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perturbations. Next, we determine the spectrum of bound states and their behaviour.
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1 Introduction

Quoting Edward Witten [1]: “One side of what theoretical physicists do is to try to un-
derstand the fundamental equations of nature, and the other side is to try to solve the
equations in different situations and work out predictions for what will happen.”

While this paper discusses a new hypothetical constituent of the Universe in the form
of an ultralight scalar boson, our focus will be on the latter aspect. The equation de-
scribing this boson is actually quite simple: a massive scalar field with no self-interactions,
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minimally coupled to gravity. However, our specific interest lies in a particular class of
solutions that describe a self-gravitating, spherically-symmetric, stationary configuration
of the scalar in the presence of a black hole (BH) at the center. Furthermore, we will adopt
an analytical, albeit approximate, approach to study such solutions.

The main motivation for considering ultralight scalar fields arises from the existence of
dark matter (DM). Within a wide mass range of 10−22−10−21 eV to 10 eV, if we assume that
all of the dark matter originates from the light scalar and take into account the density
of dark matter in the galactic halo, the occupation number of the particles becomes so
large that they behave as oscillating classical fields. Hence, this scenario is commonly
referred to as wave dark matter (WDM) [2–14]. The most compelling example within this
category is the QCD axion, followed perhaps by axion-like particles (ALP) predicted by
string theory [15–18].

At the lighter end of the mass spectrum, the scalar is known as fuzzy dark mat-
ter (FDM). In particular, FDM was proposed to address certain issues pertaining to the
small-scale features observed in simulations conducted using conventional cold dark matter
models [7].

In the presence of gravity, a free scalar field can support itself against gravitational
collapse by the quantum property that particles cannot be localized beneath distances
of the order of their Compton wavelength. The resulting (quasi-)stationary solutions of
the field equations of motion are commonly known as boson stars (for a complex scalar
field) [19–23], oscillatons (for a real scalar) [24–28], or solitons (the term we will use in
the following). There exists an upper limit to the mass of a soliton Msol, as a function of
the scalar field mass, in order to prevent collapse into a black hole. Simulations [12, 29]
indicate that fuzzy dark matter halos typically exhibit a solitonic core surrounded by a
halo with a Navarro–Frenk–White (NFW) profile [30]. Numerous papers have compared
this expectation against observational data [31–36]. However, our work deviates from this
approach and instead addresses a different question: how is the wave dark matter soliton
in a galactic halo influenced by the presence of a supermassive black hole (SMBH) at the
center of the soliton? For this reason, we will take a broader perspective than fuzzy dark
matter and consider the mass µ of the scalar as a free parameter within the WDM range.

An important element, once additional matter in the form of a black hole is added to
the scalar condensate, is the boundary condition at the black hole horizon. In much of
the literature, which primarily focuses on distances significantly larger than the black hole
horizon rBH, its effect is often neglected. While the causal solution should be outgoing
(entering the horizon), in principle the time-reversed mode also exists. When solving the
equations from infinity, one generically encounters a superposition of both modes at the
horizon. Prohibiting the non-causal mode of the scalar field could impact the solution,
potentially even at distant locations. Numerical control is challenging due to the presence
of the horizon and the highly oscillating nature of the solution. Therefore, as mentioned
earlier, we will instead employ an analytic approach. For other investigations on how a
black hole modifies the soliton see [34, 37–42]. Black hole accretion of diffuse scalar is
studied instead in [43–45].

The structure of the paper is as follows. We begin section 2 discussing the case where
the backreaction of dark matter can be neglected, and the equation for the scalar field
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reduces to the Klein-Gordon equation in a Schwarzschild background. In such cases there
exists more literature, dating back to Starobinskii [46] and briefly summarized in [14], and
the exact solution in terms of a special function, known as the confluent Heun function [47],
has been derived. However, manipulating this exact solution is challenging. Therefore, a
systematic exploration of the resulting hairy black hole solutions was conducted in [44]
for different values of the dark matter Compton wavelength ℏ/µ compared to rBH, in the
case where dark matter has no angular momentum. Contrary to solitonic solutions, these
profiles decay like a power law at large distances, thus they endow the black hole with “hair”
that is then matched to the halo. Notice that no-hair theorems do not apply because the
scalar field is not static.

We will address this scenario using different techniques that provide better control over
the approximate solutions and allow for the inclusion of spinning dark matter. In the large
mass (or particle) limit, µrBH ≫ 1, the method of uniform approximations [48], which
generalizes the standard WKB approach, will be employed. In the opposite (wave) limit
µrBH ≪ 1, where both WKB and uniform approximations fail, the approximate solution
will be derived by employing the technique of boundary layer theory. The particle limit
solution will be sensitive to the boundary condition at the horizon at all distances. On
the other hand, in the wave limit, the boundary conditions become negligible within a few
black hole radii. In addition our solution enables us to compute the dynamical response
coefficients (Love numbers) for a massive scalar field in the small mass limit. Where they
overlap, our results are consistent with [49, 50].

The intermediate mass range µrBH ∼ 1, with non-zero angular momentum, poses addi-
tional challenges and will be thoroughly discussed in appendix A. This range is particularly
intriguing as it pertains to cases where the Compton wavelength of the light scalar field is
comparable to the black hole horizon, resulting in a faster growth rate of the superradiance
instability. To investigate this instability, our computations would need to be generalized
to a Kerr background. However, even for non-spinning black holes, our analytic formulas
can be compared with the results obtained in [51] by numerically evaluating the exact Heun
function solution.

Finally, we end section 2 by discussing solitons (of mass Msol) at the center of the
dark matter halo whose dynamics is dominated by the SMBH, MBH/Msol ≫ 1. These
solutions are similar to the previously discussed hairy black hole profiles up to a length scale
r ≲ rBH/|γ|, where µγ is the binding energy of a single scalar particle. At greater distances,
the solution is exponentially suppressed. A second difference is that the frequency has a
tiny imaginary part related to the inverse time of absorption of the soliton, which is meta-
stable. We will show that causal boundary conditions at the black hole horizon impose the
upper bound µrBH ≪ 1 for any black hole dominated soliton. When this bound is satisfied,
causal boundary conditions do not need to be explicitly checked.

More interesting is the case where the soliton dominates the dynamics, at least far
from the SMBH. This can happen in the opposite limit, MBH/Msol ≪ 1, and it will be
discussed in section 3. The soliton mass can be related to the halo mass via the numerically
extrapolated soliton-halo relation, however we will simply keep the soliton mass as a free
parameter since we do not model the halo. Neglecting the halo will not significantly affect
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the solution, as long as the soliton dominates over the halo density. In this scenario a
natural question arises: can the soliton dominate the dynamics at all length scales, even
down to the size of the black hole’s event horizon? As we will see, our analysis reveals that
this is never the case. Regardless of how small MBH is, there always exists a length scale,
denoted as re, where the effect of the black hole becomes parametrically equal to that of
the soliton. Notably, this length scale satisfies the condition rBH ≪ re ≪ rsol, where rsol
corresponds to the characteristic size of the soliton. For r ≫ re the self-gravity dominated
solution was studied both numerically [12, 29, 41, 42] and analytically [52], while for r ≪ re

it reduces to the one discussed by Hui et al. [44] for dynamics dominated by the SMBH.
The two solutions will be matched at r ∼ re by imposing continuity. We will discover that
soliton stability under gravitational collapse imposes the upper bound µrBH ≪ MBH

Msol
(≪ 1)

for any self-gravity dominated soliton. We will conclude that also these kinds of solitons are
only possible in the (very) small mass regime µrBH ≪ 1, when causal boundary conditions
are unimportant.

Conventions: we will set ℏ = c = 1 throughout the paper, together with rBH =
2GMBH = 1 within section 2. However, we will restore this value in a few key expressions
and in section 3 for the sake of clarity.

2 Black hole domination

Our starting point is a complex scalar field of mass µ in a black hole background. Minimal
coupling leads to the equation of motion

□ϕ − µ2ϕ = 0 (2.1)

where the background metric is strictly Schwarzschild and gravitational backreaction is
assumed to be negligible, postponing the discussion of a self-gravitating scalar.

Exact solutions to this equation are known in terms of the confluent Heun function.
However, these solutions are not transparent or easily understandable.1 The confluent Heun
function is a special function that can be quite complex, making it difficult to gain insight
into the behavior of the solutions just by examining the function itself. To give an example,
the exact solution does not provide an explicit relation between the density of dark matter
at large distance and the density near the horizon. Progress in this direction was achieved
by Bonelli et al. in [53], where they express these connection formulas in terms of a series.
While their expressions are in principle exact, our goal is to find instead an approximate
solution for the scalar background, valid at all distances, which, on the other hand, is
expressed in terms of significantly simpler formulas. One of the results of our analysis is
the identification of the different length scales that affect the field profile as a function of
distance. These length scales determine where the field’s behaviour undergoes significant
changes. However, these length scales are not readily apparent when considering only the
Heun function, emphasizing the need for alternative approaches with simpler expressions.
Finally, we extend the analysis of Hui et al. [44] by discussing also the case of spinning
dark matter.

1Besides, software like Mathematica has some difficulties in handling and plotting this function.
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The first step is to specify the time and angular dependence of the field. We look
for solutions with definite frequency ω and angular momentum l, m. Restricting to one
frequency is particularly natural because the equation is linear. Barring bound states, the
field must have energy at least equal to its own mass, and as a first approximation we will
neglect excited states thus setting ω = µ. The implication is that the energy density of the
field ∼ |∂tϕ|2 is independent of time and so is the backreaction on the metric (which for
now we take to be negligible).

A real scalar field would obey the same differential equation but its time dependence
would be ∼ cos(ωt). The energy density ρ ≃ 1

2

(
ϕ̇2 + µ2ϕ2

)
would not vary with time,

but the other terms in the energy-momentum tensor would, leading to a small mixing with
higher harmonics and a slow decay of the field due to gravitational radiation.

