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1 Introduction

Shortly after its introduction, it became clear that the average action approach for grav-

ity [1] provides strong support for Weinberg’s Asymptotic Safety conjecture [2–4]. The key

ingredient in this scenario is a non-trivial fixed point of the gravitational renormalization

group flow which controls the UV-behavior of the theory and renders Quantum Einstein

Gravity (QEG) a non-perturbative renormalizable quantum field theory [1,4-33], see [45–

49] for reviews. Already at a very early stage of the program various indications pointed in

the direction that in this theory space-time should have certain features in common with a

fractal. In ref. [7] the four-dimensional graviton propagator has been studied in the regime

of asymptotically large momenta and it has been found that near the Planck scale a kind

of dynamical dimensional reduction occurs. As a consequence of the non-Gaussian fixed

point (NGFP) controlling the UV behavior of the theory, the four-dimensional graviton

propagator essentially behaves two-dimensional on microscopic scales.

Subsequently, the “finger prints” of the NGFP on the fabric of the effective QEG

space-times have been discussed in [11], where it was shown that asymptotic safety in-

duces a characteristic self-similarity of space-time on length-scales below the Planck length

ℓPL. The graviton propagator becomes scale-invariant in this regime [7], and based on this
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observation it was argued that, in a cosmological context, the geometry fluctuations it de-

scribes can give rise to a scale free spectrum of primordial density perturbations responsible

for structure formation [50, 51]. Thus the overall picture of the space-time structure in

asymptotically safe gravity as it emerged about ten years ago comprises a smooth classical

manifold on large distance scales, while on small scales one encounters a low dimensional

effective fractal [7, 11]. The feature at the heart of these results is the observation that

the effective field equations derived from the gravitational average action equip every given

smooth space-time manifold with, in principle, infinitely many different (pseudo) Rieman-

nian structures, one for each coarse graining scale [15, 16]. Thus, very much like in the

famous example of the coast line of England [52], the proper length on a QEG space-time

depends on the “length of the yardstick” used to measure it.1

Along a different line of investigations, the Causal Dynamical Triangulation (CDT) ap-

proach has been developed and first Monte-Carlo simulations were performed [55], see [56]

for a recent review. In this framework one attempts to compute quantum gravity partition

functions by numerically constructing the continuum limit of an appropriate statistical

mechanics system. From the perspective of the latter, this limit amounts to a second or-

der phase transition. If CDT and its counterpart QEG, formulated in the continuum by

means of the average action, belong to the same universality class2 one may expect that

the phase transition of the former is described by the non-trivial fixed point underlying the

asymptotic safety of the latter.

Remarkably, ref. [57, 58] reported results which indicated that the four-dimensional

CDT space-times, too, undergo a dimensional reduction from four to two dimensions as one

“zooms” in on short distances. In particular it had been demonstrated that the spectral

dimension ds measured in the CDT simulations has the very same limiting behaviors,

4 → 2, as in QEG [59]. Therefore it was plausible to assume that both approaches indeed

“see” the same continuum physics.

However, this interpretation became problematic when it turned out that the Monte

Carlo data correspond to a regime where the cutoff length inherent in the triangulations

is still significantly larger than the Planck length. According to the renormalization group

(RG) trajectories computed in QEG one would not expect that the asymptotic scaling

behavior implied by the fixed point is already realized there [10]; on the other hand it is

exactly this asymptotic scaling regime to which the QEG prediction of 2 fractal dimensions

pertains [7, 11, 59]. Thus the obvious question is why the CDT simulations detect a signif-

icant dimensional reduction despite their appreciable “distance” to the continuum limit.

Recently the situation became even more puzzling. In particular, ref. [60] carried out

CDT simulations for d = 3 macroscopic dimensions, which favor a value near ds = 2

on the shortest length-scale probed; in this case the QEG prediction for the fixed point

region is the value ds = 3/2, however [59]. Furthermore, the authors of ref. [61] reported

simulations within the euclidean dynamical triangulation (EDT) approach in d = 4, which

1Earlier on similar fractal properties had already been found in other quantum gravity theories, in

particular near dimension 2 [53] and in a non-asymptotically safe model [54].
2For the time being this is merely a conjecture, of course, albeit a very natural one.
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favor a drop of the spectral dimension from 4 to about 1.5; this is again in conflict with the

QEG expectations if one interprets the latter dimension as the value in the continuum limit.

One of the aims of the present paper is to propose a resolution to these puzzles. In this

course we will explicitly compute several types of scale dependent effective dimensions,

specifically the spectral dimension ds and the walk dimension dw for the effective QEG

space-times. We shall see that on length scales slightly larger than ℓPL there exists a

further regime which exhibits the phenomenon of dynamical dimensional reduction. There

the spectral dimension is even smaller than near the fixed point, namely ds = 4/3 in

the case of 4 dimensions classically. Moreover, we shall demonstrate in detail that the

(3-dimensional) results reported in [60] are in perfect accord with QEG. In this course,

we also verify the supposition [60] that the shortest possible length scale achieved in the

simulations is not yet close to the Planck length. Rather the Monte Carlo data probes the

transition between the classical and the newly discovered “semi-classical” regime.

It is intriguing that Loop Quantum Gravity and spin foam models also show indications

for a similar dimensional reduction [62–64], with some hints for an intermittent regime

where the spectral dimension is smaller than in the deep ultraviolet. In ref. [65, 66] an

argument based upon the strong coupling limit of the Wheeler-DeWitt equation was put

forward as a possible explanation of this dimensional reduction. Within non-commutative

geometry Connes et al. [67, 68] interpreted the dynamical dimensional reduction to ds = 2

which was observed in QEG in the context of the derivation of the Standard Model from

a spectral triple. In fact, from the data provided by a spectral triple, its Dirac operator in

particular, one can compute a type of spectral dimension of the resulting non-commutative

space which is closely related to the one we are considering here. Also for standard fractals

such as Cantor sets, it has been possible to find spectral triples representing them and to

compute the corresponding dimensions [69, 70].

Furthermore, a number of model systems (quantum sphere, κ-Minkowski space, etc.)

give rise to a similar reduction as quantum gravity [71]. Among other developments, these

findings also motivated the investigation of physics on prescribed fractal space-times. In

refs. [72–75] a fractional differential calculus [76, 77] was employed in order to incorporate

fractal features, and in [78] recent exact results on spectral zeta-functions on certain frac-

tals [79] were used to study the thermodynamics of photons on fractals. In ref. [80] matter

quantum field theories were constructed and renormalized on a fractal background. This

almost universal appearance of fractional properties of space-time and its accessibility in

various, a priori different, approaches to Quantum Gravity make the generalized notions

of dimensionality discussed in this paper a valuable tool in comparing the physics content

of these different formulations.

The remaining parts of this paper are organized as follows. In section 2 we introduce

the different notions of “dimension”, i.e., the spectral, walk, and Hausdorff dimension

which will be used to characterize the fractal properties of the effective QEG space-times

in section 3. In section 4 we then analyze how these dimensions change with the RG-scale

and identify the scaling regimes where they are approximately constant. These results are

then compared with the CDT data obtained in [60] in section 5. We conclude with a brief

discussion of our findings in section 6.
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2 Generalized dimensions characterizing fractal space-times

Investigating random walks and diffusion processes on fractals, one is led to introduce

various notions of fractal dimensions, such as the spectral or walk dimension [81]. These

notions also prove useful when characterizing properties of space-time in quantum gravity,

and we will review these concepts in the remainder of this section.

2.1 The spectral dimension

To start with, consider the diffusion process where a spin-less test particle performs a

Brownian random walk on an ordinary Riemannian manifold with a fixed classical metric

gµν(x). It is described by the heat-kernel Kg(x, x
′;T ) which gives the probability density

for a transition of the particle from x to x′ during the fictitious time T . It satisfies the

heat equation

∂TKg(x, x
′;T ) = −∆gKg(x, x

′;T ) , (2.1)

where ∆g = −D2 denotes the Laplace-Beltrami operator. In flat space, this equation is

easily solved by

Kg(x, x
′;T ) =

∫

ddp

(2π)d
eip·(x−x′) e−p2T (2.2)

In general, the heat-kernel is a matrix element of the operator exp(−T∆g). In the random

walk picture its trace per unit volume,

Pg(T ) = V −1

∫

ddx
√

g(x)Kg(x, x;T ) ≡ V −1Tr exp(−T∆g) , (2.3)

has the interpretation of an average return probability. Here V ≡
∫

ddx
√

g(x) denotes the

total volume. It is well known that Pg possesses an asymptotic early time expansion (for

T → 0) of the form Pg(T ) = (4πT )d/2
∑∞

n=0AnT
n, with An denoting the Seeley-DeWitt

coefficients. From this expansion one can motivate the definition of the spectral dimension

ds as the T -independent logarithmic derivative

ds ≡ −2
d lnPg(T )

d lnT

∣

∣

∣

∣

T=0

. (2.4)

On smooth manifolds, where the early time exapnsion of Pg(T ) is valid, the spectral di-

mension agrees with the topological dimension d of the manifold.

Given Pg(T ), it is natural to define an, in general T -dependent, generalization of the

spectral dimension by

Ds(T ) ≡ −2
d lnPg(T )

d lnT
. (2.5)

According to (2.4), we recover the true spectral dimension of the space-time by considering

the shortest possible random walks, i.e., by taking the limit ds = limT→0Ds(T ). Note that

in view of a possible comparison with other (discrete) approaches to quantum gravity the

generalized, scale-dependent version (2.5) will play a central role later on.
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2.2 The walk dimension

Regular Brownian motion in flat space has the celebrated property that the random walker’s

average square displacement increases linearly with time: 〈r2〉 ∝ T . Indeed, performing

the integral (2.2) we obtain the familiar probability density

K(x, x′;T ) = (4πT )−d/2 exp

(

−σ(x, x′)

2T

)

(2.6)

with σ(x, x′) = 1
2 |x − x′|2 half the squared geodesic distance between the points x, x′.

