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1 Introduction

Since the discovery of neutrino oscillation in various experiments [1–4], it is established
that neutrinos are massive and their flavours are mixed. On the other hand, neutrinos are
massless in the Standard Model (SM), this points towards the existence of physics beyond
the SM. There exist various theories that can explain the origin of tiny neutrino masses such
as the seesaw mechanism [5–9], radiative seesaw mechanism [10], and models based on extra
dimensions [11, 12]. One such framework is the inverse seesaw (ISS) mechanism, where the
SM is extended by introducing SM gauge singlets and right-handed (RH) neutrinos [13, 14].
In contrast to the canonical seesaw mechanism, in the ISS mechanism, besides the heaviness
of RH neutrinos, a small lepton-number violating mass parameter µ causes the suppression
of the neutrino mass allowing lighter RH neutrinos (TeV-scale) and O(1) Yukawa coupling.
The gauge-invariant Lagrangian of the extension of the SM can be written as

−Lν = Yν l̄LH̃NR +MR
¯(NR)c (SL)c + 1

2µS̄L (SL)c + h.c., (1.1)

where lL is the left-handed doublet, H is the Higgs doublet, H̃ = iσ2H
∗ with σ2 being

the 2nd Pauli matrix, NR are the right-handed neutrino singlets and SL are the SM gauge
singlets. After the Higgs doublet, H acquires vacuum expectation value (vev), i.e., ⟨H⟩ =
(0, v/

√
2)T with v ≈ 246 GeV and breaks the gauge symmetry, the neutrino mass matrix

may be written as

Mν =


0 mD 0

mT
D 0 MR

0 MT
R µ

 , (1.2)
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where mD = Yνv/
√

2 is the Dirac mass matrix, MR is a complex matrix and µ is a complex,
symmetric matrix. With µ≪ mD ≪MR, diagonalisation of eq. (1.1) lead to

mν = mD
(
MT
R

)−1
µ (MR)−1mT

D. (1.3)

In the ISS model, with the O(mD) ∼ 102 GeV, the mass of light neutrinos O(mν) ∼
0.1 eV may be suppressed by the smallness of µ with O(µ) ∼ 103 eV as well as the heav-
iness of right-handed neutrino masses O(MR) ∼ 104 GeV. The mass scale of the heavy
neutrinos is slightly lower than the canonical seesaw model making it potentially testable
at future colliders.

Another aspect of the flavour structure of the SM is the observed fermion mixing.
For the lepton sector, experimental evidence shows two large and a small mixing angles,
however, the origin of such mixing patterns is still unanswered. The answer to such a
problem can be given by introducing non-Abelian discrete flavour symmetries into the
Lagrangian of the model [15–17]. Various models based on A4 [18–25], S4 [26–39], A5 [40,
41], etc. have been proposed over the years to explain the observed lepton flavour mixing
pattern. In models based on non-Abelian discrete symmetries, the discrete symmetry
which is exact at a high-energy scale breaks down distinctly leaving residual symmetry
in the charged-lepton and neutrino sectors at low-energy scales. This breaking pattern is
governed by the vev of the scalar field known as flavons (singlets under SM gauge symmetry)
and eventually determines the lepton flavour mixing pattern.

In this paper, we study the ISS model with S4 flavour symmetry and examine how
well the model describes neutrino masses, mixing, and CP violation. We work in the
framework with minimal ISS(2, 2) which is the minimal possible form of ISS mechanism
that can account for the neutrino mass spectra [42]. The resulting neutrino mass matrix
is tested against the neutrino experimental data using chi-squared analysis. We further
explore the implications of the model for neutrinoless double beta decay.

The rest of the article is structured as follows. In section 2, we construct the S4
flavour symmetric inverse seesaw model with two right-handed and two SM gauge singlet
neutrinos. Section 3 includes the numerical analysis and the results of the model presented
in section 2. We investigate the viability of the model to explain the latest data from
neutrino oscillation experiments using chi-squared analysis. Further, we define the allowed
region of the parameters of the model corresponding to χ2 ≤ 30 values. This section also
includes the results on neutrinoless double beta decay predicted by the model and we finally
summarise our conclusions in section 4. In appendix A we give a brief description of the S4
group. The scalar sector and details of the vacuum alignments are included in appendix B.

