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1 Introduction

In the AdS/CFT correspondence [1, 2] between ABJM’s superconformal Chern-Simons-
matter theory and IIA strings on AdS4×CP 3, the dispersion relation for a bound state of
Q magnons (or a dyonic giant magnon) is

E ≡ ∆− J

2
=

√
Q2

4
+ 4h(λ)2 sin2 p

2
. (1.1)

One important difference from the AdS5 × S5 example is that h(λ) is now a nontrivial
function. It is related to the ’t Hooft coupling λ as follows:1

h(λ) =

√
λ

2
+ c+O

(
1√
λ

)
, λ� 1 (1.2)

h(λ)2 = λ2 + h4λ
4 +O(λ6), λ� 1.

The leading terms here come from the comparison with classical strings and with two-loop
gauge-theory results [2, 6–10]. Both sides involve λ via the AdS/CFT relation2

R4

25π2α′2
= λ =

N

k
. (1.3)

Four-loop gauge theory calculations [10, 11] show that h4 = −4ζ(2) ≈ −6.58.3 This
rules out various simple interpolating functions one could imagine from the leading
behaviours [8, 12].

The main goal of this paper is to calculate the value of c from the one-loop corrections
to the dispersion relation (1.1) of the giant magnon. The next subsection of the introduction
reviews some previous calculations of c, which used a different classical solution. After that
we discuss the cutoff prescriptions used, before turning to giant magnons in section 1.3.

1.1 The coefficient c from spinning strings in AdS

A number of early ABJM papers studied spinning strings in an AdS3 subspace. These
have [13]

∆− S = f(λ) logS (1.4)

and at leading order f(λ) =
√

2λ [2]. Two very different calculations of the one-loop, o(1),
semiclassical corrections were done:

• Several authors [14–16] found explicit modes using the worldsheet action, and ob-
tained

δEold = −5
log 2
2π

logS.

1We will often use g =
p
λ/8 instead of λ, matching the conventions of [3–5], and also α = ∆/2g.

2As usual, R is the radius of CP 3 and
√
α′ the string scale, N the rank of the gauge group and k the

level number. And (on the string side) ∆ is the energy, J and Q are CP 3 angular momenta, and S is an

AdS4 angular momentum.
3Versions of [10, 11] before October 2010 gave instead h4 = −16 + 4ζ(2) ≈ −9.42.
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Despite the classical solution being identical to those studied in AdS5 × S5, this
quantum result is different to that of [17–19]. And the logic is that small fluctuations
explore not only the AdS3 subspace, but the other directions too.

• Using the proposed all-loop sl(2) Bethe ansatz, [12] obtained

δEBA = −3
log 2
2π

logS.

Apart from trivial changes of constants, and one minus, the Bethe equations used for
this sl(2) sector are identical to those used in the AdS5 × S5 case [19–21].

Two ways to resolve this apparent discrepancy have been proposed. One is to notice that
while the string calculation is an expansion in 1/

√
λ, the Bethe ansatz calculation is a

series in 1/h(λ). Expanding the latter in 1/
√
λ we can compare them:

f(λ) = 2h(λ)− 3
log 2
2π

+O
(

1
h

)
=
√

2λ+
(

2c− 3
log 2
2π

)
+O

(
1√
λ

)
.

The order
√
λ

0
piece can be made to match the one-loop worldsheet result by setting [22]

c = − log 2
2π

. (1.5)

The other way to resolve this is to modify the mode sum used. The simplest object
from the worldsheet perspective, and that used by [14–16, 22], is

δEold ≡ lim
N→∞

1
2

N∑
n=−N

ωn

stopping at the same mode number N for all modes. However, a different cutoff is more
natural when computing these modes using the algebraic curve, namely to stop at a fixed
radius |x| in the spectral plane. This new prescription was shown by [20] to change the
result of [14–16] to

δEnew = −3
log 2
2π

logS

thus matching the Bethe ansatz calculation with c = 0.
The fact that these two summation prescriptions (or regularisation schemes) give dif-

ferent results can perhaps be summarised by saying that these schemes refer to different
coupling constants related by4

1√
λ
→ 1√

λ
± 1
λ

(
log 2
2π

)
This is clearly equivalent to changing c in the expansion of h(λ).

4We thank a referee for pointing this out. As noted by [22], it is not clear whether or how λ should be

simultaneously changed at weak coupling.
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However it is not a priori obvious that changing the cutoff prescription from old to
new is always equivalent to such a change of λ, or of c. What we will show here is that
this is also the case for energy corrections to giant magnons. But there are of course many
other one-loop calculations possible, all of which are potentially affected.

We note that this scheme-dependence is not inherently an AdS/CFT issue: we could
see the changes in δE for these string solutions in AdS4 × CP 3 even if we were unaware
of the correspondence. We would then call these terms α′ corrections, and would see no
reason to expect them to be scheme-dependent. In a separate issue, the AdS4 radius R
receives corrections starting at two loops [23], see also comments in [22]. Neither of these
issues occur in AdS5 × S5.

For now however we focus on the technical issues of these prescriptions, returning to
the larger discussion in the conclusion (section 4.1).

1.2 Heavy and light modes

The reason these two cutoff prescriptions differ is the existence of a distinction between
heavy and light modes. One sketch of why this exists is to note that instead of AdS5 × S5

with both spaces of radius R, we now have AdS4 of radius R/2, while CP 3 contains sphere-
like subspaces of radius R/2 (namely CP 1) and R (RP 3), among other things. We expect
that the modes exploring this RP 3 should be lighter than those exploring the CP 1 and
AdS4 directions. And indeed this is the case, as can be seen directly [5, 24] or by studying
the Penrose limit [6–8]. The fermionic modes similarly fall into heavy and light groups.

In the algebraic curve, we study modes by adding new poles to a pair of quasimomenta.
The position of these poles in the spectral plane is governed by qi(xn)−qj(xn) = 2πn, where
n ∈ Z is the mode number. In AdS5 × S5, the vacuum has qi(x) = αx/(x2 − 1) for all i,
and so the poles are always at

xheavy
n =

α

4πn
+

√
1 +

( α

4πn

)2
.

But in AdS4 × CP 3, the vacuum has qi(x) = αx/(x2 − 1) for i = 1, 2, 3, 4, but q5(x) = 0.
The light modes are those in which one of the quasimomenta involved is q5 (or q6 = −q5);
the others are heavy. The positions of their poles are related by

xheavy
2n = xlight

n .

This is exactly true for the vacuum, but will be approximately true for fluctuations about
arbitrary solutions, when n is very large. Thus we see that cutting off the sum at fixed |x|
is amounts to cutting it off at N for heavy modes but N/2 for light modes:

δEnew ≡ lim
ε→0

1
2

∑
ij

∑
|xijn |>1+ε

ωijn = lim
N→∞

1
2

 N∑
n=−N

ωheavy
n +

N/2∑
n=−N/2

ωlight
n

 .

This is new sum proposed by [20].
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An alternative sum was proposed by [5], which uses the same cutoff but omits the odd-
numbered heavy modes: it can be obtained from the ‘new’ sum by replacing ω2n+ω2n+1 →
2ω2n for the heavy modes.

Note that choosing which sum to perform is independent of choosing whether to work
with the algebraic curve or the worldsheet action, as was stressed by [5]. We would like to
have a physical reason for choosing one or the other.

1.3 Giant magnons

The variety of sphere-like subspaces mentioned above allows a variety of giant magnon
solutions. The one whose dispersion relation we wrote above is the elementary dyonic
giant magnon [4, 25], which explores a subspace CP 2. When Q = 1 this reduces to an
embedding of the Hofman-Maldacena solution [26] into CP 1 [6].

The other kinds of magnons are now understood to be superpositions of two elemen-
tary magnons [25]. One choice of orientations leads to an embedding of Dorey’s dyonic
magnon [27, 28] into RP 3, while another choice leads to a solution in which the angular
momenta ±Q cancel, leading to a two-parameter one-charge solution we will refer to as the
big giant magnon [29–32]. When Q� √λ, both of these solutions reduce to an embedding
of the simple Hofman-Maldacena magnon into RP 2.

