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1 Introduction

The ABJM model is an N = 6 supersymmetric U(N) × U(N) Chern-Simons theory with

opposite levels coupled to matter [1]. Like its cousin N = 4 super Yang-Mills in four

dimensions, its two-point functions of single trace operators map to an integrable system

in the planar limit [2–5]. For N = 4 SYM, the integrability has been used as a powerful

tool to interpolate between strong and weak coupling, where one can see the perturbative

behavior of the gauge theory morph into the stringy behavior expected from the AdS/CFT

conjecture [6, 7].

The ABJM model has two extra features that give it a richer structure than N = 4

SYM, at least as far as the integrability of the two point functions is concerned. The first

is that the Bethe equations and the dispersion relations contain an undetermined function

h2(λ) of the ’t Hooft coupling, λ = N/k, where k is the Chern-Simons level [5]. The

second is that the theory can be deformed into a U(M) × U(N) gauge theory while still

maintaining the N = 6 supersymmetry [8]. In this ABJ case there are now two ’t Hooft

parameters,

λ =
M

k
, λ̂ =

N

k
, (1.1)

and, if integrability is maintained, a single function h2(λ̄, σ), where

λ̄ =
√

λλ̂ , σ =
λ− λ̂

λ̄
. (1.2)

The spin-chain that appears in the ABJ(M) models has OSp(6|4) symmetry and is

of alternating type, with the spins on the odd sites in the singleton representation of the

supergroup and the spins on the even sites in the anti-singleton representation [2–4, 9, 10].

In order to find h2(λ̄, σ) it is only necessary to consider the compact subgroup SU(2)×SU(2)

of OSp(6|4), with the spins on the odd sites transforming in the (2,1) representation and

the spins on the even sites transforming in the (1,2) representation. The ground state has

all spins aligned and the excitations (or magnons) are flipped spins that live on either odd

or even sites. The dispersion relations for these two types of magnons are given by

Eodd(p) =
√

Q2 + 4h2(λ̄, σ) sin2 p
2 −Q , Eeven(p) = Eodd(p)

∣

∣

σ→−σ
, (1.3)

where Q = 1/2 for fundamental magnons while larger values of Q correspond to magnon

bound states.

At weak coupling the function h2(λ̄, σ) can be computed perturbatively. The lead-

ing contribution appears at two-loop order and is relatively easy to compute, both for

ABJM [2–4], and ABJ [10, 11], where one finds

h2(λ̄, σ) = λ̄2 + O(λ̄4) . (1.4)

However, at strong coupling on the ABJM slice where σ = 0, one readily finds from the

string sigma model [3, 12, 13].

h2(λ̄, 0) =
1

2
λ̄+ O(1) . (1.5)
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Hence, h2(λ̄, σ) is an interpolating function and can be expected to have corrections at

every even order of perturbation theory, with a general structure

h2(λ̄, σ) = λ̄2 +
∞
∑

n=2

λ̄2nh2n(σ) . (1.6)

The four-loop term in (1.6) was computed in [14, 15], where it was found that1

h4(σ) = −(4 + σ2)ζ(2) . (1.7)

This calculation was done using the explicit component action and involved the computa-

tion of dozens of Feynman diagrams. A straightforward extension of the methods in [14, 15]

to higher loops would lead to a mind boggling number of diagrams. Moreover, one would

like to verify (or disprove) that the ABJ theory is integrable, even at the four-loop order.

The SU(2) × SU(2) sector is trivially integrable at four loops, so it would be necessary to

go beyond this sector to find a nontrivial check of integrability at this order. But even this

seemingly modest task is extremely daunting in component language.

In this paper we compute h4(σ) in (1.7) using the superspace formalism. Super-

space techniques have proven to be very effective in computing the dilatation operator [16]

and in evaluating wrapping corrections [17, 18] in N = 4 SYM [19, 20] and in its β-

deformation [21–23]. Naturally, one would also like to apply them to the ABJ(M) models.

Their main virtue is that they drastically reduce the number of Feynman diagrams that one

must compute. We will later summarize several restrictions on the allowed diagrams [16]

that greatly limit the number that can contribute to h4(σ). As we will see in this paper,

at the two-loop order there is only one diagram in superspace that contributes to h2(λ̄, σ).

At the four-loop order there are 15 (plus reflections of some of the diagrams). Contrast

this to the component calculation in [14, 15], where one has many times more diagrams.

Not only does this demonstrate the formalism’s power, but it is also crucial in verifying

that (1.7) is actually correct (see footnote 1).

One can also see from (1.7) that h4(σ) has uniform transcendentality two. From the

component point of view this seems almost miraculous since many diagrams have ratio-

nal coefficients (that is, they have transcendentality zero), others have transcendentality

two, and some are mixed. When everything is combined one finds that the rational coeffi-

cients cancel. In superspace, while there are still diagrams with rational coefficients, their

cancellation appears more natural due to correlations between the single and double poles.

We will also present two possible scenarios for an all-loop function for h2(λ), including

one that might work. It reproduces the first two orders of perturbation theory as well

as the leading sigma-model contribution at strong-coupling. The one-loop sigma-model

contribution to h2(λ) depends on how a sum is carried out over an infinite number of

modes. Our proposal disagrees with the more conventional prescription in [24], but agrees

with the prescription in [25]. The other proposal looks for a connection with matrix models

1A different result for h4(σ) in (1.7) was given in earlier versions of [14, 15]. After it became clear that

those results were in conflict with the results presented in this paper, an overall sign error was discovered

for three of the Feynman graphs.
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on a Lens space. These arise in the study of supersymmetric Wilson loops in ABJ(M)

models [26–29]. In particular, we consider the free energy of the matrix model which is

a function of λ. We will see that h2(λ) has a structure similar to the derivative of the

matrix model free energy, both at small and large λ. But the coefficients in their respective

expansions do not quite line up.

In order to complete the four-loop analysis in the SU(2)×SU(2) subsector, we will apply

the superspace formalism to compute the leading wrapping corrections for a length four

operator in the (1,1) representation of SU(2) × SU(2). Here we find that the wrapping

corrections per se differ from those computed in component language. However, other

range five interactions must be subtracted and this subtracted piece also differs from the

corresponding term in the component calculation. The two effects combine to give the

same four-loop anomalous dimension for this operator as was found using components.

The rest of the paper is organized as follows: In section 2 we review the ABJ(M)

models in N = 2 superspace. In section 3 we discuss the relation of the dilatation operator

to h2(λ̄, σ). In section 4 we enumerate and compute all Feynman diagrams that contribute

to the four-loop term h4(σ). In section 5 we discuss our investigation into possible all-loop

functions for h2(λ). In section 6 we apply the superspace formalism to the wrapping correc-

tions for operators of length four. In section 7 we present our conclusions, which includes

suggestions for further work. Many further details, including the four-loop decoupling of

odd and even site magnons and the consistency of double poles due to UV subdivergences

can be found in the several appendices.

2 ABJ(M) models in N = 2 superspace

In this section we review the N = 2 superspace formulation for N = 6 superconformal

Chern-Simons theory. This was first given in [30], but in this paper we follow the notations

used in [31] which are adapted from the ones of [32]. For the first papers on the N = 2

superspace formulation of Chern-Simons theory coupled to matter see [33–36]. Appendix A

collects our notation and conventions.

The U(M)×U(N) supersymmetric Chern-Simons theory has two N = 2 vector super-

multiplets, V and V̂ , with V transforming in the adjoint of U(M) and V̂ in the adjoint of

U(N). In order to extend the supersymmetry to N = 6, the ABJ(M) action also contains

two sets of chiral matter superfields, ZA and WA with A = 1, 2. ZA and WA transform re-

spectively in the (2,1) and (1,2) of the global SU(2)×SU(2) flavour subgroup described in

the introduction. Moreover, they transform in the bifundamental representations (M, N̄)

and (N,M̄) of the U(M) × U(N) gauge group.