2 The model

We consider the extension of the SM by including additional S4 flavour symmetry. It
is further augmented with Z3 × Z4 group to achieve the desired structures for the mass
matrices. The fermion sector of the model includes the addition of two right-handed neu-
trinos and two SM gauge singlet fermions to the SM fermion content, resulting in ISS(2, 2)
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Field lL eR (µR, τR) H NR S1 S2 φc ϕc φν ξ ψ

S4 31 11 2 11 2 11 12 31 32 31 2 11

Z3 1 ω2 ω2 ω 1 1 1 1 1 ω 1 1
Z4 i 1 1 1 i i i i i 1 1 −1

Table 1. Field content of the model and their charge assignment under S4× Z3×Z4.

framework. In the scalar sector, we have one SU(2)L Higgs doublet H, and SU(2)L singlet
flavons ϕc, φc, ϕν , χ, ψ. Various fields of the model and their transformation properties
under different symmetry groups are presented in table 1. The Yukawa Lagrangian which
is invariant under the flavour symmetry, is of the form

−L ⊃ α1
Λ l̄LHφceR + α2

Λ l̄LHφc(µR, τR) + α3
Λ l̄LHϕc(µR, τR) (2.1)

+ β1
Λ l̄LH̃φνNR + γ1N̄RξS1 + γ2N̄RξS2 + λ1S1S1ψ + λ2S2S2ψ + h.c.,

where α1, α2, α3, β1, γ1, γ2, λ1, and λ2 are the Yukawa coupling constant.
The vev of the flavons in the charged-lepton sector are ⟨φc⟩ = (vφc , 0, 0), ⟨ϕc⟩ =

(vϕc , 0, 0) [43]. The charged-lepton mass matrix obtained after flavour and electroweak
symmetry breaking is of the form,

ml = v

Λ


α1vφl

0 0
0 α2vφl

+ α3vϕl
0

0 0 α2vφl
− α3vϕl

 . (2.2)

The hierarchy among the masses of the charged-lepton can be explained using the
Froggatt-Nielsen mechanism and we have assumed the approach presented in [43]. For the
neutrino sector, we assume that the flavons develop vev in a region of the scalar potential’s
parameter space where1

⟨φν⟩ = (vφν1
, vφν2

, vφν3
), ⟨ξ⟩ = (vξ, vξ), ⟨ψ⟩ = vψ. (2.3)

After electroweak gauge and flavour symmetry breaking, we get the following matrices
for the mass term and couplings

mD =

b ca b
c a

 , MR =
(
d d

d −d

)
, µ =

(
e 0
0 e

)
, (2.4)

where a = β1
Λ vvφν1

, b = β1
Λ vvφν2

, c = β1
Λ vvφν3

, d = γ1vξ ≃ γ2vξ, and e = λ1vψ ≃ λ2vψ.

1The details of the scalar sector and vacuum alignments are shown in appendix B.
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Using the matrices of eq. (2.4) in the inverse seesaw formula (eq. (1.3)), the light
neutrino mass matrix becomes

mν = m0


1 + β2 α+ β β(1 + α)

α+ β 1 + α2 α(1 + β)

β(1 + α) α(1 + β) α2 + β2

 , (2.5)

where we have defined two complex dimensionless parameters α = a/b, β = c/b and the
factor m0 denotes the mass scale. The light neutrino mass matrix of eq. (2.5) is diagonalized
by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, UPMNS

U †
PMNSmνU

∗
PMNS = diag(m1,m2,m3), (2.6)

with m1, m2, and m3 being the mass eigenvalues. In standard PDG parametrization, the
PMNS mixing matrix is given by

UPMNS =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12c23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

PM , (2.7)

where,

PM =

e
iρ 0 0
0 eiσ 0
0 0 1

 . (2.8)

In the model under study, the lightest neutrino mass m1(m3) is zero in the case of
the Normal Hierarchy (Inverted Hierarchy) of neutrino masses. It is worth noting that for
m1 = 0 (NH), the Majorana CP phase ρ is zero and in the case of IH with m3 = 0 the
phases can be redefined as (σ− ρ) → σ. Thus, the model has a single Majorana CP phase
and the phase matrix effectively becomes PM = diag(1, eiσ, 1).

