in this paper the properties of local (i.e., ANO-like) vortices in

SO(2n) × U(1) and USp(2n) × U(1) gauge theories with Nf = 2n flavors in the color-

flavor locked vacuum, eq. (2.5). It has been noted [16, 17] that in theories other than

SU(N), the system possesses more general types of vortex solutions, such as fractional or

semi-local vortices (vortex moduli), even with the minimum number of flavors needed for

the system to possess the color-flavor locked phase, eq. (2.5). Furthermore, the system

possesses a large class of vacua besides the particular vacuum considered here, eq. (2.5):

the above mentioned general class of vortex solutions is related to the existence of such

nontrivial vacuum moduli. This means that domain walls can also be formed connecting

different vacua. Accordingly, equations (2.6)–(2.9) themselves admit more general classes

of solutions involving, e.g., both domain walls and vortices connecting them, such as those

studied in refs. [20, 21, 33]. The mass deformation of semi-local vortices induces domain

walls in the bulk in general, though this is not always the case. A related comment is given

in appendix A.

Finally, we briefly comment on the brane construction of 1/4 BPS vortex-monopole

configurations. In the case of G = SU(N), it has been discussed in appendix A of ref. [5].

It consists of NS5, D6, D4 and D2-branes as shown in table 2 and figure 8. By projecting

the brane configuration onto (x3, x4)-plane (and ignoring some branes), we can draw a

figure of kinky D2-branes ending on D4-branes as shown in figure 9. This is nothing but

the kink profile which can be obtained in the effective theory on U(N) vortices. Therefore,

it is natural to guess that the kink profiles shown in figures 4 and 5 have some information

on the brane configurations of 1/4 BPS vortex-monopole configurations in the SO/USp

theories. If we assume that there exist D-brane configurations for SO/USp vortices and

the kink profiles of figures 4 and 5 are playing the same role as in the case of U(N) vortices,
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x1 x2 x3 x4 x5 x6 x7 x8 x9

2 NS5 • • • • • − − − −

Nc D4 • • • − − • − − −

Nf D6 • • • − − − • • •

k D2 − − • − − − − − •

Table 2. The brane configuration for U(Nc) vortices. The symbol • denotes the spatial worldvolume

directions of the branes. The D2-branes represent k non-Abelian vortices in the worldvolume theory

of the D4-branes.

Figure 8. The brane configuration for the 1/4 BPS vortex-monopole configuration (Nc = Nf = 2).

Figure 9. The kinky D2-brane ending on D4-branes (Nc = Nf = 2, k = 1).

we can conjecture some of their properties as follows. In figures 4 and 5, there are n thick

solid lines describing the kink profiles of the eigenvalues of the matrix Σ, which would be

identified with the positions of D2-branes. This means that a single local vortex in the

SO/USp theories consists of n constituents. A natural interpretation of this fact is that

they are related to n fractional vortices discussed in section 5 of ref. [34]. The dotted

horizontal line in each figure looks like an orientifold plane and there are n dashed lines

corresponding to mirror images of the eigenvalues. As noted above (the properties of the

matrix Σ), there is an exclusion rule among the eigenvalues and their mirror images, which

is similar to the “s-rule” for the Hanany-Witten type brane configurations [61]. In other
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words, one of the n “D2-branes” (the eigenvalues of Σ) or their mirror images can end

on each “D4-brane ending on a D6-brane” (the objects located at x4 = ±mi) for the

vacuum states of a single local vortex (see each vacuum region in figures 4 and 5). Since

there are n D4-branes in the lower half region of the (x3, x4)-plane, the number of vacuum

states in the vortex effective theory is 2n. The vertical lines in figures 4 and 5 would be

identified with D2-branes stretched between D4-branes (and NS5-branes) and represent

confined monopoles in the same way as those in the brane configuration in figure 8.