Each gauge group in the gauge fixed N = 2 superspace action has associated with it

a pair of chiral ghost superfields, c, c′ for U(M) and ĉ, ĉ′ for U(N) [37–39]. Including all of

– 4 –



J
H
E
P
1
2
(
2
0
1
0
)
0
7
4

these ingredients, the gauge fixed ABJ(M) action in N = 2 superspace reads

SCS + Sgf =
k

4π

[
∫

d3xd4θ

∫ 1

0
dt trV

(

D̄α e−tV Dα etV +
1

2

(

1

α
D2 +

1

ᾱ
D̄2

)

V

)

−
∫

d3xd4θ

∫ 1

0
dt tr V̂

(

D̄α e−tV̂ Dα etV̂ +
1

2

(

1

α̂
D2 +

1

ˆ̄α
D̄2

)

V̂

)]

,

SFP =
k

4π

[ ∫

d3xd4θ tr(c′ + c̄′) L 1

2
V (c+ c̄+ coth L 1

2
V (c− c̄))

−
∫

d3xd4θ tr(ĉ′ + ˆ̄c′) L 1

2
V̂ (ĉ+ ˆ̄c+ coth L 1

2
V̂ (ĉ− ˆ̄c))

]

Smat =
k

4π

∫

d3xd4θ tr
(

Z̄A eV ZA e−V̂ +W̄B eV̂ WB e−V
)

,

Spot =
k

4π

i

2

[ ∫

d3xd2θǫACǫ
BD trZAWBZ

CWD

+

∫

d3xd2θ̄ǫACǫBD tr Z̄AW̄
BZ̄CW̄

D

]

,

(2.1)

where LV X = [V ,X] and α and α̂ are gauge fixing parameters.

Many of the terms in this action have an infinite expansion, but for our purposes it

is only necessary to retain the first few orders of any expansion. The first term in the

Chern-Simons Lagrangian expands to

∫ 1

0
dt trV D̄α e−tV Dα etV =

1

2
trV D̄α Dα V − 1

6
trV D̄α [V ,Dα V ] + . . . . (2.2)

The quadratic piece in this expression, together with the α- and α̂-dependent gauge fixing

terms, determines the gauge superfield propagators. In order to simplify the D-algebra

manipulations we will choose the Landau gauge where α = α̂ = 0. The leading expansion

for the Fadeev-Popov action is

SFP =
k

4π

∫

d3xd4θ tr

(

c̄′c− c′c̄+
1

2
(c′ + c̄′) [V ,c+ c̄]

)

+ . . . , (2.3)

while the leading expansion for the matter action D-terms is

Smat =
k

4π

∫

d3xd4θ

[

tr Z̄A

(

ZA + V ZA − ZAV̂ +
1

2
(V 2ZA + ZAV̂ 2) − V ZAV̂

)

+ . . .

+ tr W̄A

(

WA + V̂ WA −WAV +
1

2
(V̂ 2WA +WAV

2) − V̂ WAV

)

+ . . .

]

.

(2.4)

We have collected the Feynman rules which follow from the action and the above

expansions in appendix B. The supergraphs are then constructed from the Feynman rules

and are reducible to ordinary integrals using standard D-algebra techniques [32].

The advantage of using superspace as opposed to the component approach is that the

number of diagrams is significantly smaller. Furthermore, one can often find cancellation
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patterns between different supergraphs or demonstrate finiteness theorems for classes of

diagrams [16, 19]. Such generalized finiteness conditions [16] that follow from power count-

ing arguments and some of their implications are summarized in section 4.1. They predict

the finiteness of many diagrams and will be of great use to us in our calculations.

3 The dilatation operator and h2(λ̄, σ)

The dilatation operator D is the natural tool to study the anomalous dimensions of compos-

ite operators in field theory. It can be defined as the operator that by acting on composite

operators Oa provides the matrix of scaling dimensions

DOa = ∆a
b(O)Ob . (3.1)

Note that ∆a
b leads in general to the mixing between operators. As known, the matrix of

dimensions, and therefore the dilatation operator, can be extracted from the perturbative

renormalization of the composite operators Oa

Oa,ren = Za
bOb,bare , Z = 1 + λ̄2Z2 + λ̄4Z4 + . . . . (3.2)

The matrix Z is such that Oa,ren is free from perturbative quantum divergences and can

be computed in perturbation theory by means of standard methods. In this paper we use

dimensional reduction with the space-time dimension D given by

D = 3 − 2ε , (3.3)

in order to regularize quantum divergences that show up as inverse powers of ε in the limit

ε → 0. By introducing the ’t Hooft mass µ and the dimensionful combination λ̄µ2ε the

dilatation operator is then extracted from Z as

D = Dclassical + µ
d

dµ
lnZ(λ̄µ2ε, ε) = Dclassical + lim

ε→0

[

2ελ̄
d

dλ̄
lnZ(λ̄, ε)

]

. (3.4)

In a loop expansion of the dilatation operator, the lth loop order is then simply given by

the λ̄2l coefficient of the 1/ε pole of lnZ multiplied by 2l. The higher order poles must be

absent in lnZ; this will be later used as a consistency check for our result.

As discussed in the introduction, in the ABJ(M) models the dilatation operator can

be mapped to the long range Hamiltonian of a spin-chain system for the whole OSp(6|4)
symmetry group [2, 10]. We focus on the SU(2) × SU(2) subsector where the magnons

propagating along the spin chain form two sectors: the ones living on the odd sites belong

to the first SU(2), while those on the even sites are associated with the other SU(2). As

demonstrated in appendix F.1, in our four-loop analysis the two different types of magnons

can be regarded as non-interacting, since the contributions to the dilatation operator of

the respective diagrams that could lead to these interactions cancel. The all-loop Bethe

Ansatz [5] predicts that such interactions start at eight loops. In analogy with the N = 4

case, the spin-chain is interpreted as a quantum mechanical system in which the ground

state of length 2L can be chosen to be

Ω = tr (W1Z
1)L . (3.5)

– 6 –
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With a single excitation W2 of an odd site the momentum eigenstate is defined as

ψp =
L−1
∑

k=0

eipk(W1Z
1)kW2Z

1(W1Z
1)L−k−1 (3.6)

This describes a single magnon excitation with momentum p. The main difference between

the N = 6 CS and the N = 4 SYM case is the existence in the former of two different

SU(2) excitations corresponding to the sectors mentioned above.

Up to four loops, the dilatation operator for a chain of lenght 2L then expands as

D = L+ λ̄2(D2,odd + D2,even) + λ̄4(D4,odd(σ) + D4,even(σ)) + O(λ̄6) , (3.7)

where the individual parts act non-trivially on odd and even sites only.

In the N = 4 SYM case chiral functions have been introduced in [19] as a very conve-

nient basis for the dilatation operator of the SU(2) subsector. The chiral functions directly

capture the structure of the chiral superfields in the Feynman diagrams. As in the N = 4

SYM case, also in the N = 6 CS case the elementary building block for the chiral function

of the SU(2) × SU(2) subsector is constructed from the superpotential by contracting one

chiral and one anti-chiral vertex with a single chiral propagator. The resulting flavour

structure then yields the simplest non-trivial chiral function.

The chiral functions that are relevant to two loops in N = 4 SYM and to four loops in

N = 6 CS theory turn out to have identical form in terms of the respective permutation

structures and read

χ(a, b) = {a, b} − {a} − {b} + {} ,
χ(a) = {a} − {} ,
χ() = {} .

(3.8)

However, the permutation structures in both theories slightly differ. In the N = 6 CS case

they are given by [15]

{a1, a2, . . . , am} =
L−1
∑

i=0

P2i+a1 2i+a1+2 P2i+a2 2i+a2+2 . . .P2i+am 2i+am+2 , (3.9)

where we identify L+i ≡ i, such that the product of permutations, in which Pa a+2 permutes

the flavours at sites a and a+ 2, is inserted at every second site of the cyclic spin chain of

length 2L.2 The insertion at each second site thereby allows for the decomposition of the

dilatation operator into two separate pieces acting only on odd or even sites as in (3.7).

The decomposition of the dilatation operator to four loops [15] in terms of chiral functions

2Note that the permutation structures obey

{. . . , a, b, . . . } = {. . . , b, a, . . . } , |a − b| 6= 2 ,

{a, . . . , b} = {a + 2n, . . . , b + 2n} .
(3.10)

– 7 –
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then reads
D2,odd = −χ(1) ,

D2,even = −χ(2) ,

D4,odd(σ) = −χ(1, 3) − χ(3, 1) + (2 − h4(σ))χ(1) ,

D4,even(σ) = −χ(2, 4) − χ(4, 2) + (2 − h4(−σ))χ(2) .

(3.11)

The coefficients are thereby fixed by the magnon dispersion relation (1.3) in terms of the

four-loop contribution h4(σ) of the a priori undetermined function h2(λ̄, σ) in (1.6). As

explained in [15] to obtain the above result, one just has to compare the expansion of the

magnon dispersion relation to the momentum dependence when the individual terms are

applied to the single magnon momentum eigenstate (3.6).