We can identify exactly the same states in the algebraic curve [4, 33, 34]. This is a
convenient formalism for studying their semiclassical quantisation — constructing modes in
the worldsheet theory is much more difficult than for AdS spinning strings [35]. Expanding
the magnon dispersion relation (1.1) in 1/

√
λ, for Q = 1,

E =

√
1
4

+ 4h(λ)2 sin2 p

2

=
√

2λ sin
p

2
+ 2c sin

p

2
+O

(
1√
λ

)
(1.6)

= Eclass + δE + . . .

we see that the one-loop correction δE will teach us about c. This is one reason for studying
the semiclassical quantisation of giant magnons.

The first paper to calculate such a correction was [33], finding that, for the big giant
magnon,

δE = 0

consistent with c = 0 (and exactly as in AdS5×S5). Since this paper pre-dated [20]’s new
sum prescription, there appeared to be some tension with the AdS-sector results above.
However we show, by reverse-engineering, that the sum used is in fact the new sum, and
also that the result is the same for the elementary magnon. We then perform the old sum,
and find that instead

δEold = −2
log 2
2π

sin
p

2
implying the same c = − log 2/2π as was found by [22]. The results for the dyonic giant
magnon (see (3.12) below) and for various two-elementary-magnon solutions (appendices B
and C) also point to the same values for c.

– 5 –



J
H
E
P
1
2
(
2
0
1
0
)
0
4
0

Our results for this CP 3 sector are thus in all cases consistent with those found for the
AdS spinning strings. This still leaves the value of c apparently prescription-dependent.
We comment further on this in the conclusions.

1.4 Outline

In section 2 we set up the machinery for quantum corrections using the algebraic curve,
using the off-shell technique, and including the various summation prescriptions. We use
this in section 3 to calculate corrections for the elementary giant magnon, including one
kind of finite-J correction, the F-terms. We summarise and discuss our results, as well as
future directions, in section 4.

Appendix A has some formulae about the classical algebraic curve. Appendices B
and C treat the ‘big’ and RP 3 giant magnons. Appendix D is a note on conventions, and
appendix E a note about momentum conservation and level matching.

2 Semiclassical corrections using the algebraic curve

The classical algebraic curve is described by ten quasimomenta qi(x), which are functions
of the complex spectral parameter. We will be concerned with a small perturbation of
these to

qi(x) + δqi(x).

The perturbation δqi(x) inherits many properties from the classical curve, in particular
that only five of the ten sheets are independent:(

δq10, δq9, δq8, δq7, δq6

)
= −

(
δq1, δq2, δq3, δq4, δq5

)
. (2.1)

We summarise the other properties of the classical curve in appendix A. Semiclassical
methods presented here originate in [36–39].

2.1 Perturbing the quasimomenta

Fluctuations about the classical solution take the form of extra poles, always appearing on a
pair of sheets (i, j). Those involving only sheets 1,2 (or 9,10) represent bosonic fluctuations
in AdS4, those involving only sheets 3,4,5 (or 6,7,8) bosonic fluctuations in CP 3, and those
which connect AdS sheets to CP sheets fermionic fluctuations. We divide these fluctuations
into light modes, in which one of the sheets is 5 or 6, and heavy modes, the rest. Clearly
all the AdS modes are heavy, but the CP modes and fermions are mixed. We refer to (i, j)
as the polarisation of the fluctuation; its possible values are listed in table 1.5

The positions of these new poles, xijn , satisfy

qi(xijn )− qj(xijn ) = 2πn. (2.2)

5Note that we label all of these (i, j) with i < j. Thanks to (2.1) the mode (i, j) is equivalent to

(11− j, 11− i), so we may also always choose i ≤ 5. It will sometimes be convenient to define N11−j,11−i =

Nij , but
P
ij is always over the pairs in this table.
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AdS Fermions CP

Heavy (1,10) (2,9) (1,9) (1,7) (1,8) (2,7) (2,8) (3,7)
Light (1,5) (1,6) (2,5) (2,6) (3,5) (3,6) (4,5) (4,6)

Table 1. List of polarisations (i, j) for the physical fluctuations of the AdS4×CP 3 algebraic curve.

Here n is the mode number of the excitation, N ij
n is the number of such excitations we

turn on, and Nij =
∑

nN
ij
n . The level matching condition reads

∞∑
n=−∞

∑
ij

nN ij
n = 0. (2.3)

The residue at the new pole is fixed (in terms of its position) by

δqi(x) =
kijN

ij
n α(xijn )

x− xijn
+O(x− xijn )0 (2.4)

where

α(y) =
1
2g

y2

y2 − 1
(2.5)

and the coefficients kij are ±1 or ±2, to be read off from (2.8) below.
In addition to these new poles, δq may also change the residues at x = ±1 provided

these remain synchronised, and may shift endpoints of the giant magnon’s log cut (which
is defined in (3.2) below). We will write these terms as

δqi =
∑
±

a±
x± 1

, i = 1, 2, 3, 4

and

δqi =
∑
±

A±

x−X± ≡M(x) (2.6)

which comes from M(x) = −iA+ ∂
∂X+Gmag(x)+iA− ∂

∂X−Gmag(x), and so is added wherever
the classical qi(x) contains the log cut resolvent Gmag(x).

The perturbation must also obey the inversion symmetries:

δq1

(
1
x

)
= −δq2(x)

δq3

(
1
x

)
= −δq4(x) (2.7)

δq5

(
1
x

)
= δq5(x).

Note that the second of these imposes that there is no change in the the total momentum
p. Any momentum δp carried by the fluctuation must be cancelled by the change in the
magnon’s momentum, encoded in A±.

– 7 –
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The change in the asymptotic charges is as follows:6

δqi → 1
2gx

∑
j

kijNij +

{
1

2gxδ∆, i = 1 or 2

0, otherwise
as x→∞ (2.8)

=
1

2gx


δ∆ +N19 + 2N1 10 +N15 +N16 +N17 +N18

δ∆ + 2N29 +N19 +N25 +N26 +N27 +N28

−N18 −N28 −N35 −N36 −N37

−N17 −N27 −N45 −N46 −N37

+N15 −N16 +N25 −N26 +N35 −N36 +N45 −N46

 .

For our purposes the energy shift δ∆ is the output of this calculation in which we con-
structed δqi(x). We define the frequency Ωij(x

ij
n ) = ωijn of the (i, j) mode to be δ∆ when

only that one fluctuation is turned on, i.e. N ij
n = 1, others zero. This would however

break (2.3), so it is better to write

δ∆ =
∑
ij,n

N ij
n Ωij(xijn ). (2.9)

2.2 Off-shell method

An efficient technique for calculating frequencies was invented by [39], and adapted most
explicitly to the AdS4×CP 3 case by [5]. The idea is to temporarily ignore condition (2.2)
for the position of the new pole, and place it at an arbitrary position y. The result is called
an off-shell perturbation, and we are interested in its frequency Ωij(y). Having found a
perturbation δq for some polarisation (i, j), obeying all the conditions except (2.2), we can
then use the inversion relations (as well as simply addition) to generate such perturbations
for other polarisations, along with their associated frequencies.

In fact knowing just two polarisations (1, 5) and (4, 5) is enough to generate all the
rest [5]. First we use the inversion conditions to obtain7

Ω25(y) = Ω15(0)− Ω15

(
1
y

)
(2.10)

Ω35(y) = Ω45(0)− Ω45

(
1
y

)
.

(Here to construct δ25q with a pole at |y| > 1, we must start with δ15q with a pole inside
the unit circle.) The remaining light modes are simply given by δq6 = −δq5, thus

Ωi6(y) = Ωi5(y).

The heavy modes’ frequencies are each the sum of two light modes’, since if we add δi5q+
δ5jq (that is we switch on Ni5 = 1 and N5j = N11−j,6 = 1) then the poles on sheets 5 and 6

6Strictly speaking, for the sum on j to be defined, we must interpret Nij for i > j. For definiteness we

adopt, here and in (2.4), the convention that both Nij and kij are symmetric. Our signs for the asymptotic

δq match those of [33]; in [5] the signs of the fermions in δq5 are reversed to −N15 +N16 −N25 +N26.
7This differs from [5]’s equation (31b) thanks to our conventions in (2.9) above, see appendix D.
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will cancel. We obtain:

Ω29(y) = 2Ω25(y) Ω27 = Ω25 + Ω45 Ω37 = Ω35 + Ω45.

