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experiments have the ability to rule them out.

Keywords: Lepton Flavour Violation (charged), SMEFT, Specific BSM Phenomenology

ArXiv ePrint: 2308.16897

Open Access, c⃝ The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2023)101

mailto:marco.ardu@umontpellier.fr
mailto:s.davidson@lupm.in2p3.fr
mailto:stephane.lavignac@ipht.fr
https://arxiv.org/abs/2308.16897
https://doi.org/10.1007/JHEP11(2023)101


J
H
E
P
1
1
(
2
0
2
3
)
1
0
1

Contents

1 Introduction and review 1
1.1 Introduction 1
1.2 Review 3

2 Type II seesaw 4

3 Inverse Type I seesaw 8
3.1 µ → e LFV 9

4 Leptoquark 13

5 Discussion and summary 17

A Branching ratios 20

B The µA →eA operators 20

C If the leptoquark interacts only with one generation of quarks 21

1 Introduction and review

1.1 Introduction

Searches for New Physics(NP) in the lepton sector are of great interest, because such NP is
required by neutrino masses, it could fit some current anomalies (such as (g − 2)µ [1] and
observations in B meson physics [2–6]), and because leptons do not have strong interactions,
so the observables are relatively clean. In this paper, we assume that this leptonic New
Physics is heavy, and parametrise it in EFT [7–13].

Lepton Flavour change (LFV) in the µ → e sector is promising for the discovery of
leptonic NP, because the experimental sensitivity is already good, and is expected to improve
by several orders of magnitude in the near future (see table 1). However, few processes
are constrained, so the current experimental bounds only set about a dozen constraints on
Wilson coefficients [14]. One can therefore wonder whether future observations of µ→ e

flavour change could distinguish among the multitude of models that predict LFV.
Predictions for µ→e LFV have been widely studied over several decades in a multitude

of models, such as the supersymmetric type I seesaw, the supersymmetric type II seesaw,
supersymmetric flavour models, left-right symmetric models, two Higgs doublet models,
the inverse seesaw and its supersymmetric version, warped extra dimensions, the littlest
Higgs model with T parity, unparticle physics, radiative neutrino mass models, spontaneous
lepton number violation, low-scale flavour models, and many others (see e.g. refs. [30–43],
and for recent reviews refs. [44, 45]). Top-down analyses — which start from the model to
predict observables — frequently show correlations among branching ratios, often resulting
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process current bound future reach
µ → eγ < 4.2× 10−13(MEG [15]) 6× 10−14 (MEG II [16])
µ → eēe < 1.0× 10−12(SINDRUM [17]) ∼ 10−16 (Mu3e [18])
µAu→ eAu < 7× 10−13(SINDRUM II [19, 20]) ? → 10−(18→20) (PP/AMF [21, 22])
µTi→ eTi < 6.1× 10−13(SINDRUM II [23]) ∼ 10−16 (COMET [24, 25], Mu2e [26])
τ → l + . . . <∼ 10−8(Babar/Belle) [27, 28] ∼ 10−(9→10)(BelleII) [29]

Table 1. Current bounds on the branching ratios for various lepton flavour changing processes, and
estimated reach of “upcoming” experiments, i.e. those under construction or running, as well as of
the proposals PRISM/PRIME (PP) and Advanced Muon Facility (AMF).

from scans over model parameter space. In our bottom-up EFT perspective, starting from
the data, we address a different question: can observations distinguish among models?

