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1 Introduction

The holographic principle has a concrete and well-understood realization in anti-deSitter
space (AdS) [1]. One hopes that the principle extends in some form to (nearly) flat space-
times like the one we inhabit. The basic fact that the ratio of the boundary to bulk
volume goes to a constant at large radius in AdS and to zero in flat space suggests that
flat space holography may differ qualitatively from its AdS counterpart. But exactly how
is an outstanding open question.

Two seemingly different approaches to flat space holography are the Banks-Fischler-
Shenker-Susskind (BFSS) matrix model [2–10] and celestial holography [11–16]. BFSS is
a top-down construction equating the momentum-N sector of discrete lightcone quantized
(DLCQ) M-theory with a quantum mechanics of N × N hermitian matrices representing
open strings stretching between N D0-branes. Celestial holography is a bottom-up ap-
proach applicable to any quantum theory of gravity in flat space, including M-theory, in
which the proposed dual field theory lives on the celestial sphere at null infinity. Since the
two approaches are applicable to the same theory it is natural to explore their connection.

The starting point of celestial holography (as well as AdS holography) is that both sides
of a dual pair must have the same symmetries. Given the bulk description, soft theorems
provide an efficient route to finding these symmetries [14]. So the first question we ask in
this paper is ‘Is the soft graviton theorem realized in BFSS?’ We answer this by showing
that soft gravitons are matrix subblocks whose rank is held fixed (rather than scaling with
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N like the hard gravitons) in the large-N limit which recovers the full uncompactified M-
theory.1 The soft limit is then nontrivially identified with the M-theory limit. It would be
illuminating to derive the soft theorem directly from the matrix model, and would provide
a novel test of the latter.

Soft theorems are in general expected to be Ward identities of symmetries. Hence one
asks if this expectation holds for the soft theorem in the matrix model. Using the known
expression for the BFSS matrix model in a background U(1)RR gauge field [17] we show
that the soft theorem is the Ward identity of ‘large’ U(1)RR gauge transformations [18]
which do not die off at past or future timelike infinity.2

We hope the answers to these basic questions provide a jumping-off point for relating
these two approaches to flat holography. Many further questions remain unanswered. We
will begin by reviewing the BFSS matrix model in section 2. In section 3, we leverage the
soft graviton theorem in M-theory into an analogous one in the matrix model dual. We
demonstrate that the soft expansion in the matrix model is a 1/N expansion. In section 4,
we discuss the interplay between soft theorems and supertranslation symmetry in M-theory
arguing that the analog of supertranslation symmetry in the matrix model is a large gauge
symmetry of the RR 1-form.

2 Matrix model review

In this section we briefly review the relevant features of the BFSS matrix theory [2–10],
which conjectures that the compactification of M-theory on a lightlike circle X− ∼ X− +
2πR with momentum P+ = N/R is dual to the low-energy dynamics of N D0-branes in
10 dimensions or, equivalently, a certain supersymmetric quantum mechanical theory of
N ×N Hermitian matrices. Readers familiar with BFSS may safely skip this section.

2.1 BFSS duality

Compactification of 11-dimensional M-theory on a spacelike circle gives type IIA string
theory [21, 22]. The massless degrees of freedom in M-theory are the 11-dimensional
supergraviton multiplet. The D0-branes in type IIA string theory are identified as the
KK-modes of this supergraviton multiplet. The number of units N of momentum around
the circle corresponds to the number of D0-branes. The BFSS matrix model concerns a
lightlike compactification of M-theory which can be defined as an infinitely large boost of
a spacelike one [5].

Let us define the lightcone coordinates X±, and lightcone momenta P± by

X± = 1√
2
(X0 ±X10), P± = 1√

2
(P 0 ± P 10). (2.1)

1This is reminiscent of the large-N limit of QCD, where baryons have masses of order N and mesons of
order 1. It would be interesting to see how far this analogy can be pushed.

