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Abstract: The collision of two particles in the background of a Sen black hole is studied.

With the equations of motion of the particles, the center-of-mass energy is investigated

when the collision takes place at the horizon of a Sen black hole. For an extremal Sen black

hole, we find that the center-of-mass energy will be arbitrarily high with two conditions: (1)

spin a 6= 0 and (2) one of the colliding particles has the critical angular momentum lc = 2.

For a nonextremal Sen black hole, we show that, in order to obtain an unlimited center-

of-mass energy, one of the colliding particles should have the critical angular momentum

l′c = 2r+/a (r+ is the radius of the outer horizon for a nonextremal black hole). However, a

particle with the angular momentum l = l′c could not approach the black hole from outside

of the horizon through free fall, which implies that the collision with arbitrarily high center-

of-mass energy could not take place. Thus, there is an upper bound of the center-of-mass

energy for the nonextremal black hole. We also obtain the maximal center-of-mass energy

for a near-extremal black hole and the result implies that the Planck-scale energy is hard

to be approached. Furthermore, we also consider the back-reaction effects. The result

shows that, neglecting the gravitational radiation, it has a weak effect on the center-of-

mass energy. However, we argue that the maximum allowed center-of-mass energy will be

greatly reduced to below the Planck-scale when the gravitational radiation is included.
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1 Introduction

With the help of the largest terrestrial accelerator, the Large Hadron Collider (LHC), one

could detect the physics at collision energy 10 TeV. However, comparing with the Planck-

scale energy 1016 TeV, it is too low to probe the Planck-scale physics. So, other new

physical mechanisms should be proposed for the purpose that probing the Planck-scale

physics, and which may also contribute to the discovery of extra dimensions of spacetime

and the Grand Unification theory.

Fortunately, Bañados, Silk and West (BSW) [1] recently suggested that the spinning

Kerr black holes could play the role of particle accelerators. Especially, the center-of-mass

(CM) energy for a pair neutral particle (for example, the dark matter particles) colliding

at the horizon of an extremal black hole can be unlimited. The property of the collision

will provide a unique probe of the Planck-scale physics. However, the fine-tunings arise,

namely, the black hole must be an extremal one and one of the colliding particles should

have orbital angular momentum per unit rest mass l = 2. Whereafter, in refs. [2] and [3],

the authors further elucidated the mechanism for the result of BSW and argued that there

must exist a practical limitation on the achievable CM energy for the reason that there

always exists a small deviation of the spin of the astrophysical black hole from its maximal

value [4]. On the other hand, Lake studied the CM energy of the collision taking place at

the inner horizon of a nonextremal Kerr black hole and the CM energy was found to be

limited [5]. Grib and Pavlov [6–8] investigated the particle collisions and the extraction

of energy in the background of a Kerr black hole. The universal property of acceleration

of particles for a rotating black hole is discussed in [9]. In our previous work [10], we

studied the property of the CM energy for two colliding particles in the background of a
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Kerr-Newman (KN) black hole. We showed that the CM energy can be arbitrarily high

with the conditions: (1) the collision takes place at the horizon of an extremal black hole;

(2) one of the colliding particles has critical angular momentum; (3) the spin a of the

extremal black hole satisfies 1√
3
≤ a

M ≤ 1, where M is the mass of the black hole. In this

paper, we shall study the property of the collision of two uncharged particles falling freely

from rest at infinity in the background of a Sen black hole. Compared with the extremal

KN black hole, an extremal Sen black hole can always act as a particle accelerator to an

arbitrarily high energy with two conditions: (1) spin a 6= 0 and (2) one of the colliding

particles has critical angular momentum lc = 2. For a nonextremal black hole, we find that

an unlimited CM energy requires that one of the colliding particles has the critical angular

momentum l′c = 2r+/a. However, the particles with l = l′c could not approach the black

hole from outside of the horizon through free fall. Thus the CM energy is finite. Recently

Grib and Pavlov suggested that, an unlimited CM energy for a nonextremal black hole can

be obtained when the multiple scattering is considered [7, 11]. Motivated by this idea, we

in this paper also consider the case that the colliding particles (may be produced from the

multiple scattering near the horizon) start at some radiuses near the black hole and then

fall into the black hole. However, the result shows that there always exists a forbidden

band near the horizon for the particles with l = l′c. So, these particles could not approach

the horizon of the black hole from the outside. Thus, the CM energy is still limited for the

non-extremal Sen black hole. We neglect the effects of gravitational radiation in the paper.