3 Numerical analysis and results

As discussed in the previous section, we have considered the extension of SM by includ-
ing two RH neutrinos and two SM gauge singlets resulting in a framework known as the
ISS(2, 2) model. We have shown how S4 flavour symmetry can be implemented in such
a framework and we have obtained the light neutrino mass matrix as shown in eq. (2.5).
The neutrino mass matrix of eq. (2.5) contains four real parameters (Re(α), Im(α), Re(β),
Im(β)) that effect the neutrino mixing matrix elements. In this section, we perform nu-
merical analysis and test the model against the experimental data. We proceed by writing
the neutrino oscillation parameters (θ12, θ23, θ13, ∆m2

21, ∆m2
31(32), δCP) in terms of the

model parameters and scrutinize the ability of the model to explain the neutrino experi-
mental data [44].
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Using the light neutrino mass matrix we can define the hermitian matrix, hν = mνm
†
ν

such that

hν = m2
0


A B C

B∗ D E

C∗ E∗ F

 , (3.1)

with,

A = |1 + β2|2 + |α+ β|2 + |β(1 + α)|2

B = (1 + β2)(α+ β)∗ + (α+ β)(1 + α2)∗ + (β + αβ)(α+ αβ)∗

C = (1 + β2)(β + αβ)∗ + (α+ β)(α+ αβ)∗ + (β + αβ)(α2 + β2)∗

D = |(α+ β)|2 + |(1 + α2)|2 + |(α+ αβ)|2

E = (α+ β)(β + αβ)∗ + (1 + α2)(α+ αβ)∗ + (α+ αβ)(α2 + β2)∗

F = |β(1 + α)|2 + |(α+ αβ)|2 + |(α2 + β2)|2.

The analytical relations between the elements of the hermitian matrix hν and the three
mixing angles as well as the Dirac CP-violating phase can be written as [45]

tan θ23 = Im(B)
Im(C)

tan 2θ12 = 2N12
N22 −N11

tan θ13 = |Im(E)| ·

√
{[Im(B)]2 + [Im(C)]2}2 + {Re(B)Im(B) + Re(C)Im(C)}2√
{[Im(B)]2 + [Im(C)]2}{Re(B)Im(C) − Im(B)Re(C)}2

tan δCP = − [Im(B)]2 + [Im(C)]2

Re(B)Im(B) + Re(C)Im(C) , (3.2)

where the quantities N11, N12, and N22 is expressed as

N11 = A−Re(B)Im(C)−Im(B)Re(C)
Im(E)

N12 =
[

[Re(B)Im(C)−Im(B)Re(C)]2

[Im(B)]2 +[Im(C)]2
+
[
{Re(B)Im(B)+Re(C)Im(C)}2

{[Im(B)]2 +[Im(C)]2}2
+1
]

[Im(E)]2
] 1

2

N22 = [Im(C)]2D+[Im(B)]2F−2Im(B)Im(C)Re(E)
[Im(B)]2 +[Im(C)]2

. (3.3)

It is clear that for a specific point in the four-dimensional parameter space of the model,
there is a certain value of the experimental observables given by eq. (3.2). Consequently, any
variation in the model parameters changes the value of the neutrino oscillation parameters
resulting from the model. In order to test the model against the latest experiment data on
neutrino mixing parameters, we define a χ2-function and perform a numerical simulation
using a sampling package MultiNest [46]. The χ2-function used in our analysis has the
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Parameter Best-fit ±1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269–0.343

sin2 θ23 (NH) 0.573+0.018
−0.023 0.405–0.620

sin2 θ23 (IH) 0.578+0.017
−0.021 0.410–0.623

sin2 θ13 (NH) 0.02220+0.00068
−0.00062 0.02034–0.02340

sin2 θ13 (IH) 0.02238+0.00064
−0.00062 0.02053–0.02434

∆m2
21

10−5 eV2 7.42+0.21
−0.20 6.82–8.04

|∆m2
3l|

10−3 eV2 (NH) 2.515+0.028
−0.028 2.431–2.599

|∆m2
3l|

10−3 eV2 (IH) 2.498+0.028
−0.029 2.584–2.413

Table 2. Latest experimental data on neutrino oscillation considered in our analysis [44].

