
J
H
E
P
1
2
(
2
0
1
0
)
0
0
7

Published for SISSA by Springer

Received: August 30, 2010

Accepted: October 25, 2010

Published: December 1, 2010

Nonlinear W∞ as asymptotic symmetry of

three-dimensional higher spin AdS gravity

Marc Henneauxa,b and Soo-Jong Reyc,d
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1 Introduction

Higher spin (HS) anti-de Sitter (AdS) gravity [1–3] is an interesting extension of AdS

Einstein-Hilbert gravity, whose various properties turn out to be highly nontrivial compared

to the latter.

This HS theory is also expected to be relevant to a variety of situations in string

theory. For example, in Maldacena’s anti-de Sitter / conformal field theory (AdS/CFT)

correspondence [4], one would like to understand the holographic dual of CFT at weak

’t Hooft coupling regime. CFTs in this regime are known to possess infinitely many towers

of HS currents [5]. By holography, this would mean that the putative closed string dual

is at small string tension or large spacetime curvature, and must contain infinitely many

towers of HS gauge fields in addition to gravity. One expects that HS AdS gravity is

the simplest framework for studying the AdS/CFT correspondence in this regime. In

this context, asymptotic symmetry was studied extensively for AdS (black hole) spacetime

as the holographic dual of symmetries of CFT at strong ’t Hooft coupling regime. An

interesting question is whether the symmetry persists as the correspondence is interpolated

to small ’t Hooft coupling regime and, if so, how we may identify it as an asymptotic

symmetry of the holographic dual, HS AdS gravity.
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(2+1)-dimensional AdS gravity is particularly interesting since the theory is simple yet

possesses a rich asymptotic symmetry [6] and provides a concrete framework for studying

the AdS/CFT correspondence. It was shown in [6] that the asymptotic symmetry algebra

is the infinite-dimensional conformal algebra in two dimensions, viz. two copies of the

Virasoro algebra V ir ⊕ V ir, with central charge

c =
3ℓ

2G
, (1.1)

where ℓ is the anti-de Sitter radius and G is the Newton’s constant. Extension to (2+1)-

dimensional AdS supergravities [7] was considered in [8, 9]. In this case, the asymp-

totic symmetry algebra is enlarged to appropriate extended superconformal algebras with

quadratic nonlinearities in the currents [10–15].

The purpose of this work is to report results on the asymptotic symmetry algebra of HS

AdS gravity in (2+1) dimensional spacetime. The reason we focus on (2+1) dimensions is

because the HS AdS gravity again takes a particularly simple form — it can be formulated

as a Chern-Simons theory based on so-called infinite-dimensional HS algebra hs(1, 1) [16,

17]. This algebra contains sl(2, R) ⊕ sl(2, R) as a subalgebra, and hence its Chern-Simons

formulation automatically contains three-dimensional AdS gravity [7, 18]. After briefly

reviewing the theory, we provide boundary conditions on the fields that are asymptotically

invariant under an infinite-dimensional set of transformations that contains the conformal

group at infinity, and whose generators are shown to close according to a classical nonlinear

W∞ algebra. This algebra is an extension of the classical version of the WN algebras of [19].

Classical [20, 21] and quantum [22] nonlinear W∞ algebras have appeared previously, but

unlike the classical W∞ algebra of [20, 21], the asymptotic algebra uncovered here has a

nontrivial central charge set by the AdS radius scale measured in unit of the Newton’s

constant. In particular, the central charge in the Virasoro subalgebra remains equal to

that of the pure gravity (1.1).

A more detailed presentation of our results as well as supersymmetric extensions will

be presented in separate works [23, 24].

2 Higher spin anti-de Sitter gravity

We first recapitulate (2+1)-dimensional AdS Einstein-Hilbert gravity coupled to an infinite

tower of HS gauge fields. It is well-known that the (2+1)-dimensional AdS Einstein-

Hilbert gravity can be reformulated as a Chern-Simons gauge theory with gauge group

SO(2, 2) ≃ SO(2, 1)×SO(2, 1). Following the pioneering work of Blencowe [16], an approach

incorporating the HS gauge fields simply replaces the gauge SO(2, 2) gauge group by a

suitable infinite-dimensional extension of it. In this work, we shall follow this approach.

We should, however, emphasize that our analysis is strictly at classical level and there will

make no difference between the Chern-Simons and the Einstein-Hilbert formulations.

The action describing the HS extension is a difference of two Chern-Simons actions [16]:

S[Γ, Γ̃] = SCS [Γ] − SCS [Γ̃] (2.1)
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where Γ, Γ̃ are connections taking values in the algebra hs(1, 1). This algebra is a ‘higher

spin algebra’ of the class introduced in [25]. Its properties needed for the present discussion

are reviewed in appendix A, to which we refer for notations and conventions. The con-

nections contain all HS gauge field components as well as the metric and spin connection.

In (2.1), SCS is the Chern-Simons action, defined by

SCS [Γ] =
k

4π

∫

M

Tr

(

Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ

)

. (2.2)

The 3-manifold M is assumed to have topology R × D where D is a 2-manifold with at

least one boundary on which we shall focus our analysis and which we refer as ‘infinity’.

The parameter k is related to the (2+1)-dimensional Newton constant G as k = ℓ/4G,

where ℓ is the AdS radius of curvature.

It is well known that the HS theory (2.1) embeds the AdS gravity by truncation.