All these facts mentioned above suggest that if there exist brane configurations for the

confined monopoles in the SO/USp theories, each of them consists of NS5, D6, D4, D2-

branes and an orientifold. However, it is still difficult to determine the precise form of the

brane configurations. In general, an orientifold projects the U(N) gauge group to SO/USp,

so that the overall U(1) factor is also projected out. For example, the configuration which

can be obtained by simply adding an O4-plane to the Hanany-Witten setup corresponds

to an SO/USp gauge theory without the U(1) center [62]. On the other hand, our 4-

dimensional model has gauge group U(1)×SO/USp and the U(1) factor is important for the

constructruction of the non-Abelian local vortices. Therefore, we need some modifications

to recover the overall U(1) factor. To the best of our knowledge, there is no known brane

realization of N = 2 U(1)×SO/USp gauge theory which admits the 1/4 BPS configurations

discussed in the present paper. It would however be an interesting future work to find a

correct brane configuration describing our system.
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A Domain wall

As described in the main text, the 1/4 BPS equations (2.6)–(2.9) admit domain walls

and vortices stretched between domain walls [20, 21, 33], when the VEVs of the scalar

fields are different at x3 → −∞ and x3 → ∞. In that case, the third term in eq. (2.10)

gives the domain wall charge. In the case of G = SO(2n),USp(2n) with Nf = 2n and

non-degenerate mass matrix, M , there exist many isolated r-vacua where a subgroup of

G remains unbroken, in addition to the Higgs vacua in eq. (2.5). Therefore we need a

special condition for prohibiting the creation of domain walls interpolating their vacua as a

1/4 BPS solution. To illustrate this, it is convenient to consider the following G-invariant

quantity which parametrizes vacuum moduli for the massless case M = 0,

R =
2n

tr(J†QTJQ)
QTJQ . (A.1)
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G positive roots simple roots

SU(N) ei − ej (1 ≤ i < j ≤ N) ei − ei+1 (i = 1, · · · , N − 1)

SO(2n) ei ± ej (1 ≤ i < j ≤ n) ei − ei+1, en−1 + en (1 ≤ i < j ≤ n− 1)

USp(2n) ei ± ej, 2ei (1 ≤ i < j ≤ n) ei − ei+1, 2en (1 ≤ i < j ≤ n− 1)

SO(2n+ 1) ei ± ej, ei (1 ≤ i < j ≤ n) ei − ei+1, en (1 ≤ i < j ≤ n− 1)

Table 3. The root vectors of G = SU(N), SO(2n) and USp(2n). The set of vectors {ei} is the

standard orthonormal basis ei · ej = δij .

The first two equations in the 1/4 BPS equations can be easily solved in terms of the

invariant R as

0 = ∂z̄R , 0 = ∂3R−MTR−RM , ⇒ R = eM
Tx3R0(z)e

Mx3 , (A.2)

where we have used the fact thatM is an element of so(2n),usp(2n), that isMTJ+JM = 0.

In the case of M = 0, R = R0(z) is the so-called rational map describing lump (semi-local

vortex) solutions. Here, we require that a composite state becomes the vacuum given

by eq. (2.5) at |x3| = |z| → ∞, that is, R → J . According to the above solution, this

requirement can be formulated more strictly as

MTR+RM = 0 . (A.3)

Local vortices, which defined by R = J , obviously satisfies this condition, and vortices

discussed in this paper are only of local type. A generic solution for the condition is a

set of fractional vortices with vanishing size moduli, R0(z)ab = ra(z)Jab = rb(z)Jab. A

single local vortex is formed by coincident fractional vortices, ra(z) = rb(z), a 6= b. One

way to guarantee the solution to satisfy the above condition is to require invariance of the

solution under the rotation z → eiθz. This forces R0(z) to be constant: this turns out to

be the condition for vortices to be local (see eq. (35) of [15]). According to the principle

of symmetric criticality [68, 69], this property guarantees consistency of the low-energy

effective action on the local vortices discussed in this paper. If such a condition is not

met, on the other hand, it is inevitable for non-vanishing size moduli of vortices to increase

indefinitely along the vortex string and create a domain wall bending logarithmically.

B Lie algebra

In this appendix, we summarize the conventions for the Lie algebra used in this paper.

The root vectors of G = SU(N), SO(2n), USp(2n) and SO(2n + 1) are given in table 3.