Using (2.6) yields the expectation value 〈r2〉 ≡ 〈x2〉 =
∫

ddxx2K(x, 0;T ) ∝ T .

Many diffusion processes of physical interest (such as diffusion on fractals) are anoma-

lous in the sense that this linear relationship is generalized to a power law 〈r2〉 ∝ T 2/dw

with dw 6= 2. The interpretation of the so-called walk dimension dw is as follows. The

trail left by the random walker is a random object, which is interesting in its own right. It

has the properties of a fractal, even in the “classical” case when the walk takes place on a

regular manifold. The quantity dw is precisely the fractal dimension of this trail. Diffusion

processes are called regular if dw = 2, and anomalous when dw 6= 2.

2.3 The Hausdorff dimension

Finally, we introduce the Hausdorff dimension dH . Instead of working with its mathe-

matical rigorous definition in terms of the Hausdorff measure and all possible covers of

the metric space under consideration, the present, simplified definition may suffice for our

present purposes. On a smooth set, the scaling law for the volume V (r) of a d-dimensional

ball of radius r takes the form

V (r) ∝ rdH . (2.7)

The Hausdorff dimension is then obtained in the limit of infinitely small radius,

dH ≡ lim
r→0

lnV (r)

ln r
. (2.8)

Contrary to the spectral or walk dimension whose definitions are linked to dynamical

diffusion precesses on space-time, there is no dynamics associated with dH .

3 Fractal dimensions within QEG

Upon introducing various concepts for fractal dimensions in the last section, we now proceed

with their evaluation for the QEG effective space-times, generalizing the results of ref. [59].

Our discussion will mostly be based on the so-called Einstein-Hilbert truncation introduced

in the next subsection. As we shall see this restriction is actually unnecessary in the

asymptotic scaling regime, i.e., when the RG-trajectory is close to the NGFP. In this case

we can derive exact results for the spectral and walk dimension by exploiting the scale

invariance of the theory at the fixed point.

– 5 –



J
H
E
P
1
2
(
2
0
1
1
)
0
1
2

3.1 Diffusion processes on QEG space-times

Since in QEG one integrates over all metrics, the central idea is to replace Pg(T ) by its

expectation value

P (T ) ≡ 〈Pγ(T )〉 ≡
∫

DγDCDC̄ Pγ(T ) e
−Sbare[γ,C,C̄] . (3.1)

Here γµν denotes the microscopic metric and Sbare is the bare action related to the UV

fixed point, with the gauge-fixing and the pieces containing the ghosts C and C̄ included.

For the untraced heat-kernel, we define likewise

K(x, x′;T ) ≡ 〈Kγ(x, x
′;T )〉 . (3.2)

These expectation values are most conveniently calculated from the effective average action

Γk, which equips the d-dimensional smooth manifolds underlying the QEG effective space-

times with a family of metric structures {〈gµν〉k, 0 ≤ k < ∞}, one for each coarse-graining

scale k [15, 59]. These metrics are solutions to the effective field equations implied by Γk.

To start with, we shall approximate the latter by the Einstein-Hilbert truncation [1, 10]

Γk = (16πGk)
−1

∫

ddx
√
g
(

−R+ 2λ̄k

)

+ classical gauge-fixing and ghost terms , (3.3)

which includes a scale-dependent cosmological constant λ̄k and Newtons constant Gk. The

corresponding effective field equation reads

Rµν(〈g〉k) =
2

2− d
λ̄k 〈gµν〉k . (3.4)

It has the same form as the classical Einstein equation, with a k-dependent cosmological

constant λ̄k, however. We can easily find the k-dependence of the corresponding solution

〈gµν〉k by rewriting (3.4) as [λ̄k0/λ̄k]R
µ
ν(〈g〉k) = 2

2−d λ̄k0δ
µ
ν for some fixed reference scale

k0, and exploiting that Rµ
ν(cg) = c−1Rµ

ν(g) for any constant c > 0. This shows that the

metric and its inverse scale according to

〈gµν(x)〉k = [λ̄k0/λ̄k]〈gµν(x)〉k0 , 〈gµν(x)〉k = [λ̄k/λ̄k0 ]〈gµν(x)〉k0 . (3.5)

Denoting the Laplace-Beltrami operators corresponding to the metrics 〈gµν〉k and 〈gµν〉k0
by ∆(k) and ∆(k0), respectively, these relations imply

∆(k) =
[

λ̄k/λ̄k0

]

∆(k0) . (3.6)

At this stage, the following remarks are in order. In the asymptotic scaling regime

associated with the NGFP the scale-dependence of the couplings is fixed by the fixed point

condition:

λ̄k ∝ k2 , Gk ∝ k2−d . (3.7)

This implies in particular

〈gµν(x)〉k ∝ k−2 (k → ∞) . (3.8)
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This asymptotic relation is actually an exact consequence of Asymptotic Safety, which

solely relies on the scale-independence of the theory at the fixed point.

In general, the relation (3.6) will receive corrections from the presence of higher-

derivative operators in the effective average action [11, 17, 18, 20, 26]. These contribu-

tions organize themselves into a power series controlled by the dimensionless cosmological

constant λk ≡ λ̄2
k/k

2 in which the square bracket in (3.6) provide the leading term for

small values of λk. Thus, for finite scales k, the equations (3.5) and (3.6) hold true in the

Einstein-Hilbert truncation and the absence of matter only. These conditions guarantee

that the effective field equation has the simple form (3.4), which is necessary for the pro-

portionality 〈gµν〉k ∝ λ̄−1
k expressed in (3.7). This relation constitutes an essential piece in

the derivation of eq. (3.6). In the scaling regime of a complete gravity-matter fixed point

the conditions above can be relaxed, however, since then for purely dimensional reasons

basically, 〈gµν〉k ∝ k−2 in the full theory and any sensible truncation.

This said, we can now evaluate the expectation value (3.1) by exploiting the effective

field theory properties of the effective average action. Since Γk defines an effective field the-

ory at the scale k we know that 〈O(γµν)〉 ≈ O(〈gµν〉k) provided the observable O involves

only momentum scales of the order of k. We apply this rule to the r.h.s. of the diffusion

equation, O = −∆γKγ(x, x
′;T ). The subtle issue here is the correct identification of k. If

the diffusion process involves (approximately) only a small interval of scales near k over

which λ̄k does not change much, the corresponding heat equation contains the operator

∆(k) for this specific, fixed value of k: ∂TK(x, x′;T ) = −∆(k)K(x, x′;T ). Denoting the

eigenvalues of ∆(k0) by En and the corresponding eigenfunctions by φn, this equation is

solved by

K(x, x′;T ) =
∑

n

φn(x)φn(x
′) exp

(

− F (k2)EnT
)

. (3.9)

Here we introduced the convenient notation F (k2) ≡ λ̄k/λ̄k0 . Knowing the propagation

kernel, we can time-evolve any initial probability distribution p(x; 0) according to

p(x;T ) =

∫

ddx′
√

g0(x′)K(x, x′;T ) p(x′; 0) (3.10)

with g0 the determinant of 〈gµν〉k0 . If the initial distribution has an eigenfunction expansion

of the form p(x; 0) =
∑

nCnφn(x) we obtain

p(x;T ) =
∑

n

Cnφn(x) exp
(

− F (k2)EnT
)

. (3.11)

If the Cn’s are significantly different from zero only for a single eigenvalue EN , we are

dealing with a single-scale problem and would identify k2 = EN as the relevant scale at

which the running couplings are to be evaluated. In general the Cn’s are different from

zero over a wide range of eigenvalues. In this case we face a multiscale problem where

different modes φn probe the space-time on different length scales. If ∆(k0) corresponds

to flat space, say, the eigenfunctions φn = φp are plane waves with momentum pµ, and

they resolve structures on a length scale ℓ of order 1/|p|. Hence, in terms of the eigenvalue

En ≡ Ep = p2 the resolution is ℓ ≈ 1/
√
En. This suggests that when the manifold is probed

– 7 –
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by a mode with eigenvalue En it “sees” the metric 〈gµν〉k for the scale k =
√
En. Actually, the

identification k =
√
En is correct also for curved space since, in the construction of Γk, the

parameter k is introduced precisely as a cutoff in the spectrum of the covariant Laplacian.

As a consequence, under the spectral sum of (3.11), we must use the scale k2 = En
which depends explicitly on the resolving power of the corresponding mode. Likewise, in

eq. (3.9), F (k2) is to be interpreted as F (En):

K(x, x′;T ) =
∑

n

φn(x)φn(x
′) exp

(

− F (En)EnT
)

=
∑

n

φn(x
′) exp

(

− F
(

∆(k0)
)

∆(k0)T
)

φn(x
′) .

(3.12)

As in [59], we choose k0 as a macroscopic scale in the classical regime, and we assume that

at k0 the cosmological constant is small, so that 〈gµν〉k0 can be approximated by the flat

metric on R
d. The eigenfunctions of ∆(k0) are plane waves then and eq. (3.12) becomes

K(x, x′;T ) =

∫

ddp

(2π)d
eip·(x−x′) e−p2F (p2)T (3.13)

where the scalar products are performed with respect to the flat metric, 〈gµν〉k0 = δµν .

The kernel (3.13) satisfies K(x, x′; 0) = δd(x− x′) and, provided that limp→0 p
2F (p2) = 0,

also
∫

ddxK(x, x′;T ) = 1.