The function h4(σ) can be computed in the weak coupling limit from a direct perturba-

tive calculation. This has been done by using component field techniques in [15]. Here we

present its calculation by using N = 2 supergraphs. As in the component calculation [15],

also here it suffices to only consider the odd part of the dilatation operator, i.e. the con-

tributions with chiral functions that have odd integers as arguments.3 The supergraphs

computation of the full D4,odd, and in particular of h4(σ), is the main result of our paper.

4 Feynman diagram calculation

Before starting with the explicit evaluation of Feynman diagrams we will summarize the

previously mentioned finiteness conditions which allow us to disregard entire classes of

diagrams.

4.1 Finiteness conditions

Based on power counting and structural properties of the Feynman rules, in [16] finiteness

conditions for Feynman diagrams of N = 4 SYM theory in terms of N = 1 superfields

and for N = 6 CS theory in terms of N = 2 superfields were derived. They hold for each

diagram that contributes to the renormalization of chiral operators in the respective SU(2)

or SU(2) × SU(2) subsectors. In Landau gauge, such a diagram with interaction range

R ≥ 2 has no overall UV divergence, if at least one of the following criteria is matched:4

1. All of its chiral vertices are part of any loop.

2. One of its spinor derivative Dα is brought outside the loops.

3. The number of its spinor derivatives D̄α brought outside loops becomes equal or

bigger than twice the number of chiral vertices that are not part of any loop.

3As we mentioned before, odd and even site magnons are decoupled here, there is therefore no contri-

bution with chiral functions with both odd and even integer arguments. We explicitly demonstrate their

absence at four loops in appendix F.1.
4R ≥ 2 means, the composite operator is 1PI connected with the rest of the diagram, not including the

non-interacting fields of the operator.
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In the flavour SU(2)× SU(2) subsector, a chiral vertex that is not part of any loop always

generates flavour permutations and therefore a non-trivial chiral structure of the diagram.

Analogously to the N = 4 SYM case, the above finiteness conditions hence imply the

following rule:

• All diagrams with interaction range R ≥ 2 and trivial chiral structure χ() are finite.

Together with the conformal invariance on the quantum level, i.e. the finiteness of the chiral

self energy, this implies that any diagram which does not manipulate the flavour, i.e. it has

trivial chiral structure χ() defined in (3.8), has no overall UV divergence.

Since the propagators of the vector fields in Landau gauge carry D D̄, the finiteness

conditions imply the following statement:

• A diagram with interaction range R ≥ 2 has no overall UV divergence, if it contains

at least one cubic gauge-matter interaction with a chiral field line which is not part

of any loop. In particular, if in the diagram exactly one of the chiral vertices appears

outside the loops, then it also has no overall UV divergence if the anti-chiral field of

at least one cubic gauge-matter interaction is not part of any loop.

According to this statement, there are no contributions to the dilatation operator that come

from diagrams in which the chiral line of a cubic gauge-matter vertex is an external line.

In appendix E we will, however, evaluate such diagrams with IR divergences explicitly to

show that indeed all IR divergences cancel out in the renormalization constant Z in (3.2).

4.2 Two loops

Before attacking the more involved four-loop case, let us see how the two-loop result is

obtained from supergraphs. There is only one non-vanishing logarithmically divergent

diagram contributing. It evaluates to

→ (4π)2

k2
MN I2 χ(1) =

λλ̂

4

1

ε
χ(1) , (4.1)

where the two-loop integral I2 is given in (C.2). As already discussed, to obtain the

contribution to the dilatation operator one has to take the coefficient of the pole 1/ε and

multiply it by −2l, in this case equal to −4. Once a factor λ̄2 = λλ̂ is removed one gets

D2 = −χ(1) . (4.2)

This coincides with the results found in [2, 4, 11] in components.

4.3 Four loops

Now, let us move to the four-loop contributions to the dilatation operator. We will sep-

arate them according to the range of the interactions. We will explicitly present only the

diagrams surviving the finiteness conditions of [16] that are summarized in section 4.1. It

– 9 –
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is important to note that, according to these arguments, an overall UV divergence can be

present in superficially logarithmically divergent diagrams if at least one purely chiral ver-

tex remains outside the loops. This implies that the minimum range of interaction at any

loop is three. This is consistent with the fact that the minimal structure that can appear

in the dilatation operator is χ(1). The range varies between three and the maximum one

which at four loops is five.

Note that together with the 1/ε poles we will also keep the higher order poles that

display the presence of subdivergences. Here, to four-loop order the only appearing higher

order poles are double poles. In appendix F.2 their cancellation in lnZ will be explicitly

demonstrated as an important consistency check of our calculation.

We note that, for the convenience of the reader, all the integrals appearing in the

following are collected in the appendix C.

4.3.1 Range five interactions

At four loops there is only one supergraph that involves the maximum number of five

neighbouring fields in the interaction. It is given by

Sr5 = → (4π)4

k4
(MN)2I4χ(1, 3) =

(λλ̂)2

16

(

− 1

2ε2
+

2

ε

)

χ(1, 3) . (4.3)

By taking into account the reflected diagram, the maximum range contribution to the

renormalization constant is5

Zr5,odd = −(1 + R)Sr5 =
(λλ̂)2

16

(

1

2ε2
− 2

ε

)

(χ(1, 3) + χ(3, 1)) . (4.4)

4.3.2 Range four interactions

There are four diagrams which have range four interactions and contribute to the structure

χ(1) in the dilatation operator. According to section 4.1, for an overall UV divergence

to be present, at least one purely chiral vertex has to remain outside the loops, and a

single gauge propagator can not end up on an external leg. Therefore, the only relevant

5By R we indicate the reflection of a supergraph at the vertical axis. As in [15], the operation preserves

the type of chiral function, i.e. if it belongs to the odd or even sector. In case of an even number of

neighbours interacting with each other the operation therefore involves a shift of the interaction by one site

along the composite operator. Effectively, R therefore exchanges λ with λ̂ and χ(a, b) with χ(b, a).
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contributions turn out to be

Sr4 = → −(4π)4

k4
M3N I4bbb χ(1) =

λ3λ̂

16

(

− π2

2ε

)

χ(1) ,

Vr41 = → (4π)4

2k4
M3N I4 χ(1) =

λ3λ̂

32

(

− 1

2ε2
+

2

ε

)

χ(1) ,

Vr42 = → (4π)4

2k4
M3N I4 χ(1) =

λ3λ̂

32

(

− 1

2ε2
+

2

ε

)

χ(1) ,

Vr43 = → (4π)4

k4
M3N I42bbd χ(1) =

λ3λ̂

16

(

1

2ε2
− 1

ε

(

2 − π2

4

))

χ(1) .

(4.5)

Also in this case one has to consider the diagrams obtained by reflecting the previous ones.

The total contribution to the renormalization constant is then

Zr4,odd =
λλ̂

16
(λ2 + λ̂2)

π2

4ε
χ(1) . (4.6)

4.3.3 Range three interactions

The range three interactions arise from two-loop corrections to the propagators and ver-

tices involved in the two-loop diagram (4.1). It is important to note that, due to the

finiteness rules of section 4.1, overall UV divergences can arise only from corrections to

the lower vertex or one of the three lower chiral propagators. According to the analysis

of [31], the two-loop corrections to the chiral two- and four-point functions are plagued

by IR divergences even if free of UV poles. This is due to the particular structure of the

gauge superfield propagator and cubic vertices in N = 2 superspace. We stress that IR

divergences do not appear in component fields [15], since in three dimensions IR danger-

ous cubic vertices contribute non-trivial momentum factors to the numerators of the loop

integrals. In superspace, the appearance of IR divergences in intermediate steps can be

cured by using a non-standard gauge fixing procedure first introduced in four dimensions

in [40] and adapted in [31] to the three-dimensional case. Since we are interested only in

the overall UV divergences of the diagrams, a computational strategy could be to ignore

purely IR divergent diagrams and to IR-regulate diagrams that involve both UV and IR

divergences in such a way as to extract the purely UV poles. For example, this is illustrated

in appendix C.2 where we can regulate the IR divergences by inserting external momenta

in IR divergent diagrams. However, in the main body of the paper we have decided to

keep track of the IR divergences and check at the end their cancellation. Such a check is

described in appendix E.