In this paper, we focus on three models with new heavy particles around the TeV
scale. The first two are neutrino mass models: the TeV-scale version of the type II seesaw
mechanism [46–49] and the inverse type I seesaw [50–52], whose predictions for LFV
processes have been studied, mainly in the top-down approach, by many authors (see e.g.
refs. [53–57] for the type II and refs. [56, 58–68] for the inverse seesaw, where [63, 65, 66, 68]
follow an EFT approach). Both these models have the additional attraction of being able
to generate the baryon asymmetry of the Universe via leptogenesis [69] (for a review, see
ref. [70]). While, in the type II seesaw case, thermal leptogenesis requires a triplet mass
above 1010 GeV or so [71–73], a TeV-scale scalar triplet with non-minimal coupling to
gravity can lead to successful leptogenesis [74] through the Affleck-Dine mechanism [75].
The inverse seesaw model, on the other hand, features TeV-scale sterile neutrinos which can
generate the baryon asymmetry of the Universe through resonant leptogenesis [76–79] or
ARS leptogenesis [80–83]. The last model is an SU(2) singlet leptoquark which can fit the
RD anomaly [2–6], as discussed by many authors (see e.g. refs. [84–87]). The leptoquark
differs from the neutrino mass models in that at tree level, it generates 2lepton-2quark
operators (which mediate µ→e conversion), and in that it couples to SU(2) singlet fermions
of the SM.

We apply bottom-up EFT to explore whether µ→e LFV can distinguish among models,
starting from the observation that the data could determine 12 operator coefficients, and
not just the three branching ratios. We consider this 12-dimensional coefficient space, and
ask whether the volume accessible to upcoming experiments can be filled by each of three
models. So we aim to identify the region of the ellipse that a model cannot occupy; an
observation in this region would rule the model out. Our study is performed in an EFT
framework inspired by ref. [88], and differs from top-down analyses, in that we do not scan
over model parameter space for which we do not known the measure, and because we take
the data to be 12 Wilson coefficients. A more complete analysis and technical details will
appear in a subsequent publication [89].

Our EFT framework is briefly summarised in the next subsection. In the following
three sections, we present and discuss three models of New Physics at the TeV scale: the
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coefficient current bound future bound process
Ceµ

D,X 1.0× 10−8 ∼ 10−9 µ → eγ, µ → eēe

Ceµee
V,XX 0.7× 10−6 ∼ 10−8 µ → eēe

Ceµee
V,XY 1.0× 10−6 ∼ 10−8 µ → eēe

Ceµee
S,XX 2.8× 10−6 ∼ 10−8 µ → eēe

CAlight,X 5.0× 10−8 ∼ 10−10 µTi → eTi
CAheavy⊥,X 2× 10−7 µAu → eAu

Table 2. Current bounds on the operator coefficients of the Lagrangian (1.1) at the experimental
scale mµ (X = L, R), and estimated reach of upcoming experiments (not including the proposals
PP and AMF).

type II seesaw in section 2, the inverse type I seesaw in section 3, and a leptoquark in
section 4. Section 5 compares the models and summarises the results.

1.2 Review

We consider three processes — µ → eγ, µ → eēe and Spin-Independent1 (SI)µA → eA

— because they are complementary [88], and because the experimental sensitivity could
improve significantly in coming years. The branching ratios are given in appendix A, in
terms of the coefficients {C} of the Lagrangian [93] at the experimental scale:

δL= 1
v2

∑
X∈L,R

[
Ceµ

D,X(mµeσρσPXµ)Fρσ+Ceµee
S,XX(ePXµ)(ePXe)+Ceµee

V XR(eγρPXµ)(eγρPRe)

+Ceµee
V XL(eγρPXµ)(eγρPLe)+CAlight,XOAlight,X+CAheavy,XOAheavy,X

]
+h.c (1.1)

where the twelve Cs are dimensionless complex numbers, X ∈ {L, R}, 1
v2 = 2

√
2GF (so

v =174 GeV), and OAlight,X and OAheavy,X are respectively the four-fermion operator
combinations that induce µA → eA on light nuclei like Titanium or Aluminium, and an
operator combination probed by heavy targets like Gold. Expressions for these operators
are given in appendix B.