Ω1 10 = 2Ω15 Ω17 = Ω15 + Ω45 (2.11)

Ω19 = Ω15 + Ω25 Ω28 = Ω25 + Ω35

Ω18 = Ω15 + Ω35

Finally, we must then find the allowed poles y = xijn for each polarisation. Evaluating
the frequencies at these points gives us the ‘on-shell’ frequencies

ωijn = Ωij(xijn ). (2.12)

Note that for heavy modes, while the off-shell frequencies are always the sum of two of
those for light modes, the on-shell frequencies are not. We only expect the frequency to
decompose wijm+n = wi5m+ω5j

n when the pole positions of the heavy and the two light modes
happen to agree: xijm+n = xi5m = x5j

n . This occurs for the vacuum solution, see (2.18) below,
but not for nontrivial classical solutions.

2.3 Summing frequencies

The one-loop energy correction is given by

δE =
1
2

∑
ij,n

(−1)Fijωijn , Fij =

{
0

1
for (i, j)

bosonic
fermionic.

The way in which we deal with the infinite sum over n is important, and three different
prescriptions have been given in the literature:

1. The näıve sum cuts off at a fixed mode number N :

δEold = lim
N→∞

N∑
n=−N

∑
ij

(−1)Fij
1
2
ωijn (2.13)

= lim
N→∞

1
2

N∑
n=−N

(
ωheavy
n + ωlight

n

)
.

This prescription makes no use of the distinction between heavy and light modes, and
is thus natural from the worldsheet perspective. It was used by [14–16] for spinning
string calculations. We have defined [5, 20]

ωheavy
n = w19

n + w29
n + w1 10

n + w37
n − w17

n − w18
n − w27

n − w28
n (2.14)

ωlight
n = w35

n + w36
n + w45

n + w46
n − w15

n − w16
n − w25

n − w26
n .

2. The sum proposed by Gromov and Mikhaylov [20] is this:

δEnew = lim
N→∞

1
2

N∑
m=−N

Km where Km =

ω
heavy
m + ωlight

m/2 , m even

ωheavy
m , m odd

= lim
N→∞

1
2

 N∑
n=−N

ωheavy
n +

N/2∑
n=−N/2

ωlight
n

 . (2.15)
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One justification for this change is that it amounts to including all modes within
some area of the spectral plane: at large n,

xijn ≈
{

1 + α
4πn +O(αn )2, (i, j) heavy

1 + α
8πn +O(αn )2, (i, j) light

so the last modes included in each sum, xijN (heavy) and xijN/2 (light) are at approxi-
mately the same position x = 1 + ε = 1 + α

4πN in the spectral plane. In this sense it
is natural from the algebraic curve perspective.

3. The sum proposed by Bandres and Lipstein [5] is

δEnew′ = lim
N→∞

1
2

N∑
m′=−N

(
2ωheavy

2m′ + ωlight
m′

)
(2.16)

= lim
N→∞

1
2

 2N∑
n=−2N
n even

2ωheavy
n +

N∑
n=−N

ωlight
n

 .

Unlike [20]’s new sum above, this alternative new sum has no odd-numbered heavy
modes. In the continuum limit in which δEold =

∫∞
−∞ dn

(
ωheavy
n + ωlight

n

)
, both of

the new prescriptions will agree:

δEnew′ = δEnew =
1
2

∫ ∞
−∞

dm

(
ωheavy
m +

1
2
ωlight
m/2

)
. (2.17)

We discuss below another sense in which the two become equivalent, at leading or-
der (2.26), although at subleading order (2.30) we can distinguish them. In (3.18) we
find a mismatch with the Lüscher F-term result of [40].

2.4 Corrections for the vacuum

For the very simplest solution, we can evaluate these sums directly, and always get zero.
This solution is the BMN point particle, which is the vacuum for giant magnons in the
sense that it is dual to the vacuum state of the spin chain. The classical curve is [3]

q1(x) = q2(x) = q3(x) = q4(x) = α
x

x2 − 1
q5(x) = 0

where α = ∆/2g. The on-shell pole positions implied by (2.2) are very simple,

xheavy
n =

α

4πn
±
√

1 +
( α

4πn

)2 ≡ V (n)

xlight
n = V (2n) (2.18)

and we always choose the sign ± to maximise |xn|. Then have x−n = −xn. This fact is
useful when constructing the perturbation δqi, as it allows one to use of a pair of poles

– 10 –
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at ±y, as was done by [3, 5]. (See appendix E for discussion.) The first two off-shell
frequencies are given by

Ω15(y) = Ω45(y) =
1

y2 − 1
. (2.19)

Using the results of section 2.2, the others are given (in our conventions) simply by

Ωij(y) =

{
1

y2−1
, (i, j) light

2
y2−1

, (i, j) heavy.
(2.20)

These lead to on-shell frequencies

ωijn = Ωij(xijn ) =


√

1 + (4π
α )2n2 − 1, (i, j) heavy√

1
4 + (4π

α )2n2 − 1
2 , (i, j) light.

(2.21)

Similar frequencies can be found in the worldsheet theory. The precise constant shifts
(−1 and −1

2 here) of these are a matter of convention in both the worldsheet and algebraic
curve calculations, see appendix D for details.

Since there are equally many bosonic and fermionic heavy modes, and likewise light
modes, we have the following cancellation at each n:

ωheavy
n = ωlight

n = 0.

Then all three of the above sums give zero:

δEold = δEnew = δEnew′ = 0.

2.5 Some complex analysis

To evaluate these sums in nontrivial cases, we can use the fact that cot(z) has poles at
z = πn with residue 1 to write8

δE =
1
4i

∮
R
dn
∑
ij

(−1)Fij cot(πn)Ωij(xijn ).

We write this first as if there was no distinction between heavy and light modes, as
in [41, 42]; we will be more careful about exactly which sum prescription we are describing
afterwards.

For a given polarisation (i, j), n and x are related by (2.2), so we can write

dn =
q′i(x)− q′j(x)

2π
dx. (2.22)

The contour in x should enclose all poles x = xijn , which are along the real line at |x| > 1:

δE =
1
4i

∮
R(|x|>1)

dx
∑
ij

(−1)Fij
q′i(x)− q′j(x)

2π
cot
(qi(x)− qj(x)

2

)
Ωij(x). (2.23)

8All of our contours are 	.
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n = N

x = 1 + �

n plane:

x plane:

X +

X−
x = 1 + �

R(N)

U(�)
|x | = 1

Figure 1. Integration contours in the complex n and x planes, showing finite cutoffs |n| ≤ N and
|x| > 1 + ε. (We do not attempt show the distinction between heavy and light modes for the old
and new old sums.) The first contour in the x plane is unwrapped to give the second, containing
U(ε), after reversing its orientation.

Next, deform the contour to one around the unit circle, in fact −U taking the orien-
tation into account. (We draw the various contours in figure 1.) There should be another
component around the branch points at X±, but this is subleading, and so we ignore it in
this paper. Now write U = U+ + U− for the parts of the unit circle above and below the
real line. On this circle qi − qj is large, and so we can approximate

cot
(qi − qj

2

)
= ±i

(
1 + 2e∓i(qi−qj) + 2e∓2i(qi−qj) + . . .

)
. (2.24)

We keep only the first term for now (returning to subsequent terms in the next section):

δE ≈ − 1
8πi

∑
±
±i
∫

U±
dx
∑
ij

(−1)Fij
[
q′i(x)− q′j(x)

]
Ωij(x).

In order to distinguish the old and new sums, we must be careful about their upper
limits. Let us write R(N) for the contour encircling the integers up to ±N , and U(ε) for a
unit circle at radius 1 + ε.

• The new sum (2.15) turns out to be the simplest case. Following the above steps, we
write:9

δEnew = lim
N→∞

1
2

 N∑
n=−N

ωheavy
n +

N/2∑
n=−N/2

ωlight
n


= lim

N→∞

1
4i

(∮
R(N)

dn cot(πn)ωheavy
n +

∮
R(N/2)

dn cot(πn)ωlight
n

)
9If we define z = n for the heavy modes but z = 2n for the light modes, then we can also re-write the

integrals over n as one integral over z:

dEnew = lim
N→∞

1

4i

I
R(N)

dz

»
cot(πz)ωheavy

z +
1

2
cot
“πz

2

”
ωlight
z/2

–
.