The generators of the Lie algebra are decomposed into the standard Cartan basis: the

generators of the Cartan subalgebra H = (H1,H2, · · · ,Hr), (r = RankG), the raising

operators Eα and the lowering operators E−α = E†
α. Their commutation relations are

given by

[H, E±α] = ±αE±α , [Eα, E−α] = α̃ · H , [E±α, E±β] = N±α,±βE±α±β , (B.1)
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where α and β are positive root vectors and N±α,±β are constants. The coroot vectors α̃

are defined by

α̃ ≡ 2
α

α · α
. (B.2)

The coroot vectors of G are the root vectors of the dual group G̃: SU(N) and SO(2n)

are self-dual while USp(2n) and SO(2n+ 1) are dual to each other. The generators of the

Cartan subalgebra H are the diagonal matrices whose eigenvalues are the weight vectors

of the corresponding representation

H =




µ1
µ2

. . .
µN


. (B.3)

B.1 G = SU(N)

For the fundamental representation of SU(N), the weight vectors are

µi = ei −
1

N

N∑

i=1

ei . (B.4)

Therefore the generators of the Cartan subalgebra H = (H1, · · · ,HN ) take the form

H1 =




1 − 1
N

− 1
N

. . .
− 1
N


 , · · · , HN =




− 1
N

. . .
− 1
N

1 − 1
N


. (B.5)

Note that there are N − 1 independent matrices since (e1 + · · · + eN ) · H = 0. For the

positive root α = ei − ej (i > j), the raising operator Eα and the lowering operator E−α

are given by

Eei−ej
=

i

j


0
. . . 1

. . .
0


, E−(ei−ej) = j

i


0
. . .

1
. . .

0


. (B.6)

For the highest weight vector ν̃h of the SU(N) fundamental representation, the matrix λh
is given by

λh = ν01N + ν̃h ·H =

(
1

0N−1

)
, ν0 =

1

N
, ν̃h = e1 −

1

N

N∑

i=1

ei . (B.7)

B.2 G = SO(2n)

The weight vectors of the 2n-dimensional representation of SO(2n) are

µi = ei , µi+n = −ei (1 < i < n) . (B.8)
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Therefore the generators of the Cartan subalgebra H = (H1, · · · ,Hn) take the form

Hi =

i

i+ n

i i+ n


1

−1



. (B.9)

The raising operators Eα for the positive roots α = ei − ej , ei + ej , (1 ≤ j < i ≤ n) are

Eei−ej
=

i

j + n

j i+ n


1

−1



, Eei+ej

=

i

j

i+ n j + n


1

−1



. (B.10)

The lowering operators E−α for α = ei − ej, ei + ej, (1 ≤ j < i ≤ n) are

E−(ei−ej) =

j

i+ n

i j + n


1

−1



, E−(ei+ej) =

i+ n

j + n

i j


−1

1



.

For the highest weight vector ν̃h of the SO(2n) Weyl spinor representation, the matrix λh
is given by

λh = ν012n + ν̃h · H =

(
1n

0n

)
, ν0 =

1

2
, ν̃h =

1

2

n∑

i=1

ei . (B.11)

B.3 G = USp(2n)

The weight vectors of the 2n-dimensional representation of USp(2n) are given by

µi = ei , µi+n = −ei (1 < i < n) . (B.12)

Therefore the generators of the Cartan subalgebra H = (H1, · · · ,Hn) take the form

Hi =

i

i+ n

i i+ n


1

−1



. (B.13)
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The raising operators Eα for the positive roots α = ei − ej (1 ≤ j < i ≤ n) and α =

ei + ej (1 ≤ j ≤ i ≤ n) are

Eei−ej
=

i

j + n

j i+ n


1

−1



, Eei+ej

=

i

j

i+ n j + n


1

1



. (B.14)

The lowering operators E−α for α = ei−ej (1 ≤ j < i ≤ n) and α = ei+ej (1 ≤ j ≤ i ≤ n)

are

E−(ei−ej) =

j

i+ n

i j + n


1

−1



, E−(ei+ej) =

i+ n

j + n

i j


1

1



. (B.15)

For the highest weight vector ν̃h of the SO(2n + 1) spinor representation, the matrix

λh is given by

λh = ν012n + ν̃h · H =

(
1n

0n

)
, ν0 =

1

2
, ν̃h =

1

2

n∑

i=1

ei . (B.16)

C The ordering of the lowering operators

In general, the matrix Λ0 takes the following form

Λ0 = (Λhw) exp
[
bj1E−αj1

]
· · · exp

[
bjqE−αjq

]
R , (C.1)

where w is an element of the Weyl group and R is a product of the raising operators

w = wi1 · · ·wip , R = exp
[
ci1Eαi1

]
· · · exp

[
cipEαip

]
. (C.2)

In this appendix, we show that the matrix Λ can always be rewritten as

Λ0 ∼ (Λhwwj1) exp
[
b′j2E−αj2

]
· · · exp

[
b′jqE−αjq

]
exp

[
b′
−1
j1
Eαj1

]
R . (C.3)