The usual separation of variables ansatz

ϕ → e−iωtYl,m(θ, ϕ)ϕ(r) (2.2)

brings (2.1) to the form (putting rBH = 1)

r(r−1) ddr

(
r(r−1)dϕ

dr

)
+V (r)ϕ=0, V (r)≡ (ω2−µ2)r4+µ2r3−l(l+1)r(r−1) (2.3)

The form of the derivative operator that acts on ϕ suggests the change of variable

r̃ ≡ ln
(
1− 1

r

)
, dr̃ = dr

r(r − 1) (2.4)

because the derivative term becomes d2ϕ

dr̃2 . The equation takes the form of a 1d Schrödinger
equation where r̃ goes from −∞ being the horizon to r̃ = 0− being large physical distances.
r̃ will only play a formal role in what follows: when talking about distances, we will always
mean r. This definition will prove convenient for our purposes because the derivative
term of (2.3) will not change once angular momentum is included. We stress that r̃ is
not the tortoise coordinate usually employed to analyze this kind of problems. From our
perspective, this change of variables is more natural because it is the standard trick that
one uses to eliminate the first order derivative in a second order differential equation. This
step will allow us to employ WKB methods to look for a solution of (2.3).

Most of the literature assumes that, if we are only interested in r ≫ rBH, we can
replace (r−1) with r in equation (2.3) and the horizon can be entirely neglected. However,
as pointed out by Hui et al. [44] and Baumann et al. [54], the role of the horizon scale is
two-fold. Besides trivially entering equation (2.3), rBH is also a boundary where we have
to impose boundary conditions on ϕ.

To be more explicit, we will see that the two linearly independent solutions of (2.3)
are waves decaying at infinity, one infalling and one outgoing. One could imagine setting
up a scattering experiment by choosing the amplitude of the infalling wave at infinity, the
reflected outgoing wave being completely fixed. What picks the amplitude of the outgoing
wave? The answer is the causal boundary condition we impose at the horizon.

Without this boundary condition, the solution will generically be inaccurate at all
distances (if one includes other interaction, such as self-gravitation of dark matter, the
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solution will be affected only if the black hole is dominating the dynamics). This absence of
decoupling between black hole horizons and large scales is not unheard of: it is reminiscent
of the black hole Love numbers which, although defined in terms of the behaviour of the
field at large distances, are tuned to zero by the presence of the horizon. We will actually
compute such tidal response coefficients in equation (2.36). Our goal in the second part of
the paper will be to check the effects of this boundary condition and develop approximations
for the field profile at different distances.

2.1 Large µrBH regime

When attempting to find a solution for a challenging second-order differential equation, a
very natural approach is to try the WKB approximation. Despite its high accuracy, the
WKB approximation is known to be ineffective near turning points, which are locations
where the particle would classically come to a halt. To address this, we begin by determin-
ing the range of the parameter space (µ, l) where the WKB approximation remains valid
throughout. This will translate into a lower bound on µ.

Looking at equation (2.3), the turning points are given by V (r) = 0. We then begin
our discussion by studying the sign of V as a function of r. First,

V (1) = +µ2, V (r → ∞) = +∞ (2.5)

are both positive. However, V (r) can develop two zeros at r > 1 and turn negative between
them. Solving for V (r) = 0 we get

r1,2 ≡ l2 + l ∓
√
(l + l2)(l + l2 − 4µ2)

2µ2 (2.6)

Thus there are turning points for small µ and non-zero l. To be more precise, only the
mass range

µ ≥ µc ≡
√

l + l2

2 (2.7)

is free of turning points. The location of these points is well approximated by

r1 ≃ 1 + µ2

l + l2
, r2 ≃ l + l2

µ2 (2.8)

in the small mass regime. We now assume µ ≫ µc and apply the WKB approximation,
leaving the small µrBH case for later.

2.1.1 Uniform approximations

Assuming µ ≫ µc(l) we could write down the WKB solution of equation (2.3) in the
absence of turning points, but this would turn out to be inaccurate for l = 0. To have
proper control of the approximated solution, we will rather derive the WKB approximation
and the condition for its validity. Another motivation for taking this route is because it
allows us to introduce the framework of uniform approximations (which vastly generalizes
WKB) in a simple setting. We will use this more general framework in appendix A, where
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we will deal with two turning points of the potential close to each other. A comprehensive
reference for uniform approximation techniques is [48].

The key insight of uniform approximations is to substitute (2.3) with a ‘similar’ differ-
ential equation for a new function f(x), defined over a new domain x ∈ (1,∞). We want
the new differential equation to be explicitly solvable and to have the same singularity
structure (i.e. zeros and poles inside the domain of interest) as the original one (2.3). We
will call this the ‘similarity conditions’. Under these conditions, we will be able to write
down an approximate solution of (2.3) in terms of f(x) by suitably “stretching” x into r.

We choose f(x) to obey

(x − 1) d
dx

(
(x − 1)df

dx

)
+ Γ(x)f(x) = 0 (2.9)

with Γ(x) ≡ 1.2 To simplify the derivative term, we define (similarly to (2.4))

x̃ ≡ ln(x − 1), dx̃ = dx

x − 1 (2.10)

Since the derivative term has the same zeros in both (2.3) and (2.9), and both V (r) and Γ
are always positive, we can expect the solutions of (2.9) to be a slight deformation of those
of (2.3).

We formalize this idea by introducing an unknown function x̃(r̃), which will quantify
this stretching

ϕ(r̃) ≡
(dx̃

dr̃

)− 1
2

f(x̃(r̃)) (2.11)

Upon substitution in (2.3) and making use of (2.9), we obtain an equation for x̃(r̃)

V =
(dx̃

dr̃

)2
Γ−

(dx̃

dr̃

)1/2 d2

dr̃2

(dx̃

dr̃

)−1/2
(2.12)

where f has dropped out and the second term is a schwarzian derivative we wish to neglect.
This term blows up whenever the singularities of the two differential equations don’t match,
justifying the similarity condition requirement.

We are thus led to a simple differential equation for x̃(r̃) together with a condition for
the validity of the approximation

dx̃

dr̃
=
(

V (r)
Γ(x)

) 1
2

, ϵ ≡
∣∣∣∣ 1V

(dx̃

dr̃

)1/2 d2

dr̃2

(dx̃

dr̃

)−1/2 ∣∣∣∣≪ 1 (2.13)

For l = 0 we can easily solve this, getting x̃(r̃(r)) = 2µ
(√

r − coth−1 (
√

r)
)

which asymp-
totes to 2µ

√
r +O(r−1/2) for large r and µ (ln(r − 1) + 2− 2 ln 2) +O(r − 1) when r ≃ 1.

Given the solutions e±ix̃ of (2.9) and (2.11), we obtain the sought field profile

ϕl=0(r) ≃ e±2iµ(1−ln 2)(r − 1)±iµ ↔ 1
r3/4 e±2iµ

√
r (2.14)

2As explained in [48], a constant Γ = ±1 leads to WKB, while a linear Γ describes a potential with a
single turning point. In this case, this technique gives an approximate solution in terms of Airy functions
which is valid both close and far from the turning point, sidestepping the usual WKB connection formulas.
Appendix A will employ a generalization of these techniques.
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where the ↔ symbol indicates that we matched the solution close to the horizon with the
one at large distance. We emphasize that this matching is straightforward because the
approximation is valid in the whole domain.

Subleading terms in the r → ∞ expansion become comparable with the leading contri-
bution at r = 1. Causality at the horizon then selects the purely infalling wave (r − 1)−iµ,
thus enforcing the behaviour e−2iµ

√
r

r3/4 at large distances.3 This solves the connection problem
completely.

Let’s draw some conclusions. We observe that, for all l (up to subleading WKB orders),
the amplitude of the profile is completely controlled by the overall factor (dx̃/dr̃)− 1

2 = V − 1
4

which has a very simple analytic expression. All complications reside in the less important
phase of the wave.

We now compute x̃ for l > 0. The integration of (2.13) gives

x̃ =
∫ r

√
µ2r3 − l(l + 1)r(r − 1)

r(r − 1) dr (2.15)

which is hard to evaluate analytically. While a numerical solution is straightforward, let
us observe that when l = 0 we are back to the previously studied case, up to a correction
which is small uniformly when r ≥ 1. Indeed max l(l+1)r(r−1)

µ2r3 = l(l+1)
4µ2 which is ≤ 1 when

µ ≥
√

l+l2

2 , and quickly becomes ≪ 1 in the large µ regime. Thus, upon expansion,

x̃ ≃ 2µ
(√

r − coth−1 (√r
))

− 1
2µ

∫ r l(l + 1)
r3/2 = (2.16)

= 2µ
(√

r − coth−1 (√r
))

+ l(l + 1)
µ
√

r
(2.17)

Higher orders are as just easy to compute. They do not affect the asymptotic expansion of
ϕ at r ≃ 1,∞ but they increase the accuracy of the solution at finite r. Notice that all the
arbitrary constants we are dropping upon integration correspond to trivial constant phase
shifts. Plugging into equation (2.11) we get

ϕl(r) ≃
1

(µ2r3 − l(l + 1)r(r − 1))1/4 e
−2iµ(√r−coth−1(√r))+ l(l+1)

µ
√

r (2.18)

with (near-horizon | large-distances) behavior independent of l

(r − 1)±iµ

∣∣∣∣ 1
r3/4 e±2iµ

√
r (2.19)

We are also in the position to check ϵ ≪ 1 given the explicit x̃ we got. A direct
computation reveals the condition

ϵ = | − 1
µ2r3

3
16(r − 1)(r + 3)| ≪ 1 (2.20)

which, as anticipated, puts a lower bound µ ≫ 2
3
√

3 ≃ 0.4 on the l = 0 case. This reproduces
the result obtained by Hui with a different technique.

3Had we chosen to work with a real scalar, the solutions close to the horizon would be ϕ± ∝ cos(µ ln(r−
1)± µt). Then ϕ+ would have been the causal wave.
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Figure 1. Plot of our large mass approximation of ϕ 2.18 for different values of µrBH and l. The
amplitude is normalized to 1 at the horizon.