The interested reader should look at appendix D for a description of the two-loop

corrections to the two- and four-point functions needed in the calculations of this section.
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The contributions with only UV divergences are given by

Sr3 = → −2(4π)4

k4
M3N I42bbb2 χ(1) =

λ3λ̂

16

(

− π2

2ε

)

χ(1) ,

Vr31a = → (4π)4

2k4
M3N I4 χ(1) =

λ3λ̂

16

(

− 1

4ε2
+

1

ε

)

χ(1) ,

Vr31b = → (4π)4

k4
M3N(I4 + I42bbd)χ(1) =

λ3λ̂

16

π2

4ε
χ(1) ,

Vr32a = → (4π)4

k4
M3N I42bbd χ(1) =

λ3λ̂

16

(

1

2ε2
+

1

ε

(

− 2 +
π2

4

))

χ(1) ,

Vr32b = → −(4π)4

2k4
M3N I422qtrABCD χ(1) =

λ3λ̂

16

(

− π2

6ε

)

χ(1) , (4.7)

Vr33a = → (4π)4

k4
(MN)2I422qtrABbd χ(1) =

(λλ̂)2

16

(

− 1

ε2
+

1

ε

(

4 − 2π2

3

))

χ(1) ,

Vr33b = → (4π)4

k4
(MN)2I422qtrABCD χ(1) =

(λλ̂)2

16

π2

3ε
χ(1) ,

Vr34 = → (4π)4

k4
(MN)2

(

2I42bbe − I422qtrABbd

+2(2I221be−I221dc)G(2 − 2λ, 1)G(2 − 3λ, 1) − 2(I42bbd + I42bbe)
)

χ(1)

=
(λλ̂)2

16

(

− π2

3ε

)

χ(1) .

The contributions with both UV and IR divergences are given by

Vr35 = → −(4π)4

k4

(

MN(4MN −M2)
)(

I4 − I4UVIR + I42bbd

)

χ(1)

=
λλ̂

16
(4λλ̂− λ2)

(

− 1

2ε2
+

2

ε

(

− 2 − π2

8
+ γ − ln 4π

))

χ(1) , (4.8)

Vr36 = → (4π)4

k4
MN

(

2MNI4bbb − 1

2

(

8MN − (M2 +N2)
)

I4UVIR

)

χ(1)

=
λλ̂

16

(

λλ̂
π2

ε
+
(

8λλ̂− (λ2 + λ̂2)
)

(

1

4ε2
+

1

ε

(

2 − γ + ln 4π
)

))

χ(1) .
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Note that the expressions for the integrals that appear in the results have their UV sub-

divergences subtracted. The suffix UVIR appears on integrals which due to different ar-

rangements of their external momenta contribute both UV and IR divergences. The UV

poles can be extracted by adding external momentum to the cubic vertex which causes the

IR divergence, i.e. one replaces I4UVIR → I4. This then yields

V UV
r35 =

λλ̂

16
(4λλ̂− λ2)

(

− 1

2ε2
+

1

ε

(

2 − π2

4

))

χ(1) ,

V UV
r36 =

λλ̂

16

(

λλ̂
π2

ε
+ (8λλ̂− (λ2 + λ̂2))

(

1

4ε2
− 1

ε

))

χ(1) ,

(4.9)

In appendix E we explicitly demonstrate that this result is also obtained if instead of

choosing an IR safe momentum configuration all relevant diagrams with IR divergence are

considered, i.e. the IR divergences cancel out in the final result.

The contribution of the range three interactions to the renormalization constant Z is

then given by

Zr3,odd = −(1 + R)(Sr3 + Vr31a + Vr31b + Vr32a + 2Vr32b + 2Vr34 + V UV
r35 )

− Vr33a − Vr33b − 3V UV
r36

=
λλ̂

16

(

λλ̂

(

− 1

ε2
+

1

ε

(

4 +
2π2

3

))

+ (λ2 + λ̂2)
π2

12ε

)

χ(1) .

(4.10)

4.4 Final result

We are now ready to put together the parts of our calculations necessary to extract the

four-loop dilatation operator. As discussed before the dilatation operator for odd sites is

obtained by extracting the 1/ε pole from the renormalization constant. Summing up the

contributions to the 1/ε pole from (4.4), (4.6) and (4.10), we obtain

λ̄4Z4,odd| 1
ε

=
(

Zr5,odd + Zr4,odd + Zr3,odd

)

| 1
ε

=
λλ̂

16ε

[

− 2λλ̂(χ(1, 3) + χ(3, 1))+

(

λλ̂

(

4 +
2π2

3

)

+(λ2 + λ̂2)
π2

3

)

χ(1)

]

, (4.11)

that, rewritten in terms of λ̄ and σ of (1.2), gives

λ̄4Z4,odd| 1
ε

=
λ̄4

16ε

[

− 2(χ(1, 3) + χ(3, 1)) +

(

4

(

1 +
π2

3

)

+ σ2π
2

3

)

χ(1)

]

. (4.12)

As already observed, in the lnZ the higher order poles must be absent. This is a useful

consistency check of our computation. Additional diagrams that do not contribute to the

dilatation operator but have non-vanishing double poles have to be taken into account.

Some of them consist of two separate two-loop interactions. Furthermore, one has to

consider the diagrams that lead to interactions between magnons at odd and even sites

and contribute only to the double pole when summed up. In appendix F, we prove that

when all these double poles are taken into account, their sum is indeed cancelled by the
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two-loop contribution in the expansion of lnZ. The dilatation operator for odd sites is

then obtained from (4.12) by multiplying the 1/ε pole by 8. With ζ(2) = π2

6 , it reads

D4,odd(σ) = (2 + (4 + σ2)ζ(2))χ(1) − χ(1, 3) − χ(3, 1) . (4.13)

By comparing the previous result with equation (3.11) we read off the four-loop coefficient

of the function h2(λ̄, σ)

h4(σ) = −(4 + σ2)ζ(2) . (4.14)

This result coincides with the one computed in [15]. It is interesting to note that, in

contrast to the component calculation in [15], the integrals that contribute here to the

dilatation operator show a correlation between the quadratic and the rational simple pole

in ε: their relative coefficient is always −4 as for the simplest four-loop integral I4 in (C.4).

The rational term in (4.13) and therefore its absence in (4.14) is hence correlated with the

quadratic pole that itself is determined by the two-loop result (F.5).

5 Possible scenarios for an all-loop function

In this section we discuss our attempts to find an all-loop function for h2(λ̄, σ).

In the ABJM case where σ = 0, h2(λ̄, 0) = h2(λ), there is a surprisingly simple function

that matches the weak coupling behavior up to four-loop order and also matches the leading

strong coupling behavior. To this end we define t ≡ 2πiλ, which is a natural variable that

also appears in expressions for supersymmetric ABJ(M) Wilson loops [26, 28, 29]. We then

consider a rescaled function g(t) = (2π)2 h2(λ). In terms of g(t) the magnon dispersion

relation becomes

ε(p) =

√

1

4
+
g(t)

π2
sin2 p

2
, (5.1)

and so has a form more in line with the N = 4 dispersion relation where in that case g(t)

in (5.1) is replaced with λ.

In terms of g(t), the proposed all-loop function is

g(t) = −(1 − t) log(1 − t) − (1 + t) log(1 + t) , (5.2)

whose weak coupling expansion is

g(t) = −
∞
∑

n=1

t2n

n(2n − 1)
= −t2 − 1

6
t4 − 1

15
t6 + O(t8)

= (2π)2
(

λ2 − 4 ζ(2)λ4 + 6 ζ(4)λ6 + O(λ̄8)
)

.

(5.3)

An obvious test is to compute h2(λ) to six-loop order, where the all-loop function in (5.2)

predicts the value h6 = (2π)4

15 . A six-loop computation is admittedly very difficult, but we

believe it is manageable using the N = 2 superspace formulation.