Truncating the connections Γ, Γ̃ to the sl(2, R) components Aa, Ãa and identifying them

with the triad and the spin connection:

Aa
i = ωa

i +
1

ℓ
ea
i and Ãa

i = ωa
i − 1

ℓ
ea
i , (2.3)

one finds that the action takes the form

S[Γ, Γ̃] =
1

8πG

∫

M

d3x

(
1

2
eR +

e

ℓ2
+ 2LHS

)

, (2.4)

the Einstein-Hilbert gravity with negative cosmological constant. The equations of mo-

tion read

dea + ǫabcωb ∧ ec = 0

dωa +
1

2
ǫabcωb ∧ ωc +

1

2ℓ2
ǫabceb ∧ ec = 0 . (2.5)

The last term in (2.4) denotes contribution of higher spin fields. For instance, retaining

the sl(3, R) components Aab, Ãab as well and identifying them with

Aab
i = ωab

i +
1

ℓ
eab
i and Ãab

i = ωab
i − 1

ℓ
eab
i , (2.6)

one easily find that the ellipses in (2.4) takes the form

LHS = ǫabce
a ∧ (ωbd ∧ ωce + ebd ∧ ece)ηde + eab ∧ (dωab + ǫdeaω

d ∧ ωb
e)] . (2.7)

Equations of motion read

deab + 2ǫad
e(ed ∧ ωeb + ωd ∧ eeb) = 0

dωab + 2ǫad
e(ωd ∧ ωeb +

1

ℓ2
ed ∧ eeb) = 0 . (2.8)

These are precisely the spin-3 field equations in the background of negative cosmological

constant, expressed in the first-order formalism. We should, however, note that the HS

theory (2.1) is not a smooth extrapolation of the AdS gravity — for example, integrating

out the massless HS gauge fields does not lead to the AdS gravity in any direct and

obvious way.
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3 Asymptotic symmetries

3.1 Boundary conditions and surface terms

With Chern-Simons formulation of the (2+1)-dimensional HS AdS gravity at hand, we are

ready to study global gauge symmetries at asymptotic infinity. We shall from now on focus

on either chiral sector in (2.1). The analysis for the other chiral sector proceeds in exactly

the same way. We shall also work in units of ℓ = 1, unless otherwise stated.

In the case of the (2+1)-dimensional AdS Einstein-Hilbert gravity, it was shown in [8,

9, 26] that the boundary conditions of [6] describing asymptotically AdS metrics is given

in terms of the sl(2, R) connections of the Chern-Simons formulation by

A ∼
[

− 1

r

2π

k
L(φ, t)X11 + rX22

]

dx+ −
[
1

r

X12

2

]

dr (3.1)

with the other chirality sector fulfilling a similar condition. Here, x± are chiral coordinates,

x± = t ± φ and L is an arbitrary function of t and φ. We denoted the sl(2, R) generators

as X11,X22,X12. See appendix A.2 for our conventions and notations.

It is convenient to eliminate the leading r-dependence by performing the gauge trans-

formation [8, 9, 26]

Γi → ∆i = Ω∂iΩ
−1 + ΩΓiΩ

−1 , Γ̃i → ∆̃i = Ω∂iΩ
−1 + ΩΓ̃iΩ

−1 , (3.2)

where Ω depends only on r and is given by

Ω =

(

r
1

2 0

0 r−
1

2

)

. (3.3)

In the new connection ∆i, the only component that does not vanish asymptotically is

∆+ ≡ ∆, given by

∆ ∼ X22 −
2π

k
L(φ, t)X11 . (3.4)

We see that the asymptotic boundary conditions are encoded entirely to the highest-weight

component, spanned in the present case by the generator X11.

We shall generalize these boundary conditions to HS gauge fields. In the conventions

and notations of appendix A.3, we proceed by allowing non-zero components of the X(2s).

Intuitively, it suffices to vary only the highest-weight components spanned by the generators

whose indices are all 1, viz. X(2s,0). Thus, we require that, after gauge transformation (3.2),

the connection ∆ behaves asymptotically as

∆ ∼ X22 −
2π

k
LX11 + 12

2π

k
M X1111 + “higher” . (3.5)

Here, “higher” denotes terms involving the generators X(2s,0) of higher spin 2s (s ≥ 3)

and L, M , . . . are arbitrary functions of t and φ. The numerical factors are chosen to get

correct normalization in the gauge functional (3.9) below.

The boundary conditions are preserved by the residual gauge transformations Λ

δ∆ = Λ′ + [∆,Λ] (3.6)
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that maintain the behavior at asymptotic infinity. Here, the prime denotes derivative with

respect to x+. Recall that Λ does not depend asymptotically on x− in order to preserve

∆− = 0 at asymptotic infinity, so the derivative with respect to x+ is also the derivative

with respect to φ. As shown in the next subsection, these asymptotic symmetries are

spanned by the gauge parameter

Λ = εX22 +
∑

s≥2

ηs+1X
(0,2s) + λ . (3.7)

Here, ε and ηs+1 are mutually independent arbitrary functions of x+. Also, λ involves only

the generators X(p,q) with at least one index equal to 1 (i.e., p > 0) and is completely

determined through the asymptotic conditions in terms of ε and ηs+1. The lower order

terms in λ take the form

λ =

(
1

2
ε′′ − 2π

k
εL + a(2,0)

)

X11 +

(
1

2
ε′ + a(1,1)

)

X12

+
∑

p≥1,q≥0,p+q=2k≥4

A(p,q)X
(p,q) , (3.8)

where a(2,0) and a(1,1) are determined by ηs+1’s (independent of ε) and where the coefficients

A(p,q) (p + q ≥ 4) are also completely determined by ε and ηs+1.