How do we interpret this bound? In some sense, it comes from the significant smallness
of the potential term µ2r3 close to the horizon at small µ: the horizon is behaving similarly
to a turning point.4 In contrast, when l ≥ 1, the potential has developed zeros for µ

even larger than 0.4, since µc|l=1 ≃ 0.7: the breakdown takes place already at the µc we
computed in the previous subsection. We plot our approximate solution in figure 1. The
accretion rate can be computed to be in agreement with ref. [44]

The lower bound µ ≫ 0.4 compels us to study the complementary small µ regime
µ ≪ 1, which we will tackle in the next subsection.

We anticipate that the connection problem will be solved by

r = rBH : ϕin, r → ∞ : ∼ µ−3/2−2lϕin + µ−3/2−2lϕout (2.21)

up to O(1) coefficients.
4A scattering problem with energy barely greater than the top of the potential manifests a similar

problem, which can be phrased in terms of complex turning points close to the real axis.
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Figure 2. The large mass approximation is valid in the blue area, while we can expand for µ ≪ 1
in the green area. Already at l ≥ 2 there exists a region beyond the scope of both approximations,
which we cover in the appendix. This region enlarges if we don’t want to approach the boundary
of the blue and green areas, where our approximations become unreliable.

However, as made clear by figure 2, for l ≥ 2 there is a mass range not covered by
either approximation. This will be dealt with in the appendix.

We anticipate that for l small, say l = 2, 3, the connection problem in this regime is
approximately solved by

r = rBH : ϕin r → ∞ :
√
2ϕin + ϕout (2.22)

2.2 Small µrBH regime

Given the failure of WKB (and uniform approximations) in the small µrBH parameter
range, we now look for a different kind of approximate solution to (2.3) for the case
µrBH ≪ 1. The approach will be to neglect all terms proportional to µ in the differ-
ential equation and then identify the r domain where this is valid. We will then develop
separate approximations where this assumption will fail. The upshot will be a subdivision
of the domain in a near-horizon region, an intermediate region and a far region.

We refer to [44] for the l = 0 case, which agrees with our result. Our main contributions
are the extension of the computation to all l and a more careful treatment of the matching
of ϕ at different distances, which Hui et al. carried out simply by invoking continuity and
derivability of the solution ‘close’ to the breakdown point. The technique we employ goes
under the name of boundary layer theory (see the book by White [55]), but we will not
assume any prior knowledge of the topic.

Since we work in the µ ≪ 1 approximation, we can expect µ2r3 to be negligible in
equation (2.3). This is true unless the r(r − 1) term coming from the angular momentum
barrier becomes comparable or smaller. This happens in two regions, where we will instead
approximate the r dependence:

µ2r3 ∼ r(r − 1) → 1 < r < 1 + µ2, r > 1/µ2 (2.23)
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The attentive reader will recognize 1+ µ2 and 1/µ2 as the zeros of V (r) when µ ≪ 1. The
issue we had in WKB with the zeros of V (r) has an avatar here as well.

Let us begin with the intermediate r region 1+µ2 < r < 1/µ2, where µ2r3 is negligible.
The solution can be written explicitly as

ϕintermed ≃ c1rl
2F1(−l,−l;−2l; 1/r) + c2

rl+1 2F1(l + 1, l + 1; 2l + 2; 1/r) +O(µ2) (2.24)

where 2F1 is a hypergeometric function.
We now come to what we will call the two boundary layers: the near horizon region and

the far region, defined by (2.23). In the near horizon region we can solve the approximate
equation

(r − 1) ddr

(
(r − 1)dϕ

dr

)
+ µ2ϕ = 0 (2.25)

which results in
ϕn.h. ≃ (r − 1)−iµ(1 +O(r − 1)) (2.26)

where we already imposed causality. Notice that we neglected the angular momentum part
of the differential equation, but this is consistent if we don’t keep track of (r − 1)−iµ+1

terms in the solution. Boundary layer theory also gives a rigorous criterion to systematically
decide which terms one should keep, but it is just as easy to verify this a posteriori.

Finally, the far region is controlled by

r2 d
dr

(
r2dϕ

dr

)
+
(
µ2r3 − l(l + 1)r2

)
ϕ = 0 (2.27)

whose solution is

ϕ∞ ≃ c3J2l+1 (2
√

rµ) + c4Y2l+1 (2
√

rµ)
µ
√

r
(1 +O(1/r)) (2.28)

where J and Y are Bessel functions. The reader should appreciate that the near horizon
expansion keeps µ ln(r − 1) finite, while the far region is at finite µ

√
r. In both cases there

is a double scaling limit involving µ and r. Subleading terms are negligible with respect to
these finite quantities.

Boundary layer theory also prescribes the (intuitive) matching condition: the near
horizon layer is matched to the finite r solution under the assumptions µ ln(r − 1) ≫ 1,
r − 1 ≪ 1. All terms that we can compute in both regions should coincide.

The near horizon and intermediate r expansions are

e−iµ ln(r−1) +O(r − 1) ≃ 1− iµ ln(r − 1)− µ2

2 ln2(r − 1) + · · ·+O(r − 1) (2.29)

ϕ ≃ c14−lΓ(l + 1)(
1
2

)
l

− c2Γ(2l + 2) log(r − 1)
Γ(l + 1)2 +O((r − 1), µ2) (2.30)

where (a)l is the Pochhammer symbol. Correctly, all terms either match or are unknown
(e.g. −1

2µ2 ln2(r − 1) is O(µ2) at intermediate r), provided

c1 =
4l
(

1
2

)
l

Γ(l + 1) , c2 = iµΓ(l + 1)2

Γ(2(l + 1)) (2.31)
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Similarly, we now match at large r (r ≫ 1, µ2r ≪ 1). We obtain the expansion of the
scalar in the far region

(µ2r)l
(

c3
Γ(2l + 2) + c4(O(1))

)(
1 +O

(
µ2r

))
− c4(µ2r)−l−1Γ(2l + 1)

π

(
1 +O

(
µ2r

))
(2.32)

and in the intermediate region

c1rl
(
1 +O

(1
r

))
+ c2

rl+1

(
1 +O

(1
r

))
+O(µ2) (2.33)

We now match the two by first obtaining some simple estimates: matching terms of order
r−l−1, given c2 ∼ µ, implies c4 ∼ µ2l+3 ≪ 1. Considering now rl we get c3 ∼ µ−2l ≫ 1.
The conclusion is that we can safely forget about c4. We finally get

c3 = µ−2lΓ(2l + 2)c1 = µ−2lΓ(2l + 2)
4l
(

1
2

)
l

Γ(l + 1) (2.34)

Lastly, expanding the Bessel function at r → ∞, we obtain

ϕ ≃ c3
(−1)l

√
πr3/4 µ−3/2 cos

(
2µ

√
r − 3

4π

)
(2.35)

which has an overall µ scaling of µ−3/2−2l, thus growing with l. The physics underlying
this result is simple: at higher angular momentum, light particles can rotate around the
black hole, thus significantly enhancing the field. Indeed, this scaling can be deduced
from a simpler argument: neglecting dimensionless factors, the leading-r behaviour in
the intermediate-r regime is rl, which at the matching point r ∼ µ−2 amounts to µ−2l.
Similarly, µ− 3

2−2l/r3/4 ∼ µ−2l at the same matching point. Due to analytic continuation
in l, the result also agrees with the one obtained by Hui et al. for l = 0.

2.2.1 Love numbers

It is worth pointing out that, for intermediate distances, ϕ behaves as a massless scalar
would, up to subleading µ corrections. The large r behaviour of ϕintermed showcased in
equation (2.33) suggests, for a massive scalar perturbation with µrBH ≪ 1, a definition of
the Love numbers mirroring the one for the massless case: c2/c1 (computed in eq. (2.31)).
Since the result will turn out to be complex, this quantity will be called the scalar response
coefficient (its real part being the actual Love number, the imaginary part being related to
dissipation), and was calculated for example by Dubovsky et al. [49] (their equation 6.17)
for rotating black holes but a strictly massless scalar. Riotto et al. [50] were able to
reproduce this result as well, using near horizon approximations (see their equation 5.24).
We obtain

c2
c1

= iµ rBH l!3

4l
(

1
2

)
l
(2l + 1)!

(2.36)

which is also identical to their formula after some mathematical manipulations and after
choosing ω = µ, as we do throughout. This agreement is not surprising, because the mass
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near horizon

1 < r ≲ 1 + µ2
(r − 1)±iµ

intermediate r

1 + µ2 ≲ r ≲ µ−2

4l( 1
2 )l

l! rl
2F1(−l,−l;−2l; 1/r) + iµ(l!)2

(2l+1)!
1

rl+1 2F1(l + 1, l + 1; 2l + 2; 1/r)

large r

µ−2 ≲ r
µ−2l−1(2l + 1)! 4l( 1

2 )l

l!
J2l+1(2µ

√
r)√

r

very large r

µ−2 ≪ r
(−1)l(2l + 1)! 4l( 1

2 )l√
πl!

µ−2l− 3
2

r3/4 cos
(
2µ

√
r − 3

4 π
)

Table 1. Behaviour of ϕ in the small mass regime.

µ of the scalar only affects the solution at large distances (the frequency ω terms dominates
the near horizon zone, while the mass µ dominates at large distances; the factor µ in our
equations (2.31), (2.36) would more generally be ω). It makes sense that, in the limit
µ → 0, the massless behaviour is recovered (at finite distances). The are however two
nontrivial physical points:

1. When µrBH ≪ 1, there is an intermediate r region where the field behaves as if it
were massless, allowing us to define the response coefficients and Love numbers. In
the opposite regime µrBH ≳ 1, we do not have this parametric separation of scales
and defining these quantities becomes much harder. We do not attempt to do so in
this work.

2. Our method, besides its simplicity and generality, allows the computation of sublead-
ing corrections to (2.36) in ω and µ (even taken to be different).

We summarize the behaviour of ϕ in the three regions in table 1. We showcase our
results by plotting the real and imaginary part of ϕ, this time for µ = 0.1. In order to
have smooth transitions from the intermediate region to the boundary layer, we exploit
that by assumption both ϕintermed (equation 2.24) and ϕ∞ (equation (2.28)) asymptote to
the same ϕb.layer (equations (2.32), (2.33)) when r ≫ 1/µ2, r ≪ 1/µ2 respectively.