At strong coupling the expansion is

g(t) = −iπ t− 2 log t− 2 + O(t−1)

= (2π)2
(

λ

2
− 1

(2π)2
log(2πλ) − 2 + O(λ−1)

)

.
(5.4)
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The dominant term agrees with the leading strong coupling expansion from the string

sigma-model. But also observe that the first correction corresponds to a two-loop contri-

bution; a one-loop correction is absent. This disagrees with the prediction in [24] arising

from the one-loop correction to the energy for a folded-string [25, 41–44]. In this language

one would expect a g(t) with leading asymptotic expansion

g(t) = −iπ t− 2
√
−iπt ln(2) + . . . . (5.5)

However, if one chooses a different prescription for summing over mode frequencies, where

one essentially groups the modes into heavy and light [25], then g(t) no longer has the
√
t

term, agreeing with the large t expansion (5.4).6

The function in (5.2) does not appear to have an easy generalization to the ABJ case

where σ 6= 0. Such a function would be expected to be invariant under the transforma-

tion [8]

λ→ λ̂ , λ̂→ 2λ̂− λ+ 1 . (5.6)

Under (5.6) the perturbative regime is mapped into strong coupling, making its verification

difficult. Some evidence that h2(λ̄, σ) is consistent with (5.6) was presented in [48]. One

possible hint about the all-loop structure is that the four-loop contribution to h2(λ̄, σ) can

be rewritten as

λ̄4(4 + σ2) = λλ̂(λ+ λ̂)2 . (5.7)

which is zero if λ = −λ̂. It would be interesting to see if the higher order corrections

remain zero under this condition. However, it is not clear how this could square with the

strong coupling behavior nor with an invariance under the transformation in (5.6).

Another possibility is that h2(λ̄, σ) is somehow related to recent results concerning

supersymmetric Wilson loops in the ABJ(M) models. In this latter case, it was found

using localization [49, 50] that the Wilson loop expectation value could be reduced to a

matrix model on a Lens space [26]. This matrix model is solvable in the planar limit [51, 52]

and hence all-loop predictions can be extracted. In particular, for ABJM the perturbative

free energy of the matrix model is [28]

F (t) = N2

(

log(t) +
1

36
t2 + O(t4)

)

. (5.8)

It is tempting to look for a connection between F (t) and g(t). One might try

(g(t))1/2 = − i

N2
t2
∂F

∂t
= −i t− i

18
t3 + O(t5) . (5.9)

The full expansion also is maximally transcendental, but here one finds that the t3 term is

off by a factor of 2/3. At strong coupling the free energy is asymptotically [29]

F (t) ≈ −N2 2π3/2

3
(−it)−1/2 . (5.10)

6See [45] for a further discussion of this. These authors also show that the same choices of prescriptions

appear in finite size corrections for giant magnons [46, 47] and lead to the same one-loop contributions to

h2(λ).
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Applying the same rule as in (5.9) one finds

(g(t))1/2 = − i

N2
t2
∂F

∂t
≈ π

3
(−iπt)1/2 , (5.11)

which differs by an overall factor of π/3 from the square root of the leading term in (5.4).

6 Wrapping interactions

To obtain the complete four-loop spectrum of operators in the SU(2) × SU(2) subsector,

we have to consider the wrapping interactions for the non-protected operators that consist

of up to four elementary fields. The only non-trivial operator is in the 20 of SU(4) and

has L = 2, i.e. exactly four elementary fields.

The only wrapping diagrams which according to the initially discussed finiteness the-

orems based on power counting can contribute to the dilatation operator are given by

W1 = → −2(4π)4

k4
(MN)2I4 χ(1) =

(λλ̂)4

16

(

1

ε2
− 4

ε

)

χ(1) ,

W2 = → −2(4π)4

k4
(MN)2I42bb0cd χ(1) =

(λλ̂)4

16

(

− 1

2ε2
+

3

ε

)

χ(1) ,

W3 = → (4π)4

k4
(MN)2I422btrABcd χ(1) =

(λλ̂)4

16

(

1

ε2
− 2

ε

)

χ(1) , (6.1)

W4 = → −2(4π)4

k4
(MN)2I4 χ(1) =

(λλ̂)4

16

(

1

ε2
− 4

ε

)

χ(1) ,

W5 = → (4π)4

k4
(MN)2I422qtrABbdχ(1) =

(λλ̂)4

16

(

− 1

ε2
+

1

ε

(

4− 2

3
π2

))

χ(1) .

There are four distinct diagrams of type W2 and two of type W3. The sum of the wrapping

diagrams is therefore given by

W = W1 + 4W2 + 2W3 +W4 +W5 =
(λλ̂)4

16

[

1

ε2
+

2

ε

(

2 − π2

3

)]

χ(1) . (6.2)

Multiplying the 1/ε pole of W by −8, we obtain the wrapping contribution to the

dilatation operator. It reads

Dw
4,odd = −(2 − 2ζ(2))χ(1) . (6.3)
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Now, by subtracting from (4.13) the range five contribution and inserting h4(σ) = −(4 +

σ2)ζ(2), the subtracted dilatation operator becomes

Dsub
4,odd(σ) = (2 − h4(σ))χ(1) =

(

2 + (4 + σ2)ζ(2)
)

χ(1) . (6.4)

The dilatation operator for length four states then reads

Drange 4
4,odd (σ) = Dsub

4,odd(σ) + Dw
4,odd = (6 + σ2)ζ(2)χ(1) , (6.5)

and it coincides with the results obtained in terms of component fields [14, 15].

Note that the separation of the dilatation operator into wrapping and subtracted parts

differs in the superfield calculation from the one obtained in component fields in [14, 15].

The sum of the two terms is, however, the same in the two calculations, and hence the

resulting anomalous dimensions for operators with length 2L = 4 agree.

7 Conclusions

In this paper we have computed h4(σ) using the N = 2 superspace formalism. The

computation is greatly simplified from the component version [14, 15] because the manifest

supersymmetry in combination with finiteness conditions leads to a large reduction in the

number of Feynman diagrams.

With this reduction in diagrams, it should be possible to tackle more challenging

computations, including the six-loop term h6(σ). Six loops would give one more data point

and might provide further insights into an all-loop function.

Alternatively, one could also apply the superspace formalism to four loops but beyond

the SU(2) × SU(2) sector. This would not give us further information on h2(λ̄, σ), but it

would provide a check of higher-loop integrability in both ABJM and ABJ models. One

reason that integrability in the ABJ case is not assured is because at strong coupling a

nonzero σ would correspond to a nonzero θ-angle for the world-sheet, which is normally

thought to destroy integrability. However, at the lowest order in perturbation theory, the

spin-chain is integrable in all sectors, even when σ 6= 0 [10, 11]. It would be interesting to

see how this plays out at higher loops.
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A Conventions and identities

We use three-dimensional spinor and superspace notations adapted from [32]. We directly

work in the Wick rotated Euclidean space-time with metric gµν = gµν = diag(1, 1, 1). For

a given three-dimensional spinor field ψα, we raise and lower spinor indices as

ψα = Cαβψβ , ψα = ψβCβα . (A.1)

where we use the spinor metric Cαβ defined by

Cαβ =

(

0 i

−i 0

)

, Cαβ =

(

0 −i
i 0

)

, (A.2)

For the contraction of spinor indices we use the notation

ψχ = ψαχα = χαψα = χψ , ψ2 =
1

2
ψαψα . (A.3)

The γ-matrices obey the relation

(γµ)αγ(γν)γβ = −gµνδα
β − ǫµνρ(γρ)

α
β . (A.4)

where the Levi-Civita tensor is such that ǫ012 = 1. When one spinor index is lowered or

raised the γ-matrices are symmetric

(γµ)αβ = (γµ)α
δCδβ = (γµ)βα , (γµ)αβ = Cαδ(γµ)δ

β = (γµ)βα . (A.5)

The trace of product of γ-matrices satisfies

tr(γµγν) = (γµ)αβ(γν)βα = −2gµν ,

tr(γµγνγρ) = −(γµ)αβ(γν)βγ(γρ)γα = −2ǫµνρ ,

tr(γµγνγργσ) = (γµ)αβ(γν)βγ(γρ)γδ(γ
σ)δα = 2(gµνgρσ − gµρgνσ + gµσgνρ) .

(A.6)

We use the convention that the first of two contracted indices is always an upper index;

this is used in the previous formulas in the definition of the trace of products of gamma

matrices and it is very useful for D-algebra manipulations [32].

Using the γ-matrices we can move from vector to bi-spinor indices thanks to the fol-

lowing definitions

xαβ =
1

2
(γµ)αβxµ , xµ = (γµ)αβx

αβ ,

pαβ = (γµ)αβpµ , pµ =
1

2
(γµ)αβpαβ ,

Aαβ =
1√
2
(γµ)αβAµ , Aµ =

1√
2
(γµ)αβAαβ ,

(A.7)
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respectively for coordinates, momenta and fields. As usual, here the momentum pµ is

related to the vector derivative ∂µ = ∂
∂xµ by Fourier transform and pµ = i∂µ.