Therefore, we see that the asymptotic symmetries are completely encoded to the in-

dependent functions ε and ηs+1 in the gauge parameter (3.7). We stress again that they

are arbitrary functions of x+ and thus arbitrary functions of φ at a given time t.

According to the general principle of gauge theory, these asymptotic symmetries are

generated in the equal-time Poisson bracket by the spatial integral G[Λ] =
∫

d2xTr(ΛG) +

S∞, where (i) G ≡ (GA) are the Chern-Simons-Gauss constraints, equal to minus the factor

of the temporal components of the connection in the action, and (ii) S∞ is a boundary term

at asymptotic infinity chosen such that the variation δG[Λ] of the generator G[Λ] contains

only un-differentiated field variations under the given boundary conditions [27]. This is

the requirement that G[Λ] has well-defined functional derivatives. Applying this procedure

and using the fact that the generators X(2s,0) (which are the only ones that appear in ∆

except for X22) are paired in the scalar product with X(0,2s), one gets

G[Λ] =

∮

dφ (εL + ηM + · · · ) , (3.9)

up to bulk terms that vanish on-shell. Here, η is abbreviation of η3 and the ellipses denote

contribution of HS terms involving ηs+1 for s ≥ 3. The normalization factors in (3.5) were

chosen chosen so as not to have factors in (3.9). In the next section, we shall show that

the asymptotic symmetry generated by G[Λ] is a nonlinearly realized W∞ algebra with

classical central charges.

3.2 General structure of symmetry transformations

In the previous subsection, we argued that the gauge parameter generating the asymptotic

symmetry algebra takes the form of (3.7) where λ is given by (3.8). Here, we prove this

and further identify the general structure generating the sought-for HS symmetry algebra.

– 5 –
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The condition that ∆ + δ∆, with ∆ given by (3.5) and δ∆ given by (3.6), should take

the same form as ∆ leads to conditions on the gauge parameter Λ. This gauge parameter

has a priori the general form (3.7) but with λ not yet known. We want to prove that the

conditions on Λ yield no restriction on ε and ηs+1, while completely determine λ in terms

of ε and ηs+1. To that end, we first observe that δ∆ reads asymptotically

δ∆ = −2π

k
δLX11 + 12

2π

k
δM X1111 + “More” , (3.10)

where “More” denotes terms involving the generators X(2k,0) of higher orders (i.e., k ≥ 3).

Thus, δ∆ involves only the generators X(2k,0) (no index 2). We must therefore require that

all terms proportional to the generators X(2k) with at least one index equal to 2 should

cancel in (3.6).

To analyze this requirement, it is useful to have a notation that counts the number of

indices 1 and 2 in the generators. Therefore, we rewrite ∆ as

∆ = X22 +
∑

k≥1

N(2k,0)X
(2k,0) (3.11)

where the coefficients N(2,0) and N(4,0) are evidently proportional to L and M , respectively.

We also rewrite Λ as

Λ =
∑

k≥1

ρ(0,2k)X
(0,2k) +

∑

k≥1

ρ(1,2k−1)X
(1,2k−1) +

∑

k≥1

ρ(2,2k−2)X
(2,2k−2)

+
∑

k≥2

ρ(3,2k−3)X
(3,2k−3) +

∑

k≥2

ρ(4,2k−4)X
(4,2k−4)

+
∑

k≥3

ρ(5,2k−5)X
(5,2k−5) + · · ·

The first term in this expansion is a rewriting of εX22 +
∑

k≥2 ηk+1X
(0,2k) part, while λ is

the sum of all the other terms.

The idea now is to investigate consequences of the requirement that all terms propor-

tional to the generators X(2k) with at least one index equal to 2 ought to cancel in (3.6)

by examining (i) first the terms containing the generators X(0,2k) with no index equal to 1

in Λ′ + [∆,Λ] (viz. all indices equal to 2), (ii) next those with only one index equal to 1,

(iii) next those with only two indices equal to 1, etc.

A simple calculation shows that the coefficient c(0,2k) of X(0,2k) in Λ′+[∆,Λ] (no indices

equal to 1) is given by

c(0,2k) ∼ ρ′(0,2k) + ρ(1,2k−1) + f0(ρ(0,2i), N(2j,0)) , (3.12)

As our goal is to explicitly indicate how the structure emerges, we presented the terms only

schematically by dropping numerical factors. The term f0 is an infinite sum of bilinears in

the ρ(0,2i) ’s and the N(2j,0)’s. The first contribution to f0 comes from the bracket of X22

with
∑

k≥1 ρ(1,2k−1)X
(1,2k−1) (one 1 s replaced by one 2), while the second contribution

to f0 arises from the bracket [
∑

k≥1 N(2k,0)X
(2k,0),

∑

k′≥1 ρ(0,2k′)X
(0,2k′) ] which is the only

– 6 –
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bracket in [
∑

k≥1 N(2k,0)X
(2k,0),Λ ] yielding generators X(0,2m) with no index equal to 1.

This bracket yields other generators as well, but they only contribute to the equations

at the subsequent levels. Thus, we can regard the condition c(0,2k) = 0 as determining

the coefficients ρ(1,2k−1) of X(1,2k−1) in λ in terms of the ρ(0,2i)’s and the N(2k,0)’s of the

connection ∆.