We plot in figure 3 the function

ϕintermed + ϕ∞ − ϕb.layer (2.37)

which has all the correct asymptotic limits. An identical story plays out for the near
horizon layer.

The accretion rate for the small mass regime was computed by Hui et al. in [44], who
expressed it in terms of the DM density at intermediate distances for l = 0. Expressing it
instead in terms of the density at large distances r ≫ µ−2 and dropping O(1) factors we
get as a function of l

Φ = 8πµ2|A|2, ρ = 2µ2|ϕ|2 ≃ µ2|A|2 µ−3−4l

r3/2 ⇒ Φ ≃ µ3+4lr3/2ρ (2.38)
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Figure 3. Plot of ϕ (table 1) for µrBH = 0.1. We normalized the amplitude to 1 at the horizon.
Due to the vast differences in the amplitudes, we plot each l separately.

where A is the amplitude of the wave at the horizon ϕ = A(r − 1)−iµ. The rate is heavily
suppressed as l increases, again due to the centrifugal barrier kicking in for small masses.

2.3 Numerical checks

We check the above formulas against the numerical results obtained in [51] by Hui et al. In
their figure 9, the authors plot the inverse of the amplitude at r = 400rBH as a function of
µ. They normalized the amplitude at the horizon to 1 and took 400rBH to be far enough
that all our far region approximations should apply: indeed the largest length scale that
appears in our problem is 1/µ2, which is much smaller than 400 for µ ≫ 0.05.

Their plot roughly captures the plateau at large µ, however in the small mass regime
the ratio they plot goes like ∼ 1

cos(2µ
√

r) |r=400, meaning that one expects large fluctuations
when numerically sampling different values of µ. To circumvent this problem, the authors
actually average over small intervals in µ. This is a potential drawback of that plot, which
ends up depending on the smoothing procedure.

Let us now move on to figure 10 of [51], where the authors plot |ϕ|2, normalized to 1
at the horizon. They fix l = m = 2, although m is irrelevant in the spherically symmetric
case we are dealing with. The first plot is for µ = 0.01, meaning that the profile should
accurately be described by our intermediate r region, which extends from r = 1 + 10−4 to
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104. The analytic expression is

ϕ ≃
4l
(

1
2

)
l
rl

2F1
(
−l,−l;−2l; 1

r

)
Γ(l + 1)

l=2= 1− 6r + 6r2 (2.39)

Correctly, their plot presents no oscillations. The order of magnitude of the field is also
correctly reproduced by this formula.

Next, let us look at the µ = 0.5 case. Here we are always in the large distance regime
(r ≫ 24) and we expect our small mass approximation 0.5 ≪ 1 to give results correct up
to O(1) corrections. We observe instead that the plot in [51] greatly underestimates, by
a factor ∼ 104, the field at large distances. To explain this discrepancy, observe that the
authors seem to have normalized the field too far from the horizon, missing a sharp drop
in the dark matter density close to rBH.

For µ = 1 the discussion in appendix A implies that intermediate masses behave
roughly like large masses, hence our agreement with the decreasing profile.

Finally, let us look at figure 11 in [51], where they plot 1/|ϕ| at r = 400rBH for different
values of µ. There are roughly three regimes: large mass, small mass and r ≫ 1

µ2 , small
mass and r ≪ 1

µ2 . The authors provide estimates for all three regimes in their formula
(4.1). Our formulas agree except when r is in the far regime r ≫ 1

µ2 ≫ 1, which is their
intermediate µ region, where the log-plot linearly grows. In our approximation |ϕ| should
be given by

|ϕ(r)| ∝


r−

3
4 , µ ≫ 1

µ− 3
2−2lr−

3
4 , 1√

r
≪ µ ≪ 1

rl, µ ≪ 1√
r

(2.40)

so the slope 3
2 + 3l in [51] should be replaced by 3

2 + 2l, not as steep. A simple argument
in favour of this is that at r ∼ µ−2 the last two formulas in (2.40) should parametrically
coincide. This works well when µ is small, but the agreement with the numerical solution
decreases as the graph plateaus on the right; there the approximation by Hui et al. works
better. We plot our approximation in figure 4.

The transition to the plateau on the right is predicted to happen when µ reaches
µc given by formula (2.7), thus the plateau region should move to the right as l increases.
Contrary to what we see from the approximations in [51], the transition between the plateau
on the left and the region with linear growth in figure 4 is smooth once we properly take
into account the large r regime (see table 1) described by a Bessel function. These examples
demonstrate how employing a simple analytic approximation of the solution offers better
control over the results compared to the challenges associated with using the full Heun
function.

2.4 Conserved current

We pause to introduce a quantity we can prove is conserved on the equations of motion
(very closely related to the wronskian). The beauty of the statement is that it is rigorous,
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Figure 4. Plot of |ϕ(r = 1)|/|ϕ(r = 400)| as µ changes. l = 1 on the left, l = 2 on the right. This
plot corresponds to figure 11 in [51]. Referring to the equations for µ ≪ 1 in table 1, the green
line is the intermediate r regime, the orange line is the far regime and the blue line is the very far
regime once we set the cosine to 1, to tame the spikes. The transition between the green and the
blue line is smooth if we consider the interpolating orange line.

exact, and it allows us to prove some claims. The downside is that it will not be enough
to solve the problem. We define

J ≡ r(r − 1)
(

ϕ∗dϕ

dr
− ϕ

dϕ∗

dr

)
(2.41)

A simple substitution reveals
dJ

dr
= 0 on-shell (2.42)

Notice that J is conserved as a function of r (not time). Evaluated near the horizon on
the causal (i.e. purely infalling) solution, one gets

ϕ ≃ A(r − 1)−iµ, J = −2iµ|A|2 (2.43)

which, up to a factor, is the energy flux the wave carries into the black hole.
A simple thing we can check is that, if ω < µ, bounded solutions are not allowed.

WKB (which is locally accurate away from turning points) gives ϕ ∼ e−
√

µ2−ω2r at large
distances. For this solution, J equals 0 due to the exponential suppression. Since the
causal solution has J ̸= 0, it never matches with a bounded profile for energies lower than
the mass. Physically, this translates in the absence of (stable) bound states. We will later
devote much discussion to solitons, which are bound states that evade this argument by
having complex ω.

We can additionally check whether our approximate solutions respect this conservation
law. The answer is trivially yes for the large mass regime approximation. However, in the
small mass regime there seems to be a contradiction because J = 0 at large distances. Is
our solution inaccurate?

The answer lies in the size of the ingoing and outgoing wave at large distances: within
our accuracy the two amplitudes are large (∝ µ−3/2−2l), which would naively suggest an
equally large J at infinity. However because the amplitudes are precisely equal at this order
of approximation, the waves sum to a cosine and the leading contribution to J cancels. We
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expect subleading orders in ϕ to lift this degeneracy and give a value of J much smaller
than the individual contributions, consistent with the conservation of the current. We
conclude that our approximate solution correctly captures the leading order behaviour of
the exact solution, passing a nontrivial consistency check.

We will now see that J allows us to compute this slight difference in the amplitudes
far away, without the need of computing the aforementioned subleading orders of ϕ. Very
generally,

ϕn.h. = ϕin
n.h. ≃ (r − 1)−iµ, (2.44)

ϕ∞ = A+ϕ+
∞ + A−ϕ−

∞ ≃ A+
e2iµ

√
r

r3/4 + A−
e−2iµ

√
r

r3/4 (2.45)

where the equal sign is an exact statement, while the ≃ indicates that we are neglecting
higher order terms which however do not affect J .

Imposing conservation one obtains |A−|2−|A+|2 = 1. Now we input that, when µ ≪ 1,
A− ≃ A+ ≃ A∞, where A∞ the coefficient in (2.35). Then simple algebra gives

(|A−|+ |A+|)(|A−| − |A+|) = 1 → 2A∞(|A−| − |A+|) ≃ 1 (2.46)

Therefore, as promised, J allows us to compute the very small difference |A−| − |A+|.

2.5 Solitons in black hole domination

As discussed in the introduction (see among others [32, 34, 39, 42]), ultralight dark matter
forms solitons.

Dark matter solitons are not topologically protected: we will use the word to loosely
mean any stationary field configuration in a bound state, thus the density of dark matter in
a compact region will be significantly greater than in the rest of the halo. We will assume
the following hierarchy of scales:

rSchwarzschild ≪ rsol ≪ rhalo (2.47)

The scenario we will consider is that the supermassive black hole is at the centre of the
soliton. Given this hypothesis, the behaviour of such solitons can be dominated by the
gravity of the supermassive black hole or by the self-gravity of dark matter. We begin the
discussion from the first, simpler case.

What is the difference between the discussion of black hole domination of the previous
section and the following, which we will call black hole dominated soliton? Self-gravity is
still negligible but now we will consider bound states, implying “ω < µ ”. Actually ω will
turn out to have a very small imaginary part, evading the argument in section 2.4. We will
first neglect the imaginary part and later compute it and check this assumption.

Denoting ω = µ(1 + γ) and expanding in small γ, the potential in equation (2.3) now
has a term ∝ γr4. We will assume this term to be small enough that only the tail of the
solutions found in the previous sections are modified, at a distance r ≳ |γ|−1. Seeking only
the behaviour of the solution at large distances, we can rewrite (2.3) approximately far
from the horizon as

r2 d
dr

(
r2dϕ

dr

)
+ µ2

(
2γr4 + r3

)
ϕ = 0 (2.48)
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To emphasize the scale r = |γ|−1, we define r ≡ x
−γ , obtaining

x2 d
dx

(
x2dϕ

dx

)
+ µ2

−γ

(
x3 − 2x4

)
ϕ = 0 (2.49)

This equation can be solved exactly, but a better intuition for the different distance regimes
comes from a WKB approximation. To take this route, we now assume µ2

|γ| ≫ 1. Given
|γ| ≪ 1, this condition is obvious unless µ is in the small mass regime. The condition is
equivalent to 1

|γ| ≫
1

µ2 , where 1
µ2 is the length scale at which the decaying r−3/4 behaviour

starts, in agreement with our hypothesis that only the tail of the solution should be affected.
We shall further comment on this hypothesis later.