The non-observation of µ→ e processes constrains the coefficients in eq. (1.1) to sit
in a 12-dimensional ellipse at the origin [14]. The counting of constraints and the bounds
obtained from the correlation matrix for µ → eγ and µ → eēe are discussed in [14]; these
results give the current bounds, and the estimated sensitivities of upcoming experiments,
listed in table 2. Observations could in principle determine the magnitude of each coefficient:
if the decaying muon is polarised [93] (which can also be possible for µA → eA [94, 95])
then the chirality of the µ → e bilinear can be determined, and asymmetries and angular
distributions in µ → eēe can distinguish among most of the four-lepton operators that
contribute [96–98]. (Scalar OSXX and vector OV Y Y operators, for X ̸= Y , induce the

1Spin-Dependent µA → eA [90–92] is also possible, but analogously to WIMP scattering, is relatively
suppressed.
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same angular distribution, but are distinguishable via the e± helicities2) Some relative
phases can also be measured [96–98]. Finally, changing the target material in µA → eA

allows to probe different combinations of vector and scalar coefficients on protons or
neutrons [99, 100]; current theoretical accuracy allows to obtain independent information
from at least two targets [14, 101], so in this paper we focus on light targets like Titanium
(used by SINDRUMII [19, 20, 23]) or Aluminium (the target for the upcoming Mu2e and
COMET experiments). The complementary constraints that can be obtained with Gold
(used by SINDRUMII [19, 20]), will be discussed in [89]. With theoretical optimism, we
assume the coefficients can be distinguished to the reach of upcoming experiments.

We take the New Physics scale ΛNP ∼TeV for the three models considered here. The
coefficients are evolved from the experimental scale ∼ mµ to ΛNP ∼TeV in the broken
electroweak theory, using the “Leading Order” RGEs of QED and QCD [88, 102] (starting
respectively at mµ and 2 GeV), for the operator basis of ref. [88]. This includes the leading
log-enhanced loops of QED and QCD via the RGEs, and loop diagrams with the W ,Z or
Higgs can contribute in the matching. We prefer this approach over matching to SMEFT
at the weak scale, because it allows to resum QCD3 between the experimental scale and
ΛNP, and avoids the issue that v/TeV is not large, implying that the SMEFT expansions in
1/Λ2

NP and αn ln may not converge quickly.4 This RG evolution gives the 12-dimensional
ellipse at ΛNP. We then match onto each of the models in turn (at tree level in the EFT),
and explore whether they can fill the ellipse.

In relating models to observables, it is convenient to use as stepping stones the coupling
constant combinations that appear in Wilson coefficients, because they parametrise the
µ→ e LFV. For instance, tree level exchange of a leptoquark interacting with u quarks,
matches onto an coefficient ∝ λeuλµu∗, and the loop diagram of figure 1b is ∝ [ff∗Ye]eµ.
We refer to these combinations as “invariants” (a la Jarlskog), because they are related to
S-matrix elements, and therefore should be independent of some Lagrangian redefinitions.

The operator coefficients can of course be complex, and in some cases the relative
phases are observable (for instance in asymmetries in µ → eēe [96–98]). However, for
plotting purposes, it is common to approximate the coefficients as real. In our analysis, the
coefficients are complex, but we plot either the absolute values or the real parts; the phases
will be discussed in [89].

2 Type II seesaw

The first model we consider is the type II seesaw mechanism [46–49], which generates
neutrino masses via the tree level exchange of an SU(2) triplet scalar ∆. In this model,
the Yukawa matrix is directly proportional to the observed neutrino mass matrix, so it is
predictive of flavour structure — for instance fixing some ratios between τ → l and µ → e

transitions — and its LFV signatures have been widely studied [53–57].
2We thank Ann-Kathrin Perrevoort of Mu3e for discussions. Also the scalar operators could be difficult

to obtain in models.
3It is convenient to use 5 flavours at all scales, because the results for 5 or 6 flavours are numerically similar.
4This approximation may also double count some electroweak contributions that we think are higher

order, as will be discussed in [89].
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We assume the triplet scalar is at the TeV scale, so could be produced at current
and future colliders and lead to particular signatures [103–108]. It could also affect Higgs
physics [109, 110] and contribute to electroweak observables such as mW [111].