The paper is organized as follows. In section 2, we first briefly review the Sen black hole

solution. In section 3, the geodesic and orbit equations for the particles in the background

of a Sen black hole are studied. With the effective potential method, we discuss the range

of the angular momentum, among which the particles can reach the horizon and fall into

the black hole. In section 4, we study the CM energy Ecm for the collision taking place at

the degenerate horizon of an extremal black hole and at the outer horizon of a nonextremal

Sen black hole. The final section is devoted to a brief summary.

2 Review of the Sen black hole solution

In this section, we would like to give a brief introduction to the Sen black hole solution,

which is described by the four dimensional effective action of the heterotic string theory:

S = −
∫

d4x
√
−Ge−Φ

(

−R +
1

12
H2 − Gµν∂µΦ∂νΦ +

1

8
F2

)

, (2.1)

where Φ is the dilaton field and R is the scalar curvature, F2 = FµνFµν with the field

strength Fµν = ∂µAν − ∂νAµ corresponds to the Maxwell field Aµ, and H2 = HµνρHµνρ

with Hµνρ given by

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν − 1

4

(

AµFνρ + AνFρµ + AρFµν

)

, (2.2)

where the last term in (2.2) is the gauge Chern-Simons term. Gµν appeared in (2.1) are the

covariant components of the metric in the string frame, which are related to the Einstein
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metric by gµν = e−ΦGµν . The Einstein metric, the non-vanishing components of Aµ, Bµν

and the dilaton field read [12]:

ds2 =−
(

∆−a2 sin2 θ

Σ

)

dt2+
Σ

∆
dr2− 4µar cosh2 α sin2 θ

Σ
dtdφ+Σdθ2+

Ξ sin2 θ

Σ
dφ2 , (2.3)

At =
µr sinh 2α√

2Σ
, Aφ =

µar sinh 2α sin2 θ√
2Σ

, (2.4)

Btφ =
2a2µr sin2 θ sinh2 α

Σ
, Φ = −1

2
ln

Σ

r2 + a2 cos2 θ
, (2.5)

where the metric functions are given by

∆ = r2 − 2µr + a2 , (2.6)

Σ = r2 + a2 cos2 θ + 2µr sinh2 α , (2.7)

Ξ =

(

r2 + 2µr sinh2 α + a2

)2

− a2∆ sin2 θ . (2.8)

The parameters µ, α and a are related to the physical mass M , the charge Q and the

angular momentum J by

M =
µ

2
(1 + cosh 2α) , Q =

µ√
2

sinh2 2α , J =
aµ

2
(1 + cosh 2α) . (2.9)

Solving eq. (2.9), we can obtain

sinh2 α =
Q2

2M2 − Q2
, µ = M − Q2

2M
. (2.10)

Then the parameters α and µ in the metric (2.3) can be eliminated. For a nonextremal

black hole, there are two horizons. They are both determined by ∆(r) = 0 and are given by

r± = M − Q2

2M
±

√

(

M − Q2

2M

)2

− a2 , (2.11)

where r+ is the outer horizon and r− is the inner one. Obviously, the extremal Sen black

hole requires

Q2 = 2M(M − a) . (2.12)

Setting Q and a to zero, respectively, we can obtain the maximum values for them. Thus,

we obtain the ranges for a and Q, which are

0 ≤ a ≤ M , (2.13)

0 ≤ Q ≤
√

2M . (2.14)

Here, both the parameters a and Q are thought to be positive. For an extremal black hole,

the two horizons coincide with each other and the degenerate horizon locates at rex = a.

The area of the outer horizon with the metric given in (2.3) is

A = 8πM

(

M − Q2

2M
+

√

(

M − Q2

2M

)2

− a2

)

. (2.15)
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Thus the entropy of the Sen black hole is S = A
4 . The angular velocity Ω, Hawking

temperature T and electric potential V+ at the outer horizon are

Ω =
J

2M2

1

M − Q2

2M +
√

(M2 − Q2

2M )2 − a2

, (2.16)

T =

√

(2M2 − Q2)2 − 4J2

4πM(2M2 − Q2 +
√

(2M2 − Q2)2 − 4J2)
, (2.17)

V+ =
Q

2M
. (2.18)

It is easy to check that all the quantities satisfy the first law of black hole thermodynamics,

TdS = dM − ΩdJ − V+dQ. With the help of (2.10), we can get the inverse metric

(∂s)
2 = − ΞΣ

∆Ξ + a2 sin2 θ(4M2r2 − Ξ)
(∂t)

2 − 4aMrΣ

∆Ξ + a2 sin2 θ(4M2r2 − Ξ)
(∂t)(∂φ)