2This is in accord with the fact that 11D supertranslations with non-zero momentum on the M-theory
circle KK reduce to U(1)RR gauge transformations [19, 20].
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Lightcone quantization is performed on surfaces of constant X+ which plays the role of
time, with P− the Hamiltonian. The lightlike compactification of M-theory is

(X+, X−) ∼ (X+, X− + 2πR). (2.2)

P+ is quantized according to
P+ = N/R. (2.3)

BFSS argued that the sector of M-theory with total momentum P+ = N/R can be
described by a rescaled version of the Hamiltonian encoding the low-energy dynamics of
N D0-branes in type IIA string theory [2–4]

H = R

2 Tr
[
P IP I − 1

2(2πl3p)2 [X
I , XJ ][XI , XJ ]− 1

2πl3p
ΨTΓI [XI ,Ψ]

]
(2.4)

subject to the constraint on physical states

fABC(XI
BP

I
C − i

2Ψ
α
BΨα

C)|ψphys⟩ = 0 (2.5)

which forces states to be invariant under U(N) transformations. Here XI are N × N

Hermitian matrices with the index I = 1, . . . , 9 running over the directions transverse to
the lightlike compactification. P I are their conjugate momenta. Ψα is an N×N Hermitian
matrix-valued spinor of Spin(9) with α = 1, . . . , 16 and gamma matrices ΓI

αβ . One can
decompose these matrices as

XI = XI
AT

A, P I = P I
AT

A, Ψα = Ψα
AT

A (2.6)

where TA are generators of the Lie algebra of U(N) in the adjoint representation normalized
so that Tr(TATB) = δAB.

We now review some basic properties of this theory [23–28]. The bosonic potential
V ∼ Tr

(
[XI , XJ ]2

)
is classically at a minimum V = 0 when [XI , XJ ] = 0 for all I and

J , which implies all matrices can be simultaneously diagonalized. The N eigenvalues are
then positions of the N D0-branes. For example, N non-interacting D0-branes travelling
along trajectories xI

i (t) with i = 1, . . . , N are described by the diagonal matrices

XI(t) =


xI

1(t) 0 . . . 0
0 xI

2(t) . . . 0
...

... . . . ...
0 0 . . . xI

N (t)

 . (2.7)

The off-diagonal elements are open strings stretching between the D0-branes.
A clump of m < N coincident D0-branes corresponds to an m ×m sub-block of this

matrix for which all of the eigenvalues xI
i in the sub-block are equal. Quantum mechanically,

these clumps are marginally bound states with complicated wave functions. They are
dual to the higher KK-momentum supergraviton modes in the M-theory picture. Widely
separated clumps are noninteracting because the strings stretched between them are very
massive and forced into their ground states.
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M-Theory BFSS
k+

j ⇐⇒ Nj/R

kI
j ⇐⇒ kI

j

k−j ⇐⇒ R(kI
j )2/2Nj

Table 1. Dictionary between momenta of gravitons in M-theory and momenta of D0-brane clumps
in the BFSS matrix model. The final relation is determined using the mass-shell condition for
M-theory gravitons 0 = −2k+

j k
−
j + kI

j k
I
j

2.2 Scattering

Consider a set of n gravitons in M-theory with individual momenta k+
j = Nj/R, with

j = 1, . . . , n and total momentum P+
tot = (N1 + · · · + Nn)/R = N/R. Each graviton is

dual to a marginally bound clump labeled by the number of D0-branes Nj , the transverse
momentum kI

j , and the polarization information of the 11D supergraviton multiplet ϵj
which in the D0-brane description is encoded by the trace ‘center of mass’ fermions, with
the explicit map given in [29–32]. The dictionary [3–5, 33] between clumps of D0-branes
and a collection of M-theory gravitons is:

Widely separated multi-graviton ‘scattering states’ in M-theory with quantum numbers
kµ

1 , ϵ1, . . . , k
µ
n, ϵn correspond to widely-separated multi-clump states in the matrix model

with D0-brane quantum numbers N1, k
I
1, ϵ1, . . . , Nn, k

I
n, ϵn. In order to formulate the scat-

tering problem in BFSS, one should consider initial and final scattering states corresponding
to widely separated wavepacket clumps of D0-branes, evolving past into future using the
BFSS Hamiltonian (2.4) [34, 35]. The BFSS duality conjecture states that this scatter-
ing amplitude matches with the one that one would compute in (lightlike compactified)
M-theory, namely