Such a large parameter invites a WKB approximation, which will be accurate far from
the turning point x = 1

2 , where the Airy matching will be employed. Then the decaying
solution at x > 1/2 will be

ϕ = A

(2r4 − r3)1/4 e
− µ√

|γ|

∫ x

1/2(2− 1
x′ )1/2 dx′

∝ e
− µ√

|γ|

√
2x

, x ≫ 1
2 (2.50)

and at x ≪ 1/2 it matches

ϕ = 2A

(r3 − 2r4)1/4 cos
(

µ√
|γ|

∫ x

1/2

( 1
x′ − 2

)1/2
dx′ + π

4

)
∝ 2A

r3/4 cos
(
2µ

√
r + ϕ0

)
(2.51)

We recognize the r−3/4 and the oscillating behaviour we already saw in the small mass
regime (equation (2.35)). The main observation is that if µrBH ≫ 1 there is a surprising
clash between causal boundary conditions at the horizon, which demand oscillations that
go like e−2iµ

√
r (equation (2.14)), and boundedness at infinity, which imposes a cosine

(equation (2.51)). Black hole dominated solitons can thus only be formed in the small
µrBH regime.

We give the explicit very large distance behaviour of ϕ, normalizing the amplitude at
the horizon to 1 as usual (that is, matching (2.51) to the very large r regime in table 1)

r ≳ |γ|−1, ϕ(r) ≃ (−1)l(2l + 1)!
4l
(

1
2

)
l√

πl!
µ−2l− 3

2

25/4r
e−

√
2|γ|µr (2.52)

We now estimate Im(γ) and check that it is small. The idea is to estimate black hole
accretion, which is linked to the decay of the soliton. Neglecting O(1) factors

dMBH
dt

≃ 4πr2
BH

Msol
r3

sol
(2.53)

so, using GMBHrsolµ
2 ∼ O(1),

Im(γ) ≃ 1
Msolµ

dMBH
dt ∼ (µrBH)5 ≪ 1 (2.54)

Finally we determine whether our hypothesis (µrBH)2 ≫ |γ| was well motivated. Find-
ing γ amounts to determining the spectrum of bound states. To this end relying on an
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exact solution of equation (2.49) is more appropriate. Demanding boundedness at x = 0,
vanishing boundary condition at x → ∞ and writing down the full solution in terms of 1F1
and U hypergeometric functions, we get the quantization condition

1

Γ
(
1− µ

2
√

2|γ|

) = 0 → (µrBH)2

|γ|
= 8n2, n ∈ N, n ≥ 1 (2.55)

suggesting that γ should indeed always be small. Had we not known about the exact
solution, the quantization condition coming from WKB would have given us µ2

|γ| = 8(n+ 1
4)2.

Given this good agreement, in appendix C we will trust the WKB result when computing
the soliton spectrum in self-gravity domination, which is what we turn to in the next
section.

3 Including self-gravity

A more interesting scenario is instead the soliton dominated regime, meaning that self-
gravity dominates over the black hole gravity. We expect this regime to be roughly char-
acterized by the condition MBH ≪ Msol, where we define the total soliton mass to be
Msol =

∫∞
rBH

ρDM (r)4πr2 dr (convergence is guaranteed by the exponential decay at in-
finity). Indeed we will see that black hole gravity is not necessary to hold together the
soliton: self gravity of dark matter can be enough and we could meaningfully study the
case MBH = 0.

One could think of the following possibility: a black hole surrounded by a soliton so
massive that the dynamics is entirely dominated by dark matter self-gravity at all distances
outside the horizon. We will show that this is actually impossible (assuming stability of
the overall system), and that there is always a region outside the horizon dominated by
the black hole and general relativity, however small MBH may be.

3.1 Scaling argument for the size of the soliton

We now include the self gravity of the scalar as a (non-relativistic) newtonian potential,
which will obey a separate Poisson equation. The aim of the following discussion is to find
an estimate for the soliton size. This discussion is fairly standard in the literature, and we
will follow [14, 32]. Once we include self gravity, negative energy solutions appear (bound
states). Energy will be minimized by a spherically symmetric field configuration, so we set
l = 0 from here on.

Since it would be confusing to have both the scalar field ϕ and the newtonian potential
Φ around, we define χ as

ϕ(t, x) ≡ χ(r)√
8πG

e−iωt (3.1)

The
√
8πG factor is chosen to simplify Poisson’s equation. Notice how the energy density

would be halved if the scalar were real. From now on we will always keep rBH explicit.
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Equation (2.3) is then amended to

r(r−rBH)
d
dr

(
r(r−rBH)

dχ

dr

)
+V (r)χ=0, V (r)≡µ2

(
−2r4Φ+

[
(γ+1)2−1

]
r4+r3rBH

)
(3.2)

∂2
r (rΦ)−µ2r|χ|2 =0 (3.3)

where by assumption Φ vanishes at large distances and ω = µ(1 + γ). We emphasize
that this equation retains a fully relativistic treatment of the black hole in terms of its
background metric, on top of which a correction is introduced to account for the self-
gravity of the scalar. For a non-relativistic stress-energy tensor, this metric correction is
suppressed by powers of c except for the time-time component, which is identified as the
Newtonian potential. We further assume that Φ only affects the dark matter profile far from
the black hole, so that the background metric in Poisson’s equation can be approximated as
flat. We will later observe the self-consistency of this assumption. At large r equation (3.2)
reduces to

∂2
r (rχ) + µ2(rBH − 2rΦ+ r

[
(γ + 1)2 − 1

]
)χ = 0 (3.4)

which is the form used in [32].
In the approximation where the black hole is negligible, a well known scaling symmetry

allows one to set χ(0) = 1. Then, numerical simulations [31, 56, 57] indicate that the
smallest possible γ is ≃ −0.69 which partially supports the approximation |γ| ≪ 1. Scaled
solutions turn out to have larger, less massive solitons and smaller γ.

To obtain the soliton size, we argue that GMsol ∼ Gρsr3 ∼ µ2χ2r3, while from (3.3),
(3.4) we get Φ ∼ µ2r2χ2, χ ∼ µ2r2Φχ. Substitutions yield GMsolrsolµ

2 ∼ 1, which can be
compared with the analogous result obtained in black hole domination

Msol ≫ MBH : rsolGMsol ∼
1
µ2 , Msol ≪ MBH : rsolGMBH ∼ 1

µ2 (3.5)

A much more detailed discussion of soliton domination can be found in appendix C.
We notice that for Msol ≃ MBH the two formulas for rsol parametrically coincide.

3.2 Exact results

The purpose of this section is twofold. The first will be to exploit some mathematical
results already available in the literature and apply them to a simplified version of our
problem. Our aim will be to re-derive the same results using our WKB approximation,
which will give us confidence in the results we will later find for the full problem under
the same approximations. Secondly, we will derive an exact result (essentially the energy
balance equation) which we will use to rigorously show that ω must be complex for bound
states. This implies that bound states of the scalar will be slowly eaten away by the black
hole, so they can only be meta-stable.

Therefore, we will now adapt some exact results and mathematical theorems, derived
by Tod and Moroz in [52], to our problem. They will be far from enough to solve it, but
they will enable us to put some of the our findings on firmer grounds (e.g. the quantization
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of the soliton spectrum). We discuss the simplified problem of a real scalar and no black
hole.

As a first step, we map the system of differential equations (3.2), (3.3) onto a problem
studied by Tod and Moroz in [52]. They consider a system of differential equations for
what they call S and V , which map to our variables through

V = −µ2
(
2Φ− rBH

r
+
[
1− (1 + γ)2

])
, S =

√
2µ2χ (3.6)

They assume S ∈ R (while we work with a complex field) and S(r) bounded and vanishing
at infinity. They also assume rBH = 0, so there is no black hole. Their results can be
summarized as follows:

• There is a discrete family of solutions labelled by n ∈ N, the n − th solution having
n − 1 zeros and vanishing at large r as 1

r e−µ
√

1−(1+γ)2r

• γn < 0 and increasing with n towards zero

• There are no other solutions

To develop a better understanding of Tod and Moroz’s findings, we begin by rederiving
their results using our WKB approximation.

The WKB solution of (3.4) can be immediately written. Defining C2 = 1 − (1 + γ)2,
we have

χ = A

r

ei
∫ r

µ
√
−2Φ−C2 dr

(−2Φ− C2)1/4 + B

r

e−i
∫ r

µ
√
−2Φ−C2 dr

(−2Φ− C2)1/4 (3.7)

for A, B constants. We still don’t know Φ, but supposing −2Φ−C2 > 0 at large distances
and recalling that Φ vanishes at infinity, we would get χ ∼ 1/r and the total mass would
diverge. Thus −C2 < 0 and γ < 0.

Thus −2Φ− C2 < 0 at large r, and imposing boundedness we get

χ = A′

r

e−
∫ r

µ
√

2Φ+C2 dr

(2Φ + C2)1/4 (3.8)

which has the predicted asymptotic behaviour. As we decrease r, we can expect 2Φ + C2

to change sign at some finite distance that we interpret as the soliton size rsol.
The solution at r < rsol will transition from exponentially decaying to oscillating and

the coefficients A, B will (in principle) be calculable given A′ and γ thanks to the WKB
connection formulas.

Generically (3.7) will diverge at the origin, unless A = −B. This condition quantizes
the frequency spectrum, giving rise to the set of γn. As we increase γ, C2 decreases ap-
proaching zero, while rsol increases. In analogy with what happens in quantum mechanics,
the number of zeros of the solution increases by one for each new bound state.

This concludes the derivation of the results in [52] using WKB. Notice how we chose
A′ to be real. We can however rotate it by an overall phase, thus generating all bounded
solutions of the complex scalar case with a simple overall phase rotation of χ. Having
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overcome this limitation, we now turn to the second one, namely the lack of a black hole
which we now introduce back.