This is perhaps more natural from the form of the sum δEnew =
P
mKm in (2.15). We stress however

that (2.2) and (2.22) contain n, not z.
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= lim
ε→0
− 1

4i

∮
U(ε)

dx
∑
ij

(−1)Fij
q′i(x)− q′j(x)

2π
cot
(
qi(x)− qj(x)

2

)
Ωij(x)

≈ − 1
8πi

∑
±
±i
∫

U±
dx
∑
ij

(−1)Fij
[
q′i(x)− q′j(x)

]
Ωij(x). (2.25)

Since we have the same contour U(ε) for both heavy and light modes, we can write
them as one integral. The last line is the leading term in the expansion (2.24).

• For the alternative new sum (2.16),

δEnew′ = lim
N→∞

1
2

(
2N∑

n=−2N
n even

2ωheavy
n +

N∑
n=−N

ωlight
n

)

= lim
N→∞

1
4i

(∮
R(2N)

dn cot
(πn

2

)
ωheavy
n +

∮
R(N)

dn cot(πn)ωlight
n

)

= lim
ε→0
− 1

4i

∮
U(ε)

dx
∑
ij

(−1)Fij
q′i(x)− q′j(x)

2π

{
cot( qi(x)−qj(x)

4 )Ωij(x), (i, j) heavy

cot( qi(x)−qj(x)
2 )Ωij(x), (i, j) light

≈ − 1
8πi

∑
±
±i
∫

U±
dx
∑
ij

(−1)Fij

[
q′i(x)− q′j(x)

]
Ωij(x). (2.26)

Notice that the difference between this and the new sum (i.e. the argument of the
cotangent) disappears in the leading term of (2.24).

• Finally, for the old sum (2.13),

δEold = lim
N→∞

1
2

N∑
n=−N

(
ωheavy
n + ωlight

n

)
= lim
N→∞

1
4i

∮
R(N)

dn cot(πn)
(
ωheavy
n + ωlight

n

)
= lim
ε→0

−1
4i

{∮
U(2ε)

dx
∑
ij

heavy

+
∮

U(ε)

dx
∑
ij

light

}
(−1)Fij

q′i(x)− q′j(x)
2π

cot
(
qi(x)− qj(x)

2

)
Ωij(x)

≈ lim
ε→0

[
Lheavy(2ε) + Llight(ε)

]
(2.27)

where in the last line we write the leading term of (2.24) in terms of the integral

Llight(ε) = − 1
8πi

∑
±
±i
∫

U±(ε)
dx
∑
ij

light

(−1)Fij
[
q′i(x)− q′j(x)

]
Ωij(x). (2.28)

We will explicitly perform this integral along contours of two different radii, 1 + ε

and 1 + 2ε, and add them before taking the limit ε→ 0.
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2.6 Subleading terms

In (2.25), (2.26) and (2.27) above, we kept only the first term in the expansion (2.24). We
now consider the next term, which we call δE1.

• For the new sum, we have (integrating by parts)

δE1
new = − 1

8πi

∑
±

∫
U±

dx
∑
ij

(−1)Fij∂x [qi(x)− qj(x)]
(
±i2e∓i(qi−qj)

)
Ωij(x)

= − 1
4πi

∑
±

∫
U±

dx
∑
ij

(−1)Fije∓i(qi−qj)∂xΩij(x). (2.29)

• For the alternative new sum, the only change is in the exponent for the heavy modes:

δE1
new′=−

1
8πi

∮
U
dx
∑
ij

(−1)Fij∂x [qi(x)− qj(x)]


(
±i2e∓i

qi−qj
2

)
Ωij(x), (i, j) heavy(±i2e∓i(qi−qj))Ωij(x), (i, j) light

=− 1
4πi

∑
±

∫
U±
dx

[∑
ij

heavy

(−1)Fije∓i
qi−qj

2 2∂xΩij(x)+
∑
ij

light

(−1)Fije∓i(qi−qj)∂xΩij(x)

]
.

(2.30)

• And finally, for the old sum, the only difference from the new sum is in the contour
U(2ε) for the heavy modes:

δE1
old = − 1

4πi

∑
±

{∫
U±(2ε)

dx
∑
ij

heavy

+
∫

U±(ε)
dx
∑
ij

light

}
(−1)Fije∓i(qi−qj)∂xΩij(x). (2.31)

We can continue with the higher terms in (2.24), and calling their total δEF , write

δEFnew =
∑

m=1,2,3...

−1
4πi

∑
±

∫
U±

dx
∑
ij

(−1)Fije∓mi(qi−qj)
1
m
∂xΩij(x). (2.32)

Similar expressions can clearly be written down for the old and the alternative new sums.

3 Corrections for the elementary giant magnon

Here we study the solution constructed in the σ-model by [4, 25] and in the algebraic curve
by [3, 33]. This is also known as the small or CP 2 giant magnon.
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3.1 Classical curve

The magnon is described by the algebraic curve

q1(x) =
αx

x2 − 1

q2(x) =
αx

x2 − 1

q3(x) =
αx

x2 − 1
+G(0)−G

(
1
x

)
− p

2
(3.1)

q4(x) =
αx

x2 − 1
+G(x)− p

2

q5(x) = G(x)−G(0) +G

(
1
x

)
where p = −i log(X+/X−) and the resolvent is [43–45]

G(x) = Gmag(x) = −i log
(
x−X+

x−X−
)
. (3.2)

Here we have included the twists in q3(x) and q4(x) as used by [42, 46] which amount to
orbifolding the space by an angle p so as to make the giant magnon a closed string [47–49].
Note that these twists play no role in the leading corrections, but are important in the
subleading corrections.

The charges E and Q can be read off from the behaviour of q(x) at infinity, see (A.2)
below, and are given in terms of X± by

E = ∆− J

2
= −ig

(
X+ − 1

X+
−X− +

1
X−

)
Q = −i2g

(
X+ +

1
X+
−X− − 1

X−

)
. (3.3)

These can be combined to give the dispersion relation (1.1).

3.2 Off-shell frequencies

For the (1, 5) polarisation we use the following ansatz, with α(y) and M(x) defined in (2.5)
and (2.6) above:

δq1 =
α(y)
x− y +

∑
±

a±
x± 1

δq2 = −δq1

(
1
x

)
δq4 =

∑
±

a±
x± 1

+M(x) δq3 = −δq4

(
1
x

)
(3.4)

δq5 =
α(y)
x− y +

α(y)
1
x − y

+
α(y)
y

+M(x)−M(0) +M

(
1
x

)
.

This clearly has the correct new poles and satisfies the inversion symmetries, and also has
synchronised poles at x = ±1. It remains to impose the conditions at infinity, starting with
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the conditions that δqi vanish there. The nontrivial ones are:10

δq2(∞) =
α(y)
y
− a+ + a− = 0

δq3(∞) = −M(0)− a+ + a− = 0

which, recalling that M(x) =
∑
±A

±/(x−X±), imply

A+

X+
+
A−

X−
=
α(y)
y

. (3.5)

Next, the 1/x behaviour gives the following equations (not all independent):

δq1(x) ∼ 1
x

[
a+ + a− + α(y)

]
=
δ∆ + 1

2gx

δq2(x) ∼ 1
x

[
a+ + a− +

α(y)
y2

]
=
δ∆
2gx

δq3(x) ∼ 1
x

[
a+ + a− +A+ +A−

]
= 0

δq4(x) ∼ 1
x

[
a+ + a− +

A+

X+2
+

A−

X−2

]
= 0

δq5(x) ∼ 1
x

[
−α(y) +

α(y)
y2

+A+ +A− − A+

X+2
− A−

X−2

]
= − 1

2gx
.

Using the δq2 and δq4 equations we can write δ∆ in terms of y, X± and A±:

δ∆
2g

=
α(y)
y2
−
(
A+

X+2
+

A−

X−2

)
. (3.6)

The δq5 equation gives

A+ +A− =
A+

X+2
+

A−

X−2
(3.7)

which we can use with (3.5) to find A±: first write

A+ =
α(y)
y

X+ − A−X+

X−
.

and then plugging this into (3.7) we find

A− = −α(y)
y

(
X+2 − 1

)
X−2

(X− −X+) (X−X+ + 1)
,

A+ =
α(y)
y

X+ +
α(y)
y

(
X+2 − 1

)
X−X+

(X− −X+) (X−X+ + 1)
. (3.8)

10After satisfying these, we can write

δq2(x) =
X
±

a±
x± 1

+
α(y)/y2

x− 1
y

δq3(x) =
X
±

a±
x± 1

+M(0)−M
„

1

x

«
.