AM(kµ
1 , . . . , k

µ
n) = ABFSS(N1, k

I
1, . . . , Nn, k

I
n). (2.8)

2.3 The M-theory limit

The scattering amplitudes of uncompactified 11-dimensional M -theory are obtained by
taking the radius large with external momenta held fixed

R→ ∞, kµ
j fixed. (2.9)

From the expression for the momenta this is easily seen to be equivalent to

N ∼ Nj ∼ R→ ∞, kI
j fixed, (2.10)

and hence is a variety of large-N limit. In this limit, the discretuum of allowed values of
external momentum approach a continuum and any scattering proccess can be studied.

3 Soft graviton theorem in the matrix model

In this section we show that the soft theorem is realized within BFSS duality and, moreover,
that the soft limit is the same as the M-theory limit with external momenta/D0-charges
suitably scaled.
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Figure 1. A schematic depiction of equivalent scattering processes viewed through dual lenses of
M-theory, D0-brane interactions, and block diagonal matrices in the BFSS model.

3.1 The soft theorem in M-theory

Weinberg’s soft graviton theorem [36] applies to essentially any gravitational theory in
an asymptotically flat spacetime.3 In particular it must hold in 11-dimensional M-theory
which contains gravitons as part of the low energy effective action.

Consider a generic scattering amplitude AM(kµ
1 , . . . , k

µ
n) involving external particles

with future-directed momenta kµ
j . These external particles may be ingoing or outgoing

gravitons or some other particles. Momenta are parameterized by a vector vI ∈ Rd and a
scale ω ∈ R>0 according to

kµ
j = ωj k̂

µ
j = ωj

2 (1 + v2
j , 2vI

j , 1− v2
j ), qµ

s = ωsq̂
µ
s = ωs

2 (1 + v2
s , 2vI

s , 1− v2
s). (3.1)

where we denote the momentum of the soft graviton by qµ
s . The soft graviton theorem

states:

AM(qµ
s , ϵ

µν
s ; kµ

1 , . . . , k
µ
n) =

[
κ

2 ϵ
s
µν

n∑
j=1

ηj

kµ
j k

ν
j

qs · kj
+O

((
ωs

ωj

)0) ]
AM(kµ

1 , . . . , k
µ
n) (3.2)

where ηj = +1 (−1) if the jth particle is outgoing (incoming), ϵµν
s is the polarization tensor

of the soft graviton, and κ =
√
32πGN [36].

In the soft limit, the ratios ωs/ωj → 0. The coefficient of the leading soft divergence
(ωs/ωj)−1 is universal. This leading soft term has corrections which are a power series in
(ωs/ωj).

3Of course Weinberg considered only four dimensions, but the extension to higher dimensions is straight-
forward [19, 37–40].
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3.2 Soft limit in the matrix model

In this subsection we show the soft limit in the BFSS matrix model is the M-theory limit
with hard gravitons represented by subblocks whose size grows like N and soft gravitons
by subblocks of fixed finite size.

Both soft and hard gravitons are parameterized as in equation (3.1) with q+
s = ωs/

√
2

and k+
j = ωj/

√
2. This expression implies

ns

R
= ωs√

2
, qI

s = ωsv
I
s ∼ ωs and Nj

R
= ωj√

2
, kI

j = ωjv
I
j ∼ ωj (3.3)

where we have used the dictionary provided in table 1 with Nj , the block sizes, correspond-
ing to the hard M-theory gravitons, and ns to the soft ones. Thus, the momentum k+

j for
a particular graviton dictates the size of the corresponding block in the matrix model. In
the matrix model, the soft limit then reads

Soft Limit: ns

Nj
= ωs

ωj
→ 0. (3.4)

Scattering amplitudes with a soft external particle in the BFSS matrix model, thus, corre-
spond to situations where a block of size ns is dwarfed by the other blocks of size Nj . This
happens automatically in the M-theory limit (2.10) as long as we keep ns fixed! Hence
the soft limit is the same as the M-theory limit, but with a new type of external state
constructed from a finite number ns of D0-branes.4

In the M-theory limit, the difference between scattering a graviton with (Nj , k
I
j ) versus

(Nj−1, kI
j ) with one fewer D0-branes vanishes. This might have led to the naive conclusion

that submatrices with sizes or order one don’t matter and that the scattering of a single
D0-brane (1, kI

s) vanishes altogether. This is not the case because of the soft pole. Note
also the leading term in the scattering amplitude for a bound state with a fixed finite
number ns of D0s differs only by the multiplicative factor 1/ns.