The three-dimensional, N = 2 superspace spinor covariant derivatives Dα, D̄α satisfy

the algebra

{Dα ,Dβ} = {D̄α , D̄β} = 0 , {Dα , D̄β} = pαβ . (A.8)

The metric ǫAB for the SU(2) flavour indices is given by

ǫ12 = 1 , ǫ12 = 1 , ǫABǫCD = δA
Cδ

B
D − δA

Dδ
B
C . (A.9)

The flavour indices are raised and lowered as

ψA = ǫABψB , ψA = ψBǫBA . (A.10)

For the integration over the superspace our conventions are
∫

d2θ = 1
2∂

α∂α,
∫

d2θ̄ = 1
2 ∂̄

α∂̄α

and
∫

d4θ =
∫

d2θ d2θ̄, such that

∫

d3xd2θ =

∫

d3x D2 |θ=θ̄=0 ,

∫

d3xd2θ̄ =

∫

d3x D̄2|θ=θ̄=0 ,
∫

d3xd4θ =

∫

d3x D2 D̄2|θ=θ̄=0 .

(A.11)

The θ-space δ-function is given by

δ4(θ − θ′) = (θ − θ′)2(θ̄ − θ̄′)2 . (A.12)

B Feynman rules in superspace

We use the Wick rotated Feynman rules, i.e. we have e−iS → eS in the path integral. The

propagators are given by

p = 〈V (p)V (−p)〉 = −〈V̂ (p)V̂ (−p)〉 =
1

p2
D D̄ δ4(θ1 − θ2) ,

p
A B

= 〈ZB(p)Z̄A(−p)〉 = 〈W̄B(p)WA(−p)〉 =
δB
A

p2
δ4(θ1 − θ2) ,

p = 〈c̄′(p)c(−p)〉 = −〈c′(p)c̄(−p)〉

= − 〈ˆ̄c′(p)ĉ(−p)〉 = 〈ĉ′(p)ˆ̄c(−p)〉 =
1

p2
δ4(θ1 − θ2) ,

(B.1)

where diagonality in the gauge group indices and a factor 4π
k for each propagator have been

suppressed.

The vertices are obtained by taking the functional derivatives of the Wick rotated

action (no factors of i) w.r.t. the corresponding superfields; we will give only the vertices
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involved in the computations of our paper. When a functional derivatives w.r.t. the (anti)-

chiral superfields is taken, factors of (D2) D̄2 are generated in the vertices. Omitting factors
k
4π , for the three point vertices we obtain

VV 3 =





D
α

D̄
α

−

D̄
α

D
α





1

2
tr
(

T a
[

T b,T c
]

)

,

VV ZBZ̄C
=

D̄
2

D
2

δC
B tr

(

T aBbBc

)

, VV̂ WBW̄ C =
D̄
2

D
2

δB
C tr

(

T âBbB
c
)

,

VV̂ Z̄BZC =

D
2

D̄
2

(−1)δB
C tr

(

T âBbB
c
)

, VV W̄ BWC
=

D
2

D̄
2

(−1)δC
B tr

(

T aBbBc

)

,

VV cc′ =

D̄
2

D̄
2

1

2
tr
(

T a
[

T b,T c
]

)

, VV cc̄′ =

D̄
2

D
2

1

2
tr
(

T a
[

T b,T c
]

)

,

VV c̄c′ =

D
2

D̄
2

1

2
tr
(

T a
[

T b,T c
]

)

, VV c̄c̄′ =

D
2

D
2

1

2
tr
(

T a
[

T b,T c
]

)

,

(B.2)

where the colour indices are labeled (a, b, c) counter clockwise starting with the leg to

the left. Besides the matrices T a and T â transforming in the adjoint of the respective

gauge groups U(M) and U(N), we have introduced matrices Ba and Ba, with underlined

a = 1, · · · ,MN indices that transform in the (M, N̄) and (N,M̄) of the gauge group

U(M) × U(N). The previous notations are useful because one can effectively consider all

the matrices to be the same for M = N and then only at the end one can easily recover

the different factors of M and N coming from the colour contractions.

The quartic vertices used in the paper are

VV 2ZCZ̄D
=

D̄
2

D
2

1

2
δD
C

[

tr
(

{T a, T b}BcBd

)]

,

VV̂ 2Z̄CZD =
D

2

D̄
2

1

2
δC
D

[

tr
(

{T â, T b̂}BcB
d
)]

,

VV ZB V̂ Z̄D
=

D̄
2

D
2

(−1)δD
B tr

(

T aBbT ĉBd

)

,

(B.3)

where the colour indices are labeled (a, b, c, d) counter clockwise starting with the leg in the

upper left corner. The vertices VV̂ 2WCW̄ D , VV 2W̄ CWD
, VV̂ WBV W̄ D involving theWA and W̄A

superfields are respectively identical to the previous three vertices up to straightforward

modifications in the flavour and colour structures.
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The quartic superpotential vertices are

VZAWBZCWD
=

D̄
2

D̄
2

D̄
2

iǫACǫBD

[

tr
(

BaBbB
cBd

)

− tr
(

BcBbB
aBd

)]

,

VZ̄AW̄ BZ̄CW̄ D =

D
2

D
2

D
2

iǫACǫ
BD
[

tr
(

BaB
bBcB

d
)

− tr
(

BcB
bBaB

d
)]

,

(B.4)

where again the colour indices are labeled (a, b, c, d) counter clockwise starting with the

leg in the upper left corner. Note also that, in a standard way, one of the (D2) D̄2 factors

has been absorbed into the (anti)chiral integration such that the integration measure of

the (anti)chiral vertex is promoted to the full superspace measure.

C Integrals

In this section we collect the integrals required for our paper. The results are based on the

appendices H, I, J of [15] where the reader should look to have a complete description of

the notations and results that we are using.

The integrals are computed by using dimensional regularization in Euclidean space

with D dimensions and

D = 2(λ+ 1) = 3 − 2ε , λ =
1

2
− ε . (C.1)

As usual we will expand the integrals in the limit ε → 0 up to the order needed for

our computations. The parameter λ in this appendix should not be confused with the ’t

Hooft coupling that appears in the main body of the paper. The integrals have a simple

dependence on the external momentum pµ which we will omit. Relations between four-loop

expressions are understood to hold for the pole parts up to disregarded finite contributions.

C.1 Integrals with only UV divergences

We need the following two-loop integral

I2 = = G(1, 1)G(1 − λ, 1) . (C.2)

The reader can look at the appendix H of [15] for our notations in using the G-functions.

Furthermore, we need the following two-loop integrals with two contracted momenta in

their numerators

I221be = =
1

2
(−G1(1, 1)G(1, 1) −G(1, 1)G1(2 − λ, 1) +G1(1, 1)G1(2 − λ, 1)) ,

I221dc = = −G1(1, 1)G1(2 − λ, 1) . (C.3)
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At four loops there are many integrals involved in the computations. Here we list

the results for the pole parts of the UV logarithmically divergent integrals where the sub-

divergences have already been subtracted. Four-loop integrals with no momenta in their

numerators are

I4 = =
1

(8π)4

(

− 1

2ε2
+

2

ε

)

,

I4bbb = =
1

(8π)4
π2

2ε
.

(C.4)

Four-loop integrals with two contracted momenta in their numerators are

I42bbb2 = =
1

(8π)4
π2

4ε
,

I42bb0cd = =
1

(8π)4

(

1

4ε2
− 3

2ε

)

,

I42bbd = =
1

(8π)4

(

1

2ε2
− 1

ε

(

2 − π2

4

))

,

I42bbe =
1

(8π)4

(

− 1

4ε2

)

.

(C.5)

Let us consider now four-loop integrals with four pairwise contracted momenta in their

numerators. The following ones

I422bABcd = , I422bAcBd = , I422bAdBc = , (C.6)

appear in a fixed combination which can be recast into the form

I422btrABcd = − tr = −2(I422bABcd − I422bAcBd + I422bAdBc)

= 2 + 2 − 4 =
1

(8π)4

(

1

ε2
− 2

ε

)

,

(C.7)

Here we have taken the trace of γ-matrices contracted with the momenta in the integral.

We thereby read off the momenta in a cycle, but keep their direction as indicated by the

arrows.
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We also need the integrals

I422qABbd = =
1

(8π)4

(

1

4ε2
+

1

4ε

)

,

I422qAdBb = =
1

(8π)4

(

1

2ε2
− 1

ε

(

1 − π2

4

))

,

I422qAbBd = =
1

(8π)4

(

1

4ε2
+

1

ε

(

5

4
− π2

12

))

.