Taking the normalized trace of (3.13) within this “flat space-approximation” yields [59]

P (T ) =

∫

ddp

(2π)d
e−p2F (p2)T . (3.14)

Introducing z = p2, the final result for the average return probability reads

P (T ) =
1

(4π)d/2Γ(d/2)

∫ ∞

0
dz zd/2−1 exp

(

− zF (z)T
)

, (3.15)

where F (z) ≡ λ̄(k2 = z)/λ̄k0 .

3.2 The spectral dimension in QEG

In the classical case, F (z) = 1, the relation (3.15) reproduces the familiar result P (T ) =

1/(4πT )d/2, whence Ds(T ) = d independently of T . We shall now discuss the spectral

dimension for several other illustrative and important examples.

(A) To start with, let us evaluate the average return probability (3.15) for a simplified

RG-trajectory where the scale dependence of the cosmological constant is given by a

power law, with the same exponent δ for all values of k:

λ̄k ∝ kδ =⇒ F (z) ∝ zδ/2 . (3.16)

By rescaling the integration variable in (3.15) we see that in this case

P (T ) =
const

T d/(2+δ)
. (3.17)

– 8 –
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Hence (2.5) yields the important result

Ds(T ) =
2d

2 + δ
. (3.18)

It happens to be T -independent, so that for T → 0 trivially

ds =
2d

2 + δ
. (3.19)

(B) Next, let us be slightly more general and assume that the power law (3.16) is valid only

for squared momenta in a certain interval, p2 ∈ [z1, z2], but λ̄k remains unspecified

otherwise. In this case we can obtain only partial information about P (T ), namely for

T in the interval [z−1
2 , z−1

1 ]. The reason is that for T ∈ [z−1
2 , z−1

1 ] the integral in (3.15)

is dominated by momenta for which approximately 1/p2 ≈ T , i.e., z ∈ [z1, z2]. This

leads us again to the formula (3.18), which now, however, is valid only for a restricted

range of diffusion times T ; in particular the spectral dimension of interest may not

be given by extrapolating (3.18) to T → 0.

(C) Let us consider an arbitrary asymptotically safe RG-trajectory so that its behavior

for k → ∞ is controlled by the NGFP. In this case the running of the cosmological

constant for k & M , with M a characteristic mass scale of the order of the Planck

mass, is given by a quadratic scale-dependence λ̄k = λ∗k
2, independently of d. This

corresponds to a power law with δ = 2, which entails in the NGFP regime, i.e., for

T . 1/M2,

Ds(T ) =
d

2

(

NGFP regime
)

. (3.20)

This dimension, again, is locally T -independent. It coincides with the T → 0 limit:

ds =
d

2
. (3.21)

This is the result first derived in ref. [59]. As it was explained there, it is actually

an exact consequence of Asymptotic Safety which relies solely on the existence of the

NGFP and does not depend on the Einstein-Hilbert truncation.

(D) Returning to the Einstein-Hilbert truncation, let us consider the piece of the Type

IIIa RG-trajectory depicted in figure 1 which lies inside the linear regime of the

Gaussian fixed point. Newton’s constant is approximately k-independent there and

the cosmological constant evolves according to

λ̄k = λ̄0 + νG0k
d. (3.22)

Here ν = (4π)1−d/2(d− 3)Φ1
d/2(0) is a scheme-dependent constant [1, 10]. When k is

not too small, so that λ̄0 can be neglected relative to νG0k
d, we are in what we shall

call the “kd regime”; it is characterized by a pure power law λ̄k ≈ kδ with δ = d. The

physics behind this scale dependence is simple and well-known: It represents exactly

the vacuum energy density obtained by summing up the zero point energies of all
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field modes integrated out. For T in the range of scales pertaining to the kd regime

we find

Ds(T ) =
2d

2 + d
(kd regime) . (3.23)

Note that for every d > 2 the spectral dimension in the kd regime is even smaller

than in the NGFP regime

Ds(NGFP regime)

Ds(kd regime)
= 1 + (d− 2)/4 . (3.24)

3.3 The walk dimension in QEG

In order to determine the walk dimension for the diffusion on the effective QEG space-times

we return to eq. (3.13) for the untraced heat-kernel. We restrict ourselves to a regime with

a power law running of λ̄k, whence F (p2) = (Lp)δ with some constant length-scale L.

Introducing qµ ≡ pµT
1/(2+δ) and ξµ ≡ (xµ − x′µ)/T

1/(2+δ) we can rewrite (3.13) in the

form

K(x, x′;T ) =
1

T d/(2+δ)
Φ

( |x− x′|
T 1/(2+δ)

)

(3.25)

with the function

Φ(|ξ|) ≡
∫

ddq

(2π)d
eiq·ξ e−Lδq2+δ

. (3.26)

For δ = 0, this obviously reproduces (2.6). From the argument of Φ in (3.25) we infer that

r = |x− x′| scales as T 1/(2+δ) so that the walk dimension can be read off as3

Dw(T ) = 2 + δ. (3.27)

In analogy with the spectral dimension, we use the notation Dw(T ) rather than dw to

indicate that it might refer to an approximate scaling law which is valid for a finite range

of scales only.

For δ = 0, 2, and d we find in particular, for any topological dimension d,

Dw =











2 classical regime

4 NGFP regime

2 + d kd regime

(3.28)

Regimes with all three walk dimensions of (3.28) can be realized along a single RG-

trajectory. Notably, the result for the NGFP regime, Dw = 4, is exact in the sense,

that it does not rely on the Einstein-Hilbert truncation.

3.4 The Hausdorff dimension in QEG

The smooth manifold underlying QEG has per se no fractal properties whatsoever. In

particular, the volume of a d-ball Bd covering a patch of the smooth manifold of QEG

space-time scales as

V (Bd) =

∫

Bd

ddx
√
gk ∝ (rk)

d . (3.29)

3Cf. eq. (5.18) in ref. [81].
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Thus, by comparing to eq. (2.7), we read off that the Hausdorff dimension is strictly equal

to the topological one:

dH = d . (3.30)

We emphasize that the effective QEG space-times should not be visualized as a kind of

sponge. Their fractal-like properties have no simple geometric interpretation; they are not

due to a “removing” of space-time points. Rather they are of an entirely dynamical nature,

reflecting certain properties of the quantum states the system “space-time metric” can be in.

For standard fractals the quantities ds, dw, and dH are not independent but are related

by [82]
ds
2

=
dH
dw

. (3.31)

By combining eqs. (3.18), (3.27), and (3.30) we see that the same relation holds true for the

effective QEG space-times, at least within the Einstein-Hilbert approximation and when

the underlying RG-trajectory is in a regime with power-law scaling of λ̄k. For every value

of the exponent δ we have
Ds(T )

2
=

dH
Dw(T )

. (3.32)

The results dH = d, Dw = 2+δ imply that, as soon as δ > d−2, we have Dw > dH and

the random walk is recurrent then [81]. Classically (δ = 0) this condition is met only in

low dimensions d < 2, but in the case of the QEG space-times it is always satisfied in the

kd regime (δ = d), for example. So also from this perspective the QEG space-times, due

to the specific quantum gravitational dynamics to which they owe their existence, appear

to have a dimensionality smaller than their topological one.

It is particularly intriguing that, in the NGFP regime, Dw = 4 independently of d.

Hence the walk is recurrent (Dw > dH) for d < 4, non-recurrent for d > 4, and the marginal

case Dw = dH is realized if and only if d = 4, making d = 4 a distinguished value. Notably,

there is another feature of the QEG space-times which singles out d = 4: It is the only

dimensionality for which Ds(NGFP regime)= d/2 coincides with the effective dimension

deff = d+ η∗ = 2 derived from the graviton propagator [7, 59].

The relation (3.32) also has an important implication for a possible relation between

the QEG effective space-times and those of the CDT approach. The latter have a non-

classical Hausdorff dimension dH 6= d on microscopic scales, while dH = d in QEG. Hence,

by (3.32), we cannot expect that both Ds and Dw agree between CDT and QEG. If it

should turn out that actually DCDT
s = DQEG

s in some non-classical regime, then DCDT
w and

DQEG
w are necessarily different there.

4 The RG-flow of Ds and Dw

We now proceed by discussing the scale-dependence of the spectral and walk dimension. For

this purpose, we consider an arbitrary RG-trajectory k 7→ (gk, λk), where gk ≡ Gkk
d−2 and

λk ≡ λ̄kk
−2 are the dimensionless counterparts of Newton’s constant and the cosmological

constant, respectively. Along such a RG-trajectory there might be isolated intervals of

k-values where the cosmological constant evolves according to a power law, λ̄k ∝ kδ, for
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some constant exponents δ which are not necessarily the same on different such intervals. If

the intervals are sufficiently long, it is meaningful to ascribe a spectral and walk dimension

to them since δ = const implies k-independent values Ds = 2d/(2 + δ) and Dw = 2 + δ.

In between the intervals of approximately constant Ds and Dw, where the k-dependence

of λ̄k is not a power law, the notion of a spectral or walk dimension might not be meaningful.

The concept of a scale-dependent dimension Ds or Dw is to some extent arbitrary with

respect to the way it interpolates between the “plateaus” on which δ = const for some

extended period of RG time. While RG methods allow the computation of the Ds and

Dw values on the various plateaus, it is a matter of convention how to combine them into

continuous functions k 7→ Ds(k),Dw(k) which interpolate between the respective values.

4.1 The exponent δ as a function on theory space

In this subsection, we describe a special proposal for a k-dependent Ds(k) and Dw(k) which

is motivated by technical simplicity and the general insights it allows. We retain eqs. (3.18)

and (3.27), but promote δ → δ(k) to a k-dependent quantity

δ(k) ≡ k∂k ln(λ̄k) . (4.1)

When λ̄k satisfies a power law, λ̄k ∝ kδ this relation reduces to the case of constant δ.