+
∆

Σ
(∂r)

2 +
1

Σ
(∂θ)

2 +
Σ(∆ csc2 θ − a2)

∆Ξ + a2 sin2 θ(4M2r2 − Ξ)
(∂φ)2 . (2.19)

And the metric functions can be rewritten as

∆ = a2 +
r

M

(

Q2 + Mr − 2M2

)

, (2.20)

Σ =
r

M

(

Q2 + Mr

)

+ a2 cos2 θ , (2.21)

Ξ =

(

a2 +
r

M
(Q2 + Mr)

)2

− a2∆ sin2 θ . (2.22)

Here, we can explicitly see that the Sen black hole is characterized by three parameters,

mass M , charge Q and spin a. The Sen black hole solution will describe a Gibbon-Maeda

(GM) black hole with a = 0 or describe a Kerr black hole with Q = 0.

3 Geodesics and orbit equation

3.1 First-order geodesic equations for particles

The motion of a particle in the background of a Sen black hole is described by the geodesic

equation
d2xµ

dλ2
+ Γµ

νσ

dxν

dλ

dxσ

dλ
= 0 , (3.1)

where λ and Γµ
νσ are the affine parameter and the Christoffel symbols of the background

geometry. The parameter λ relates to the proper time by τ = δλ (δ = −1,0,1 for spacelike

geodesics, null geodesics and timelike geodesics, respectively). Allied with initial conditions,

the geodesic equation (3.1) has a unique solution. However, it is difficult to solve the

equation directly. Luckily, one can use the Lagrangian approach to the problem. In this

subsection, we will not give the details for the derivation of the equations of motion for a

particle and we refer the reader to the previous work [13–15]. In [13], the radial geodesics
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around a Kerr-Sen black hole were studied. The null geodesics and photon capture in the

Sen black hole were investigated in [14]. For a charged particle, the equations of motion

were studied in [15]. In this paper, we mainly deal with the uncharged massive particle

(δ=1) and the equations of motion are [13–15]

dt

dτ
=

1

∆Σ
(ΞE − 2Marl) , (3.2)

dr

dτ
= σr

√
ℜ

Σ
, (3.3)

dθ

dτ
= σθ

√
Θ

Σ
, (3.4)

dφ

dτ
=

1

∆Σ

(

2MarE + l csc2 θ(Σ − 2Mr)

)

(3.5)

with ℜ and Θ given by

ℜ =
[

(

r(r + Q2/M) + a2
)

E − al
]2

− ∆(r(r + Q2/M) + K) , (3.6)

Θ = K − (l − aE)2 −
[

a2(1 − E2) + l2 csc2 θ
]

cos2 θ , (3.7)

where the constants E and l are the conservation of energy and orbital angular momentum

per unit mass of the motion and they correspond to the Killing fields ∂t and ∂φ, respectively.

The variable K is a separation constant. The sign functions σr = ± and σθ = ± are

independent from each other. Eqs. (3.2)–(3.5) are the first-order geodesic equations for a

particle. With these equations, we could obtain the 4-velocity of a particle in the black

hole background, which will be used in our calculation for the CM energy of the collision

in the next section.

3.2 Radial motion and effective potential on the equatorial plane

Here, we would like to study the radial motion of the particle falling freely from rest at

infinite in the background of a Sen black hole. From the last subsection, we can see that

the geodesic line of a particle in the Sen metric is completely determined by the first-

order geodesic equations (3.2)–(3.5). In this subsection, we would like to study the radial

motion of the particle on the equatorial plane and then determine the range of the angular

momentum, among which the particle can fall into the black hole.1 For simplicity, we take

E = 1. The mass of the black hole is also set to M = 1.

We should keep in mind that the particle falls into the black hole with a spiral orbit

like that a small boat spirals into a big whirlpool. And there exist two branches for the

particle to fall into the black hole. One branch of trajectory is for the particle with large

orbital angular momentum. The particle will spiral into a circular orbit at some radiuses

(larger than the radius of horizon), taking a divergent proper time to do so. Another

branch corresponds to the particle with small orbital angular momentum, which can begin

at some radius r and then spirals into the black hole subsequently. Thus, there must exist a

1Here, “the particle falls into the black hole” means that the particle can fall into the outer horizon of

the black hole.
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range of the orbital angular momentum, among which the particle can reach the horizon of

the black hole with no turning point. On the other hand, since the black hole is a rotating

one, the absolute values of the maximum and minimum critical angular momenta are not

equal.