Here δq2 has a new pole inside the unit circle, and δq3 has the expected pattern of M(x).
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We can now finally write the frequency Ω15(y) from (3.6):

Ω15(y) = δ∆ =
2gα(y)
y2

[
1 + y

( (
X+2 − 1

)
(X− −X+) (X−X+ + 1)

(
1− X−

X+

)
− 1
X+

)]

=
1

y2 − 1

(
1− y X

+ +X−

X+X− + 1

)
.

For the (4, 5) polarisation, we use a similar ansatz

δq1 =
∑
±

a±
x± 1

δq2 = −δq1

(
1
x

)
δq4 = − α(x)

x− y +
∑
±

a±
x± 1

+M(x) δq3 = −δq4

(
1
x

)
δq5 =

α(y)
x− y +

α(y)
1
x − y

+
α(y)
y

+M(x)−M(0) +M

(
1
x

)
and a similar computation leads to the same frequency:

Ω45(y) =
1

y2 − 1

(
1− y X

+ +X−

X+X− + 1

)
.

Constructing all the other frequencies using the formulae of section 2.2, we find simply:

Ωij(y) =

{
Ω45(y), (i, j) light

2Ω45(y), (i, j) heavy.
(3.9)

This differs from the AdS5×S5 case only by the factor of 2 in the heavy modes, and agrees
with the big giant magnon calculation of [33].

3.3 Leading energy corrections

Here we calculate the integrals described in section 2.5. We begin by noting the following
identity, which follows simply from the list of possible polarisations in table 1:∑

ij
heavy

(−1)Fij
[
q′i − q′j

]
= q′1 + q′2 − q′3 − q′4 = −1

2

∑
ij

light

(−1)Fij
[
q′i − q′j

]
. (3.10)

Using this result, the new sums are trivial, because thanks to the factor 2 in (3.9), the
integrands in both (2.25) and (2.26) vanish:∑

ij

(−1)Fij
[
q′i(x)− q′j(x)

]
Ωij(x) = 0.

So we have, at leading order,
δEnew = δEnew′ = 0. (3.11)

We wrote the old sum in (2.27) in terms of two integrals Lw(ε). Using identity (3.10)
and Ωij(y) from (3.9), we see that

Lheavy(ε) = −Llight(ε).
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Using the explicit classical curve (3.1), we also have

q′1(x) + q′2(x)− q′3(x)− q′4(x) = i

(
1

x−X+
− 1
x−X−

)
− i
(

1
xX+ − 1

− 1
xX− − 1

)
.

We can now evaluate the integral explicitly, keeping ε finite: parametrise x = (1 + ε)eiϕ,
where ϕ ∈ [0, π] in U+(ε) and ϕ ∈ [π, 2π] in U−(ε). Then

Llight(ε) =
−1
8πi

∑
±
±i
∫

U±(ε)
dx
∑
ij

light

(−1)Fij
[
q′i(x)− q′j(x)

]
Ωij(x)

=
1

πi(1 +X+X−)

[
2(X− −X+) arctan(1 + ε) + 2X+X− arctan(X− (1 + ε))

+ (X− −X+) log
(−(2 + ε)

ε

)
+X+X− log

(
1−X+(1 + ε)
1 +X+(1 + ε)

)
+ log

(
(1 + ε−X−)
(1 + ε+X−)

(1 + ε+X+)
(1 + ε−X+)

)]
.

Only one term diverges as ε→ 0. It is this divergent term which makes the limit in (2.27)
nontrivial, and which leads to the following result for the leading term in δE:

δEold = lim
ε→0

[
Lheavy(2ε) + Llight(ε)

]
= lim

ε→0

[
− Llight(2ε) + Llight(ε)

]
=
i log 2
π

X+ −X−
1 +X+X−

. (3.12)

In the non-dyonic case (Q = 1� √λ thus X± = e±ip/2) this becomes

δEold = − log 2
π

sin
p

2
. (3.13)

Comparing to the expansion (1.6) of the dispersion relation, we recover (1.5):

c = − log 2
2π

.

In summary, the situation for these leading corrections for the giant magnon is exactly
the same as for the leading corrections for spinning strings in AdS. Either we use the old
sum prescription and c 6= 0, or we use either of the new sums and c = 0.

We repeat this analysis for the ‘big’ and RP 3 giant magnons in appendices B and C,
reaching the same conclusion in each case.

Dyonic case. We could write the above result (3.13) as

δEold − δEnew = c
1
2
∂

∂g
E (3.14)

if we use the classical energy E in terms of g (i.e. in terms of λ), recalling that h(λ) = 2g =√
λ/2 at leading order. This is of course exactly the second term in the expansion (1.6).
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Now we observe that this is also true for the dyonic case, provided we hold fixed p

and Q:

E =

√
Q2

4
+ 16g2 sin2 p

2

=⇒ ∂

∂g
E =

16g sin2 p
2

E
= −4i

X+ −X−
1 +X+X−

(3.15)

correctly reproducing (3.12). We have used (3.3) to write this in X±, but we stress that
the derivative is not holding X± fixed.

We note that the dyonic giant magnon is the first example for which the classical energy
which one expands is not proportional to h(λ). This fact made the expansions for both
the AdS3 string (1.4) and (in the strong coupling limit) the non-dyonic giant magnon (1.6)
much simpler than this one.

3.4 Subleading corrections

Consider first the new sum prescription, for which we need to evaluate (2.29). Using (3.1),
and taking the non-dyonic case X± = e±ip/2, we can write the following pieces of that
integral:

F+
heavy =

∑
ij

heavy

(−1)Fije−i[qi(x)−qj(x)] = e
−2i αx

x2−1
(x+ 1)

(
eip/2 − 1

) (
eip/2(3 + x)− (3x+ 1)

)(
x− eip/2)2

F+
light =

∑
ij

light

(−1)Fije−i[qi(x)−qj(x)] = e
−i αx

x2−1
4(x+ 1)

(
eip/2 − 1

)
x− eip/2 . (3.16)

The contribution from the heavy modes will clearly be subleading to that from the light
modes, so we need only consider the latter. The resulting expression for δEF,1 agrees with
that in [33]. This can be integrated using the saddle point at x = i to give [40]:11

δEF,1new = e−∆/
√

2λ

√
2
√

2λ
π ∆

(
cos p2

1− sin p
2

− 1
)
. (3.17)

This term was also calculated by [40] using the Lüscher method, obtaining exactly the
same answer. That calculation is really in terms of h(λ) not λ; however this comparison
tests only the leading order part of (1.2), h(λ) =

√
λ/2, and tells us nothing about c.

Now consider the other sums:

• For the old sum, the change in (2.31) is that while we integrate the light modes at
ε, for the heavy modes we use 2ε. At this order we need only note that this will not
change the fact that the heavy modes are subleading, and so the answer is the same.

11Recall that α/2 = ∆/
√

2λ = ∆/4g.
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• For the alternative new sum, the change is that for the heavy modes (2.30) has instead∑
ij

heavy

(−1)Fije−i
qi(x)−qj(x)

2 =e
−i αx

x2−1
3(x−eip/2)+(x eip/2−1)−4

√
x−eip/2

√
x eip/2−1

x−eip/2 .

This is now of the same order as the light modes, and so must be included. Doing so
changes the result to

δEF,1new′ = e−∆/
√

2λ

√
2
√

2λ
π ∆

(
2 + 4 cot p4
cot p4 − 1

− 4

√
cot p4 + 1
cot p4 − 1

)
(3.18)

which clearly disagrees with the Lüscher result.

To summarise, we obtain the desired subleading correction using either the old or the new
sum prescription. However the alternative new sum of [5] gives a mismatching result.

Dyonic case. It is trivial to generalise the above results to the dyonic case. The integrand
in (3.16) becomes

F±light(x) =
∑
ij

light

(−1)Fije∓i(qi−qj)∂xΩ45(x)

= e
∓iα x

x2−1

{
e±ip/2

[(
x−X∓
x−X±

)2

+
(
x− 1/X±

x− 1/X∓

)2
](

x−X±
x−X∓ +

x− 1/X∓

x− 1/X±

)
−2
(
x−X+

x−X−
)(

x−1/X+

x−1/X−

)
−2
(
x−X−
x−X+

)(
x−1/X−

x−1/X+

)}
∂xΩ45(x).