Note that even though f is an infinite sum, there is only a finite number of terms

involving a given ρ(0,2k′) because one must have k < k′ for the bracket [
∑

k≥1 N(2k,0)X
(2k,0),

∑

k′≥1 ρ(0,2k′)X
(0,2k′) ] to yield a non vanishing term involving X(0,2m) (m = k′ − k). It is

also easy to check that c(0,2) is explicitly given by

c(0,2) = ρ′(0,2) − 2ρ(1,1) + “more” , (3.13)

where numerical factors are reinstated and “more” denotes terms independent of ρ(0,2).

The condition c(0,2) = 0 then implies the expression (3.8) for the coefficient of X12 in λ.

The next step is to examine the coefficient c(1,2k−1) of X(1,2k−1) in Λ′ + [∆,Λ] (only

one index equal to 1). By a similar reasoning, one finds

c(1,2k−1) ∼ ρ′(1,2k−1) + ρ(2,2k−2) + f1(ρ(0,2i), ρ(1,2l−1), N(2j,0)) . (3.14)

Therefore, the requirement c(1,2k−1) = 0 determines the ρ(2,2k−2)’s in terms of the ρ(0,2i−1)’s

and the ρ(1,2j−1)’s. Since the ρ(1,2j−1)’s are functions of the ρ(0,2i−1)’s that have been

determined at the previous step, the ρ(2,2k−2)’s are determined in terms of the ρ(0,2i−1)’s.

Note again that even though there is an infinite number of terms in c(1,2k−1) because of

f1, there is only a finite number of terms containing a given ρ(0,2j). One finds in particular

that c1,1 takes the schematic form

c(1,1) = ρ′(1,1) − ρ(2,0) + N(2,0)ρ(0,2) + “more” (3.15)

so that the equation c(0,2) = 0 implies the expression (3.8) for the coefficient of X11 in λ.

The triangular pattern of the procedure is now evident and proceeds similarly at the

next levels. One determines in this fashion recursively not only the coefficients ρ(1,2k−1),

ρ(2,2k−2) but also ρ(3,2k−3), ρ(4,2k−4), viz. the complete functional form of λ, in terms of

the coefficients ρ(0,2j)’s, which remain unconstrained. The procedure terminates once one

has imposed the conditions c(2k−1,1) = 0. Consequently, there is no condition imposed on

c(2k,0). Rather, the coefficient c(2k,0) determines the variation of the connection ∆ through

δN(2k,0) = c(2k,0). Notice that the procedure introduces nonlinearities through the fk’s.

We have thus established that the gauge parameter generating asymptotic symmetry

takes precisely the form given in (3.7) and (3.8).

4 Nonlinear W∞ symmetry algebra

As we explained above, the variations of the coefficients N(2k,0) of the connection ∆ under

the asymptotic symmetries are given by the equation

δN(2k,0) = c(2k,0) , (4.1)

– 7 –



J
H
E
P
1
2
(
2
0
1
0
)
0
0
7

where the c(2k,0) are the unconstrained coefficients of the generator X(2k,0) in Λ′ + [∆,Λ].

The recursive method explained in the previous section enables to determine these co-

efficients in terms of the independent parameters ρ(0,2j)’s parametrizing the asymptotic

symmetry.

We have recalled in the previous section that the coefficients N(2k,0) of the connection

∆ are themselves the generators of the gauge transformations and hence of the asymptotic

symmetries. In fact, in more compact notations, (3.9) has the form

G[Λ] =

∮

dφ
(∑

k≥1

ρ(0,2k)N(2k,0)

)

(4.2)

up to bulk terms that vanish on-shell. Again, for clarity, we kept the expression schematic

regarding normalization of the generators. They will not affect foregoing argument and

result. (We shall work out the normalization explicitly in the next section for the truncation

to k ≤ 2).

In general, the variation δO of any phase-space function O under the gauge transfor-

mation with parameter Λ is equal to {O, G[Λ]}PB where {, }PB is classical Poisson bracket.

Thus, in the present case, we have

δN(2k,0) =

{

N(2k,0)(φ),

∫

dφ′
(∑

m≥1

ρ(0,2m)(φ
′)N(2m,0)(φ

′)
)}

PB

. (4.3)

This observation enables us to read the Poisson bracket commutators of the N(2k,0)’s in (4.2)

among themselves from their variations (4.1):1

{

N(2k,0)(φ),

∫

dφ′
(∑

m≥1

ρ(0,2m)(φ
′)N(2m,0)(φ

′)
)}

PB

= c(2k,0)(φ) , (4.4)

where we have made it explicit for the angular dependence at a fixed time. By identifying

the coefficients of the arbitrary parameter ρ(0,2m) on both sides of this equation, one can

read off the Poisson brackets

{
N(2k,0)(φ), N(2m,0)(φ

′)
}

PB
(4.5)

and resulting algebra W. In the rest of this section, we sketch the general procedure of

extracting W. To illustrate the procedure concretely, in the next section, we will work out

the case corresponding to the truncation of k,m, . . . ≤ 2.

It is evident from the above analysis that the expression obtained for {N(2k,0)(φ),

N(2m,0)(φ
′)}PB is closed, in the sense that it is expressed entirely in terms of the N(2j,0)’s.

Terms that are generated from the Poisson bracket {N(2k,0)(φ), N(2m,0)(φ
′)}PB = · · · are

in fact nonlinear polynomials in the N(2j,0)’s. Therefore, the resulting gauge algebra is

not a Lie-type but a nonlinear realization thereof. Furthermore, by construction, the

1If one drops the bulk terms as can be done by fixing the gauge in the bulk, the Poisson bracket in

question is the corresponding Dirac bracket. The form of the symmetry algebra does not depend on how

one fixes the gauge because the generators are first class.