We now reconsider equations (3.2) and (3.3). They were obtained by treating the
black hole within general relativity, and adding the scalar self gravity as a weak newtonian
potential. We will now write down the equation for the scalar field and generalize the
argument given in section 2.4 to prove that bound states are metastable: their frequency
ω cannot be purely real. We do this by generalizing the previously conserved current:
the main result is that J is not conserved anymore, and the deviation from dJ

dr
= 0 is

proportional to the decay rate of the soliton.
Assuming spherical symmetry we can choose gθθ = r2, gϕϕ = r2 sin2 θ as usual. We

expect the scalar field ϕ to deform the Schwarzschild metric and lead generically to some
gtt = −A(r), grr = B(r). The equation for the scalar field is

ω2r4ϕ +
√
−A

B
r2 d

dr

√−A

B
r2dϕ

dr

+ Ar4µ2ϕ = 0 (3.9)

and J can be straightforwardly defined and shown not to be conserved

J =
√
−A

B
r2
(

ϕ∗dϕ

dr
− c.c.

)
,

√
−A

B
r2dJ

dr
= −2i Im(ω2) r4|ϕ|2 (3.10)

We now want to show that ω cannot be real for soliton configurations. From equation (3.10)
real ω implies conservation of J ; however a direct computation reveals that bound states
have J = 0 at infinity due to the exponential suppression of ϕ, while ϕ close to the horizon
is still a purely infalling wave, hence J ̸= 0. Since this violates dJ

dr
= 0, we have proved

our claim Im(ω) ̸= 0.
This fact is sometimes overlooked in the literature, however it has a clear physical

counterpart: bound states of the scalar will be slowly eaten away by the black hole, so they
cannot be stable. Actually, Im(ω) is the inverse time in which the bound state decays.

We leave it for appendix B to present and solve a concern one can have over the way
we impose causality at the horizon. When the frequency is complex, ϕcausal diverges at the
horizon while ϕnon-causal goes to zero. Since the non-causal solution is already exponentially
suppressed at the horizon (and strictly zero at r = rBH), one might worry that the causality
condition has to be rediscussed. Actually, a more careful analysis using wave packets shows
that the physical solution is always bounded and the usual causality condition should be
imposed. This is reminiscent of black hole quasinormal modes, whose solutions are also
divergent in frequency domain.

3.3 Solution from large to small r

We now explore the solution of (3.4) as we vary r. If the black hole dominates at all
distances, we can neglect Φ when determining χ. As a second step, one can then determine
Φ by solving (3.3). Since Φ does not affect the scalar profile in this scenario the problem
is reduced to the one solved in section 2.
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In this section we instead assume that the soliton dominates the dynamics at large
distances, meaning MBH ≪ Msol. One goal will be to estimate Φ and consequently under-
stand if the assumption rBH ≪ |rΦ| breaks down. It turns out that it always breaks down,
at a distance we will name re. At shorter distances we will then match the solution to
the one where we assume rBH ≫ |rΦ|, which is the regime discussed in section 2. Finally,
we assume Im(ω) to be negligible compared to µ, since its inverse is the time scale of the
soliton decay, which we assume to be long-lived. We will check the self-consistency of this
claim once we obtain the decay time of the soliton.

We start with the WKB solution of (3.4) for χ. Since the soliton dominates, Msol ≫
MBH and the results obtained by Tod and Moroz should approximately apply. The WKB
approximation was able to reproduce all their results (see subsection 3.2), so we will trust
this solution until the condition rBH ≪ |rΦ| is no longer met.

Recall that we labeled the size of the soliton rsol, which in WKB language coincides
with the (single) zero of 2Φ + C2. The hierarchy of scales (which will be proved in the
following) can be summarized as

rBH ≪ re ≪ rsol (3.11)

We can write the WKB ansatz for the solution both at r > rsol where it decays and at
r < rsol where it oscillates. We then match them using the well known WKB connection
formulas, resulting in

χ = A′

r

e
−µ
∫ r

rsol

√
2Φ+C2 dr

(2Φ + C2)1/4 , r > rsol. χ = 2A′

r

cos(µ
∫ r

rsol

√
−2Φ− C2 dr + π

4 )
(−2Φ− C2)1/4 , r < rsol

(3.12)
where C2 = 1− (1 + γ)2. We take this to be accurate away from the turning point, where
the denominator (−2Φ−C2) becomes zero and WKB breaks down while the true solution
remains of the same order of magnitude.

Given our experience from the case without a black hole, if we consider the n-th bound
state, the cosine oscillates n times. Besides, to restrict to physically meaningful solutions
we should impose cos = 0 at the origin, so that χ remains finite. To restrict to the ground
state, we should therefore be able to write

χ = 2A′

r

sin(µ
∫ r

0
√
−2Φ− C2 dr)

(−2Φ− C2)1/4 (3.13)

with the understanding that µ
∫ rsol

0
√
−2Φ− C2 dr = 3

4π

We now make an important simplifying assumption (we will check its validity later):
we assume −2Φ − C2 to always be of the same order k when re ≪ r ≪ rsol, so that
χ ∝ sin(µkr)

r and we can compute ρ(r) as

4π ⟨ρ⟩ ≃


(1.5)

Msol sin2( 3πr
4rsol

)
r2rsol

, for re ≲ r ≲ rsol

(0.76) Msol
r2rsol

e
− 3π(r−rsol)

2rsol , for r ≳ rsol

(3.14)
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where O(1) factors (not essential) are determined from continuity and imposing that the
total mass should indeed be Msol. The region r ≲ re will be discussed later. Our approxi-
mation neglects the halo which is hosting the soliton. As a consequence, we are unable to
discuss the relation between the halo and the soliton mass found in [12, 29, 31]. However we
expect the halo to have a negligible effect on the solution, as long as the soliton dominates
over the halo density.

We are now in the position to carry out the program outlined at the beginning of this
subsection: computing Φ and estimating re.

From Poisson’s equation, Φ can be computed starting from infinity and imposing the
boundary condition Φ(r) ∼ −GMsol

r . It turns out that, as expected, the potential is well
approximated by this expression everywhere outside the soliton, despite the exponential
tail of the density. Inside the soliton

Φ(r) ≃



−c1
GMsol

r + c2
GMsol

rsol
+ (1.5)

−GMsolCosInt
(

3πr
2rsol

)
2rsol

+

+
GMsol log

(
r

rsol

)
2rsol

+
GMsol sin

(
3πr

2rsol

)
3πr

 , for re ≲ r ≲ rsol

−GMsol
r , for r ≳ rsol

(3.15)

We now determine c1, c2. Not only does c1 = 0 make Φ′(rsol) continuous (up to 8% error),
but it makes Φ finite at the origin as we expect. c2 ≃ −1 can be deduced from the continuity
of Φ(rsol).

A more drastic approximation would have been to average χ2 ∼ cos2

r2 ∼ 1/2
r2 , thus giving

a potential which goes like Φ ≃ GMsol
rsol

(ln(r/rsol) − 1) inside the soliton. This is in good
agreement with the more complicated potential we got in equation (3.15), except close to
the origin, where only the more accurate approximation shows that 2Φ+C2 changes slowly
and replacing it with a constant should yield reliable results.

We now determine the length scale re, where −2rΦ ≃ rBH. Assuming MBH/Msol ≪ 1
we expect this scale to be much smaller than rsol. Exploiting this, we can expand rΦ close
to the origin where it is very closely linear. We obtain

re ≃
MBH

(2.3)Msol
rsol (3.16)

Observe first that re ≪ rsol and secondly that the black hole dominated region rBH < r < re
always exists, because stability of the soliton forces GMsol ≪ rsol which implies

rsol
GMsol

≫ 1 → re = rsol
MBH
Msol

≫ rBH (3.17)

and therefore rBH ≪ re. This confirms the whole hierarchy of scales we assumed in (3.11).
Is the stability requirement GMsol ≪ rsol trivially satisfied? As discussed in the

review [14], it is not. In section 3.1 we linked the soliton size to the masses µ, Msol.
This constrains the possible values of µ as follows:

rsol ≫ GMsol → GMsolrsol ≫ (GMsol)2 → 1
µ2 ≫ (GMsol)2 → µrBH ≪ MBH

Msol
(3.18)
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which therefore implies
µrBH ≪ 1 . (3.19)

This is a very general bound that links the microscopic quantity µ with the masses of
astrophysical objects. If a soliton is observed in a galaxy that hosts a SMBH with mass
MBH, it implies an upper bound on the mass of the scalar:

µ ≪ 10−19eV
(109M⊙

MBH

)
. (3.20)

For completeness, let us point out that solitons dominated by a black hole also have
a stability bound µrBH ≪

√
MBH
Msol

, which however is trivially satisfied because, due to the
discussion in 2.5, µrBH ≪ 1 in this regime. A novelty that we bring is that the bound for
soliton domination also forces us to restrict to the small µrBH regime, where we know that
boundary conditions imposed at the horizon become less and less important the further
away we are from rBH (in fact the part of the solution that depends on them decays like
∼ 1/r compared to the part which does not). Given this and re ≫ rBH, we deduce that
boundary conditions are unimportant in the regime of soliton domination. Quantitatively,
suppression is ∝ rBH

re
= GMsol

rsol
.

3.4 Solitons at small r

We now match the solution obtained thus far with what we got in section 2 under the
approximation that the black hole dominates the dynamics, which happens when r < re.
From the bound µrBH ≪ MBH

Msol
≪ 1 we can focus on the small mass regime only.