(C.8)

The linear combinations of integrals originating from the traces of γ-matrices read

I422qtrABbd = −tr = −2(I422qABbd − I422qAbBd + I422qAdBb)

=
1

(8π)4

(

− 1

ε2
+

1

ε

(

4 − 2

3
π2

))

,

I422qtrABCD = tr =
1

(8π)4
π2

3ε
.

(C.9)

There is an interesting relation involving the traces. It reads

I422qtrABCD = I422qtrABbd + 2I4 + 4I42bbd =
1

(8π)4
π2

3ε
. (C.10)

C.2 Integrals with IR divergences

In this subsection we collect the integrals having poles in ε which are due to IR divergences.

By suffixes IR and UVIR we thereby label integrals which have one or both IR and UV

divergences.

The simplest two-loop integral with both an IR and an UV divergence is the logarith-

mically divergent tadpole

I2tp = I2UVIR = = 0 . (C.11)

It is zero in dimensional regularization, i.e. the IR and the UV divergence cancel against

each other. The UV divergence can be extracted by reshuffling the external momentum.

In particular, the UV divergence of I2tp is I2 defined in (C.2); then the IR divergence of

I2tp is −I2.
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The simplest two-loop integral with only an IR divergence is given by

I2IR = = G(1, 1)G(2 − λ, 1) =
1

(8π)2

(

− 1

ε
+ 2(1 + γ − ln 4π) +O(ε)

)

. (C.12)

One four-loop integral with both, an IR and a UV divergence is given by7

I4UVIR = = K(G(1, 1)2G(1 − λ, 1)G(1 − 2λ, 2 − λ))

=
1

(8π)4

(

− 1

2ε2
+

2

ε
(−2 + γ − ln 4π)

)

.

(C.13)

Its IR divergence is extracted as

I4UVIR − I4 =
1

(8π)4

(

2

ε
(−3 + γ − ln 4π)

)

, (C.14)

where I4 removes the overall UV divergence, since I4UVIR does not have a UV subdiver-

gence.

The simplest four-loop integral with only an IR divergence as overall divergence is

given by

I4IR = = K(G(1, 1)2G(1 − λ, 1)G(2 − 2λ, 2 − λ) − K(I2)I2IR)

=
1

(8π)4

(

2

ε
(−3 + γ − ln 4π)

)

.

(C.15)

Here we have subtracted the UV subdivergence.

D Relevant one- and two-loop subdiagrams

In this appendix we collect the results for the planar contributions to the one-loop vector

superfield two-point function and the chiral superfield two-loop contributions to the two

and four-point functions. The two-point functions have been first computed in [39, 53, 54]

in the Landau gauge. Such analysis has been extended to general gauges in [31] where the

four point functions have also first been given for the ABJM case. Here we give the results

extended to the U(M) × U(N) ABJ case in the Landau gauge. The two-loop corrections

to the chiral propagator and superpotential enter as subdiagrams in the evaluation of the

dilatation operator given in section 3.

D.1 One-loop vector two-point function

For the U(M) vector superfield V the one-loop two-point function gets contributions from

three kind of diagrams respectively having matter, ghosts and vector superfields propagat-

ing in the one-loop bubble.

7Note that, according to [15], with K() we mean the extraction of the pole parts of a function of ε.
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The contribution coming from the chiral matter superfields is

ΣV,matter = → 2NδabG(1, 1)Dα D̄2 Dα . (D.1)

The ghosts correction is

ΣV,ghosts = → 1

2
MδabG(1, 1)

(

− Dα D̄2 Dα +
{

D2 , D̄2
} )

. (D.2)

The diagrams involving a loop of vectors sum up to the following contribution

ΣV,vectors = → 1

2
MδabG(1, 1)

(

−
{

D2 , D̄2
} )

. (D.3)

The total contribution to the two-point function for the V superfield is then

ΣV = → 1

2
δabG(1, 1)(4N −M)Dα D̄2 Dα . (D.4)

The corrections to the U(N) gauge vector V̂ two point function are clearly the same with

the only difference that one has to exchange M with N in the results.
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D.2 Two-loop chiral two-point function

The non-vanishing contributions to the two-point function of chiral superfields can be seen

to arise from the following diagrams

→ 2MNI2 ,

→ 2MNI2 ,

→ −1

2
M2I2 ,

→ −MN(G(1, 1))2 ,

→ (4N −M)MG(1, 1)G1(1, 2 − λ)

=
1

2
(4N −M)M(I2tp − I2 + I2IR)

→ −1

2
(4N −M)MI2tp ,

(D.5)

where, in each contribution, we have omitted a factor D2 D̄2 together with the colour and

flavour structures. As discussed in section C.2, the tadpole integral I2tp is zero in dimen-

sional regularization. However, we keep track of it by splitting its UV and IR divergent

parts. This is necessary for the check of the cancellation of the IR divergences performed

in appendix E.

Taking into account reflections of the diagrams at the vertical and horizontal axes

where necessary, and summing up the contributions, the result reads

ΣS = → −2MN(G(1, 1))2 +
1

2
(8MN − (M2 +N2))I2IR . (D.6)

Note that the result is UV finite and it includes an IR divergent term which turns out to be

gauge dependent [31] and, according to the discussion in appendix E, does not contribute

to the dilatation operator.
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D.3 Two-loop chiral four-point function

The two-loop renormalization of the superpotential has been studied in [31]. Here we

summarize the results and extend them to the ABJ U(M) × U(N) case. It holds

→ −(4π)2λ2(p1 + p2)
2 ,

→ (4π)2λ2

2
(p1 + p2)

2 ,

→ −(4π)2λ2

2











tr(γµγνγαγβ)

µ

α
ν

β
+ 2p2

2











,

→ (4π)2λλ̂ tr(γµγνγαγβ)

µ

β

ν

α ,

→ (4π)2λλ̂ tr(γµγνγργαγβγγ)

µ

α
β γ

ν

ρ
.

(D.7)

Here the external momenta (p1, · · · , p4) are ordered counterclockwise with p1 the momen-

tum of the upper-left leg.

The last contribution is rather complicated. However, it can be simplified by using

momentum conservation to eliminate pν
2 in the trace and the symmetrization inside the

trace as

1

2
(tr(γµγνγργαγβγγ) + tr(γργνγµγαγβγγ))

= −gµν tr(γργαγβγγ) + gµρ tr(γνγαγβγγ) − gνρ tr(γµγαγβγγ) .
(D.8)
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One then obtains

tr(γµγνγργαγβγγ)

µ

α
β γ

ν

ρ

= tr(γργαγβγγ)











p2
1

α
β γ

ρ
+

ρ

α
β γ

+ 2

α
β γ

ρ
−

γ

α

β

ρ











= tr(γργαγβγγ)









 ρ

βα
γ

+

ρ

α
β γ

−
α

β

ρ

γ











, (D.9)

where we have used

p2
1(k − p1)

γ + 2p1 · (k − p1)(k − p1)
γ − (k − p1)

2pγ
1 = k2(k − p1)

γ − (k − p1)
2kγ , (D.10)

with k being one of the loop momenta.

The contribution involving the one-loop vacuum polarization reads

→ (4π)2
1

2
(4λλ̂− λ2) (D.11)











−(p1 + p2)
2 + p2

1 + p2
2











.

Considering a factor −1 from the cancellation of the propagator connecting the chiral vertex

to the two-loop self energy, we obtain from the D-algebra manipulations

→(4π)2











2λλ̂p2
1 − 1

2
(8λλ̂− (λ2+λ̂2))p2

1











. (D.12)

Let us conclude by mentioning a useful property that was used in appendix E. In the

combination

+
1

2











+











(D.13)

the infrared divergence from the integrals involving the first leg is cancelled out.
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There are two other diagrams with non-trivial D-algebra and colour structure

, . (D.14)

Interestingly, these can be seen to be proportional to the very same integrals which appear

in components [15]. The two diagrams are zero due to the vanishing of the one-loop triangle

subdiagrams.

E Cancellation of IR divergences

In order to check the cancellation of the IR divergences, together with the contributions

having both UV and IR divergences given in section 4, we have to include diagrams that

have pure IR poles and would have been excluded by the UV finiteness conditions of

subsection 4.1. The cancellation of IR divergences in the combination (D.13) means that

chiral and anti-chiral vertices with any number of legs and with external propagators are

free of IR divergences from perturbative corrections. In the following we will hence attach

propagators to the external fields of the diagrams that appear at four loops as quantum

corrections of a chiral composite operator. This does not affect the UV poles, since the

chiral self-energy is UV finite as demonstrated in appendix D.2.