We illustrate a 2 → 3 scattering process with soft emission diagrammatically from the
M-theory perspective, the D0-brane perspective, and the block diagonal matrix perspective
explicitly in figure 1.

We now write the leading soft graviton theorem of M-theory (3.2) in terms of BFSS
variables. If we define a convenient basis for graviton polarization tensors

ϵµν
IJ (v) ≡

1
2
(
ϵµI ϵ

ν
J + ϵνI ϵ

µ
J

)
− 1

9δIJϵ
µ
Kϵ

Kν with ϵµJ(v) ≡ ∂J q̂
µ
s = (vJ , δ

I
J ,−vJ) (3.5)

and write the soft graviton polarization as

ϵµν
s = eIJϵµν

IJ , (3.6)

4It is also possible to take ns ∼ Nα for any α ∈ (0, 1] such that ns/Nj ∼ Nα−1 ≪ 1. This is permitted
because the soft expansion is a series expansion in the ratio ns/Nj , and it does not matter how the ratio
scales with N . However, in the remainder of this work, we take ns ∼ O(1) for simplicity.
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then after some algebra and using the dictionary 1, the soft theorem becomes5

ABFSS(ns, q
I
s , ϵs, out; in) =

[
− 2κ

n∑
j=1

ηj
Nj

ns

eIJ(vs − vj)I(vs − vj)J

(vs − vj)2 + · · ·
]
ABFSS(out; in).

(3.7)
Finally, we define the inversion tensor in 9 spatial dimensions as6

IIJ(v) = δIJ − 2v
IvJ

v2 . (3.8)

In terms of this inversion tensor, the leading soft graviton theorem in the BFSS matrix
model reads

ABFSS(ns, q
I
s , ϵs, out; in) =

[
κ

n∑
j=1

ηj
Nj

ns
eIJIIJ(vs − vj) + · · ·

]
ABFSS(out; in). (3.9)

Note that the soft pole ωj/ωs gets recast into the ratio of block sizes Nj/ns, which diverges
in the soft limit according to equation (3.4).

Sub-leading corrections to this expression are given by an expansion in ns/Nj . Because
ns ∼ O(1) and Nj ∼ O(N), we can identify the subleading terms in the soft expansion on
the gravity side with a 1/N expansion on the gauge theory side.

It would be illuminating to derive the soft theorem directly from the matrix model. It
is not obvious to us even how the factor of Nj/ns would emerge.

4 Asymptotic symmetries in the matrix model

In this section, we use the soft graviton theorem in 11D to show that the insertion of a
single D0-brane in a 10D BFSS scattering amplitude generates a large gauge transformation
on the background RR 1-form gauge potential Cµ in the matrix model.7 Since this is a
quantum-mechanical model the relevant asymptotic regions are at t = ±∞. The RR 1-
form is of the form Cµ = ∂µθe,vs , for some particular gauge parameter θe,vs given in (4.9)
depending on the polarization eIJ and velocity vs of the soft D0-brane. This is summarized
in equation (4.10), which is the main result of this section. This large U(1) gauge symmetry
arises in the KK reduction of the 11D supertranslation symmetry.8

5There is a small technical subtlety in equation (3.7). The BFSS matrix model describes M-theory in
a sector with momentum P + = N/R, so all amplitudes must be manifestly momentum conserving in P +

and cannot be off-shell in P +. Equivalently, the number of D0-branes N is always conserved. Therefore,
we cannot simply append a small block of size ns to the matrix, but we must shrink the size of the other
blocks slightly. Assuming that the amplitudes are analytic in Nj (in the large N limit, this follows from
the analyticity of the M-theory S-matrix) one may perform a first order Taylor expansion to see that the
expression will only be corrected at subleading terms.