In fact, the critical angular momentum and the corresponding radius can be found

from the effective potential. Then the range of the angular momentum for the particles

can be determined from it. In this paper, we mainly focus on the equatorial plane of the

black hole, so we take the choice θ = π
2 throughout this paper. Then we rewrite (3.3) as

ṙ2

2
+ Veff = 0 , (3.8)

where Veff is the effective potential and it is given by

Veff = − ℜ
2Σ2

= −2r2 + (2Q2 − l2)r + (2a2 − 4al − l2(Q2 − 2))

2r(Q2 + r)2
. (3.9)

The limiting values of the effective potential Veff at infinity and at the horizon are

Veff(r = ∞) = 0 , (3.10)

Veff(r = r+) =

2

(

8al + bl2 − 4b + (l2 + 4)(Q2 − 2)

)

(b + 2 − Q2)(b + 2 + Q2)2
, (3.11)

with b =
√

(2 − Q2)2 − 4a2. As expected, the effective potential Veff vanishes at infinity

despite the values of a and Q. The values of the critical radius and the angular momentum

are determined by the conditions

Veff = 0 and ∂rVeff = 0 . (3.12)

Solving these equations, we get four solutions:

L1,2 = −2 ±
√

4 − 2Q2 + 4a , r1,2 = 2 − Q2 + a ∓
√

4 − 2Q2 + 4a ; (3.13)

L3,4 = 2 ∓
√

4 − 2Q2 − 4a , r3,4 = 2 − Q2 − a ∓
√

4 − 2Q2 − 4a . (3.14)

With the numerical calculation, we have r1 ≤ r3 < r+ ≤ r4 ≤ r2 for arbitrary values of

spin a and charge Q. Note that 0 < r3 < r+. So, a particle with l = L3 can fall into

the black hole. The two positive radiuses r2 and r4 are larger than the horizon r+. Thus

the angular momenta correspond to the two positive radiuses r2 and r4 can determine the

range (L2, L4), among which the particle can approach the horizon and then fall into the

black hole. The two critical angular momenta have different sign, i.e., L2 < 0 and L4 > 0.

It is also found that they satisfy the relation |L2| ≥ |L4| for arbitrary spin a and charge

Q. When a = Q = 0, one gets |L2| = |L4| = 4, which is just the case for the Schwarzschild

black hole. It is also clear that, in the case of Q = 0, the result for the Kerr black hole [3]

will be recovered.
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Figure 1. The variation of ṙ vs radius r for different values of critical angular momentum and the

vertical lines denote the locations of the outer horizon. (a) for a nonextremal Sen black hole with

(a = 0.9, Q = 0.3) and (b) for an extremal Sen black hole with (a = 0.9, Q =
√

2 − 2a).

For an extremal Sen black hole, i.e., Q2 = 2(1− a), we have the following solutions for

the critical angular momenta and radiuses:

Le
1,2 = −2 ± 2

√
2a , re

1,2 = 3a ∓ 2
√

2a ; (3.15)

Le
3,4 = 2 , re

3,4 = a . (3.16)

Note that (L3, r3) is consistent with (L4, r4) for an extremal black hole. Because the

horizon of an extremal black hole locates at r = rex = a, the critical radiuses re
3,4 = a

coincide with the horizon rex. It can be seen that 3a−2
√

2a ≤ a (or re
1 ≤ rex), so a particle

with angular momentum l = Le
1 = −2 + 2

√
2a can fall into the horizon of the black hole.

Thus we obtain the range of the angular momentum:

− 2 − 2
√

2a ≤ l ≤ 2 or Le
2 ≤ l ≤ Le

3,4 , (3.17)

among which the particle can fall into an extremal black hole.

In order to understand the explicit behavior of the radial equation dr
dτ with respect

to r, we plot it for the particles with different critical angular momenta for the extremal

and nonextremal Sen black holes with the fixed spin a = 0.9 in figure 1. The case for

the nonextremal black hole is depicted in figure 1(a). We can see that the four critical

radiuses satisfy the relation r1 ≤ r3 < r+ ≤ r4 ≤ r2 and all of the critical radiuses are

well separated from the horizon rex = a = 0.9. While for the extremal black hole showed

in figure 1(b), we observe that the critical radiuses re
3 and re

4 are equal and both coincide

with the horizon rex.