The SM Lagrangian is augmented by the following interactions

δL∆ = (Dρ∆I)†Dρ∆I − M2
∆|∆|2 + 1

2
(
fαβ ℓc

α(iτ2)τIℓβ∆I + M∆λH HT (iτ2)τIH∆∗I + h.c.
)

+ λ3(H†H)(∆I∗∆I) + λ4Tr(∆I∗τIτJτK∆K)(H†τJH) + . . . , (2.1)

where ∆ is the colour-singlet, SU(2)-triplet scalar of hypercharge Y∆ = +1, ℓ are the
left-handed SU(2) doublets, M∆ is the triplet mass which we take ∼TeV, f is a symmetric
complex 3 × 3 matrix proportional to the light neutrino mass matrix and whose indices
α, β run over {e, µ, τ}, {τI} are the Pauli matrices, and the λ’s are real dimensionless
couplings.5 The dots on the right-hand side of eq. (2.1) stand for scalar interactions that are
not relevant for LFV processes. We also find negligible contributions to LFV operators from
the triplet-Higgs interactions assuming perturbative λ3,4. Consequently, these contributions
will not be included in the subsequent discussion.

We match the model to EFT at the scale M∆ ∼TeV, generating a neutrino mass
matrix [mν ]αβ = UαimiUβi via the tree-level exchange of the triplet between pairs of leptons
and Higgses:

[mν ]αβ ≃ 0.03 eV f∗
αβ

λH

10−12
TeV
M∆

. (2.2)

Exchanging the triplet among four leptons matches onto one of the LFV coefficients of
eq. (1.1), which induces µ → eēe:

Ceµee
V,LL ≃ v2

2M2
∆

fµef∗
ee = [m∗

ν ]µe[mν ]ee

2λ2
Hv2 . (2.3)

The small ratio mν/v can be obtained by suppressing λH , while leaving unconstrained
fv/M∆, which controls the magnitude of LFV. The triplet Yukawa matrix [f ] is proportional
to [mν ], so its flavour structure can be determined from neutrino oscillation data [112]. The
only unknowns are the mass mmin of the lightest neutrino, two Majorana phases, and the
Hierarchy (Normal = m3 > m2 > m1, Inverted = m3 < m1 < m2). We use eq. (2.2) in
order to express [f ] in terms of [mν ].

The type II seesaw will also induce other LFV coefficients given in the Lagrangian (1.1).
Tree-level triplet exchange matches onto 4ℓ operators with µ and τ bilinears, and these
combine with eq. (2.3) in a “penguin”, as illustrated in figure 1a, to generate, for instance

Ceµee
V,LR = αe

4π

 [m†
νmν ]µe

λ2
Hv2 ln

(
M∆
mτ

)
+
∑

α∈e,µ

[m∗
ν ]µα[mν ]eα

λ2
Hv2 ln

(
mτ

mµ

) (2.4)

This loop arises in the RGEs, or equivalently, is log-enhanced. The logarithm is cut off at
low energy by the experimental scale (mµ) or the mass of the lepton in the loop, so the τ is

5λH can be taken real with no loss of generality.
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µL eL

f f

lL

(a) QED penguin mixing the tree-
level 4ℓ vector operators to vec-
tor four fermion operators involv-
ing fermions f (l = e, µ, τ).

µ ℓe

H

γ

ℓ

∆a

(b) Matching onto the µ → e

photon dipole.

µL eL

γ

lL

(c) One of many diagrams for
vector-to-dipole mixing in the
two-loop RGEs (l = e, µ, τ).

Figure 1. Loop contributions to µ → e operators and to their mixing in the type II seesaw model.

not included in the loop between mτ → mµ. This is interesting, because [m†
νmν ]µe, which

appears in the first term of eq. (2.4) is determined by neutrino oscillation parameters6

[m†
νmν ]µe ∼ i sin θ13∆2

atm ,

so any dependence of Ceµee
V,LR on the unknown neutrino mass scale or Majorana phases can

only arise from the second term. This same penguin diagram also generates a loop correction
to Ceµee

V,LL of eq. (2.3), and contributes to µA →eA on the proton

∆Ceµee
V,LL = Ceµee

V,LR , Ceµpp
V,L = −2Ceµee

V,LR (2.5)

where Ceµpp
Alight,L = 1

2Ceµpp
V,L + . . .. The coefficient on neutrons, Ceµnn

V,L , vanishes at the order
we calculate.