The result of integrating this (using the saddle point at x = i) is hardly more compact, so
we write simply

δEF,1 =
1√
4πα

F+
light(i) (3.19)

for both the old and the new sums.

3.5 Sub-subleading terms

We can see from (3.16) that the heavy modes first contribute at order (e−∆/
√

2λ)2. The
full correction at this order will also include the contribution of the light modes from the
m = 2 term in (2.32).12 The integrand of this term contains (in the non-dyonic limit)

F+2
light =

∑
ij

light

(−1)Fije−2i[qi(x)−qj(x)] = e
−2i αx

x2−1
4(x2 − 1)

(
eip − 1

)
(x− eip/2)2

.

Putting these two contributions together, the correction for the new sum is given by:

δEF,2new =− 1
8πi

∑
±

∫
U±

dx
∑
ij

(−1)Fij
[
q′i(x)− q′j(x)

]{(±i2e∓2i(qi−qj)
)

Ωij(x), (i, j) heavy(±i2e∓i(qi−qj))Ωij(x), (i, j) light

12In equation (4.1) below, this term δEF,2 is the term containing a2,0. Note that while δEF in (2.32)

adds up all the terms am,0 in (4.1), the heavy modes in (2.32)’s term m contribute to a2m,0.
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=− 1
2πi

∫
U+

dx

[∑
ij

light

(−1)Fij
1
2
e−2i(qi−qj)∂xΩij(x) +

∑
ij

heavy

(−1)Fije−i(qi−qj)∂xΩij(x)

]

=− 1
2πi

∫
U+

dx

[
1
2
F+2

light Ω′45(x) + F+
heavy 2Ω′45(x)

]

= e−2∆/
√

2λ 2

√√
2λ

∆ π

(
cos p2 − 1
sin p

2 − 1

)
. (3.20)

For the old sum, the essential point to notice is that the heavy and light terms above
each lead to a finite contribution, and thus we may take the limits ε→ 0 individually. This
removes the only distinction between the new and the old sum here, and so we obtain the
same result:

δEF,2old = δEF,2new.

We would not expect δEF,2 to depend on the value of c, since like the subleading term δEF,1

it is the first term in a series in 1/
√
λ. The extra power of e−∆/

√
2λ to be sub-subleading

makes this a different series, not the second term in the series.
Finally, for the alternative new sum, we will again get a different result, just as for the

δEF,1 term in (3.18) above.

4 Conclusions

All calculations of the AdS4 × CP 3 interpolating function h(λ) work by comparing an
expansion in h(λ), coming from some integrable structure, to an expansion in λ, coming
from either gauge theory (expanding about λ = 0) or string theory (about λ = ∞). Such
comparisons include:

• The gauge theory calculations of [10, 11] use the exact dispersion relation and draw
Feynman diagrams up to four loops, order λ4.

• For AdS3 spinning strings an expansion of the Bethe equations [12] is compared to a
semiclassical calculation using either the worldsheet sigma-model [14–16] or algebraic
curves [20].

• The leading (J = ∞) corrections for giant magnons in this paper (and in [33])
are computed using the algebraic curve, and compared with the exact dispersion
relation (1.1).

• For finite-J corrections we can compare instead to the Lüscher formulae, which take
as input the all-loop S-matrix of [50]. This S-matrix is constructed to agree with the
all-loop Bethe ansatz, and thus similarly contains h(λ).

In all of these cases, analogous calculations have been done in AdS5×S5, and always agree
with the trivial interpolating function h(λ) = λ. Indeed, such comparisons essentially
constitute the experimental evidence for the simple form of the interpolating function for
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this theory [6, 26]. There is also an argument [51] that S-duality fixes the form of h(λ)
exactly; this is not expected to exist in the AdS4 × CP 3 case.

Higher-order perturbative checks have also been done, and a strong-coupling result
which would be particularly valuable to have here is the two-loop comparison of spinning
strings in AdS5 with the Bethe ansatz [52–54]. At two loops, the AdS4 radius is expected
to receive corrections [23],13 so one would potentially learn about these in addition to the
next term in h(λ).

Like the Bethe ansatz which they generalise, the recently proposed TBA and Y-system
descriptions [58–60] are in terms of h(λ) rather than λ. It is in order to be able to translate
new results from such descriptions back into the original string- or field-theory language
that we need to know about h(λ).

4.1 Results at J =∞
We calculated the one-loop energy correction for infinite-J giant magnons using three
different summation prescriptions, which we called old, new [20], and alternative new [5].
We find that one can either

• use the old sum prescription and set c = − log(2)/2π, or

• use either of the new sum prescriptions and set c = 0.

This is precisely the same scheme-dependence as was seen for spinning strings in AdS. We
obtain it however from strings moving only in CP 3, whose one-loop corrections are finite,
rather than growing as logS, and are functions of two variables (p and Q, encoded in X±).

On a technical level, this scheme-dependence comes from a logarithmic divergence in
the sum over heavy or light modes alone, which cancels between them. The contributions
of heavy and light modes are the two terms in (3.12):

δE = lim
ε→0

[
− L(εheavy) + L(ε)

]
where L(ε) =

1
iπ

( X+ −X−
1 +X+X−

)
log ε+ finite terms,

and εheavy = ε for either new sum, εheavy = 2ε for the old sum.14

A similar cancellation of logarithmic divergences between heavy and light modes lies
behind the finite results of the AdS3 spinning string calculations of [14–16, 22] (using the
old sum) and [20] (new sum), even though these papers display only the combined, finite,
results.

The heavy modes are something of a puzzle, since the Bethe equations refer only the
light modes (4 bosons and 4 fermions) while the string theory treats all 10 dimensions alike.
In the formalism used here, each heavy mode is constructed off-shell as the sum of two

13However there are no corrections to R at one loop, see also [22] for another argument. Therefore this

issue, of quantum corrections to (1.3), does not overlap with the present issue of scheme-dependence of

one-loop corrections δE and thus of the coefficient c.

In the AdS5×S5 case, the topic of α′ corrections to R (the lack thereof) was studied in [55, 56] and [57].
14Here |x| > 1+ ε is the cutoff in the spectral plane. In terms of the mode sum cutoff N , it is ε = α/4πN .
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light modes, (2.11). However we note that this is not true for the on-shell modes whose
frequencies enter into the energy correction.

It has been argued that when loop corrections are taken into account, the heavy states
dissolve into the continuum of two-particle states [61], see also [62–64]. However the fact
that they are not stable particles in the interacting theory does not imply that they should
be omitted from the path integral, and indeed the present calculation requires that they
be included in order to obtain a finite result.

Finally, we observe that it is the old sum which comes closest to imposing a physical
cutoff, treating all modes on an equal footing. The frequencies ω = Ω(x) computed here are
frequencies with respect to physical time. Unlike the mode number (or worse, the position
in the spectral plane) this is a local quantity on the worldsheet. If we explicitly choose the
same cutoff for heavy and light modes, by setting Ωheavy(1 + εheavy) = Ωlight(1 + ε) = Λ,
then the vacuum’s frequencies (2.20) lead us to

εheavy = 2ε+O(ε2).

Using instead the giant magnon’s frequencies (3.9) gives no change at this order. And from
the point of view of the calculation of δE in (3.12), this physical condition is equivalent to
the old sum, (2.27).

4.2 Finite-J effects

Following [39, 42] we can summarise the complete energy of a giant magnon, including the
various finite J (thus finite ∆) corrections, as follows:

E =
∑

m,n=0,1,2...

am,n

(
e−∆/

√
2λ
)m (

e−2∆/E
)n
. (4.1)

Each of the coefficients am,n is a series in 1/
√
λ, and the leading corrections discussed above

are part of a0,0 = Eclass + δE + o(1/
√
λ).

The coefficients am,0 are classically zero. Calculating a1,0 at one-loop (order
√
λ

0
)

following [42] we see no difference between the old and new sums, and find agreement with
the Lüscher method calculation of [40].15 (There these are referred to as F-terms, and
arise from virtual particles travelling full circle around the worldsheet.) However for the
alternative new sum of [5], we find a disagreement. In this case both heavy and light modes
contribute. For the old and new sums, a1,0 depends only on the light modes, with heavy
modes first entering in a2,0, which we also calculate, (3.20).