4 Center-of-mass energy for collision in the background of a Sen black

hole

In the above section, we have analyzed the range of the angular momentum, among which

the particle can reach the horizon. In other words, if the angular momenta of the colliding
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particles are in the range, then the collision can take place at the horizon of the black

hole. So, based on the results, we in this section will study the collision of two uncharged

particles (e.g. the massive cold dark matter particles) in the background of a Sen black

hole. Here we consider that two uncharged particles with the same rest mass m0 are at

rest at infinity (E = m0) and then they approach the black hole and collide at radius r.

For the sake of simplicity, we assume that the two particles have angular momenta l1 and

l2, respectively. The energy in the center-of-mass frame for the collision in the background

of a Sen black hole is [1]

Ecm =
√

2m0

√

1 − gµνuµ
(1)u

ν
(2) , (4.1)

where uµ
(1) and uν

(2) are the 4-velocities of the two particles. With the help of the first-order

geodesic equations (3.2)–(3.5), we obtain the 4-velocity for a particle on the equatorial plane

ut =
a2(Q2 + r + 2) + r(Q2 + r)2 − 2al

(Q2 + r)[a2 + r(Q2 + r − 2)]
, (4.2)

ur =

√

r[2a2 − 4al − l2(Q2 + r − 2) + 2r(Q2 + r)]

r(Q2 + r)
, (4.3)

uθ = 0 , (4.4)

uφ =
2a + l(Q2 + r − 2)

(Q2 + r)[a2 + r(Q2 + r − 2)]
, (4.5)

where we have taken E = 1. Note that the 4-velocity closely depends on the spin a and

charge Q of the black hole, also on the angular momentum l per unit mass of the particle.

4.1 Extremal black hole

Note that for an extremal black hole, the horizon always locates at r = rex = a and the

spin a and charge Q satisfy the relation Q2 = 2(1 − a). Then, we get the 4-velocity for a

particle in the background of an extremal black hole:

uµ =

(

r(r + 2)2 + a2(5r + 4) − 2a3 − 2a(L + 2r(r + 2))

(a − r)2(r − 2a + 2)
,

−
√

r(2a(a + (l−2)l) − r(4a+L2−4) + 2r2)

r(r−2a+2)
, 0 ,

lr − 2a(l−1)

(a−r)2(r−2a+2)

)

. (4.6)

Using (4.1), we get the CM energy for two colliding particles at radius r in the background

of an extremal Sen black hole
(

Ecm√
2m0

)2

=
K

(r − 2a + 2)(r − a)2
, (4.7)

with K is given by

K = 4r + 2(r−2a+3)(a−r)2 − l1l2(r−2a) − 2a(l1+l2)

−
√

l21(2a−r)+4(r−al1)+2(r−a)2
√

l22(2a−r)+4(r−al2)+2(r−a)2 . (4.8)

Note that (r − 2a + 2) is always positive for an arbitrary spin a. So, we only observe a

double zero at the horizon rex = a for the denominator in (4.7). However, the numerator
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also has a double zero at that point. So the CM energy may be limited for generic values of

l1 and l2 at the horizon. Here, we give the limiting values of the CM energy at the horizon:

Ecm(r = rex) = 2m0

√

1 +
(l1 − l2)2

2a(l1 − lc)(l2 − lc)
, (4.9)

with the critical angular momentum

lc = 2 . (4.10)

For l1 = l2, we get Ecm = 2m0 as expected. Obviously, the CM energy Ecm is finite for

generic values of l1 and l2. However, when l1 = lc or l2 = lc, the CM energy Ecm will

be unlimited. Thus, an extremal Sen black hole can act as a particle accelerator to an

arbitrarily high energy. However, we need to make sure that the collision can take place

at the horizon. In fact, the result is obvious since lc is in the range (3.17), among which

the particle can reach the horizon of an extremal black hole. So, if the angular momentum

of another colliding particle is in the range (3.17), the collision can take place and an

arbitrarily high CM energy will be approached.

It is known that, for an extremal KN black hole [10], in order to obtain an unlimited CM

energy, one of the colliding particles should have the critical angular momentum lc = 1+a2

a .

It can be seen that when the spin a of the black hole approaches 0, 1+a2

a is divergent,

which will lead to a restriction that only the fast rotating extremal black holes can act as a

particle accelerator to an arbitrarily high energy. However, for an extremal Sen black hole,

we can see that the critical angular momentum lc (4.10) is a constant and independent of

the parameters of the black hole. So there is no restriction on the spin a of the extremal

Sen black hole, which means that an arbitrary extremal black hole can serve as a particle

accelerator to an arbitrarily high energy.