If not, δ has its own scale dependence, but no direct physical interpretation should be

attributed to it. The particular definition (4.1) has the special property that it actually

can be evaluated without first solving for the RG-trajectory. The function δ(k) can be seen

as arising from a certain scalar function on theory space, δ = δ(g, λ), whose k-dependence

results from inserting an RG-trajectory: δ(k) ≡ δ(gk, λk). In fact, (4.1) implies δ(k) =

k∂k ln(k
2λk) = 2+λ−1

k k∂kλk so that δ(k) = 2+λ−1
k βλ(gk, λk) upon using the RG-equation

k∂kλk = βλ(g, λ). Thus when we consider δ as a function on theory space, coordinatized

by g and λ, it reads

δ(g, λ) = 2 +
1

λ
βλ(g, λ) . (4.2)

Substituting this relation into (3.18) and (3.27), the spectral and the walk dimensions

become functions on the g-λ-plane

Ds(g, λ) =
2d

4 + λ−1βλ(g, λ)
, (4.3)

and

Dw(g, λ) = 4 + λ−1βλ(g, λ) . (4.4)

To evaluate these expressions further, we use the β-functions derived in [1]:

βλ(g, λ) = (ηN − 2)λ+ 1
2 (4π)

1−d/2 g

×
[

2d(d+ 1)Φ1
d/2(−2λ)− 8dΦ1

d/2(0)− d(d+ 1)ηN Φ̃1
d/2(−2λ)

]

,

βg(g, λ) = (d− 2 + ηN )g .

(4.5)

Here the anomalous dimension of Newton’s constant ηN is given by

ηN (g, λ) =
gB1(λ)

1− gB2(λ)
(4.6)
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Figure 1. The g-λ−theory space with the line of turning points, B, and a typical trajectory of

Type IIIa. The arrows point in the direction of decreasing k. The big black dot indicates the

NGFP while the smaller dots represent points at which the RG-trajectory switches from increasing

to decreasing λ or vice versa. The point T is the lowest turning point, and C is a typical point

within the classical regime. For λ & 0.4, the RG-flow leaves the classical regime and is no longer

reliably captured by the Einstein-Hilbert truncation.

with the following functions of the dimensionless cosmological constant:

B1(λ) ≡ 1
3 (4π)

1−d/2
[

d(d+ 1)Φ1
d/2−1(−2λ)− 6d(d− 1)Φ2

d/2(−2λ)

− 4dΦ1
d/2−1(0)− 24Φ2

d/2(0)
]

,

B2(λ) ≡ − 1
6(4π)

1−d/2
[

d(d+ 1)Φ̃1
d/2−1(−2λ)− 6d(d− 1)Φ̃2

d/2(−2λ)
]

.

(4.7)

For practical computations we use the threshold functions resulting from the optimized

cutoff

Φp
n(w) =

1

Γ(n+ 1)

1

(1 + w)p
, Φ̃p

n(w) =
1

Γ(n+ 2)

1

(1 + w)p
. (4.8)

As we discussed already, the scaling regime of a NGFP has the exponent δ = 2. From

eq. (4.2) we learn that this value is realized at all points (g, λ) where βλ = 0. The second

condition for the NGFP, βg = 0, is not required here, so that we have δ = 2 along the

entire line in theory space:

B =
{

(g, λ)
∣

∣

∣
βλ(g, λ) = 0

}

. (4.9)

For d = 4 the curve B is shown as the bold blue line in figure 1. Both the Gaussian fixed

point (GFP) (g, λ) = (0, 0) and the NGFP, (g, λ) = (g∗, λ∗), are located on this curve.4

4At the GFP Ds = d, Dw = 2, however, since at this point both λ = 0, βλ = 0 so that λ−1βλ|GFP = −2.
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Figure 2. The line of turning points B divides the g-λ-plane in two parts on which Ds and Dw are

everywhere either larger or smaller than at the NGFP.

Furthermore, the turning points T of all Type IIIa trajectories are also situated on B,
and the same holds for all the higher order turning points which occur when the trajectory

spirals around the NGFP. This observation leads us to an important conclusion: The values

δ = 2 ⇐⇒ Ds = d/2,Dw = 4 which (without involving any truncation) are found in the

NGFP regime, actually also apply to all points (g, λ) ∈ B, provided the Einstein-Hilbert

truncation is reliable and no matter is included.

4.2 The spectral and walk dimensions along a RG-trajectory

We proceed by investigating how the spectral and walk dimension of the effective QEG

space-times changes along a given RG-trajectory. As discussed above, our interest is in

scaling regimes where Ds and Dw remain (approximately) constant for a long interval of

k-values. For the remainder of this subsection, we will restrict ourselves to the case d = 4

for concreteness.

We start by numerically solving the coupled differential equations

k∂kg(k) = βg(g(k), λ(k)) , k∂kλ(k) = βλ(g(k), λ(k)) , (4.10)

with the β-functions (4.5) for a series of initial conditions keeping λinit = λ(k0) = 0.2 fixed

and successively lowering ginit = g(k0). The result is a family of RG-trajectories where

the classical regime becomes more and more pronounced. Subsequently, these solutions

are substituted into (4.3) and (4.4), which give Ds(t; ginit, λinit) and Dw(t; ginit, λinit) in

dependence of the RG-time t ≡ ln(k) and the RG-trajectory. One can verify explicitly,

that substituting the RG-trajectory into the return probability (3.15) and computing the

spectral dimension from (2.4) by carrying out the resulting integrals numerically gives rise

to the same picture.
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Figure 3. The t ≡ ln(k)-dependent spectral dimension (upper left) and walk dimension (upper

right) along illustrative solutions of the RG-equations (4.10) in d = 4. The trajectories develop

three plateaus: the classical plateau with Ds = 4,Dw = 2, the semi-classical plateau where Ds =

4/3,Dw = 6 and the NGFP plateau with Ds = 2,Dw = 4. These plateau values are indicated by

the gray horizontal lines and connected by crossover parts. The lower figure shows the location

of these plateaus on the RG-trajectory: the classical, k4, and NGFP regime appear between the

points P1 and P2, P3 and P4, and above P5, respectively.

Figure 3 then shows the resulting spectral dimension, the walk dimension, and the

localization of the plateau-regimes on the RG-trajectory in the top-left, top-right and

lower diagram, respectively. In the top diagrams, ginit decreases by one order of magnitude

for each shown trajectory, starting with the highest value to the very left. As a central

result, figure 3 establishes that the RG-flow gives rise to three plateaus where Ds(t) and

Dw(t) are approximately constant:

(i) For small values k, below t ≃ 1.8, say, one finds a classical plateau where Ds =

4,Dw = 2 for a long range of k-values. Here δ = 0, indicating that the cosmological

constant is indeed constant.

(ii) Following the RG-flow towards the UV (larger values of t) one next encounters the

semi-classical plateau where Ds = 4/3,Dw = 6. In this case δ(k) = 4 so that λ̄k ∝ k4

on the corresponding part of the RG-trajectory.

(iii) Finally, the NGFP plateau is characterized by Ds = 2,Dw = 4, which results from

the scale-dependence of the cosmological constant at the NGFP λ̄k ∝ k2 ⇐⇒ δ = 2.
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At this stage, it is worthwhile to see which parts of a typical RG-trajectory realize

the scaling relations underlying the plateau-values of Ds and Dw. This is depicted in the

lower diagram of figure 3 where we singled out the third solution with ginit = 10−3 for

illustrative purposes. In this case the classical plateau is bounded by the points P1 and

P2 and appears well below the turning point T , while the semi-classical plateau is situated

between the points P3 and P4 well above the turning point. The NGFP plateau is realized

by the piece of the RG-trajectory between P5 and the NGFP. The turning point T is not

situated in any scaling region but appears along the crossover from the classical to the

semi-classical regime of the QEG space-times. For t < 0, the spectral dimension (walk

dimension) increases (decreases) rapidly. In this region, the underlying RG-trajectory is

evaluated outside the classical regime at points λ & 0.35. In this region of the theory space,

the Einstein-Hilbert truncation is no longer trustworthy, so that this rapid increase of Ds

is most likely an artefact, arising from the use of an insufficient truncation.

Notably, the plateaus observed above become more and more extended the closer the

trajectories turning point T gets to the GFP, i.e., the smaller the IR value of the cosmo-

logical constant. The first RG-trajectory with the largest value ginit = 0.1 does not even

develop a classical and semi-classical plateau, so that a certain level of fine-tuning of the

initial conditions is required in order to make these structures visible. Interestingly enough,

when one matches the observed data against the RG-trajectories of the Einstein-Hilbert

truncation [51, 83] one finds that the “RG-trajectory realized by Nature” displays a very

extreme fine-tuning of this sort. The coordinates of the turning point are approximately

gT ≈ λT ≈ 10−60 and it is passed at the scale kT ≈ 10−30mPl ≈ 10−2eV ≈ (10−2mm)−1,

so that there will be very pronounced plateau structures in this case.