The coefficient a0,1 contains the classical (order
√
λ) corrections to the magnon’s en-

ergy, of they type studied by [47, 66–68]16 and, using algebraic curves, by [4, 34, 72]. Its
one-loop part was calculated for the AdS5×S5 case by [39], who found agreement with the
subleading Lüscher µ-term calculation of [73]. The analogue of their calculation is useful

15The dyonic a1,0 term given in (3.19) has now been confirmed by a bound-state Lüscher F-term calcu-

lation in a recent paper [65].
16For the corresponding solutions in RP 2 and CP 1 (inside CP 3) see [69–71] and [24].
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to us here because, like a0,0, the one-loop corrections give us the second term in the series
in 1/

√
λ, and so we can potentially learn about c.

In order to calculate the relevant quantum corrections, we need to start with the
algebraic curve for a classical finite-J giant magnon. This, and the need to keep various
terms we ignored before, adds considerable complication [39]. In addition not all of the
Lüscher terms one would like to compare to are known. Thus far we can report that:

• The leading bound-state µ-term matches perfectly with the classical algebraic curve
result of [4] for one dyonic elementary magnon.17

• The subleading µ-terms of [40] for the RP 3 magnon can be recovered from the one-
loop algebraic curve by calculating a0,1 using the new sum.

• When calculating a0,1 using the old sum (2.27), it has a linear divergence in the
cutoff N .

These and other related calculations are the material of a forthcoming paper.
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A The classical algebraic curve

For completeness we give here some relevant properties. The AdS4 × CP 3 case was first
studied by [3], drawing on past work on AdS5 × S5 by [38, 74–78] among others.

The monodromy matrix is defined from the Lax connection J(x) by

Ω(x) = P e
H
dσJσ(x).

Here we integrate once around the worldsheet (σ, τ). The connection depends on an arbi-
trary complex number x called the spectral parameter, and since it is flat (for all x) the
eigenvalues of Ω are independent of the path used. We write these as

eig Ω(x) =
{
eip̂1 , eip̂2 , eip̂3 , eip̂4 , eip̃1 , eip̃2 , eip̃3 , eip̃4

}
17Note that we believe the leading single-magnon µ-term calculations of [34, 40] to be incorrect, since

they give zero rather than the AFZ result expected for a non-dyonic giant magnon [4, 66].
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and call to the eight functions p̃i (CP ) and p̂i (AdS) ‘quasi-momenta’. In order to make
the OSp(2, 2|6) symmetry explicit, we will work not with pi but instead with ten new
quasi-momenta qi defined [3](

q1, q2, q3, q4, q5

)
=

1
2

(
p̂1 + p̂2, p̂1 − p̂2, p̃1 + p̃2,−p̃2 − p̃4, p̃1 + p̃4

)
and

(
q6, q7, q8, q9, q10

)
=
(− q5,−q4,−q3,−q2,−q1

)
.

These functions define a 10-sheeted Riemann surface. It need not however be contin-
uous across branch cuts, so long as eig Ω(x) is continuous: when a cut Cij connects sheets
i and j, we must have q+

i − q−j = 2πn when x ∈ Cij . There are two additional constraints:

• First, the Virasoro constraints lead to synchronised poles at x = ±1:(
q1, q2, q3, q4, q5

)
=

α+

(x− 1)
(
1, 1, 1, 1, 0

)
+O(x− 1)0

=
α−

(x+ 1)
(
1, 1, 1, 1, 0

)
+O(x+ 1)0.

• Second, the curve has the following inversion symmetries:

q1

(
1
x

)
= −q2(x)

q3

(
1
x

)
= 2πm− q4(x) (A.1)

q5

(
1
x

)
= q5(x).

This m ∈ Z is the winding number.

The string’s charges are determined by the asymptotic behaviour as x→∞:
q1

q2

q3

q4

q5

 =


0
0
−p/2
−p/2

0

+
1

2gx


∆ + S

∆− S
(J +Q)/2
(J −Q)/2

J3

+O
( 1
x2

)
. (A.2)

The ‘twists’ p/2 are the same as we added to the solution (3.1) to allow for nonzero
momentum. In [4] we instead allowed non-integer m; this however will get the F -terms of
section 3.4 wrong.

For each square-root branch cut Cij , we define the filling fraction as

Sij =
g

iπ

∮
Cij

dx

(
1− 1

x2

)
qi(x). (A.3)

The new poles which we add when studying fluctuations are very short branch cuts; this
is why they connect two sheets i and j. The residue α(y) is set by the condition that they
are each exactly one fluctuation: Sij = 1.
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B Corrections for the big giant magnon

The big giant magnon is a two-parameter one-angular-momentum solution, which was
known in the algebraic curve [33] before being constructed in the σ-model [29–32]. It should
be thought of as consisting of two elementary magnons in a particular orientation [25, 32].18

The big magnon is described by the algebraic curve

q1(x) = q2(x) =
αx

x2 − 1

q3(x) = q4(x) =
αx

x2 − 1
+G(x) +G(0)−G

(
1
x

)
− p

q5(x) = 0

with G(x) as in (3.2). As for the RP 3 case, we now adopt conventions in which 2p is the
total momentum.

B.1 Off-shell frequencies

For the (1, 5) polarisation, we use this ansatz:

δq1 =
α(y)
x− y +

a+

x+ 1
+

a−
x− 1

δq2 = −δq1

(
1
x

)
δq4 =

a+

x+ 1
+

a−
x− 1

+M(x) +M(0)−M(
1
x

) δq3 = −δq4

(
1
x

)
δq5 =

α(y)
x− y +

α(y)
1
x − y

+
α(y)
y

.

This clearly has the correct new poles and satisfies the inversion symmetries, and the
changes in the residues of the poles at x = ±1 are all the same.19 Imposing the conditions
at infinity now fixes a± and A±, and we get

Ω15(y) = δ∆ =
1

y2 − 1

(
1− y X

+ +X−

1 +X+X−

)
.

18These two elementary magnons have the same worldsheet velocity [25]. Superpositions of two elemen-

tary magnons having different velocies are instead scattering solutions [32]. See also [79] for more than

two magnons.
19The fluctuation δqi given in [33] uses the following terms instead:

α(x)

x− y =
α(y)

x− y +
1

4g

X
±

1

(1± y)(x± 1)

α(x)/x

x−X+
=
α(X+)/X+

x−X+
− 1

4g

X
±

1

(X+ ± 1)(x± 1)

These are chosen to automatically give the right behaviour at infinity, and it is then the equations at x = ±1

which fix δ∆.
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For the (4, 5) polarisation,

δq1 =
a

x+ 1
+

a

x− 1
δq2 = −δq1

(
1
x

)
δq4 = − α(y)

x− y +
a

x+ 1
+

a

x− 1
+M(x) +M(0)−M

(
1
x

)
δq3 = −δq4

(
1
x

)
δq5 =

α(y)
x− y +

α(y)
1
x − y

+
α(y)
y

leads to

Ω45(y) =
1

y2 − 1

(
1− y X

+ +X−

1 +X+X−

)
.

We can then find all the other frequencies, and as before:

Ωij(y) =

{
Ω45(y), (i, j) light

2Ω45(y), (i, j) heavy.
(B.1)

This is exactly as in [33], except for notation.

B.2 Energy corrections

Note that identity (3.10) still holds, and with (B.1) implies that for the new sum, we get

δEnew = 0.

This is the result of [33]. Despite pre-dating [20], this paper uses an integral like (2.25),
and thus has implicitly adopted the new sum (2.15).

For the old sum, (2.13), a similar calculation to the one we did for the elementary giant
magnon leads to

δEold = −2
log 2
π

sin
p

2
twice what we got for the elementary magnon, equation (3.13), and thus consistent with
the same value of c.

C Corrections for the RP 3 magnon

The RP 3 giant magnon, an embedding of Dorey’s S3 dyonic giant magnon, is described in
the algebraic curve by

q1(x) = q2(x) =
αx

x2 − 1

q3(x) =
αx

x2 − 1
+ 2G(0)− 2G

(
1
x

)
− p

q4(x) =
αx

x2 − 1
+ 2G(x)− p

q5(x) = 0.
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This is a superposition of two elementary magnons (one ‘u’ and one ‘v ’ in [4]). Here p is
the momentum of each of the elementary magnons, so that the total momentum is 2p.20

The dispersion relation is

E =

√
Q2

4
+ 16h(λ)2 sin2 p

2
(C.1)

= 8g sin
p

2
when Q = 2� λ = 8g2.