Finally, the dipole coefficients are induced by one loop matching(see figure 1b), and
shrink marginally in running down to the experimental scale, while being regenerated at
two loop7 as illustrated in figure 1c:

Ceµ
D,R ≃ 3e

128π2

[
[mνm†

ν ]eµ

λ2
Hv2

(
1+32

27
αe

4π
ln M∆

mτ

)
+116αe

27π
ln mτ

mµ

∑
α∈eµ

[mν ]µα[m∗
ν ]eα

λ2
Hv2

]
(2.6)

where the first (leading) term is independent of the neutrino mass scale and Majorana
phases. The second term of eq. (2.6), which is of O(αe) with respect to the first, depends
on the neutrino mass scale and Majorana phases due to removing the τ from the loop below
mτ , as for the penguin diagram.

The other 8 coefficients in the Lagrangian of eq. (1.1) will be discussed further in [89].
The coefficient on Gold, CAheavy,L, should be predicted in the type II seesaw, where
µA → eA rates are related to the n/p ratio. The remaining coefficients are suppressed:
for instance the dipole Ceµ

D,L should be ≈ me
mµ

Ceµ
D,R, as expected in neutrino mass models

6Here and in the rest of this paper, we assume δ = 3π/2, a value consistent with the hints for CP violation
in the lepton sector from the T2K experiment [113].

7The two-loop diagrams [102, 114–116] are included here because they are “leading order” in the RGEs,
and because they are numerically significant — for instance, in the electroweak contribution to (g − 2)µ, the
log-enhanced 2-loop contribution is ∼ 1/4 of the 1-loop matching part.
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where the new particles only interact with lepton doublets (the chirality-flip is via SM
Yukawa interactions). Similarly, the operators with flavour-change involving singlet leptons
(CS,RR, CS,LL, CV,RL, CV,RR, CAlight,R, CAheavy,R) are not discussed here, because they are
Yukawa suppressed. So we already see that the type II seesaw predicts that more than half
the coefficients of eq. (1.1) are negligible; however, many of these predictions are generic to
models where the New Particles interact only with lepton doublets.

The type II seesaw is expected to predict additional relations between the Wilson
coefficients of eq. (1.1), because the flavour structure of LFV is controlled by the neutrino
mass matrix. This should allow to predict ratios of coefficients, despite that the overall
magnitude of LFV is unknown. We focus on the remaining three coefficients, given
in eqs. (2.3), (2.4) and (2.6). These formulae suggest the model prefers a hierarchy
10−3 : 10−2 : 1 between the dipole, penguin-induced and tree-level coefficients; however,
we aim to identify regions of coefficient space that the model cannot predict, not what
it prefers.

We observe that the tree-level four-lepton coefficient Ceµee
V,LL given in eq. (2.3) can vanish,

either for [mν ]ee → 0 in NH for mmin ∼ ∆sol (as is familiar from neutrinoless double
β-decay), or for [mν ]eµ → 0, which can occur for any mmin >∼ ∆sol in NH and IH by suitable
choice of both Majorana phases. If Ceµee

V LL vanishes, the dipole to penguin ratio is predicted:

Ceµ
D,R

Ceµee
V,LR

≈ 3e

32παe ln M∆
mτ

∼ 2
π2 . (2.7)

When [mν ]µe → 0, this occurs because the Majorana phase and neutrino mass scale
dependent terms of the penguin and dipole are proportional to |[mν ]µe| — see the second
terms of eqs. (2.4) and (2.6). When Ceµee

V LL vanishes with [mν ]ee, this prediction is also
approximately obtained: Ceµ

D,R

Ceµee
V,LR

≈ 2
π2 × [.66 → 2], because the second term of the penguin

coefficient (which depends on Majorana phases and the mass scale, see eq. (2.4)) is <∼ 1/2
of the first term, whereas the dipole is numerically unaffected.

It is also the case that the “penguin-induced” coefficient of eq. (2.4), as well as the
dipole coefficient eq. (2.6), can separately vanish for specific choices of both Majorana
phases and the neutrino mass scale in the appropriate range (However, a high neutrino mass
scale mmin >∼ .2 eV is required for the dipole coefficient to vanish.). So in all limits where
one of the three coefficients Ceµee

V,LL, Ceµee
V,LR or Ceµ

D,R vanishes, the ratio of the non-vanishing
coefficients is constrained.8 However, the large coefficient ratios that arise when the dipole
or penguin vanishes may be beyond the sensitivity of upcoming experiments.