6This is the same inversion tensor familiar from conformal field theory.
7The result easily generalizes to finite bound clumps of D0-branes by dividing by ns.
8Symmetries associated to 10D supertranslations would have to come from modes independent of the

X+ circle and hence involve ns = 0. It is not clear to us how to describe these in the matrix model.
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4.1 Background RR gauge potentials

The standard BFSS matrix model, with the Hamiltonian given by equation (2.4), describes
a system of D0-branes living in a world where all background fields are turned off. The
effect of coupling the D0-branes to external background fields can be incorporated by adding
terms to the Lagrangian. In particular, the interaction term coupling the D0-branes to the
U(1)RR gauge field Cµ generalizes the usual electromagnetic interaction Q

∫
dt ẋµCµ(x)

between a charge Q particle and the gauge field, where xµ is the worldline of the particle.
In the matrix model, the precise interaction term was found in [17] to be

SRR[Cµ] =
∫
dt

∞∑
n=0

1
n!
(
∂I1 · · · ∂InCµ(t, 0⃗)

)
Iµ(I1···In) (4.1)

where µ = 0, . . . , 9 and xµ = (t, xI) = (t, x⃗). The ‘multipole moments’ of the current Iµ

are defined by

Iµ(I1···In) = Tr
(
Sym(Iµ, XI1 , · · · , XIn)

)
+ I

µ(I1···In)
F (4.2)

where
Iµ = (1/R, ẊI/R). (4.3)

Here, Sym is a symmetrized average over all orderings of the input matrices. Iµ(I1···In)
F are

terms involving at least two fermionic matrices, Ψ, which will not be relevant to this paper
for reasons discussed in section 4.2. If one takes the matrices XI to be diagonal, as in
equation (2.7), then the action reduces to the electromagnetic form, as expected.

4.2 Large U(1)RR gauge transformations

If the RR 1-form is pure gauge, then the interaction term (4.1) becomes a total derivative.
Plugging Cµ = ∂µθ into equation (4.1), one can show that9

SRR[∂µθ] =
∫
dt ∂t

[ ∞∑
n=0

1
n! (∂I1 · · · ∂Inθ(t, 0⃗))I0(I1···In)

]

=
∞∑

n=0

1
n! (∂I1 · · · ∂Inθ(t, 0⃗))I0(I1···In)

∣∣∣∣t=+∞

t=−∞
.

(4.4)

Therefore, a pure gauge background field affects amplitudes by a position-dependent phase
acting on the initial and final states.

The asymptotic symmetry group of gauge theories is typically defined as the set of
‘large’ gauge transformations which satisfy some set of boundary conditions modulo ‘small’
gauge transformations which vanish at the boundary. For the remainder of this section,
we will consider the case where Cµ = ∂µθ is pure gauge and given by such a large gauge
transformation θ which is non-vanishing as t → ±∞. The boundary conditions which θ

9To demonstrate this, one must use that the multipole moments satisfy the conservation law
∂tI

0(I1···In) = II1(I2···In) + · · · + IIn(I1···In−1).
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must satisfy near past and future timelike infinity [14, 41–44] specify that as t→ ±∞, the
gauge parameter θ(t, x⃗) can only depend on the ratio x⃗/t

θ(t, x⃗) t→±∞−−−−→ θ(t, x⃗) = θ(x⃗/t) (4.5)

implying that these large gauge transformations are parameterized by a single function on
R9.10 Outside of the above specification, the gauge parameter is arbitrary.

Now we show that the boundary term (4.4) reduces to a very simple expression on
asymptotic scattering states. As functions of XI , asymptotic scattering wavefunctions are
sharply peaked in momentum space and non-trivially supported only on matrices of the
form

XI =


xI

1(t)
. . .

xI
N (t)

+∆XI , ∆XI ∼ O(t0) (4.6)

where x⃗i(t) = v⃗it + x⃗i,0 tracks the position of the ith D0-brane. Note that x⃗i(t) = x⃗j(t)
when the ith and jth D0-branes share a bound state. ∆XI is a matrix whose values do
not grow with time as t → ±∞. The entries within the blocks on the diagonal of ∆XI

correspond to the degrees of freedom of the bound states modulo their center of mass
motion. As such, these entries can take values on the order of the spatial size of these
bound states.