– 8 –
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Jacobi identity holds for {N(2k,0)(φ), N(2m,0)(φ
′)}PB because it always holds for the Poisson

brackets or the corresponding Dirac brackets after the bulk terms are gauge-fixed.

We claim that the resulting algebra W is a classical, nonlinearly realized W∞ with

classical central charges. It is a classical algebra because we are using the Poisson-Dirac

bracket of classical quantities and not the commutator of corresponding operators. It also

has nontrivial classical central charges.

To support this claim, it suffices to prove that

1. The algebra W contains the Virasoro algebra at lowest degree j = 1, viz. the gene-

rators L ∼ N(2,0) form a Virasoro algebra with central charge k/4π:

{L(φ), L(φ′)}PB = − k

4π
∂3

φδ(φ − φ′) +
(
L(φ) + L(φ′)

)
∂φδ(φ − φ′) (4.6)

2. The generators Mj+1 ∼ N(2j,0) have the conformal weight (j + 1):

{L(φ),Mj+1(φ
′)}PB =

(
Mj+1(φ) + jMj+1(φ

′)
)
∂φδ(φ − φ′) . (4.7)

To establish these statements, we pick up the terms proportional to ε in δL and δMj+1.

This is done by first determining the form of Λ in the particular case when the only

non-vanishing free parameter ρ(0,2j) is ρ(0,2) ≡ ε. In that case, the solution Λ is easily

determined to be

Λ = εX22 +
1

2
ε′X12 +

(
1

2
ε′′ − 2π

k
εL

)

X11 + ε
∑

j≥2

N(2j,0)X
(2j,0) , (4.8)

since with this Λ, the expression Λ′ + [∆,Λ] contains only generators X(2m,0).

The coefficients of the generators X(2m,0) in Λ′ +[∆,Λ] give furthermore the variations

of L and N(2j,0) (j > 1). These are easily derived from (4.8) using

[ X(2j,0),X12 ] = (2j)X(2j,0) . (4.9)

Explicitly, they read

δL = − k

4π
ε′′′ + (εL)′ + ε′L (4.10)

δN(2j,0) = (εN(2j,0))
′ + jε′N(2j,0) (j > 1). (4.11)

The relations (4.6) and (4.7) follow immediately from these.

Explicit form of the Poisson-Dirac brackets of the resulting W∞ algebra and classical

central charges therein are obtainable by straightforward though tedious computations.

5 Truncation to W3 algebra

To illustrate the above procedure explicitly, we truncate the theory by assuming that all

the generators N(2j,0) with j > 2 are zero. i.e., we keep only L and M . This amounts to

truncating the HS algebra by keeping only Xαβ, Xαβγδ and setting all the other generators
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to zero. As shown in appendix B, this is a unique, consistent truncation as the Jacobi

identity remains to hold. The resulting algebra is sl(3, R), albeit not in a Chevalley-Serre

basis.2 We now show that L and M fulfill the classical nonlinear W3 algebra with classical

central charges.

The condition that ∆ + δ∆, with ∆ given by

∆ ∼ X22 −
2π

k
LX11 + 12

2π

k
M X1111 (5.1)

and δ∆ given by (3.6), should take the same form as ∆ leads to conditions on the coefficients

of the gauge parameter Λ in the expansion

Λ = aX11 + bX12 + εX22 + mX1111 + nX1112 + pX1122 + qX1222 + ηX2222 (5.2)

These conditions are explicitly that a, b are determined as

b =
1

2
ε′, a =

1

2
ε′′ − 2π

k
εL − 2

2π

k
ηM . (5.3)

and that m,n, p, q are determined as

m =
1

24
η′′′′ − 1

6
· 2π

k
(ηL)′′ − 1

4
· 2π

k
(η′L)′

−2π

k

(
1

4
η′′ − 2π

k
ηL

)

L + 12
2π

k
εM

n =
1

24
η′′′ − 1

6
· 2π

k
(ηL)′ − 1

4
· 2π

k
η′L

p =
1

12
η′′ − 1

3
· 2π

k
ηL

q =
1

4
η′ . (5.4)

One also obtains the gauge variations of L and M as

δL = − k

4π
ε′′′ + (Lε)′ + ε′L + 2(ηM)′ + η′M (5.5)

and

δM =
1

288
· k

2π
η′′′′′ − 1

72
(ηL)′′′ − 1

48
(η′L)′′

− 1

12

((
1

4
η′′ − 2π

k
ηL

)

L

)′

− 1

12

(
1

6
η′′′ − 2

3
· 2π

k
(ηL)′ − 2π

k
η′L

)

L

+(εM)′ + 2ε′M . (5.6)

2The relation between the Chern-Simons formulation and the symmetric tensor formulation is implicit

in [16] (using the vielbein/spin connection-like Vasiliev formulation of higher spins), and underlies the fact

that [16] is a theory of higher spins coupled to gravity. Truncating this general relation to sl(3), one gets

the ‘metric + 3-index symmetric tensor’ formulation of the coupled ‘spin-2 + spin-3’ system. This was

briefly recalled at the end of section 2.
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Now, as already recalled above in the general case, the variation δO of any phase space

function O under the gauge transformation with parameter Λ is equal to {O, G[Λ]}PB where

{, }PB is the classical Poisson bracket. One can use this to find the Poisson brackets of L

and M from their variations, taking (3.9) into account.