following form

χ2 =
∑
i

(
Pi(p) − P 0

i

σi

)2

, (3.4)

where Pi(p) is the value of the observables predicted by the model at a point p in the four-
dimensional parameter space of the model, P 0

i and σi denotes the central value, and the
corresponding 1σ error of the ith experimental observable. The experimental values of the
neutrino observables used in our analysis are summarised in table 2. In eq. (3.4), we do not
consider the Dirac CP-violating phase δCP as an input. The reason is the weak statistically
preferred value of maximally violating CP phase from global experimental data. In order
to carry out the test we treat the parameters of the model to be free and allow them to
randomly vary in the following range

Re(α), Im(α), Re(β), Im(β) ∈ [−10, 10]. (3.5)

Using eq. (3.2), we obtain values for the three mixing angles and the Dirac CP violating
phase. The best-fit values of the model parameter correspond to the minimum value of
χ2. We found that the model gives a good description of the experimental data for NH
of neutrino masses with χ2

min ≈ 0.24, however, fails to describe the data for IH with
χ2

min > 100. The allowed region of the parameter space of the model is shown in figure 1
with the colors indicating the range of values of χ2. Here, we have shown the values of
the parameters of the model corresponding to χ2 ≤ 30. The best-fit values of the model
parameters obtained by minimizing the χ2-function are Re(α) = 0.314, Im(α) = −0.255,
Re(β) = 1.293, and Im(β) = 0.032 in NH.2

Figure 2 shows how well the model describes the neutrino oscillation experimental data
for the case of NH of neutrino masses. The color bar represents the value of χ2 ranging from

2In our analysis we have accepted only the points that satisfy χ2 ≤ 30, hence, no further analysis is done
for the case of IH.
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Figure 1. Allowed region for the model parameters Re(α), Im(α), Re(β), and Im(β).

Figure 2. Correlation between the neutrino oscillation parameters with the color indicating the
ranges of χ2 values.
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Figure 3. Range of values for the mass scale, m0 and the sum of light neutrino masses,
∑

i mi.

sin2 θ12 sin2 θ23 sin2 θ13 δCP/
◦ ∆m2

21 (eV2) ∆m2
31 (eV2)

0.303 0.575 0.0225 370.087 7.42 × 10−5 2.510 × 10−3

Table 3. The best-fit values for the neutrino oscillation parameters from χ2 analysis.

(1–30). The best-fit values of the neutrino oscillation parameters obtained from the model
are summarized in table 3. The best-fit values for the parameters sin2 θ12, sin2 θ23, sin2 θ13
and the two mass-squared differences lies well within the 1σ range of experimental values
shown in table 2. The value of the Dirac CP-violating phase δCP corresponding to the χ2

min
value is 370.078◦, which is within the 3σ range of neutrino oscillation data. Thus the model
presented in the previous section provides a decent description of the recent experimental
data and whose prediction on δCP may be tested in future precision experiments.

In figure 3 we present the sum of neutrino masses as a function of the mass scale, m0
which effectively influences the absolute neutrino masses. There is a cosmological upper
bound on the sum of the light neutrino masses,

∑
imi < 0.12 eV [47–50] and our model

shows a consistent value ranging from 56.67 to 61.12 meV.
The effective Majorana neutrino mass |⟨mee⟩| that characterizes the process of neutrino-

less double beta decay (0νββ) is given by

|⟨mee⟩| =
∣∣∣∣∣∑
i

miU
2
ei

∣∣∣∣∣ = |c2
12c

2
13m1e

iαM + s2
12c

2
13m2e

iβM + s2
13e

−2iδCP | = |(mν)11|. (3.6)

– 8 –
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Figure 4. The effective Majorana electron neutrino mass, |⟨mee⟩| as a function of the sum of light
neutrino masses,

∑
i mi.

From equation (3.6) we can see that the effective Majorana neutrino mass depends
on the Majorana phases as well as the Dirac CP phase and can be given as the (1, 1)
element of the neutrino mass matrix of equation (2.5). Using the parameter space of
figure 1 we evaluated the |⟨mee⟩| and the results are represented in figure 4. The predicted
values of |⟨mee⟩| lie between (6.25–8) meV and it is well below the sensitivity reach of
0νββ experiments.