Note that when the spin a of the extremal Sen black hole approaches its maximal

value 1, we can express the CM energy (4.9) in the form

Ecm(r = rex) =
√

2m0

√

l2 − 2

l1 − 2
+

l1 − 2

l2 − 2
, (4.11)

which is just the result for the extremal Kerr black hole given in [1]. From (4.9), it is also

clear that, when the spin a approaches 0, we will obtain an unlimited CM energy Ecm

without additional restriction on the angular momentum of the colliding particles except

−2 ≤ l ≤ 2. Since the extremal Sen black hole with spin a = 0 will be an extremal

charged GM black hole, this result implies that an extremal charged GM black hole may

also play the role of a particle accelerator to an arbitrarily high energy. So the charged GM

black hole will share the same property as the rotating black hole to accelerate particles.

However, it is not the case. It is easy to check that, for the extremal charged GM black

hole, the radius of the horizon will reduce to zero. Then there will be a naked singularity

at r = 0 with no horizon around it. This case is forbidden according to the Penrose cosmic

censorship conjecture that the singularity should be surrounded by a horizon.

We plot in figure 2(a) Ecm vs r for various values of l1 and l2 with the fixed a = 0.9.

From the figure, we can see that Ecm blows up at the horizon when l1 = 2, while for other
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Figure 2. The behavior of CM energy for an extremal Sen black hole with m0 = 1. (a) the CM

energy Ecm vs radius r with fixed spin a = 0.9 for different combinations of l1 and l2. The vertical

line denotes the location of the outer horizon. (b) the CM energy Ecm at horizon vs spin a for

different combinations of l1 and l2.

values of l1, the Ecm is finite. We can also find that when r > 4.0, the CM energy Ecm

is almost equal for the different combinations of l1 and l2. The limiting values of Ecm at

horizon for different spin a of the black hole are also plotted in figure 2(b). Note that

the Ecm(rex) will be unlimited when spin a approaches zero. This case corresponds to

the extremal charged GM black hole and it is forbidden according to the Penrose cosmic

censorship conjecture from our above analysis.

One word to summarize this subsection is that an extremal Sen black hole with a 6= 0

can serve as a particle accelerator to an arbitrarily high energy if one of the colliding

particles has the critical angular momentum l = 2.

4.2 Non-extremal black hole

As noted above, we show that an arbitrarily high CM energy can be obtained when the

collision takes place at the horizon of an extremal Sen black hole with l = lc and a 6= 0.

However, this scenario is an idealized one for there are no extremal astrophysical black

holes. So our main goal in this section is to study the collision of two particles in the

background of a nonextremal Sen black hole. Applying (4.1) to the case, we get the CM

energy
(

Ecm√
2m0

)2

=
H

(r + Q2)(r2 − r(2 − Q2) + a2)
(4.12)

with

H = 2r3 + 2a2(r + Q2 + 1) − 2r2(1 − 2Q2)

−2rQ2(1 − Q2) − 2a(l1 + l2) − (r + Q2 − 2)l1l2

−
√

2(a − l1)2 + (2r − l21)(r + Q2)
√

2(a − l2)2 + (2r − l22)(r + Q2) . (4.13)
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Taking the limit of CM energy (4.12) at r = ∞, we get Ecm(r = ∞) = 2m0, which is the

same as that the collision takes place in a flat spacetime. So does the CM energy Ecm

in (4.7).

Next, we would like to consider the collision at the outer horizon r = r+. As shown

in (2.11), the outer horizon locates at r+ = 1 − Q2

2 +
√

(

1 − Q2

2

)2 − a2. After some calcu-

lations, we derive the limiting value of the CM energy Ecm at the outer horizon and which

is given by

Ecm(r = r+)

2m0
=

√

1 +
(l1 − l2)2

2r−(l1 − l′c)(l2 − l′c)
(4.14)

with the critical angular momentum

l′c = 2r+/a . (4.15)

As expected, Ecm(r = r+) = 2m0 when the angular momenta l1 = l2. It is also clear that

when l1 = l′c or l2 = l′c, we get an unlimited CM energy. It seems that we can get an

arbitrarily high CM energy if one of the colliding particles has l = l′c. However, we should

make sure that particles with the critical angular momentum l′c can reach the horizon. In

section 3.2, we get the range (L2, L4) for the angular momentum. If the angular momentum

of a particle lies in the range, then the particle can reach the horizon and fall into the black

hole. By numerical calculation, we get l′c > L4 for arbitrary spin a and charge Q, which

means that particles with l′c could not fall into the black hole. Thus, for a nonextremal

Sen black hole, the CM energy is limited. The behavior of the CM energy Ecm is plotted

in figure 3(a) for a nonextremal black hole with spin a=0.9 and charge Q=0.3. We can

see that the CM energy Ecm for different combinations of l1 and l2 is finite at the horizon.