Far from the horizon the field can be approximated as

χ ≃
J1(2µ

√
rBHr)

µ
√

rBHr
(3.21)

We now show that µ
√

rBHre ≪ 1, meaning that we are close to maximum of χ. In the
language of section 2, this is the intermediate r region. Some simple algebra and the
definitions of re and rsol lead to(

rBH
GMsol

)2
≪ 1 → µ2rsol

r2
BH

GMsol
≪ 1 → µ

√
rBHre ≪ 1 (3.22)

We can then approximate χ with a constant. The density is matched at r = re,

ρ(r) = ρ(re) = (8.3) Msol
4πr3

sol
(3.23)

(3.21) was derived assuming γ = 0, but this doesn’t matter. In fact, going through the
derivation of the wave profile one has to replace µ → ω in the expression of the wave
near the horizon, which gives a negligible contribution if r ≪ 1

µ2rBH
. Up to very small

corrections ∝ M2
BH

M2
sol

, this density is what one would obtain had they neglected the black
hole altogether, which is the usual assumption in the literature. The point of our analysis
was to check that the part of the solution dependent on the boundary conditions never
enters a nonlinear regime.
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We can thus fill in the missing piece of equation (3.14):

4π ⟨ρ⟩ ≃



(8.3)Msol
r3

sol
, for r → 0

(1.5)
Msol sin2( 3πr

4rsol
)

r2rsol
, for r ≲ rsol

(0.76) Msol
r2rsol

e
− 3π(r−rsol)

2rsol , for r ≳ rsol

(3.24)

We present the plot of this function in figure 5.
We end this section computing the accretion rate of the black hole. This quantity

depends on the precise value of ρ at the horizon. Matching ρhor to the soliton profile
outside the sphere of influence of the black hole was always achieved under some simplifying
assumptions (i.e. absence of features in the dark matter density profile inside the black hole
dominated region) we now have under control. Employing (3.24) we have

dMBH
dt

= 4πr2
BHρhor ≃ (8.3)r2

BH
Msol
r3

sol
(3.25)

We can rewrite rsol using GMsolrsolµ
2 ≃ O(1), where the numerical constant is computed

in appendix C to be ≃ 6 (note that some authors report roughly half). Then we have

dMBH
dt

= (0.04)r2
BHG3M4

solµ
6 (3.26)

which agrees with the numerical results in equation (11) in ref. [42] (their numerical pref-
actor corresponds to 0.06).

As promised at the beginning of section 3.3, we now check that Im(ω) ≪ µ. From (3.25)
we can extract

Im(γ) = Im(ω)
µ

≃
dMsol

dt
µMsol

∝ r2
BH

µr3
sol

(3.27)

To see that this is ≪ 1, we square and note the following inequalities

r4
BH

µ2r6
sol

∼ r4
BH

r6
sol

GMsolrsol ≪
(

rBH
rsol

)4
≪ 1 (3.28)

from the stability of the soliton.

4 Discussion

We reviewed black holes endowed with nonrotating wave dark matter hair and extended the
analysis to l > 0. When µrBH ≪ 1 interference patterns typical of wave dark matter emerge,
giving rise to O(1) fluctuations in the density profile. However, in the opposite regime,
these effects are washed out by the black hole gravity. This last conclusion crucially relies
on imposing causal boundary conditions at the horizon, suggesting that caution should
be used when modelling a black hole using newtonian gravity, even at large distances. In
addition to providing control over all distances, our techniques offer a precise method for
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Figure 5. Analytic soliton profile for rsol = 2.45, Msol = 1.8.

calculating the dynamical Love numbers for scalar perturbations to leading order in small
ω and µ, which can be easily extended to subleading orders.

Our primary focus is on dark matter solitons centered around a supermassive black
hole. In a black hole dominated soliton, MBH ≫ Msol, the scalar profile is given by the
solution presented by Hui et al. up to distances r ∼ rBH/|γ| beyond which it exponentially
decays. As we discuss in section 2.5, such solution exists only in the small mass regime
µrBH ≪ 1. Solutions with larger mass are incompatible with causal boundary condition at
the black hole horizon.

In the opposite regime, MBH ≪ Msol, we analytically computed the approximate
soliton profile at large (small) distances where gravity is dominated by the soliton (black
hole), respectively. At the radius re, representing the sphere of influence of the black hole,
we matched the density profiles. The soliton’s stability in this scenario enforces a hierarchy
of scales, rBH ≪ re ≪ rsol, which also implies a small mass limit, µrBH ≪ MBH/Msol. This
condition indicates that causal boundary conditions at the horizon have no effect far from
BH, similar to the small mass regime in black hole domination.

We emphasize that having analytical control over the solution enables us to perform
these assessments. With a solution that remains valid even at horizon scales, we can reliably
compute the accretion rate of the black hole.

We now address some limitations of our work. Firstly, we do not model the dark
matter halo, which is a notoriously challenging task. However, we expect that our results
remain applicable as long as the dark matter density within the soliton overwhelms the
halo density. Performing a matching of our solution with the halo profile is beyond the
scope of this work.

Secondly, we have focused on non-rotating black holes. We do not believe this as-
sumption to be overly restrictive, given that Sagittarius is a slowly spinning black hole
with J/M < 10%. In addition [51] numerically studied the issue and found moderate
corrections for J/M up to 50%. Nevertheless, accounting for a (slowly) spinning black
hole would provide an interesting cross-check of those results. Because the analogue of
equation (2.3) for spinning black holes can be similarly written, we expect the analysis to
be feasible using techniques akin to the ones applied in this paper. However, we leave this
investigation for future research.
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Lastly we neglected any non-gravitational interaction. A discussion of the validity of
this assumption can be found for example in [32], where the authors conclude that a wide
range of ALPs can satisfy this approximation.
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A Intermediate mass µ at l ≥ 1

This appendix is dedicated to developing an approximate solution of (2.3) for the white
are in figure 2.

The small µ approximation is by definition invalid, so we would like to again resort to
WKB. The main complication is that now V (r) has two zeros. To tackle this problem, we
fully exploit the technique of uniform approximations we introduced in section 2.

We will first find a differential equation (that we can explicitly solve) with the same
structure of zeros as (2.3) in the region r > 1. We will then map this exact solution to an
approximate solution of the original (2.3).

We keep the definitions of r̃, x̃ given in (2.4), (2.10). We now also have the zeros of
V (r), given by r1,2 as defined in (2.6).

As auxiliary differential equation, we choose (2.9) where Γ should now capture the
zeros of V (r). The simplest choice is Γ(x) ≡ k(x − r1)(x − r2), k > 0. The zeros will truly
match only if we impose (see [48] for a detailed discussion of this point)

∫ r2

r1

√
V (r) dr̃ ≡

∫ r2

r1

√
Γdx̃ →

∫ r2

r1

√
V (r)

r(r − 1) dr ≡
∫ r2

r1

√
Γ(x)

x − 1 dx (A.1)

which we use to fix k. We postpone the issue of writing down an explicit formula for k.
We now solve (2.9) with the new choice of Γ(x) and we expand the solution in the near

horizon and large distance regimes.
Equations (2.11), (2.12) and (2.13) go through. We replicate the estimates for x̃ at

large r and close to the horizon, obtaining
dx̃

dr̃
≃ µ√

k
, for r ≃ 1, thus x̃ ≃ µ√

k
ln(r − 1)

√
kx dx̃ ≃ µr3/2 dr̃, for r → ∞, thus x ≃ 2µ

√
r
k

(A.2)

where the algebraic identity (1 − r1)(1 − r2) = 1 was used. Notice that, in neglecting
subleading O(1) terms, we are missing O(1) corrections to the phase of the wave.

The solutions of (2.9) are now

ei
√

k(log(x−1)−x)
{

c1U
(
a, b, 2i

√
kx − 2i

√
k
)
+ c2Lc

n

(
2i
√

kx − 2i
√

k
)}

(A.3)
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with

a ≡ 1
2 i

(
−i + 2

√
k −

√
kr1 + 2

√
k
√
(r1 − 1)(r2 − 1)−

√
kr2

)
(A.4)

b ≡ 2i
√

k
√
(r1 − 1)(r2 − 1) + 1 (A.5)

n ≡ −1
2 i

(
−i + 2

√
k −

√
kr1 + 2

√
k
√
(r1 − 1)(r2 − 1)−

√
kr2

)
(A.6)

c ≡ 2i
√

k
√
(r1 − 1)(r2 − 1) (A.7)

and U(a, b, z) the confluent hypergeometric function and La
n(z) the generalized Laguerre

polynomial. The true solutions are obtained applying (2.11) with x̃ given above in the two
relevant regimes.

A.1 Near horizon

ϕ(r) = k1/4
√

µ
f(x̃(r)) (A.8)

Expanding f for r − 1 ≪ 1, we obtain the sum of an infalling wave (r − 1)−iµ and an
outgoing wave (r − 1)iµ. Their coefficients must be set to 1 and 0 respectively.

Infalling:
c12−2i

√
ke(π−i)

√
kk

1
4−i

√
kΓ
(
2i
√

k
)

√
µΓ
(

1
2

(
1− i

√
k(r1 + r2 − 4)

)) = 1 (A.9)

Outgoing:

k1/4
√

µ
e−i

√
k

 c1Γ
(
−2i

√
k
)

Γ
(

1
2

(
1− i

√
k(r1 + r2)

)) + c2L2i
√

k
1
2(i

√
k(r1+r2−4)−1)(0)

 = 0 (A.10)

A.2 Large r

Similar expansions at r → ∞ lead to the identification of an infalling wave e−2iµ
√

r and an
outgoing wave e2iµ

√
r. The leading term decays as r−3/4 in both cases, as expected.

We implement the initial conditions just obtained and, after various intermediate steps,
the end result simplifies to

outgoing:

√
2 4√kΓ

(
−2i

√
k
)

e
π
√

k(l2−4µ2+l)
4µ2 cosh

(
π
√

kl(l+1)
2µ2

)
Γ
(

il(l+1)
√

k
2µ2 + 1

2

)
π

(A.11)

ingoing:

√
2 4√−ke

−π
√

kl(l+1)
4µ2

(
e

π
√

kl(l+1)
µ2 + e4π

√
k

)
Γ
(

1
2 − i

√
k(l2+l−4µ2)

2µ2

)
(
e4π

√
k − 1

)
Γ
(
2i
√

k + 1
) (A.12)

These expressions are the coefficients multiplying 1
r3/4 e±iµ

√
r. The problem is thus com-

pletely solved if we can determine k, which is what we turn to now.
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A.3 k for intermediate masses

The integral of
√

V defining (A.1) is hard to do, but a robust and simple approximation
can be achieved for µ ≃ µc, as defined in (2.7). This amounts to µ ≃ O(1) for l = 1, 2,
which are the most interesting cases.