5 Matching the spectral dimensions of QEG and CDT

The key advantage of the spectral dimension Ds(T ) is that it may be defined and computed

within various a priori unrelated approaches to quantum gravity. In particular, it is easily

accessible in Monte Carlo simulations of the Causal Dynamical Triangulations (CDT) ap-

proach in d = 4 [57, 58] and d = 3 [60] as well as in Euclidean Dynamical Triangulations

(EDT) [61]. This feature allows a direct comparison between DCDT
s (T ) and DEDT

s (T ) ob-

tained within the discrete approaches and DQEG
s (T ) capturing the fractal properties of the

QEG effective space-times. In this section we will carry out this comparison for d = 3. In

particular we shall determine the specific RG-trajectory of QEG which, we believe, under-

lies the numerical data obtained in [60]. In principle, it is straightforward to do the same

comparison in d = 4. This, however, will require access to the detailed Monte Carlo data

produced by the four-dimensional CDT or EDT simulations.5

Let us start by looking into the typical features of the spectral dimension DCDT
s (T )

obtained from the simulations. A prototypical data set showing DCDT
s (T ) as function of

the length of the random walk T is given in figure 4. The resulting curve is conveniently

split into three regimes:

5We thank D. Benedetti and J. Henson for sharing the Monte Carlo data underlying their work [60]

with us.
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Figure 4. Spectral dimension DCDT
s

(T ) determined from random walks on a CDT space-time built

from N = 200k simplices [60].

(i) For T ≤ 20, corresponding to the left gray region in figure 4, DCDT
s (T ) undergoes

rapid oscillations. These originate from the discrete structure of the triangulation to

which the short random walks are particular sensitive.

(ii) For long random walks with T ≥ 500, the data shows an exponential fall-off. This

feature is due to the compact nature of the triangulation, which implies that for long

random walks DCDT
s (T ) is governed by the lowest eigenvalue of the Laplacian on the

compact space. This regime is marked by the right gray region in figure 4.

(iii) Between these two regimes, DCDT
s (T ) is affected neither by the discreteness nor the

compactness of the triangulation. Since for DQEG
s (T ), determined by the flat-space

approximation (3.14), we do not expect any of these effects to appear, we use this

middle region to compare the T -dependent spectral dimensions arising from the two,

a priori different, approaches.

This comparison is then carried out as follows:

(i) First, we numerically construct a RG-trajectory gk(g0, λ0), λk(g0, λ0) depending on

the initial conditions g0, λ0, by solving the flow equations (4.10).

(ii) Subsequently, we evaluate the resulting spectral dimension DQEG
s (T ; g0, λ0) of the

corresponding effective QEG space-time. This is done by first finding the return

probability P (T ; g0, λ0), eq. (3.15), for the RG-trajectory under consideration and

then substituting the resulting expression into (2.5). Besides on the length of the

random walk, the spectral dimension constructed in this way also depends on the

initial conditions of the RG-trajectory.

(iii) Finally, we determine the RG-trajectory underlying the CDT-simulations by fitting

the parameters g0, λ0 to the Monte Carlo data. The corresponding best-fit values are

obtained via an ordinary least-square fit, minimizing the squared Euclidean distance

(∆Ds)
2 ≡

500
∑

T=20

(

DQEG
s (T ; gfit0 , λfit

0 )−DCDT
s (T )

)2
, (5.1)
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gfit0 λfit
0 (∆Ds)

2

70k 0.7× 10−5 7.5× 10−5 0.680

100k 8.8× 10−5 39.5× 10−5 0.318

200k 13× 10−5 61× 10−5 0.257

Table 1. Initial conditions gfit0 , λfit
0 for the RG-trajectory providing the best fit to the Monte Carlo

data [60]. The fit-quality (∆Ds)
2, given by the sum of the squared residues, improves systematically

when increasing the number of simplices in the triangulation.

between the (continuous) function DQEG
s (T ; g0, λ0) and the points DCDT

s (T ). We

thereby restrict ourselves to the random walks with discrete, integer length 20 ≤ T ≤
500, which constitute the white part of figure 4 and correspond to the regime (iii)

discussed above.

The resulting best-fit values gfit0 , λfit
0 for the triangulations with N = 70.000, N =

100.000, and N = 200.000 simplices are collected in table 1. Notably, the sum over the

squared residuals in the third column of the table improves systematically with an increas-

ing number of simplices. By integrating the flow equation for g(k), λ(k) for the best-fit

initial conditions one furthermore observes that the points gfit0 , λfit
0 are actually located

on different RG-trajectories. Increasing the size of the simulation N leads to a mild,

but systematic increase of the distance between the turning point T and the GFP of the

corresponding best-fit trajectories.

Figure 5 then shows the direct comparison between the spectral dimensions obtained

by the simulations (blue curves) and the best-fit QEG trajectories (green curves) for 70k,

100k and 200k in the upper left, upper right and lower left panel, respectively. This data

is complemented by the relative error

ǫ ≡ −DQEG
s (T ; gfit0 , λfit

0 )−DCDT
s (T )

DQEG
s (T ; gfit0 , λfit

0 )
(5.2)

for the three fits in the lower right panel. The 70k data still shows a systematic deviation

from the classical value Ds(T ) = 3 for long random walks, which is not present in the

QEG results. This mismatch decreases systematically for larger triangulations where the

classical regime becomes more and more pronounced. Nevertheless and most remarkably

we find that for the 200k-triangulation that ǫ . 1%, throughout. All three sets of residues

thereby show a systematic oscillatory structure. These originate from tiny oscillations

in the CDT data which are not reproduced by DQEG
s (T ). Such oscillations commonly

appear in systems with discrete symmetries [76, 77] and are thus likely to be absent in

the continuum computation. As a curiosity, we observe that the QEG result matching

the most extensive simulation with N = 200k “overshoots” the classical value Ds(T ) = 3,

yielding DQEG
s (T ) > 3 for T & 450. At this stage, the RG-trajectory is evaluated outside

the classical regime in a region of theory space where the Einstein-Hilbert approximation

starts to become unreliable. It is then tempting to speculate that larger triangulations may

also be sensitive to quantum gravity effects at distances beyond the classical regime.
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Figure 5. Comparison between the 3-dimensional CDT data-sets 70k (upper left), 100k (up-

per right), and 200k (lower left) obtained in [60] (blue curves) and the best fit values for

DQEG
s

(T ; gfit0 , λfit
0 ) (green curves). The relative errors for the fits to the CDT-datasets with

N = 70.000 (circles), N = 100.000 (squares) and N = 200.000 (triangles) simplices are shown

in the lower right. The residuals grow for very small and very large durations T of the random

walk, consistent with discreteness effects at small distances and the compactness of the simulation

for large values of T , respectively. The quality of the fit improves systematically for triangulations

containing more simplices. For the N = 200k data the relative error is ≈ 1%.

We conclude this section by extending DQEG
s (T ; gfit0 , λfit

0 ) obtained from the 200k data

to the region of very short random walks T < 20. The result is depicted in figure 6 which

displays DCDT
s (T ) (blue curve) and DQEG

s (T ; gfit0 , λfit
0 ) (green curve) as a function of log(T ).

Similarly to the four-dimensional case discussed in figure 3, the function DQEG
s (T ; gfit0 , λfit

0 )

obtained for d = 3 develops three plateaus where the spectral dimension is approximately

constant over a long T -interval. For successively decreasing duration of the random walks,

these plateaus correspond to the classical regime DQEG
s (T ) = 3, the semi-classical regime

where DQEG
s (T ) ≈ 1 and the NGFP regime where DQEG

s (T ) = 3/2. The figure illustrates

that DCDT
s (T ) probes the classical regime and part of the first crossover towards the semi-

classical regime only. This is in perfect agreement with the assertion [60] that the present

simulations do not yet probe structures below the Planck scale.

6 Discussion and conclusions

In this work we analyzed the fractal properties of the effective space-times arising within

Quantum Einstein Gravity (QEG) formulated in the continuum by means of the gravita-

tional average action. These effects are, to some extent, encapsulated in the spectral, walk,
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Figure 6. Comparison between the spectral dimensions obtained from the dynamical triangulation

with 200k simplices (blue curve) and the corresponding DQEG
s

(T ; gfit0 , λfit
0 ) predicted by QEG (green

curve). In the latter case, the scaling regime corresponding to the NGFP is reached for log(T ) <

−40, which is well below the distance scales probed by the Monte Carlo simulation.

and Hausdorff dimension seen by a fictitious diffusion process set up on the effective space-

times. Most remarkably, these generalized dimensions are found to depend on the length

of the random walk, indicating that the effective QEG space-times possess a multifractal

structure. In particular, we established the possibility of a “low energy fractality” which

occurs already well below the asymptotic scaling regime governed by the non-Gaussian

(UV) fixed point (NGFP) and is thus unrelated to Asymptotic Safety.

In sections 3 and 4 we studied this multifractal structure within the flat-space Einstein-

Hilbert approximation to QEG. Thereby it turned out that the effective QEG space-times

are comparable to standard fractals in the sense that the relation (3.31) is satisfied on all

scales. Their Hausdorff dimension is constant and equal to the topological dimension of the

(background) space-time. Thus the fractal properties do not originate from the QEG space-

times “loosing points” at short distances but rather represent a genuine dynamical effect

of quantum field theory. In contrast to the Hausdorff dimension the spectral dimension

and the walk dimension seen by the diffusion process depend on the diffusion time T . In

figure 3 we identified three regimes in which these generalized dimensions are constant for

a wide range of scales. These are connected by short crossovers. For long random walks,

QEG space-times have the same spectral properties as classical flat space, i.e., the diffusion

process is regular, Dw = 2, and the spectral dimension matches the canonical dimension

Ds = d. Moving towards shorter diffusion times one encounters the semi-classical scaling

regime where Dw = 2 + d, Ds = 2d/(2 + d). For infinitesimal random walks T → 0, the

properties of the effective space-times are controlled by the NGFP and we obtain Dw = 4

and Ds = d/2. On both of the latter plateaus the random walk is recurrent.