In order to graphically represent the area of coefficient space that the type II seesaw
model cannot reproduce, we plot the magnitudes |Ceµ

D,R|, |C
eµee
V,LR| and |Ceµee

V,LL| in spherical
coordinates, with on the ẑ axis |Ceµee

V,LL| ∝ cos θ. The current bounds and the reach of
upcoming experiments are given in table 2, which imply that upcoming experiments could

8The values of the neutrino parameters that lead to cancellations in the coefficients are sensitive to the
triplet mass. Therefore, the predictions/expectations for the non-vanishing coefficients ratio may significantly
depend on the assumption M∆ ∼ 1 TeV.
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Figure 2. The white regions indicate ratios of operator coefficients that the type II seesaw cannot
predict, as discussed after eq. (2.8), where tan θ and tanϕ are defined. Upcoming experiments are
sensitive to the plotted ranges of the ratios. These estimates are independent of the neutrino mass
hierarchy and mass scale; the star and circle are located respectively in the regions predicted in NH
and IH for mmin = 0 and specific choices of the Majorana phase (but the regions can be larger when
the phase varies; the IH region has filaments).

probe

tan θ ≡

√
|Ceµ

D,R|2 + |Ceµee
V,LR|2

|Ceµee
V,LL|

: 10−3 → 10 , tanϕ ≡
|Ceµ

D,R|
|Ceµee

V,LR|
: 10−2 → 10 (2.8)

Figure 2 illustrates (as empty) the regions of the tree/penguin/dipole coefficient space that
are inaccessible to the type II seesaw model. The vertical bar represents the correlation
between the dipole and penguin when the tree contribution shrinks, given in eq. (2.7).
For large tree contribution, the penguin contribution can shrink when the second term
of eq. (2.4), ∝ |[mν ]µe|, cancels the first. This happens for values of the unconstrained
neutrino parameters (the lightest neutrino mass and the Majorana phases) that enhance
the tree-level coefficient |Ceµee

V,LL|, so that tan θ <∼ 10−3 — this gives the upper bound to the
red region. Finally, for generic values of the Majorana phases, the tree coefficient is large
with respect to the penguin-induced coefficients and the dipole, which corresponds to the
blue region at tan θ → 0 and tanϕ <∼ 2/π2. In this paper, we leave the neutrino mass scale
free, so can obtain tanϕ → 10−2 by increasing mmin to >∼ 0.2 eV; we will study the impact
of complementary observables — such as the cosmological bound on the neutrino mass
scale — in [89].

3 Inverse Type I seesaw

In this section, we consider the inverse type I seesaw model [50–52], which generates neutrino
masses via the exchange of heavy gauge-singlet fermions. Like the type II seesaw, the model
can generate LFV without Lepton Number Violation, so LFV rates are not suppressed by
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small neutrino masses. However, unlike the type II case, the flavour-changing couplings are
disconnected from the neutrino mass matrix, and several heavy new particles are added,
with potentially different masses.

We add to the SM n pairs of gauge singlet fermions N, S of opposite chirality, with
the interactions

δLNS = iN /∂N + iS /∂S −
(

Y αa
ν (ℓαH̃Na) + MabSaNb +

1
2µabSaSc

b + h.c
)

, (3.1)

where Yν is a complex 3 × n dimensionless matrix and M, µ are n × n mass matrices. If
Lepton Number is attributed to ℓ, N and S, then only µ is Lepton Number Violating. Upon
the spontaneous breaking of the electroweak symmetry, the neutrino mass Lagrangian reads
(suppressing flavour indices)

MνN =
(
νL N c S

) 0 mD 0
mT

D 0 MT

0 M µ


νc

L

N

Sc

+ h.c. (3.2)

which, in the seesaw limit (Yνv = mD ≪ M), give the following active neutrino masses

mν = mD(M−1)µ(MT )−1mT
D, (3.3)

while for M ≫ µ the N, S pairs have pseudo-Dirac masses determined by the eigenvalues of
M . Neutrino masses and oscillation parameters can be obtained by adjusting the lepton
number breaking matrix µ for arbitrary choices of the Yukawa couplings Yν and sterile
neutrino masses M . This contrasts with the “vanilla” type I seesaw expectation of GUT
scale sterile neutrinos or suppressed Yukawa couplings [117–121], which give negligible
contributions to LFV observables.