4 Conclusion

This paper examined the minimal form of the inverse seesaw model ISS(2, 2) with S4
flavour symmetry. The S4 flavour symmetry aids in determining the texture of the mass
matrices and eventually describing the mixing pattern in the leptonic sector. We performed
a test and studied how well the model describes the experimental data using χ2 analysis.
We found that the model describes the experimental neutrino data for NH of neutrino
masses with the best-fit value at χ2

min ≈ 0.24. The model, however, rules out the case
of IH of neutrino masses, with χ2

min > 100. The prediction of the Dirac CP phase at
the best-fit point is δCP ≈ 370.087◦ which can be tested in future precision experiments.
Prediction of the model on effective Majorana neutrino mass is also made. The points
in the parameter space that satisfy χ2 ≤ 30 have been considered the allowed region for
the model parameters. Using this allowed region of the model parameters we evaluate the
effective Majorana neutrino mass and found that the obtained values are very small to be

– 9 –
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tested in future experiments. Experiments such as T2K and NOνA can resolve the octant
of the mixing angle θ23 and give a precision measurement on Dirac CP-violating phase δCP,
which will help us validate our model. Further, the constrained parameter space obtained
from our model may be used to study low-scale leptogenesis and is left for future work.
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A Summary of S4 group

The S4 group is a group of permutations of four objects and it has 24 elements (4! = 24).
It describes the symmetry of a cube and can be generated by the permutations S, T , and
U which satisfy the following properties,

S2 = T 3 = U2 = 1
ST 3 = (SU)2 = (TU)2 = 1 . (A.1)

The elements of the S4 group can be classified into the following conjugacy class,

C1 : {I}
C2 : {S, T 2ST, TST 2}
C3 : {U, TU, SU, T 2U, STSU, ST 2SU}
C4 : {T, ST, TS, STS, T 2, ST 2, T 2S, ST 2S}
C5 : {STU, TSU, T 2SU, ST 2U, TST 2U, T 2STU} . (A.2)

It has five conjugacy classes and therefore there are five irreducible representations of
the S4 group namely, two singlets 11 and 12, one doublet 2, and two triplets 31 and 32.
These irreducible representations follow the following Kronecker products,

11 ⊗ η = η, 12 ⊗ 12 = 1, 12 ⊗ 2 = 2, 12 ⊗ 31 = 32, 12 ⊗ 32 = 31

2 ⊗ 2 = 11 ⊕ 12 ⊕ 2, 2 ⊗ 31 = 2 ⊗ 32 = 31 ⊕ 32,

31 ⊗ 31 = 32 ⊗ 32 = 11 ⊕ 2 ⊕ 31 ⊕ 32, 31 ⊗ 32 = 12 ⊕ 2 ⊕ 31 ⊕ 32 .

B The scalar sector of the model

The scalar potential of the model is written such that it is invariant under the symmetry
S4 ⊗ Z3 ⊗ Z4 and has the following form,

V (H,φc, ϕc, φν , ξ, ψ) = V1(H) + V2(φc, ϕc) + V3(φν , ξ, ψ,H) + V4(H, ξ, ψ), (B.1)

– 10 –



J
H
E
P
1
1
(
2
0
2
3
)
1
5
4

with,

V1(H) = µ2
H(H†H) + λH(H†H)2, (B.2)

V2(φc, ϕc) = a1(φcφc)11(φcφc)11 + a2(φcφc)2(φcφc)2 + a3(φcφc)31(φcφc)31

+ a4(ϕcϕc)11(ϕcϕc)11 + a5(ϕcϕc)2(ϕcϕc)2 + a6(ϕcϕc)31(ϕcϕc)31

+ a7(φcφc)11(ϕcϕc)11 + a8(φcφc)2(ϕcϕc)2 + a9(φcφc)31(ϕcϕc)31

+ a10(φcϕc)12(φcϕc)12 + a11(φcϕc)2(φcϕc)2 + a12(φcϕc)31(φcϕc)31

+ a13(φcϕc)32(φcϕc)32 + a14(φcϕc)2(φcφc)2 + a15(φcϕc)31(φcφc)31

+ a16(φcϕc)32(φcφc)32 + a17(φcϕc)2(ϕcϕc)2 + a18(φcϕc)31(ϕcϕc)31

+ a19(φcϕc)32(ϕcϕc)2, (B.3)
V3(φν , ξ, ψ,H) = µ2

φν
(φ†

νφν)11 + b1(φ†
νφν)11(φ†

νφν)11 + b2(φ†
νφν)2(φ†

νφν)2

+ b3(φ†
νφν)31(φ†

νφν)31 + b4(φ†
νφν)32(φ†

νφν)32 + b5(φ†
νφν)11(ξ†ξ)11

+ b6(φ†
νφν)2(ξ†ξ)2 + b7(φ†

νφν)11(ψ†ψ)11 + b8(φ†
νφν)11(H†H)11 , (B.4)