One finds explicitly that

{L(φ), L(φ′)}PB = − k

4π
∂3

φδ(φ − φ′) +
(
L(φ) + L(φ′)

)
∂φδ(φ − φ′)

{L(φ),M(φ′)}PB =
(
M(φ) + 2M(φ′)

)
∂φδ(φ − φ′)

{M(φ),M(φ′)}PB =
1

288
· k

2π
∂5

φδ(φ − φ′) − 5

144

(
L(φ) + L(φ′)

)
∂3

φδ(φ − φ′)

+
1

48

(
L′′(φ) + L′′(φ′)

)
∂φδ(φ − φ′)

+
1

9
· 2π

k

(
L2(φ) + L2(φ′)

)
∂φδ(φ − φ′) .

This is the classical W3 algebra studied previously in various different contexts [19, 28, 29].

Upon Fourier mode decomposition, the nonlinear W3 algebra is given by [28]

i
[

Lm, Ln

]
= (n − m)Lm+n +

c

12
m(m2 − 1)δm+n,0 (5.7)

i
[

Lm, Vn

]
= (2m − n)Vm+n

i
[

Vm, Vn

]
=

c

360
m(m2 − 1)(m2 − 4)δm+n,0 +

16

5c
(m − n)Λm+n

+(m − n)

(
1

15
(m + n + 2)(m + n + 3) − 1

6
(m + 2)(n + 2)

)

Lm+n

where

Λm =

+∞∑

n=−∞

Lm−n Ln . (5.8)

sums quadratic nonlinear terms. The classical central charges are given by c = 3ℓ/2G. The

quantum counterpart of this W3 algebra was studied by Zamolodchikov [19] in a different

context. Comparing it with the above classical algebra, one sees that the quantum effects

enter to regularization of the quadratic nonlinear terms Λm’s and to the shift 5c → 5c+22

of the overall coefficient of the quadratic terms. This fits with the fact that classical limit

takes c → ∞.

6 Discussions

In this paper, we have established that the asymptotic symmetries of the HS AdS gravity

form a nonlinear W∞ algebra. A salient feature of the emerging classical algebra is that it

is determined in a unique manner from the gauge algebra hs(1, 1) and the Chern-Simons

parameter k = ℓ/4G, without an extra free parameter. Moreover, this classical algebra

has from the outset definite nontrivial central charges expressed solely in terms of the AdS

radius and the Newton’s constant (and nothing else). In particular, the central charge

appearing in the Virasoro subalgebra is just the AdS central charge (1.1).
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Truncation of the higher spin gauge algebra hs(1, 1) up to a finite spin s ≤ N is

inconsistent when N > 2, since the corresponding generators do not form a subalgebra

(except when N = 2). The Poisson-Dirac commutators of X(2j) with X(2j′) involve indeed

generators X(2(j+j′−1)) of degree 2(j + j′−1), which is strictly higher than 2j and 2j′ when

j > 1, j′ > 1. One may try to ignore these higher degree terms but this brutal truncation

yields commutators that do not fulfill the Jacobi identity (except for N = 3 as we pointed

out, see appendix A) and so this cannot be done (except for N = 3).3 On the other hand,

from the purely algebraic viewpoint, one might opt to start from the WN algebra with

finite N obtained from algebra of sl(N) gauge invariance and take the limit N → ∞ to

obtain a universal W -algebra. However, these two approaches are completely different in

spirit since in general the truncation of hs(1, 1) up to a finite spin N does not yield the

algebra sl(N) for any finite N > 2.

Nonlinearity of the Poisson-Dirac brackets or commutation relations (compared to the

Lie-type V ir = W2 algebra) is an important and distinguishing characteristic of the WN

operator algebra for spin N > 2. However, in the usual large-N limit, this nonlinearity is

typically lost [30–33]: the resulting W∞ algebra is usually linear (and also in some cases

the classical central charge is absent). Our approach obtains the W∞ gauge algebra in

a completely different way, and in particular does not rely on such a limiting procedure.

We note that the nonlinearity of the algebra puts strong constraints through the Jacobi

identities. Thus, the nonlinear W∞ algebra derived in this work, which is inherent to the

hs(1, 1)-based HS extension of the (2+1)-dimensional AdS Einstein-Hilbert gravity — in

the sense that it uniquely determined by it — has a rich and interesting structure. More

detailed analysis of this algebraic structure, extensions to supersymmetry and inclusion of

spin-1 currents will be reported elsewhere [23, 24].

Related to this, it has been known previously that the linear version of the W∞ algebra

is related to the first Hamiltonian structure of the KP hierarchy [34]. In our nonlinearly re-

alized version of the W∞ algebra, we speculate the relation goes to the second Hamiltonian

structure of the KP hierarchy, the structure proposed by Dickey [35] from generalizing the

Gelfand-Dickey brackets [36] to pseudo-differential operators. It is an interesting question

what these relations tell us about the spectrum of classical solutions of the HS AdS gravity.

It is tempting to interpret that the presence of the W∞ algebra at infinity implies that

the classical solutions of the (2+1)-dimensional HS AdS gravity are labeled by infinitely

many conserved charges, among which mass and angular momentum are just the first

two. If the interpretation is correct, we expect that these charges play a central role in

understanding microstates responsible for the black hole entropy in the regime where the

spacetime curvature is large or, in string theory context, the string scale is very low.4 A

possible holographic dual in this regime was explored recently by Witten [37] for pure AdS

gravity. There, an indication was found that two-dimensional CFT duals are the monster

theory of Frenkel, Lepowsky and Meurman or discrete series extensions thereof. Once

3That the case N = 3 works is somewhat unanticipated and should be considered exceptional from the

hs(1, 1) point of view.
4One should also mention here the intriguing appearance of the linear W∞ algebra found in [38, 39] in

the context of black holes and Hawking radiation.
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embedded to string theory, one expects this regime must includes (nearly) massless HS

gauge fields in addition to the gravity. This brings in a host of intriguing questions: Are

there HS extensions of the monster theory and, if so, what are they? Can the extension be

related or interpreted physically to condensation of long strings?