While the results concerning the NGFP regime are exact and follow directly from the
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very existence of the fixed point, the “low energy” properties of the function Ds(T ) rely

on the applicability of the approximate effective field equation (3.3). It may be used if the

Einstein-Hilbert approximation is sufficiently precise, and if no matter fields are coupled

to gravity whose energy-momentum tensor could possibly dominate over the cosmological

constant term. In fact, our derivation of the running effective dimensions made essential

use of the proportionality 〈gµν〉k ∝ 1/λ̄k which does follow from the vacuum Einstein-

equation (3.3), but not necessarily from a more complicated field equation Gk
µν(〈g〉k) =

−λ̄k〈gµν〉k − 8πGkT
k
µν(〈g〉k) where Gk

µν is a (higher derivative, etc.) generalization of the

Einstein tensor, and T k
µν(〈g〉k) the energy-momentum tensor of the matter system in the

effective geometry described by (〈gµν〉k). The multifractal properties at length-scales below

the asymptotic NGFP regime explored in this paper can occur only if the curvature of space-

time is governed by precisely the scale-dependence of λ̄k. If, on the other hand, λ̄k〈gµν〉k
is negligible as compared to a k-independent term in GkT

k
µν(〈g〉k) the effective geometry

has no significant scale dependence and hence no fractal features.6 For this reason we

expect that in real Nature the onset of the fractal behavior is typically shifted towards

considerably higher energy scales than expected from the pure gravity case discussed at

the end of section 4. We hope to come back to this point in a future publication.

In section 5 we performed a direct comparison between the spectral dimension of the

three-dimensional effective QEG space-times with the one measured in Causal Dynamical

Triangulations (CDT) [60]. Notably, the best-fit RG-trajectory reproduces the CDT data

with approximately 1% accuracy for the range of diffusion times where the simulation data

is reliable. The comparison of DCDT
s (T ) with DQEG

s (T ) in figure 6 furthermore establishes

that the present Monte Carlo simulations neither probe the semi-classical plateau nor the

scaling regime of the NGFP. This confirms the cautious remark in ref. [60] that present

day Monte Carlo simulations are unable to probe physics well below the Planck length.

This assessment also resolves the apparent contradiction between the extrapolation result

limT→0DCDT
s (T ) ≈ 2 and the QEG prediction limT→0DQEG

s (T ) = 3/2: The fit function

employed in analyzing the Monte Carlo data can not be reliable extrapolated to T = 0 and

misses essential structures.

The same conclusion also holds true in four dimensions. Comparing the profiles of

DQEG
s (T ) shown in figure 3 with the fitting functions used in the CDT [57, 58] or EDT [61]

simulations shows that all the Monte Carlo data points obtained are positioned on the

infrared side of the turning point of the RG-trajectories underlying the QEG effective

space-times. They neither probe the semi-classical plateau or the scaling regime of the

NGFP. Performing the extrapolation of limT→0DCDT
s (T ) based on the leading corrections

to the classical regime does not reliably identify the signature of a non-Gaussian fixed point

in Ds(T ). Depending on where the data is cut off, one obtains different tangents to the first

crossover, which lead to widely different extrapolations for the value ds = Ds(T )|T=0. We

believe that this is actually at the heart of the apparent mismatch in the spectral dimension

for infinitesimal random walks reported from the CDT and EDT computations.

In order to test our conjecture that the non-classical Ds-values found in the simulations

6For the sake of the argument we assume that Gk
µν ≡ Gµν is the conventional Einstein tensor here.
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are due to the “low energy fractality” predicted by QEG in the Einstein-Hilbert approx-

imation one could perform the following numerical experiment. One couples gravity to a

matter field whose parameters are averaged such that the resulting 8πGkT
k
µν is approxi-

mately k-independent7 and much bigger than λ̄k〈gµν〉k. For this case we expect that the

effective geometry has no significant k-dependence, so that the fractal features disappear,

and the spectral dimension equals the classical one. On the other hand, the dimensional

reduction implied by the NGFP cannot be destroyed in this way. Assuming the fixed point

is also present in the gravity-matter system, it enforces a scale-dependence upon 8πGkT
k
µν

and the other terms in the effective field equation, which is precisely such that the solutions

behave as 〈gµν〉k ∝ 1/k2, implying the dimensional reduction Ds = d → d/2.

We close our discussion with the following remark. In [84] the data set displayed in

figure 4 has been fitted to an anisotropic gravity model of Hořava-Lifshitz type. Comparing

the quality of this fit with the residuals displayed in figure 5, we observe that both theories

fit the CDT data with approximately equal quality. This is in particular remarkable, if

one takes into account that approximating Ds(T ) within the flat-space Einstein-Hilbert

truncation gives rise to two fit parameters only, instead of the three parameters of the

anisotropic model. Thus it may be premature to conclude that the spectral dimension

obtained from the triangulations unequivocally identifies the underlying continuum theory

as an anisotropic gravity model. In this light it seems mandatory to improve the simulation

data in order to pinpoint the pertinent fractal structures of space-time with sufficient

accuracy to reliably identify the underlying continuum theory.

Acknowledgments

We are indebted to D. Benedetti and J. Henson for sharing their CDT data with us and

providing many helpful explanations. We are also grateful to J. Ambjørn, R. Loll and G.

Calcagni for helpful discussions and S. Rechenberger for a careful reading of the manuscript.

M.R. also thanks G. Dunne for inspiring conversations. The research of F.S. is supported by

the Deutsche Forschungsgemeinschaft (DFG) within the Emmy-Noether program (Grant

SA/1975 1-1).

References

[1] M. Reuter, Nonperturbative evolution equation for quantum gravity,

Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].

[2] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity,

an Einstein Centenary Survey, S.W. Hawking and W. Israel (eds.), Cambridge University

Press, Cambridge U.K. (1979).

[3] S. Weinberg, Living with Infinities, arXiv:0903.0568 [INSPIRE].

[4] S. Weinberg, Effective field theories - past and future, PoS(CD09)001.

7Of course, for this purpose one could also give a non-NGFP scale dependence to T k
µν and try to observe

its impact on 〈gµν〉k. (Note that Gk will be approximately constant for k . mPl).

– 22 –

http://dx.doi.org/10.1103/PhysRevD.57.971
http://arxiv.org/abs/hep-th/9605030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605030
http://arxiv.org/abs/0903.0568
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0568
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(CD09)001


J
H
E
P
1
2
(
2
0
1
1
)
0
1
2

[5] D. Dou and R. Percacci, The running gravitational couplings,

Class. Quant. Grav. 15 (1998) 3449 [hep-th/9707239] [INSPIRE].

[6] W. Souma, Nontrivial ultraviolet fixed point in quantum gravity,

Prog. Theor. Phys. 102 (1999) 181 [hep-th/9907027] [INSPIRE].

[7] O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum

gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].

[8] O. Lauscher and M. Reuter, Is quantum Einstein gravity nonperturbatively renormalizable?,

Class. Quant. Grav. 19 (2002) 483 [hep-th/0110021] [INSPIRE].

[9] O. Lauscher and M. Reuter, Towards nonperturbative renormalizability of quantum Einstein

gravity, Int. J. Mod. Phys. A 17 (2002) 993 [hep-th/0112089] [INSPIRE].

[10] M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the

Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].

[11] O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative

truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [INSPIRE].

[12] M. Reuter and F. Saueressig, A Class of nonlocal truncations in quantum Einstein gravity

and its renormalization group behavior, Phys. Rev. D 66 (2002) 125001 [hep-th/0206145]

[INSPIRE].

[13] D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301

[hep-th/0312114] [INSPIRE].

[14] A. Bonanno and M. Reuter, Proper time flow equation for gravity, JHEP 02 (2005) 035

[hep-th/0410191] [INSPIRE].

[15] M. Reuter and J.-M. Schwindt, A Minimal length from the cutoff modes in asymptotically

safe quantum gravity, JHEP 01 (2006) 070 [hep-th/0511021] [INSPIRE].

[16] M. Reuter and J.-M. Schwindt, Scale-dependent metric and causal structures in Quantum

Einstein Gravity, JHEP 01 (2007) 049 [hep-th/0611294] [INSPIRE].

[17] A. Codello and R. Percacci, Fixed points of higher derivative gravity,

Phys. Rev. Lett. 97 (2006) 221301 [hep-th/0607128] [INSPIRE].

[18] A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R) Gravity,

Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].

[19] P. Fischer and D.F. Litim, Fixed points of quantum gravity in extra dimensions,

Phys. Lett. B 638 (2006) 497 [hep-th/0602203] [INSPIRE].

[20] P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity,

Phys. Rev. D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].

[21] M. Reuter and H. Weyer, Background Independence and Asymptotic Safety in Conformally

Reduced Gravity, Phys. Rev. D 79 (2009) 105005 [arXiv:0801.3287] [INSPIRE].

[22] M. Reuter and H. Weyer, The Role of Background Independence for Asymptotic Safety in

Quantum Einstein Gravity, Gen. Rel. Grav. 41 (2009) 983 [arXiv:0903.2971] [INSPIRE].

[23] M. Reuter and H. Weyer, Conformal sector of Quantum Einstein Gravity in the local

potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism

invariance, Phys. Rev. D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].

[24] P.F. Machado and R. Percacci, Conformally reduced quantum gravity revisited,

Phys. Rev. D 80 (2009) 024020 [arXiv:0904.2510] [INSPIRE].