By using the decomposition formula (4.66), we can rewrite Λ0 as

Λ0 ∼ (Λhwwj1) exp
[
a−1
j1
Eαj1

]
exp

[
aj2E−αj2

]
· · · exp

[
ajqE−αjq

]
R . (C.4)

If j1 6∈ {j2, · · · , jq}, we can move the operator exp[a−1
j1
Eαj1

] to the right of all the lowering

operators. Then we obtain the matrix Λ0 of the form (C.3).
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On the other hand, if there exists the same lowering operator (∃jr = j1), we cannot

exchange the positions of the operators

exp
[
a−1
j1
Eαj1

]
exp

[
ajrE−αj1

]
6= exp

[
ajrE−αj1

]
exp

[
a−1
j1
Eαj1

]
. (C.5)

Instead, we use the following formula

exp
[
b−1
j1
Eαj1

]
exp

[
bjrE−αj1

]
= exp

[
log(1+b−1

j1
bjr)α̃j1 ·H

]

× exp
[
bjr(1+b−1

j1
bjr)E−αj1

]
exp

[
b−1
j1

(1+b−1
j1
bjr)

−1Eαj1

]
.

(C.6)

Then the matrix Λ0 can be rewritten as

Λ0 ∼ (Λhwwj1) exp
[
b′j2E−αj2

]
· · · exp

[
b′jr−1

E−αjr−1

]
exp

[
ajr(1+a−1

j1
ajr)E−αj1

]

× exp
[
a−1
j1

(1+a−1
j1
ajr)

−1Eαj1

]
exp

[
ajr+1

E−αjr+1

]
· · · exp

[
ajqE−αjq

]
R , (C.7)

where the parameters b′j are given by

b′ji = bji(1 + b−1
j1
bjr)

α̃j1
·αji . (C.8)

Repeating this procedure for all ji = j1, we can move the raising operator exp[bEαj1
] to

the right and consequently we obtain the matrix Λ0 of the form (C.3).

D The quadric surface Q2n−2 sigma models

As explained in detail in ref. [9], the non-Abelian vortex in U(1)×SO(2n) has an irreducible

orbit in the higher winding k = 2 case, which has as an effective low-energy theory on the

worldsheet the sigma model on the Hermitian symmetric space Q2n−2 = SO(2n)
SO(2)×SO(2n−2) ,

which has the following Kähler potential

K = 2β log
(
1 + 2ϕ†ϕ+ |ϕTϕ|2

)
, (D.1)

giving rise to the Lagrangian [9, 52, 66]

L = 8β

{
∂αϕ

†∂αϕ+ 2|ϕT∂αϕ|
2

1 + 2ϕ†ϕ+ |ϕTϕ|2
−

2|ϕ†∂αϕ+ (ϕ†ϕ̄)(ϕT∂αϕ)|2

[1 + 2ϕ†ϕ+ |ϕTϕ|2]2

}
, (D.2)

where ϕ is a complex (2n− 2)-component vector. The Lagrangian is symmetric under the

following transformation

ϕ→ Uϕ , (D.3)

where U †U = 1 and UTU = 1. Choosing

U = eiMϑ, (D.4)

it is clear that M has to be Hermitian and anti-symmetric and hence purely imaginary.

Now keeping only the zero mode upon compactification, we get

ϕ(t, z, ϑ) = eiMϑϕ0(t, z) . (D.5)
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Inserting this field into the Lagrangian (D.2) we obtain [67]

L = 8β

{
∂αϕ

†∂αϕ+ 2|ϕT∂αϕ|
2 + ϕ†M2ϕ

1 + 2ϕ†ϕ+ |ϕTϕ|2
−

2|ϕ†∂αϕ+ (ϕ†ϕ̄)(ϕT∂αϕ)|2 + |ϕ†Mϕ|2

[1 + 2ϕ†ϕ+ |ϕTϕ|2]2

}
,

(D.6)

where we have used that ϕTMϕ = 0 due to the anti-symmetry of the mass matrix. The

vacuum equations read

ϕ†M2ϕ = 0 , ϕ†Mϕ = 0 , (D.7)

which for a generic choice of the mass matrix yields the only solution ϕ = 0. Hence, we

find the number of vacua to be [67]

nSO(2n),k=2
vacua = 2n . (D.8)

This result is indeed expected as this irreducible orbit of the corresponding vortex should

transform as an SO(2n) vector.
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