In the context of string theory, the massless HS gauge fields were interpreted to arise

via a sort of inverse Higgs mechanism in the limit of vanishing string mass scale (viz. string

tension) [40]. If so, the HS gauge fields would become massive at large but finite string mass

scale [41]. In CFT dual, this would be reflected to anomalous violation of conservation laws

of the HS currents. Nevertheless, the W∞ symmetry algebra discovered in this work would

be an approximate symmetry of the CFT duals and should still be useful for understanding

these theories.

In addition to the weak ’t Hooft coupling regime alluded in the Introduction, there is

another situation in string theory where the result of this paper may be applicable. The

near-horizon geometry of the small black strings carrying one or two charges is singular

in Einstein-Hilbert gravity. One expects that, by the stretched horizon mechanism [42],

string corrections resolve it to the (2+1)-dimensional AdS spacetime times a compact

7-dimensional manifold M7 characterizing the black string horizon with residual chiral

supersymmetries. [43]. A concrete suggestion like this was put forward for the ‘stretched

horizon’, near-horizon geometry of the macroscopic Type II and heterotic strings [44–46].

In both cases, the near-horizon geometry has curvature radius of order the string scale.

So, not just the massless but also all HS string states are equally important for finite

energy excitations. This suggests that (2+1)-dimensional HS AdS supergravity theories

are appropriate frameworks. It would then be very interesting to identify the origin of the

W∞ symmetry algebra as well as the classical central charges associated with HS currents

from the macroscopic superstring viewpoint.

On a more speculative side, our result may also find a potentially novel connection

of the (2+1)-dimensional HS AdS gravity to higher-dimensional gravity. It has been

known [47–49] that 4-dimensional self-dual gravity is equivalent to a large N limit of

2-dimensional nonlinear sigma model with Wess-Zumino terms only. The self-dual sector

has an infinite-dimensional symmetry algebra which includes the W∞ algebra. This hints

that (2+1)-dimensional HS AdS gravity might be ’holographically dual’ to 4-dimensional

self-dual gravity, providing a concrete example of heretofore unexplored gravity-gravity

correspondence.

Centered to all these issues, the most outstanding question posed by our work is:

What are the black holes carrying W∞ hairs in HS AdS gravity?

We are currently exploring these issues and intend to report progress elsewhere.
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A Higher spin algebra

A.1 Definition

The higher spin algebra A in (2+1)-dimensional spacetime is the direct sum of two chiral

copies of hs(1, 1):

A = hs(1, 1)L ⊕ hs(1, 1)R (A.1)

The infinite-dimensional algebra hs(1, 1) itself is defined as follows. Consider an auxiliary

space P of polynomials of even degree in two commuting spinors ξ1, ξ2. One defines the

trace of a polynomial f ∈ P as

Tr f = 2f(0) ≡ 2f(ξ)
∣
∣
∣
ξ=0

. (A.2)

Here, the factor 2 is included to match the traces of (2 × 2) matrices considered below.

Then, the elements of the algebra hs(1, 1) are the elements of P with no constant term,

viz. traceless polynomials.

To define the Lie bracket, one first considers the star-product defined by

(f ⋆ g)(ξ) = exp

[

i

(
∂

∂η1

∂

∂ζ2
− ∂

∂η2

∂

∂ζ1

)]

f(η)g(ζ)

∣
∣
∣
∣
η=ζ=ξ

(A.3)

The star-product is associative. Although non-commutative, the star-product is trace-

commutative:

(f ⋆ g)(0) = (g ⋆ f)(0) , (A.4)

viz.

Tr(f ⋆ g) = Tr(g ⋆ f) (A.5)

because f and g are polynomials of even degree. The Lie bracket in the algebra hs(1, 1) is

just the ⋆-commutator (modulo a numerical factor chosen for convenience to be 1
2i

):

[f, g] ≡ 1

2i
(f ⋆ g − g ⋆ f) = sin

(
∂

∂η1

∂

∂ζ2
− ∂

∂η2

∂

∂ζ1

)

f(η)g(ζ)

∣
∣
∣
∣
η=ζ=ξ

. (A.6)

It fulfills the Jacobi identity because the star-product is associative.
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The Lie algebra hs(1, 1) possesses a symmetric and invariant bilinear form denoted

(, ), defined by

(f, g) ≡ Tr(f ⋆ g) . (A.7)

This bilinear form is symmetric because of the trace-commutativity (A.5) and invariant

(f, [g, h]) = ([f, g], h) (A.8)

because of the associativity of the star-product and (A.5) again. The invariant symmetric

bilinear form is non-degenerate.

A.2 sl(2, R) subalgebra

The polynomials of degree 2 form a subalgebra isomorphic to sl(2, R). Taking as a basis

of this subspace as

X11 =
1

2
(ξ1)2 , X12 = ξ1ξ2 , X22 =

1

2
(ξ2)2 , (A.9)

one finds

[X11,X12] = 2X11 , [X11,X22] = X12 , [X12,X22] = 2X22 . (A.10)

One can thus identify the X(αβ) with the standard Chevalley-Serre generators {h, e, f} as

follows: X12 = −h, X11 = −e and X22 = f .