In the non-dyonic limit (and at strong coupling) this is simply twice that of the elementary
magnon.

The calculation of this one-loop correction is very similar to that for one elementary
magnon, so we state results here without showing any detail. Using the new sum, we obtain

δEnew = 0

and using the old sum

δEold = −2
log 2
π

sin
p

2
exactly twice that for the elementary magnon, and thus consistent with the same value of c.

Finally the subleading correction for both old and new sums is

δEF,1 =
1√
απ

e−α/2
[
eip
X+2(X−2 + 1)2 +X−2(X+2 + 1)2

X+2(X+ − i)2(X− + i)2
− 2
]

=
−4√
απ

e−α/2
sin p

2

sin p
2 − 1

when Q�
√
λ. (C.2)

In the non-dyonic limit this correction matches the Lüsher F-term calculated by [40]. In
this limit the RP 3 magnon and the big magnon co-incide, and the same integral was also
obtained for this term by [33].

D Conventions and the vacuum

When defining the frequency Ω(y) from δ∆, the paper [5] writes, instead of our (2.9),

Ω(y) = δ∆ +
∑

AdSmodes

N ij +
1
2

∑
fermions

N ij . (D.1)

This change (from our conventions) cancels out of either of the new sums, but not out
of the old sum. As a result that paper finds that δEold = ∞ for the vacuum. Since the
same shifts apply to any soliton solution too, they will cancel out of any normalised energy
correction δE − δEvac. Our conventions have the advantage of producing a much simpler
set of frequencies (2.20). The conventions of [3] agree with those of [5], since they obtain
the same frequency shifts although without writing a formula like (D.1).

We observe that our conventions produce off-shell frequencies which vanish as the new
pole is taken to infinity: Ω(y →∞) = 0.

20This allows us to still write X± = r e±ip/2 or p = −i log(X+/X−). In our previous paper [4] we instead

defined p as the total momentum. However, ∆, J , and Q are still the total charges.
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Algebraic Curves: Worldsheet:
This paper G&V [3] B&L [5] N&T [8] GGY [6] GHO [7] B&L [5]

AdS bosons
heavy ×3 −1 0 0 0 0 0 0

Fermions
heavy ×4 −1 −1/2 −1/2 0 0 ±1/2
light ×4 −1/2 0 0 0 0 0

CP bosons
heavy ×1 −1 −1 −1 0 0 0 0
light ×4 −1/2 −1/2 −1/2 0 0 ±1/2 ±1/2

Total (weighted) 0 −1 −1 0 0 0

Table 2. Constant shifts of the vacuum’s fluctuation frequencies. The ‘unshifted’ frequencies are
the square root terms in (2.21) above, and the total of course includes multiplicity and counts
fermions with a minus.

Similar calculations of the same vacuum frequencies have been done from the world-
sheet perspective, either directly [5] or using the Penrose limit [6–8], obtaining various
other constant shifts. We summarise these in table 2.

Note that all of these are only constant shifts added to the frequencies. What the
paper [80] discusses is half-integer shifts of n, which are much more subtle. The con-
clusion there was that one has to be very careful to get these right for fermions in the
worldsheet calculation.

E Momentum conservation and level matching

E.1 The vacuum

When constructing the perturbations δq for the vacuum (point particle) solution, the pa-
per [5] used a pair of new poles at ±y, and calculate the total δ∆ = Ω(y) + Ω(−y). This
construction is clearly blind to any terms odd in y. However it is justified in this case,
since on-shell we have xij−n = −xijn for all ij, n, and every sum δE contains ωn + ω−n, so
such terms cannot affect the result.

Using a pair of excitations xij±n is also sufficient to satisfy the level matching condi-
tion (2.3), although it will not be the only way to do so. The paper [3] states that they
always use a pair of poles xij±n for this reason, and for the vacuum case they study this is
equivalent to using a pair at ±y.

Another way to construct Ω(y) is to use just one pole but allow some change in the
momentum: for the (4, 5) polarisation, we would use this ansatz:

δq1 =
∑
±

a±
x± 1

δq2 = −δq1

(
1
x

)
δq4 = − α(y)

x− y +
∑
±

a±
x± 1

δq3 = −δq4

(
1
x

)
+ δp

δq5 =
α(y)
x− y +

α(y)
1
x − y

+
α(y)
y

. (E.1)
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This leads to the same frequency as before,

Ω45(y) = δ∆ =
1

y2 − 1
as well as momentum

δp =
α(y)
y

=
1
2g

y

y2 − 1
. (E.2)

It is clear that when considering two poles at ±y, the total δp will be zero again.
When we construct a heavy fluctuation like this, such as the (3, 7) mode, we will get

δp = 2α(y)/y. Alternatively recall that we constructed heavy fluctuations in (2.11) by
adding two light fluctuations, and the δp will similarly add up.

E.2 Giant magnons

We can repeat our analysis of the giant magnon allowing δp 6= 0, in the same way as for
the vacuum: change the ansatz (3.4) to have δq3(x) = −δq4( 1

x) + δp. We find (writing just
the non-dyonic case)

Ω45(y) =
[

1
y2 − 1

− y

y2 − 1
cos

p

2

]
+ 2g δp cos

p

2
. (E.3)

The first two terms (in square brackets) are the terms appearing in (3.9). Notice that if
we take δp = α(y)/y (as for the vacuum) then the new third term here has the same form
as the second term — in fact they cancel.

This is a nice demonstration of the argument for the giant magnon’s off-shell frequency
Ω(y) given by [42]. They say that the first term is the energy of the excitation, while the
second term comes from the fact that the perturbation carries some momentum δp, and
so if total momentum is conserved, the magnon’s momentum must change to compensate.
We can write this as

Ω(y) = Eexcitation − δp∂Emagnon

∂p

and we recall that ∂E/∂p = 2g cos p2 for the non-dyonic case.
We can describe such an excitation using X± near to y: solving Q = 1 in (3.3) we find

X± = y ± i

4g
y2

y2 − 1
which leads to the same momentum as (E.2)

δp = −i log
X+

X−
=

1
2g

y

y2 − 1
.

Now consider the effect of the term in Ω(y) arising from momentum conservation on
our calculation of the one-loop correction δE. If we drop the second term from all Ωij(y),
there will be no change in the new sum (3.11). But there is a change in the old sum (3.12),
which becomes

δEold = −2
log 2
2π

1
sin p

2

This is not a term which c could produce in (1.6).
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Had we constructed δq(x) starting with a pair of new poles at ±y, we would not have
obtained the second term in Ωij(y), since it is odd in y. For the elementary magnon it
is clear that we may not do this, as (2.2) always involves Gmag(x) which has no simple
behaviour under x→ −x. But in the case of the big magnon, for the (1,5) polarisation, we
may have been tempted: the classical curve’s q1(x) and a5(x) are identical to those of the
vacuum. For the (4, 5) polarisation, clearly we cannot. Dropping this second term from
Ω15(y) but not from Ω45(y), and then blindly using section 2.2’s formulae to generate all
the rest, we obtain a divergent correction δE. And our error is that for instance Ω18(y)
has been built using Ω15(y), and thus a pair of new poles ±y, but for this polarisation the
on-shell pole positions are not simply related, x18

±n 6= ±y.

E.3 Spinning strings

The paper [5] studies quantum corrections for spinning strings with two equal angular
momenta. When constructing the fluctuation δq(x), it uses a pair of poles at ±y. This is
justified for both the (1, 5) and the (4, 5) polarisations, just as it was for the vacuum.

But it is not justified for all the other polarisations: not all of the on-shell pole positions
come in pairs xij±n = ±y. For example the (1, 8) polarisation does not have this property.
Nevertheless Ω18(y) is constructed from Ω15(y) and Ω45(y).

Attempting to find a way to construct δq(x) without using this assumption, we tried
allowing both δp and for the two endpoints of the square-root cut to move independently.
This appears to lead to a valid fluctuation, which adds to the result of [5] the following
term in Ω45(y):

i
m

J
K(1/y)
K(1)

y

y2 − 1
. (E.4)

The change in the momentum is

δp =
α(y)
y

(1− i)K(1/y)
J . (E.5)

Here we use that paper’s notation: K(x) =
√J 2 +m2x2/4 is the branch cut term, with

J the angular momentum and m the winding.
It’s not entirely clear what to make of these new terms. We have not tried to work

out whether they affect the energy corrections for which agreement was found with world-
sheet results.
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