Figure 3(b) shows the CM energy Ecm at the outer horizon vs spin a with fixed charge

Q=0.3. It is clear that the CM energy blows up at a = 0.9550, which is nothing but the

spin of an extremal black hole with charge Q = 0.3. Therefore, it implies that the CM

energy Ecm is unlimited for the extremal black hole, which exactly agrees with our result

obtained in subsection 4.1.

The maximal CM energy for a nonextremal black hole can be obtained with l1 = L2

and l2 = L4. It has a complicated form and we will not list it here. However it is clear

that the CM energy depends on the charge Q and spin a. Note that when a nonextremal

black hole approaches to the extremal one, the CM energy tends to infinite. So, in order

to obtain a high CM energy, we will consider the case of a near-extremal black hole. First,

we define a small parameter ǫ = amax − a with amax = 1 − Q2

2 . For a near-extremal black

hole, we have ǫ ≪ 1. With l1 = L2 and l2 = L4, the maximal CM energy Emax
cm can be

approximated as
Emax

cm

m0
∼ 11.66ǫ−1/2 + O(ǫ1/2) . (4.16)

Comparing with the result of Kerr black hole [3], i.e., Emax
cm

m0
∼ 4.06ǫ−1/4, we find that the

CM energy for a Sen black hole grows faster than that for a Kerr black hole when ǫ → 0.

The maximal CM energy (4.16) will be used to discuss the back-reaction effects latter and

we will see that the different Emax
cm for the Kerr and Sen black holes will give different
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Figure 3. (a) The CM energy Ecm vs radius r for nonextremal black hole with a=0.9, Q=0.3.

The vertical line denotes the location of the outer horizon. (b) The CM energy Ecm at the outer

horizon for different spin a with fixed charge Q=0.3. The vertical line denotes the location of the

maximum spin amax corresponding to the extremal black hole.

describes on the back-reaction effects. If the rest mass of the colliding particles is of about

1 GeV, then in order to obtain the Planck-scale energy EPl ∼ 1019 GeV, we need

ǫ ∼ 10−36 . (4.17)

The parameter ǫ is too small. So, it is very hard for the near-extremal black hole to be a

particle accelerator to Planck-scale energy.

Here, we obtain a limited CM energy for the collision taking place at the outer horizon

of a nonextremal Sen black hole. However, we should keep in mind that the colliding

particles fall freely from rest at infinity. If the colliding particles start at some radiuses

near the black hole (we can think the particles are produced from the multiple scattering

near the black hole as suggested by Grib and Pavlov [7, 11]), then what will happen? Is

the CM energy divergent? Here, we will explore this problem in detail. As we mentioned

above, in order to obtain an unlimited CM energy, one of the colliding particles must have

angular momentum l = l′c. So, in order to obtain an unlimited CM energy, the major

problem is that whether the particle with the critical angular momentum can reach the

horizon. To find the answer, let us first analyze the figure 4, which shows that the radial

speed vs r for a particle with l = l′c in the background of a nonextremal black hole with

a = 0.9 and Q = 0.3 (for other values of a and Q, the shape does not change). From it, we

can see that the space is divided into three regions: region I, region II and region III. The

particle with l = l′c can only exist in the region I or region III. And region II is a forbidden

band for the particle (where the effective potential Veff > 0). For the existence of region

II, the particle could not fall freely into the black hole from rest at infinity (E = m0).
2

In region III, the particle can fall freely from rest at infinity and end with the bound of

region II and region III. The particle in region I can be thought to be produced near the

2For the extremal case, there exists no region II, so the particle with the critical angular momentum can

reach the horizon.
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Figure 4. The variation of ṙ vs radius r for a particle with critical angular momentum l′
c

in the

background of a nonextremal black hole with a=0.9 and Q=0.3.

black hole from the collision in the accretion disc and it has the same parameters as the

one falling freely from rest at infinity. If the particle starts in region I, then it may provide

a way for the particles with critical angular momentum to reach the horizon and then

the collision can take place at the horizon. Thus, an arbitrarily high CM energy can be

obtained. However, with l = l′c, we always have the bounds:

rI,II = r+ , (4.18)

rII,III =
(4 − a2 − 2Q2)r+ − a2(2 + Q2)

a2
, (4.19)

where rI,II is the bound of the region I and II, rII,III is the bound of the region II and

III. We always have rI,II < rII,III for a nonextremal black hole. Eq. (4.18) means that the

bound between region I and II just lies the location of the horizon. So, region I lies inside

the black hole. Thus, a particle with l′c could not approach the black hole through free fall.