V4(H, ξ, ψ) = µ2
ξ(ξ†ξ)11 + c1(ξ†ξ)11(ξ†ξ)11 + c2(ξ†ξ)2(ξ†ξ)2 + µ2

ψ(ψ†ψ)11

+ c3(ψ†ψ)11(ψ†ψ)11 + c4(ξ†ξ)11(ψ†ψ)11 + c5(ξ†ξ)11(H†H)11

+ c6(ψ†ψ)11(H†H)11 . (B.5)

Let us denote the vev of the scalars as follows:

⟨H⟩ = vH , ⟨ψ⟩ = vψ, ⟨ξ⟩ = (vξ1 , vξ2), ⟨φν⟩ = (vφν1
, vφν2

, vφν3
)

⟨φc⟩ = (vφc1
, vφc2

, vφc3
), ⟨ϕc⟩ = (vϕc1

, vϕc2
, vϕc3

). (B.6)

In order to calculate the vev ⟨φc⟩ = (vφc1
, vφc2

, vφc3
), we write the minimum condition,

∂V

∂φci

∣∣∣∣
⟨φci ⟩=vφci

= 0, (i = 1, 2, 3). (B.7)

Similarly, we have the minimum condition for ⟨ϕc⟩ = (vϕc1
, vϕc2

, vϕc3
) as follows,

∂V

∂ϕci

∣∣∣∣
⟨ϕci ⟩=vϕci

= 0, (i = 1, 2, 3). (B.8)

This leads us to a system of equations and we analyze the vacuum configuration:

⟨φc⟩ = (vφc , 0, 0)
⟨ϕc⟩ = (vϕc , 0, 0) .

We find that the vacuum alignment shown above is one of the solutions of the extremum
conditions of equations (B.7) and (B.8).
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Just as in equations (B.7) and (B.8), the vev ⟨φν⟩ imposes the extremum condition on
V and this leads us to the following system of equations,

(2b1 + 8b3)v3
φν1

+ (2b2 − 4b3)v3
φν2

+ (2b2 − 4b3)v3
φν3

+ (4b1 + 8b2)vφν1
vφν2

vφν3

+(2b5vξ1vξ2 + b7vψ + b8v
2
h + µ2

φν
)vφν1

+ b6v
2
ξ1vφν1

+ b6v
2
ξ2vφν2

= 0
(2b1 + 4b2)v2

φν1
vφν3

+ (6b2 − 12b3)vφν1
v2
φν2

+ (4b1 + 2b2 + 12b3)v2
φν3

vφν2

+(2b5vξ1vξ2 + b7vψ + b8v
2
h + µ2

φν
)vφν3

+ b6v
2
ξ2vφν1

+ b6v
2
ξ1vφν2

= 0
(2b1 + 4b2)v2

φν1
vφν2

+ (6b2 − 12b3)vφν1
v2
φν3

+ (4b1 + 2b2 + 12b3)v2
φν2

vφν3

+(2b5vξ1vξ2 + b7vψ + b8v
2
h + µ2

φν
)vφν2

+ b6v
2
ξ2vφν3

+ b6v
2
ξ1vφν1

= 0 . (B.9)

The above system of equations has several solutions, one of the solutions being

vφν1
= vφν1

= vφν1
= vφν = 1√

6
·

√
−

2b5v2
ξ + 2b6v2

ξ + b7v2
ψ + v8v2

h + µ2
φν

b1 + 2b2
(B.10)

with vξ1 = vξ2 = vξ. Another solution exists with vφν1
̸= vφν1

̸= vφν1
, which has a very

long expression and we choose such a solution to obtain the mass matrix taken under
consideration in our model.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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