– 23 –

http://dx.doi.org/10.1088/0264-9381/15/11/011
http://arxiv.org/abs/hep-th/9707239
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,15,3449
http://dx.doi.org/10.1143/PTP.102.181
http://arxiv.org/abs/hep-th/9907027
http://inspirehep.net/search?p=find+J+Prog.Theor.Phys.,102,181
http://dx.doi.org/10.1103/PhysRevD.65.025013
http://arxiv.org/abs/hep-th/0108040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0108040
http://dx.doi.org/10.1088/0264-9381/19/3/304
http://arxiv.org/abs/hep-th/0110021
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110021
http://dx.doi.org/10.1142/S0217751X02010418
http://arxiv.org/abs/hep-th/0112089
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112089
http://dx.doi.org/10.1103/PhysRevD.65.065016
http://arxiv.org/abs/hep-th/0110054
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110054
http://dx.doi.org/10.1103/PhysRevD.66.025026
http://arxiv.org/abs/hep-th/0205062
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205062
http://dx.doi.org/10.1103/PhysRevD.66.125001
http://arxiv.org/abs/hep-th/0206145
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206145
http://dx.doi.org/10.1103/PhysRevLett.92.201301
http://arxiv.org/abs/hep-th/0312114
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,92,201301
http://dx.doi.org/10.1088/1126-6708/2005/02/035
http://arxiv.org/abs/hep-th/0410191
http://inspirehep.net/search?p=find+EPRINT+hep-th/0410191
http://dx.doi.org/10.1088/1126-6708/2006/01/070
http://arxiv.org/abs/hep-th/0511021
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511021
http://dx.doi.org/10.1088/1126-6708/2007/01/049
http://arxiv.org/abs/hep-th/0611294
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611294
http://dx.doi.org/10.1103/PhysRevLett.97.221301
http://arxiv.org/abs/hep-th/0607128
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,97,221301
http://dx.doi.org/10.1142/S0217751X08038135
http://arxiv.org/abs/0705.1769
http://inspirehep.net/search?p=find+eprint+0705.1769
http://dx.doi.org/10.1016/j.physletb.2006.05.073
http://arxiv.org/abs/hep-th/0602203
http://inspirehep.net/search?p=find+J+Phys.Lett.,B638,497
http://dx.doi.org/10.1103/PhysRevD.77.124045
http://arxiv.org/abs/0712.0445
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0445
http://dx.doi.org/10.1103/PhysRevD.79.105005
http://arxiv.org/abs/0801.3287
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3287
http://dx.doi.org/10.1007/s10714-008-0744-z
http://arxiv.org/abs/0903.2971
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.2971
http://dx.doi.org/10.1103/PhysRevD.80.025001
http://arxiv.org/abs/0804.1475
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1475
http://dx.doi.org/10.1103/PhysRevD.80.024020
http://arxiv.org/abs/0904.2510
http://inspirehep.net/search?p=find+J+Phys.Rev.,D80,024020


J
H
E
P
1
2
(
2
0
1
1
)
0
1
2

[25] A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity

with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414

[arXiv:0805.2909] [INSPIRE].

[26] D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative

gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

[27] D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in

asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].

[28] D. Benedetti, P.F. Machado and F. Saueressig, Four-derivative interactions in asymptotically

safe gravity, arXiv:0909.3265 [INSPIRE].

[29] A. Eichhorn, H. Gies and M.M. Scherer, Asymptotically free scalar curvature-ghost coupling

in Quantum Einstein Gravity, Phys. Rev. D 80 (2009) 104003 [arXiv:0907.1828] [INSPIRE].

[30] A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum

gravity, Phys. Rev. D 81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].

[31] K. Groh and F. Saueressig, Ghost wave-function renormalization in Asymptotically Safe

Quantum Gravity, J. Phys. A 43 (2010) 365403 [arXiv:1001.5032] [INSPIRE].

[32] E. Manrique and M. Reuter, Bare Action and Regularized Functional Integral of

Asymptotically Safe Quantum Gravity, Phys. Rev. D 79 (2009) 025008 [arXiv:0811.3888]

[INSPIRE].

[33] E. Manrique and M. Reuter, Bimetric Truncations for Quantum Einstein Gravity and

Asymptotic Safety, Annals Phys. 325 (2010) 785 [arXiv:0907.2617] [INSPIRE].

[34] E. Manrique, M. Reuter and F. Saueressig, Matter Induced Bimetric Actions for Gravity,

Annals Phys. 326 (2011) 440 [arXiv:1003.5129] [INSPIRE].

[35] E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in

Quantum Einstein Gravity, Annals Phys. 326 (2011) 463 [arXiv:1006.0099] [INSPIRE].

[36] J.-E. Daum, U. Harst and M. Reuter, Running Gauge Coupling in Asymptotically Safe

Quantum Gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

[37] J.-E. Daum and M. Reuter, Effective Potential of the Conformal Factor: Gravitational

Average Action and Dynamical Triangulations, Adv. Sci. Lett. 2 (2009) 255

[arXiv:0806.3907] [INSPIRE].

[38] D. Benedetti, K. Groh, P.F. Machado and F. Saueressig, The Universal RG Machine,

JHEP 06 (2011) 079 [arXiv:1012.3081] [INSPIRE].

[39] E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically Safe Lorentzian Gravity,

Phys. Rev. Lett. 106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].

[40] M.R. Niedermaier, Gravitational Fixed Points from Perturbation Theory,

Phys. Rev. Lett. 103 (2009) 101303 [INSPIRE].

[41] P. Forgacs and M. Niedermaier, A Fixed point for truncated quantum Einstein gravity,

hep-th/0207028 [INSPIRE].

[42] M. Niedermaier, On the renormalization of truncated quantum Einstein gravity,

JHEP 12 (2002) 066 [hep-th/0207143] [INSPIRE].

[43] M. Niedermaier, Dimensionally reduced gravity theories are asymptotically safe,

Nucl. Phys. B 673 (2003) 131 [hep-th/0304117] [INSPIRE].

– 24 –

http://dx.doi.org/10.1016/j.aop.2008.08.008
http://arxiv.org/abs/0805.2909
http://inspirehep.net/search?p=find+J+AnnalsPhys.,324,414
http://dx.doi.org/10.1142/S0217732309031521
http://arxiv.org/abs/0901.2984
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.2984
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.023
http://arxiv.org/abs/0902.4630
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4630
http://arxiv.org/abs/0909.3265
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.3265
http://dx.doi.org/10.1103/PhysRevD.80.104003
http://arxiv.org/abs/0907.1828
http://inspirehep.net/search?p=find+J+Phys.Rev.,D80,104003
http://dx.doi.org/10.1103/PhysRevD.81.104010
http://arxiv.org/abs/1001.5033
http://inspirehep.net/search?p=find+J+Phys.Rev.,D81,104010
http://dx.doi.org/10.1088/1751-8113/43/36/365403
http://arxiv.org/abs/1001.5032
http://inspirehep.net/search?p=find+J.Phys.,A43,365403
http://dx.doi.org/10.1103/PhysRevD.79.025008
http://arxiv.org/abs/0811.3888
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.3888
http://dx.doi.org/10.1016/j.aop.2009.11.009
http://arxiv.org/abs/0907.2617
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2617
http://dx.doi.org/10.1016/j.aop.2010.11.003
http://arxiv.org/abs/1003.5129
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5129
http://dx.doi.org/10.1016/j.aop.2010.11.006
http://arxiv.org/abs/1006.0099
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0099
http://dx.doi.org/10.1007/JHEP01(2010)084
http://arxiv.org/abs/0910.4938
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.4938
http://dx.doi.org/10.1166/asl.2009.1033
http://arxiv.org/abs/0806.3907
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3907
http://dx.doi.org/10.1007/JHEP06(2011)079
http://arxiv.org/abs/1012.3081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3081
http://dx.doi.org/10.1103/PhysRevLett.106.251302
http://arxiv.org/abs/1102.5012
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.5012
http://dx.doi.org/10.1103/PhysRevLett.103.101303
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,103,101303
http://arxiv.org/abs/hep-th/0207028
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207028
http://dx.doi.org/10.1088/1126-6708/2002/12/066
http://arxiv.org/abs/hep-th/0207143
http://inspirehep.net/search?p=find+J+JHEP,0212,066
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.015
http://arxiv.org/abs/hep-th/0304117
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B673,131


J
H
E
P
1
2
(
2
0
1
1
)
0
1
2

[44] M. Niedermaier, The Asymptotic safety scenario in quantum gravity: An Introduction,

Class. Quant. Grav. 24 (2007) R171 [gr-qc/0610018] [INSPIRE].

[45] M. Reuter and F. Saueressig, Functional Renormalization Group Equations, Asymptotic

Safety and Quantum Einstein Gravity, arXiv:0708.1317 [INSPIRE].

[46] O. Lauscher and M. Reuter, Asymptotic safety in quantum Einstein gravity: Nonperturbative

renormalizability and fractal spacetime structure, hep-th/0511260 [INSPIRE].

[47] O. Lauscher and M. Reuter, Quantum Einstein Gravity: Towards an Asymptotically Safe

Field Theory of Gravity, in Approaches to Fundamental Physics, I.-O. Stamatescu and

E. Seiler (eds.), Springer, Berlin (2007).

[48] R. Charity et al., Investigations of three, four and five-particle exit channels of levels in light

nuclei created using a 9C beam, Phys. Rev. C 84 (2011) 014320 [arXiv:1105.1144]

[INSPIRE].

[49] R. Percacci, Asymptotic Safety, arXiv:0709.3851 [INSPIRE].

[50] A. Bonanno and M. Reuter, Cosmology of the Planck era from a renormalization group for

quantum gravity, Phys. Rev. D 65 (2002) 043508 [hep-th/0106133] [INSPIRE].

[51] A. Bonanno and M. Reuter, Entropy signature of the running cosmological constant,

JCAP 08 (2007) 024 [arXiv:0706.0174] [INSPIRE].

[52] B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1977).

[53] H. Kawai and M. Ninomiya, Renormalization Group and Quantum Gravity,

Nucl. Phys. B 336 (1990) 115 [INSPIRE].