To understand the simplification that occurs when µ ≃ µc, notice that the zeros
r1, r2 (2.6) of V (r) collapse to r1,2 = 2. Thus we can approximate the integral as follows

∫ r2

r1

µ
√
(r − r1)(r − r2)√

r(r − 1) dr ≃
∫ r2

r1

µ
√
(r − r1)(r − r2)√

2
dr = iπµ(r1 − r2)2

8
√
2

(A.13)

The integral of
√
Γ can be done, resulting in

√
k

2 iπ (r1 + r2 − 4) (A.14)

Expanding both integrals for µ ≃ µc one obtains

−2i
√
2π (µ − µc) = −

√
k
8iπ (µ − µc)√

l(l + 1)
→ k = l(l + 1)

8 (A.15)

The weak link of this approximation is clearly the integral of
√

V . Computing it numer-
ically, our approximation achieves 20% accuracy even for masses as low as µ = 0.3 (for
l = 1), approximately 40% of µc. A simple scaling argument shows that the accuracy of
our approximated integral is the same for all l if µ/µc(l) is given.

A.4 Conclusion

For all l, plugging k into the expressions (A.11) leads to great numerical accuracy to an
incoming wave at infinity with amplitude

√
2, while the outgoing wave has amplitude 1.

We have no clear analytic understanding of this fact. As a consistency check, the current
J from section 2.4 is conserved.

We developed an approximation for µ ≃ µc. It would be desirable to explore different
mass ranges so as to cover the whole parameter space in figure 2. However this is only
meaningful if we are interested in very large angular momenta, which are phenomenologi-
cally less interesting.

We now ask if this approximation is valid. While in section 2.1 we could check the
regime in which ϵ (equation (2.13)) is small, here we can only argue qualitatively.

The general lesson we learnt is that, besides matching the actual zeros of the differential
equation, we should worry even when some terms simply approach zero. Looking at V (r),
this seems to happen only close to the horizon when µ ≪ 1. This is the same regime which
was causing trouble at l = 0 in section 2.1.

If we trust that this regime is the only one where the uniform approximation breaks
down, then we can simply argue that µ ≪ 1 is a region of parameter space we already
covered in section 2.2.
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B Causality at the horizon

This appendix is dedicated to a more careful analysis of the causality condition when ω

is not real. We will assume stability, so that the imaginary part of ω must be negative
Im(ω) < 0 since ϕ ∼ e−iωt and we want a decaying solution.

Now as usual with complex frequencies, ϕ diverges near the horizon. Indeed, the
approximate solution is

ϕ ≃ (r − 1)−iω ∼ (r − 1)−iℜ(ω)(r − 1)Im(ω) (B.1)

while the non-causal solution is zero at the horizon

ϕ ≃ (r − 1)iω ∼ (r − 1)iℜ(ω)(r − 1)−Im(ω) (B.2)

Hui and Baumann impose that the amplitude of the non-causal solution should be zero at
the horizon. Since in this setup this is so automatically, does this mean that we can forget
the causality condition? On the same note, should we be worried that the amplitude of
the causal solution diverges at the horizon?

Let us answer the question by schematically building a wave-packet out of the non-
causal wave components (B.2) (the story for (B.1) is similar). We track the evolution of
this (outgoing) wave packet in time and we ask what happens at very early times. If the
wave packet vanishes close to the horizon causality is safe, otherwise it isn’t.

We anticipate that the wave packet amplitude (at its peak) is almost unchanged for all
t. This is so despite its wave components (B.2) approaching zero for r → rBH at any given
time t. Thus we want to set the non-causal solution to zero, otherwise an observer hovering
outside the horizon would see stuff flying out. A free falling observer would instead perceive
this as an infinite energy solution.

Now we carry out the analysis sketched above. The wavepacket is a superposition
of (B.2) with modulation ϕ̃(ω). We are neglecting the infrared (large r) deformations
of (B.2), but they are irrelevant for the present purpose.

ϕ(r, t) =
∫

dω eiω ln(r−rBH)e−iωtϕ̃(ω) (B.3)

As an example, we choose ϕ̃(ω) = e−iω ln r0fω0(ω). The exponential prefactor translates the
solution at time t = 0. f is some real function peaked at ω0, which gives the size of the
wave packet.

We split real and imaginary part of ω into ω → ω − iϵ

ϕ(r, t) = eϵ ln(r−rBH)−ϵt−ϵ ln r0

∫
dω eiω ln(r−rBH)e−iωte−iω ln r0fω0(ω) (B.4)

and we ask when is the integral large. A saddle point approximation yields the position of
the peak of the wavefunction in time:

∂ω (ω(ln(r − rBH)− t − ln r0)) = 0 → ln(r − rBH)− t − ln r0 = 0 (B.5)
r(t) = rBH + r0et (B.6)
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The wavepacket flies out of the horizon as predicted, and its initial position is controlled
by r0 as initially claimed. Let’s track the wave packet (peak) amplitude in time. It is
defined as

A(t) ≡ ϕ(r(t), t) ∼ eϵ ln(r(t)−rBH)−ϵt−ϵ ln r0 = 1 (B.7)

so it remains finite (even constant) at all times. While constancy is an artefact of the near
horizon limit (i.e. the amplitude does change at large t), finiteness is robust and implies
that the wavepacket is non-zero arbitrarily close to the horizon.

Similarly, a wave packet build with the causal waves (B.1) will also remain finite as it
approaches the horizon, despite the individual waves blowing up at r = rBH.

C Soliton bound states: energy levels

In this appendix we try to analytically compute the spectrum of the soliton. We will be able
to compute the factor appearing in µ2GMsolrsol and upper bound C2. The precise value of
C2 was however too difficult for us to compute in a fully analytic approach. We discuss the
case with no black hole inside the soliton, but the more complicated case soliton+black hole
is expected to be qualitatively similar.

The first point we want to make is that C is much smaller than unity in physically
realistic situations, again because of the stability of the soliton.

While C2 = 1− (1+γ)2 dropped out of all equations following (3.12), the explicit form
of Φ in equation (3.15) enables us to compute C2. Recall that rsol is defined as the (single)
zero of −2Φ(r)− C2 = 0, so

−2−GMsol
rsol

− C2 = 0 → C2 = 2GMsol
rsol

(C.1)

The newtonian limit of equation (3.2) has a well known scale invariance that sends a
solution

(
rsol, Msol, C2) into one with

(
rsol
λ

, λMsol, λ2C2
)

, so the new solution is more
squeezed and massive. For λ large enough we expect two a priori unrelated things: first
the newtonian gravity approximation should break down and, possibly at even larger λ,
the soliton itself might become unstable. Stability forces us to require

2GMsol ≪ rsol → C ≪ 1 (C.2)

Many authors [12, 29, 31, 32] set χ|r=0 = 1, µ = 1 and numerically find γ ≃ 0.69 (→ C ≃
0.9), which thus must be interpreted not as a physically meaningful solution, but rather as
a seed we can use to produce solutions with much smaller C. γ ≃ 1 further implies λ ≪ 1,
suggesting that the newtonian limit should always be valid (at least outside re).

After these preliminaries, we now discuss the quantization condition. We already
mentioned that the requirement is

cos
(

µ

∫ r

rsol

√
−2Φ− C2 dr + π

4

)
≡ sin

(
µ

∫ r

0

√
−2Φ− C2 dr

)
(C.3)
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in order to have χ bounded at the origin and matched to an asymptotically decaying
solution at infinity. This means that

µ

∫ rsol

0

√
−2Φ− C2 dr = π

2

(3
2 + 2n

)
(C.4)

Substituting the value of Φ obtained in (3.15) we can do the integral and obtain

µ
√

GMsolrsol(0.95) = π

2

(3
2 + 2n

)
(C.5)

The first conclusion is that the approximate relation µ2GMsolrsol ≃ 1 found in (3.5) using
a scaling argument is essentially correct, but it can now be made more precise. Reinserting
ℏ, c we obtain for the lowest energy level n = 0

GMsolrsolµ
2 ≃ (6.2), Msolrsol ≃ (5.3) · 105

(
µ2

10−19eV

)−2

M⊙pc (C.6)

which is roughly twice the value reported in [32, 34]. The discrepancy could be due to the
approximations we have made. Moreover, we have a prediction for the mass scale of all
excited bound states n > 0

Msolrsol ≃ (2.4) · 105
(

µ2

10−19eV

)−2 (3
2 + 2n

)2
M⊙pc (C.7)

Additionally, Bar [32] has a prediction for what γ, Msol, rsol should be if we set χ = 1
at the origin (so that the scaling symmetry is broken). We will now try to reproduce their
numerical results.

First, Msol and rsol are related by the already mentioned relation GMsolrsolµ
2 ≃ 1, so

we will only determine rsol. We start from χ(0) ≡ χ0 = 1, which implies

4πρ(0) = 4πµ2χ2
0

4πG
≃ (8.3)Msol

r3
sol

(C.8)

where the last step comes from equation (3.24). This implies GMsol ≃
µ2r3

sol
(8.3) which we can

use together with equation (C.6) to deduce

(µrsol)4 ≃ (6.2)(8.3) → µrsol ≃ 2.7 (C.9)

Bar has µrsol ≃ 1.3 in [32], so again we are qualitatively correct. It also makes sense that for
ground state of the soliton to have size roughly a few compton wavelengths of the scalar
particle. The scale parameter λ, which we can define as χ0 = λ2, thus has the further
interpretation that λ−1 counts the number of oscillations of the field inside the soliton.

Finally, we now turn to the computation of C2. From C2 = 2GMsol
rsol

, we can deduce

C2
us ≃ 2(µrsol)2

(8.3) ≃ 1.7, C2
Bar ≃ 0.4 (C.10)

where we first used our own µrsol ≃ 2.7 and then we used Bar’s µrsol ≃ 1.3. To compare with
the value reported in [31, 56, 57], we should make the (improper) identification C2 ≡ −2γ,
which brings our result to −γ ≃ 1.7/2 = 0.85, not far from 0.69 obtained numerically.
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