So the collision with an arbitrarily high CM energy could not take place.

However, a particle with l = l′c − δ can approach the black hole from outside of the

horizon. Then, with l1 = l′c − δ and l2 = 0, one can obtain the approximate CM energy:

Emax
cm

m0
∼ 2.99 δ−1/2 + O(δ1/2) . (4.20)

From it, we can see that, in order to obtain a high CM energy, the δl must be very small.

So, we come to the conclusion: the CM energy for a nonextremal black hole is limited

no matter whether the colliding particles fall into the black hole from infinity or from the

vicinity of the black hole.

In the last of this paper, we give a brief discussion on the back-reaction effects. It was

shown in [2] that, for the case of a Kerr black hole with mass MKerr ∼ 100M⊙, the collision

of a single electron pair is enough to basically destroy the planckian accelerator. Here,

we will generalize the discussion to the Sen black hole geometry. Neglecting gravitational

radiation, when an extremal Sen black hole absorbs a pair of colliding particles with mass
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m0, the dimensionless spin is reduced by ǫ = (amax−a) ∼ m0

M (1+ Q2

2M2 ). Then after the first

collision, an extremal black hole will become a nonextremal one and the new maximum

allowed CM energy would be

Ecm . 1028 · (m0/1MeV)1/2(M/100M⊙)1/2 GeV. (4.21)

For m0 ∼ 1MeV and M ∼ 100M⊙, we get Ecm ∼ 1028 GeV, which is clear above the

Planck scale. This result is very different from that of the Kerr black hole, EKerr
cm . 1012 ·

(m0/1MeV)1/2(M/100M⊙)1/2 GeV [2], where a single electron pair is enough to destroy

the planckian accelerator. So this back-reaction effects has a weak effect on the CM energy

for the Sen black hole geometry. The crucial difference between the two black holes is that

the two CM energies have different asymptotic behaviors when the small parameter ǫ → 0

(i.e., Emax
cm /m0 ∼ 11.66ǫ−1/2 for the Sen black hole and Emax

cm /m0 ∼ 4.06ǫ−1/4 for the Kerr

black hole). However, we have neglected the gravitational radiation in our analysis, which

will significantly affect the geodesics when δ = 1 − l/lc ≪ 1, because the total radiated

energy Etot ∼ − log δ as discussed in [2]. Thus as the gravitational radiation is considered,

we argue that the maximum allowed CM energy will be greatly reduced to below the

Planck-scale. The detailed analysis of gravitational radiation should be carried out in the

future.

5 Summary

In this paper, we have investigated the property of the CM energy Ecm for two uncharged

colliding particles in the background of a Sen black hole. To get the CM energy, we first

studied the explicit expression of the first-order geodesic equations for a particle, from

which the 4-velocity of a particle is obtained. We also analyzed the range of the angular

momentum, among which the particle can reach the horizon and fall into the black hole. If

the angular momentum of a particle lies outside the range, it will not fall into the black hole

and will turn back at some radiuses. For the case, the collision will not take place at the

radiuses smaller than the turning point. Considering the range of the angular momentum,

we investigated the property of the collision taking place at the horizon of a Sen black

hole. The results show that an extremal black holes with spin a 6= 0 could serve as particle

accelerators to an arbitrarily high energy with the fine-tuning l1 = 2 or l2 = 2. However,

it seems a pity that, for a nonextremal black hole, the CM energy is always finite. The

CM energy for a near-extremal black hole was also considered. The result shows that, in

order to obtain the Planck-scale energy, the small parameter ǫ ∼ 10−36, which implies that

it is very hard for a near-extremal black hole to be a particle accelerator of Planck-scale

energy. Furthermore, we also discussed the case that the particle approaches the horizon

from a finite radius and collides with another particle. However, we found that the particle

with l = l′c could not approach the black hole from outside of the horizon. So, the collision

with an arbitrarily high CM energy will not take place. Thus, for a nonextremal Sen black

hole, the CM energy is always limited no matter where the colliding particles fall from.

We also show that the back-reaction effects has a weak effect on the CM energy. This

result is very different from that of the Kerr black hole [2], where the back-reaction effects

is strong enough to inhibit further Planck-scale collisions after the first collision. However
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the gravitational radiation will affect the CM energy dramatically for the total radiated

energy Etot ∼ − log δ and the CM energy may be below the Planck-scale when this effect

is included.
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