Moreover, traces of the products of X(αβ)’s match with traces of the products of the

corresponding (2 × 2) matrices. The non-zero scalar products are

(X12,X12) = 2 , (X11,X22) = −1 , (X22,X11) = −1 . (A.11)

The subalgebra hs(1, 1) splits into a direct sum of representations of sl(2, R):

hs(1, 1) = ⊕k≥1Dk , (A.12)

where the spin k representation Dk corresponds to the homogeneous polynomials of degree

2k. The trivial representation D0 does not appear because we consider traceless polynomi-

als. It is straightforward to verify that the subspaces Dk and Dk′ are orthogonal for k 6= k′

and that the scalar product is non-degenerate on each Dk.

We emphasize that, as showed in the text, the representation Dk yields asymptotically

the generators Mk+1 of conformal spin k +1. Notice the shift of the spin label by one unit.

A.3 More commutation relations

We list here the commutation relations involving D1 and D2. A basis of the representation

D2 of hs(1, 1), polynomials of order 4, may be taken to be

X1111 =
1

4!
(ξ1)4 , X1112 =

1

3!
(ξ1)3ξ2 , X1122 =

1

4
(ξ1)2(ξ2)2 ,

X1222 =
1

3!
ξ1(ξ2)3 , X2222 =

1

4!
(ξ2)4 .
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More generally, we define

X(p,q) ≡ X1 · · · 1
︸ ︷︷ ︸

p

2 · · · 2
︸ ︷︷ ︸

q

=
1

p!

1

q!

(
ξ1
)p (

ξ2
)q

with p + q even (A.13)

The vectors X(p,q) with p+q = 2k form a basis of Dk. We use the collective notation X(2k)

for the X(p,q)’s with p + q = 2k.

The brackets of the X(4)’s with the X(2)’s are given by

[X11,X1111] = 0 , [X11,X1112] = +4X1111 , [X11,X1122] = +3X1112 ,

[X11,X1222] = +2X1122 , [X11,X2222] = +X1222 ,

[X12,X1111] = −4X1111 , [X12,X1112] = −2X1112 , [X12,X1122] = 0 ,

[X12,X1222] = +2X1222 , [X12,X2222] = +4X2222 ,

[X22,X1111] = −X1112 , [X22,X1112] = −2X1122 ,

[X22,X1122] = −3X1222 , [X22,X1222] = −4X2222 , [X22,X2222] = 0 .

The brackets between X(4)’s are

[X1111,X1112] = 20X111111 , [X1111,X1122] = 10X111112 ,

[X1111,X1222] = 4X111122 −
1

3
X11 ,

[X1111,X2222] = X111222 −
1

3!
X12 ,

[X1112,X1122] = 8X111122 + X11 ,

[X1112,X1222] = 8X111222 +
1

3
X12 ,

[X1112,X2222] = 4X112222 −
1

3
X22 ,

[X1122,X1222] = 8X112222 + X22 ,

[X1122,X2222] = 10X122222 , [X1222,X2222] = 20X222222 .

The spin-2 generators are orthogonal to all other spin-s generators for s > 2. Their

scalar products among themselves are given by

(X1111,X2222) =
1

12
, (X1112,X2221) = −1

3
, (X1122,X2211) =

1

8

while all other scalar products are zero.

B Truncation to sl(3, R)

The spin-1 and spin-2 generators {X(2),X(4)} span an 8-dimensional space. This is not

a subalgebra since the brackets of two spin-2 generators contain terms involving spin 3-

generators x(6). If one forces these terms to zero by hand, the new brackets between spin-1

and spin-2 generators defined in this way close. In general, there is no guarantee that
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they fulfill the Jacobi identity since the brackets of the spin-3 generators with the spin-2

generators contain spin-2 generators.

It turns out this truncation is special, as the Jacobi identities are fulfilled. Notice that

such a feature does not extend straightforwardly to truncation to higher levels. The Lie

algebra defined by the truncation to spin-1 and spin-2 is actually isomorphic to sl(3, R).

The easiest way to see this is to exhibit the isomorphism by expressing the Chevalley-Serre

generators {H1,H2, E1, E2, F1, F2} of sl(3, R) in terms of the {X(2),X(4)} generators. We

define

H1 = −1

4

(

X12 + 2
√

3X1122

)

, H2 = −1

4

(

X12 − 2
√

3X1122

)

,

E1 = +
1

2

(

X11 +
√

3X1112

)

, E2 = +
1

2

(

X11 −
√

3X1122

)

,

F1 = −1

4

(

X22 +
√

3X1222

)

, F2 = −1

4

(

X22 −
√

3X1222

)

,

E3 = −
√

3X1111, F3 =

√
3

2
X2222

The mapping

H1 → h1 , H2 → h2

E1 → e1 , E2 → e2 , E3 → [e1, e2] ,

F1 → f1 , F2 → f2 , F3 → [f1, f2]

preserves the bracket and is the isomorphism we are after.

Note added. After completing this work, we were informed by Andrea Campoleoni,

Stefan Fredenhagen, Stefan Pfenninger and Stefan Theisen that they considered asymptotic

symmetries for finite component, higher spin models in three dimensions based on sl(N, R)

(or other real forms of sl(N, C)) and obtained the WN algebra. Our result treats the

infinite tower of higher spin fields on equal footing from the outset and directly obtains the

nonlinearly realized, centrally extended W∞ symmetry algebra.
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