The off block-diagonal components of ∆XI describe strings stretched between distant
D0-brane bound states. The mass of the string is proportional to its length, so these strings
have mass scaling like t. When the string excitations become heavy, the wavefunction for
these components gets frozen to the ground state of a quantum (super)harmonic oscillator
with frequency ω ∼ t. The width of such a wavefunction shrinks as ∼ t−1/2. This situation
is summarized in figure 2.

We may now insert the matrices describing the asymptotic states (equation (4.6)) into
the boundary term (equation (4.4)). We find that the only terms that survive at t = ±∞
are11

SRR[∂µθ] =
n∑

j=1
ηj
Nj

R

∞∑
n=0

1
n!
(
∂I1 · · · ∂Inθ(t, 0)

)
xI1

j · · ·xIn
j

∣∣∣∣t=+∞

t=−∞
=

n∑
j=1

ηj
Nj

R
θ(v⃗j) (4.7)

10This is the limit relevant for nonrelativistic charged massive scattering states of the more general formula
for large U(1) gauge transformations.

11In this footnote we demonstrate why the fermionic term I
0(I1...In)
F in equation (4.2) doesn’t contribute

to our analysis. First, we notice that the couplings ∂I1 · · · ∂In θ(x⃗/t) contains n spatial derivatives, each
pulling down a factor of 1/t. So, for the term (∂I1 · · · ∂In θ)I0(I1···In) to be non-vanishing at t = ±∞,
I0(I1···In) ∼ tn at asymptotic times. The bosonic moments, I

0(I1···In)
B = Tr(Sym(XI1 · · · XIn )), scale as

tn, since every bosonic matrix has entries growing as t. In fact, only the entries linear in t, which are
vIt, survive in this limit. Next, we use the fact that the BFSS action is invariant under R 7→ λR, X 7→
λ1/3X, Ψ 7→ λ1/2Ψ, t 7→ λ−1/3t [45]. This invariance must persist when coupled to a background field if we
map θ 7→ λθ, which implies that each multipole term Iµ(I1...In) must have a constant scaling dimension in
λ for the action to be invariant. Therefore, if two Ψ’s are added, three X’s must be removed, making the
whole term scale three lower powers of t and vanish at the boundary.
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(a) (b)

Figure 2. (a) How different parts of the matrix XI scale with t for scattering states. (b) The
scattering of non-relativistic D0-brane bound state Gaussian wavepackets, which can be taken to
have an arbitrarily small angular width. A gauge function θ(t, x⃗) which only depends on the ratio
x⃗/t will take a well-defined value on these wave packets, depending only on their velocity.

where we noticed that the middle expression is just a Taylor expansion of θ(t, x⃗) and used
θ(t, x⃗j) = θ(x⃗j/t) according to our earlier considerations.

In a quantum amplitude, this addition to the action becomes an overall phase. There-
fore, placing BFSS in such a background gauge field modifies the amplitude via

ABFSS(out; in)
∣∣∣∣
Cµ=∂µθ

= exp

i n∑
j=1

ηj
Nj

R
θ(v⃗j)

 ABFSS(out; in)
∣∣∣∣
Cµ=0

. (4.8)

From the soft graviton theorem (3.9), if we define the gauge parameter θe,vs by

θe,vs(x⃗/t) ≡ −2κeIJ(vs − x/t)I(vs − x/t)J

|v⃗s − x⃗/t|2
(4.9)

which depends on the velocity v⃗s and polarization structure eIJ of the soft D0-brane, then
by combining (4.8) and (3.7), we see that

lim
ns/R→0

ns

R
ABFSS(ns, k

I
s , ϵs, out; in)

∣∣∣∣
Cµ=0

= −i d
dε

∣∣∣∣
ε=0

ABFSS(out; in)
∣∣∣∣
Cµ=ε∂µθe,vs

. (4.10)

Therefore, the insertion of a single D0-brane in a momentum eigenstate in the amplitude
generates the action of a large U(1)RR gauge transformation (4.9) on the asymptotic scat-
tering state. A general gauge transformation can be generated by an appropriate coherent
superposition of a momentum-eigenstate D0-brane.
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