[54] R. Floreanini and R. Percacci, Average effective potential for the conformal factor,

Nucl. Phys. B 436 (1995) 141 [hep-th/9305172] [INSPIRE].

[55] J. Ambjørn, J. Jurkiewicz and R. Loll, Emergence of a 4−D world from causal quantum

gravity, Phys. Rev. Lett. 93 (2004) 131301 [hep-th/0404156] [INSPIRE].

[56] J. Ambjørn, J. Jurkiewicz and R. Loll, Quantum gravity as sum over spacetimes,

Lect. Notes Phys. 807 (2010) 59 [arXiv:0906.3947] [INSPIRE].

[57] J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe,

Phys. Rev. Lett. 95 (2005) 171301 [hep-th/0505113] [INSPIRE].

[58] J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe,

Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].

[59] O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity,

JHEP 10 (2005) 050 [hep-th/0508202] [INSPIRE].

[60] D. Benedetti and J. Henson, Spectral geometry as a probe of quantum spacetime,

Phys. Rev. D 80 (2009) 124036 [arXiv:0911.0401] [INSPIRE].

[61] J. Laiho and D. Coumbe, Evidence for Asymptotic Safety from Lattice Quantum Gravity,

Phys. Rev. Lett. 107 (2011) 161301 [arXiv:1104.5505] [INSPIRE].

[62] L. Modesto, Fractal structure of loop quantum gravity, Class. Quant. Grav. 26 (2009) 242002

[arXiv:0812.2214] [INSPIRE].

[63] F. Caravelli and L. Modesto, Fractal Dimension in 3d Spin-Foams, arXiv:0905.2170

[INSPIRE].

– 25 –

http://dx.doi.org/10.1088/0264-9381/24/18/R01
http://arxiv.org/abs/gr-qc/0610018
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,24,R171
http://arxiv.org/abs/0708.1317
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1317
http://arxiv.org/abs/hep-th/0511260
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511260
http://dx.doi.org/10.1103/PhysRevC.84.014320
http://arxiv.org/abs/1105.1144
http://inspirehep.net/search?p=find+Liv.Rev.Relat.,9,5
http://arxiv.org/abs/0709.3851
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.3851
http://dx.doi.org/10.1103/PhysRevD.65.043508
http://arxiv.org/abs/hep-th/0106133
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106133
http://dx.doi.org/10.1088/1475-7516/2007/08/024
http://arxiv.org/abs/0706.0174
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.0174
http://dx.doi.org/10.1016/0550-3213(90)90345-E
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B336,115
http://dx.doi.org/10.1016/0550-3213(95)00479-C
http://arxiv.org/abs/hep-th/9305172
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B436,141
http://dx.doi.org/10.1103/PhysRevLett.93.131301
http://arxiv.org/abs/hep-th/0404156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404156
http://dx.doi.org/10.1007/978-3-642-11897-5_2
http://arxiv.org/abs/0906.3947
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3947
http://dx.doi.org/10.1103/PhysRevLett.95.171301
http://arxiv.org/abs/hep-th/0505113
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,95,171301
http://dx.doi.org/10.1103/PhysRevD.72.064014
http://arxiv.org/abs/hep-th/0505154
http://inspirehep.net/search?p=find+J+Phys.Rev.,D72,064014
http://dx.doi.org/10.1088/1126-6708/2005/10/050
http://arxiv.org/abs/hep-th/0508202
http://inspirehep.net/search?p=find+EPRINT+hep-th/0508202
http://dx.doi.org/10.1103/PhysRevD.80.124036
http://arxiv.org/abs/0911.0401
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0401
http://dx.doi.org/10.1103/PhysRevLett.107.161301
http://arxiv.org/abs/1104.5505
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5505
http://arxiv.org/abs/0812.2214
http://inspirehep.net/search?p=find+EPRINT+0812.2214
http://arxiv.org/abs/0905.2170
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2170


J
H
E
P
1
2
(
2
0
1
1
)
0
1
2

[64] E. Magliaro, C. Perini and L. Modesto, Fractal Space-Time from Spin-Foams,

arXiv:0911.0437 [INSPIRE].

[65] S. Carlip, Spontaneous Dimensional Reduction in Short-Distance Quantum Gravity?,

arXiv:0909.3329 [INSPIRE].

[66] S. Carlip, The Small Scale Structure of Spacetime, arXiv:1009.1136 [INSPIRE].

[67] A. Connes, Noncommutative geometry and the standard model with neutrino mixing,

JHEP 11 (2006) 081 [hep-th/0608226] [INSPIRE].

[68] A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with

neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].

[69] D. Guido and T. Isola, Dimensions and singular traces for spectral triples, with applications

to fractals, math/0202108.

[70] C. Antonescu and E. Christensen, Spectral triples for AF C∗-algebras and metrics on the

Cantor set, math/0309044.

[71] D. Benedetti, Fractal properties of quantum spacetime, Phys. Rev. Lett. 102 (2009) 111303

[arXiv:0811.1396] [INSPIRE].

[72] G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104 (2010) 251301

[arXiv:0912.3142] [INSPIRE].

[73] G. Calcagni, Quantum field theory, gravity and cosmology in a fractal universe,

JHEP 03 (2010) 120 [arXiv:1001.0571] [INSPIRE].

[74] G. Calcagni, Gravity on a multifractal, Phys. Lett. B 697 (2011) 251 [arXiv:1012.1244]

[INSPIRE].

[75] M. Arzano, G. Calcagni, D. Oriti and M. Scalisi, Fractional and noncommutative spacetimes,

arXiv:1107.5308 [INSPIRE].

[76] G. Calcagni, Geometry of fractional spaces, arXiv:1106.5787 [INSPIRE].

[77] G. Calcagni, Geometry and field theory in multi-fractional spacetime, arXiv:1107.5041

[INSPIRE].

[78] E. Akkermans, G.V. Dunne and A. Teplyaev, Thermodynamics of photons on fractals,

Phys. Rev. Lett. 105 (2010) 230407 [arXiv:1010.1148] [INSPIRE].

[79] E. Akkermans, G.V. Dunne and A. Teplyaev, Physical Consequences of Complex Dimensions

of Fractals, Europhys. Lett. 88 (2009) 40007 [arXiv:0903.3681] [INSPIRE].

[80] C.T. Hill, Fractal theory space: Space-time of noninteger dimensionality,

Phys. Rev. D 67 (2003) 085004 [hep-th/0210076] [INSPIRE].

[81] D. ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems,

Cambridge University Press, Cambridge U.K. (2004).

[82] S. Alexander and R. Orbach, Density of states on fractals: “fractons”, J. Phys. (Paris) Lett.

43 (1982) L625.

[83] M. Reuter and H. Weyer, Quantum gravity at astrophysical distances?, JCAP 12 (2004) 001

[hep-th/0410119] [INSPIRE].

[84] T.P. Sotiriou, M. Visser and S. Weinfurtner, Spectral dimension as a probe of the ultraviolet

continuum regime of causal dynamical triangulations, Phys. Rev. Lett. 107 (2011) 131303

[arXiv:1105.5646] [INSPIRE].

– 26 –

http://arxiv.org/abs/0911.0437
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0437
http://arxiv.org/abs/0909.3329
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.3329
http://arxiv.org/abs/1009.1136
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1136
http://dx.doi.org/10.1088/1126-6708/2006/11/081
http://arxiv.org/abs/hep-th/0608226
http://inspirehep.net/search?p=find+J+JHEP,0611,081
http://arxiv.org/abs/hep-th/0610241
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610241
http://arxiv.org/abs/math/0202108
http://arxiv.org/abs/math/0309044
http://dx.doi.org/10.1103/PhysRevLett.102.111303
http://arxiv.org/abs/0811.1396
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1396
http://dx.doi.org/10.1103/PhysRevLett.104.251301
http://arxiv.org/abs/0912.3142
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,104,251301
http://dx.doi.org/10.1007/JHEP03(2010)120
http://arxiv.org/abs/1001.0571
http://inspirehep.net/search?p=find+J+JHEP,1003,120
http://dx.doi.org/10.1016/j.physletb.2011.01.063
http://arxiv.org/abs/1012.1244
http://inspirehep.net/search?p=find+J+Phys.Lett.,B697,251
http://arxiv.org/abs/1107.5308
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5308
http://arxiv.org/abs/1106.5787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5787
http://arxiv.org/abs/1107.5041
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5041
http://dx.doi.org/10.1103/PhysRevLett.105.230407
http://arxiv.org/abs/1010.1148
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1148
http://arxiv.org/abs/0903.3681
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3681
http://dx.doi.org/10.1103/PhysRevD.67.085004
http://arxiv.org/abs/hep-th/0210076
http://inspirehep.net/search?p=find+J+Phys.Rev.,D67,085004
http://dx.doi.org/10.1088/1475-7516/2004/12/001
http://arxiv.org/abs/hep-th/0410119
http://inspirehep.net/search?p=find+EPRINT+hep-th/0410119
http://dx.doi.org/10.1103/PhysRevLett.107.131303
http://arxiv.org/abs/1105.5646
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5646

	Introduction
	Generalized dimensions characterizing fractal space-times
	The spectral dimension
	The walk dimension
	The Hausdorff dimension

	Fractal dimensions within QEG
	Diffusion processes on QEG space-times
	The spectral dimension in QEG
	The walk dimension in QEG
	The Hausdorff dimension in QEG

	The RG-flow of D(s) and D(w)
	The exponent delta as a function on theory space
	The spectral and walk dimensions along a RG-trajectory

	Matching the spectral dimensions of QEG and CDT
	Discussion and conclusions