The contributions to the χ(1) structure with only an IR divergence are given by

Vr44 = → (4π)4

k4
MN(4MN −M2)I4IR χ(1)

=
λλ̂

16
(4λλ̂− λ2)

( 2

ε
(−3 + γ − ln 4π)χ(1)

)

,

Vr45 = → −(4π)4

k4

MN

2
(4MN −M2)

(

I4IR + I4UVIR − I4
)

χ(1)

= −λλ̂
16

(4λλ̂ − λ2)
( 2

ε
(−3 + γ − ln 4π)χ(1)

)

,

Vr46 = → (4π)4

k4

MN

2
(4MN −M2)

(

I4UVIR − I4 + I2I2IR − K(I2)I2IR
)

χ(1)

=
λλ̂

16
(4λλ̂− λ2)

( 2

ε
(−3 + γ − ln 4π)χ(1)

)

, (E.1)

Vr37 = → −(4π)4

k4

MN

2
(4MN −M2)(I4IR + I2I2IR − K(I2)I2IR)χ(1)

= −λλ̂
16

(4λλ̂ − λ2)
( 2

ε
(−3 + γ − ln 4π)χ(1)

)

,

Vr38 = → −(4π)4

k4

MN

2
(4MN −M2)

(

I4 − I4UVIR − I2I2IR + K(I2)I2IR
)

χ(1)

=
λλ̂

16
(4λλ̂− λ2)

( 2

ε
(−3 + γ − ln 4π)χ(1)

)

.
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where we have given only the IR pole terms, and the UV subdivergences have been sub-

tracted.

We also have to consider the correction of the chiral propagator that is a neighbour of

the fields interacting via χ(1)

Vr3s = → −(4π)4

k4

MN

2

(

8MN − (M2 +N2)
)(

I2 − K(I2)
)

I2IR χ(1)

= −λλ̂
16

(

8λλ̂− (λ2 + λ̂2)
)

(1

ε
(−3 + γ − ln 4π)χ(1)

)

.

(E.2)

According to (D.13), one half of this contribution has to be taken into account, since

the other half should cancel part of the IR divergence from an interaction of the isolated

leg via a one-loop corrected gauge propagator with its neighbour to the right. Similar

considerations hold also for the reflected diagram of Vr3s, such that the total contribution

of these diagrams to the IR divergence is 1
2 (1 + R)Vr3s.

Further IR divergent contributions from self energy corrections of the three external

and one internal line at the upper chiral vertex that forms χ(1) cancel among respective

diagrams in which two of these lines are interacting via a one-loop corrected gauge prop-

agator. This is guaranteed by (D.13) since propagators are attached to the external lines.

At this point a simple way to check the cancellation of the IR divergences is to sum up

all the contributions containing them and check that the result is the same as if from the

very beginning we had omitted all IR divergent diagrams, and had only considered V UV
r35

and V UV
r36 . In fact, the sum

− (1 + R)(Vr35 + Vr44 + Vr45 + Vr46 + Vr37 + Vr38) − 3Vr36 −
1

2
(1 + R)Vr3s

=
(4π)4

k4
MN

(

− 6MNI4bbb +
1

2
(8MN − (M2 +N2))(3I4 + 2I42bbd)

)

χ(1)

=
λλ̂

16

(

− λλ̂
3π2

ε
+
(

8λλ̂− (λ2 + λ̂2)
)

(

− 1

4ε2
+

1

ε

(

1 +
π2

4

)))

χ(1)

(E.3)

turns out to be equal to

− (1 + R)V UV
r35 − 3V UV

r36 , (E.4)

which is the respective contribution of only the overall UV divergences from the diagrams

with also an IR divergence to (4.10).

It is important to note that, besides the previously described check of the cancellation

of the IR divergences, we have also performed the full computation of the range three

contribution in the IR-safe η-gauge described in [31]. The result turns out to be the same.

F Double poles

In this appendix we check explicitly the cancellation of the double poles in lnZ. For that

we need to consider diagrams which are responsible for interactions between magnons at

odd and even sites which are proportional to chiral functions χ(1, 2) and χ(2, 3). We start

by computing those contributions, and then we prove the complete cancellation of the

double poles.
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F.1 Odd- and even-site magnon interactions

The relevant diagrams that couple the odd and even site magnons with each other are the

following ones

Smixed = → (4π)4

k4
(MN)2I4 χ(1, 2) =

(λλ̂)2

16

(

− 1

2ε2
+

2

ε

)

χ(1, 2) ,

Vmixed1 = → (4π)4

k4
(MN)2I42bb0cd χ(1, 2) =

(λλ̂)2

16

(

1

4ε2
− 3

2ε

)

χ(1, 2) , (F.1)

Vmixed2 = →−(4π)4

k4

(MN)2

2
I422btrABcd χ(1, 2) =

(λλ̂)2

16

(

− 1

2ε2
+

1

ε

)

χ(1, 2) .

In the sum of all contributions one has to consider the reflected diagrams. The second

contribution acquires an additional factor of two due to two distinct positions for the

vector vertices which are not mapped to each other under reflection. The result for the

mixed renormalization constant reads8

Z4,mixed = −(1 + R)(Smixed + 2Vmixed1 + Vmixed2) =
(λλ̂)2

16

1

ε2
χ(1, 2) . (F.2)

As expected [55], the 1/ε pole is cancelled out such that at four loops there is no contri-

bution to the dilatation operator that couples the magnons at odd and even sites.

F.2 Double pole cancellation

Summing up the contributions to the 1/ε2 poles of the odd-site sector to the four-loop Z
from (4.4), (4.6), (4.10) and (F.2), we obtain

λ̄4(Z4,odd + Z4,mixed)| 1

ε2
=
(

Zr5,odd + Z4,mixed + Zr4,odd + Zr3,odd

)

| 1

ε2

=
λ̄4

16ε2

[

1

2

(

χ(1, 3) + χ(3, 1)
)

+ χ(1, 2) − χ(1)

]

.
(F.3)

In the definition of the dilatation operator, the logarithm guarantees that all higher order

poles in ε cancel out, such that lnZ only contains simple 1
ε poles. Inserting (3.2), the

expansion reads

lnZ = λ̄2Z2 + λ̄4

(

Z4 −
1

2
Z2

2

)

+ O(λ̄6) . (F.4)

Let us now check the double pole cancellations in the λ̄4 term. The two-loop contribution

to the renormalization constant for operators of length L can be written as

λ̄2Z2 = −
2L
∑

i=1 i

= −λλ̂
4

1

ε
(χ(1) + χ(2)) , (F.5)

8There is another contribution with identical prefactor that involves the chiral function χ(2, 3) that we

associate to the even site sector.
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where we have indicated the sum over the sites explicitly. It has an obvious decomposition

into two parts acting exclusively on even and on odd sites, respectively. The square of the

above result can be decomposed as follows

1

2
Z2

2 = Z22,dc + Z22,S . (F.6)

The individual terms are given by

λ̄4Z22,dc =
2L
∑

j≥i+3

(

i j

)

λ̄4Z22,S =
1

2

2L
∑

i=1









i

+

i

+

i

+

i

+

i









→ 1

2

(4π)4

k4
M2N2 K(I2)

2(χ(1, 3) + χ(3, 1) + 2χ(1, 2) − 2χ(1))

=
(λλ̂)2

16

1

2ε2
(χ(1, 3) + χ(3, 1) + 2χ(1, 2) − 2χ(1)) ,

(F.7)

where the arrow denotes that in the final result we have considered the chiral functions

with odd indices only and χ(1, 2) and neglected the ones with only even indices and χ(2, 3).

According to (F.6), the square of the two-loop contribution expands as

1

2
(λ̄Z2)

2 =
(λλ̂)2

16

1

2ε2
(χ(1, 3) + χ(3, 1) + 2χ(1, 2) − 2χ(1)) + . . . , (F.8)

where we have neglected the chiral functions with only even arguments and χ(2, 3). We

have also disregarded the terms Z22,dc which trivially cancel against four-loop diagrams that

only contain double poles and hence become disconnected when the composite operator is

removed. We have omitted to present these diagrams in the paper.

Comparing equations (F.3) and (F.8) we finally find our desired result

(

Z4 −
1

2
Z2

2

)

| 1

ε2
= 0 , (F.9)

where we have considered that the discussion is identical for the neglected contributions

with chiral functions with even arguments and χ(2, 3).
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