In the following, we consider M ∼TeV and allow Yν to vary in the parameter space
allowed by current LFV searches and other experimental constraints. Low-scale type I
seesaw models can be directly probed via the production of the heavy neutral leptons at
colliders [122–128], or indirectly through the active-sterile neutrino mixing (or the associated
non-unitarity of the effective 3× 3 lepton mixing matrix), which affect electroweak precision
observables, universality ratios and lepton flavor violating processes [129–132].

3.1 µ → e LFV

Large lepton flavour violating transitions are among the distinctive features of the inverse
seesaw [56, 58–68]. In this paper, we focus on the contact interactions that are relevant for
µ → e observables and aim at determining the region of the EFT coefficient space that the
model cannot reach.

The LFV transitions we are interested in occurs in this model via loops, as we illustrate
in figure 3. The four-fermion operator coefficients are obtained in matching out the heavy
singlets in penguin and box diagrams. The vector four-fermion coefficients Ceµff

V,LX , receive
contributions from penguin diagrams shown in figures 3a and 3b, which are respectively
O(YνY †

ν ) and O(YνY †
ν YνY †

ν ). We include the diagram in figure 3b following ref. [68], who
observed that the contributions ∝ Y 4

ν could be relevant for Yν O(1). The box diagrams
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γ

(a) O(YνY †
ν ) Z, γ penguin diagram contributing to µ → e four-

vector operators.

µL

H H

f f

eLN N

Z

(b) Penguin diagram propor-
tional to four neutrino Yukawas
contributing to the µ → e four-
fermion operators.

µL
H

eL

eL
H

eL

N N

(c) Box diagrams matching onto
the µ → eLeLeL vector.

µR eL

H

γ

N

H

(d) Matching onto the µ → e

dipole operator.

Figure 3. Matching contributions to µ → e operators in the inverse seesaw. The diagrams
illustrate the relevant interactions that are generated, but other diagrams may also contribute to
the same operators .

of figure 3c also match onto vector four-lepton operators, while the diagrams of figure 3d
match onto the µ → e dipole. Similarly to the type II seesaw model of section 2, the new
states couple to the left-handed doublets, so the operators featuring LFV currents with
electron singlets are suppressed by the electron Yukawa coupling. As a result, the model
matches onto five of the operators in eq. (1.1). Leaving aside the one associated with µ → e

conversion on heavy nuclei, since upcoming experiments will use light targets, we are left
with the following four coefficients:9

Ceµee
V,LR ≃ v2 αe

4π

(
1.5[YνM−2

a

(
11
6 +ln

(
m2

W

M2
a

))
Y †

ν ]eµ−2.7[Yν(Y †
ν Yν)ab

1
M2

a −M2
b

ln
(

M2
a

M2
b

)
Y †

ν ]eµ

+O
(

αe

4π

))

Ceµ
Alight,L ≃ v2 αe

4π

(
−0.6[YνM−2

a

(
11
6 +ln

(
m2

W

M2
a

))
Y †

ν ]eµ+1.1[Yν(Y †
ν Yν)ab

1
M2

a −M2
b

ln
(

M2
a

M2
b

)
Y †

ν ]eµ

+O
(

αe

4π

))

Ceµee
V,LL ≃ v2 αe

4π

(
−1.8[YνM−2

a

(
11
6 +ln

(
m2

W

M2
a

))
Y †

ν ]eµ+2.7[Yν(Y †
ν Yν)ab

1
M2

a −M2
b

ln
(

M2
a

M2
b

)
Y †

ν ]eµ

+2.5Y ea
ν Y ∗µa

ν Y eb
ν Y ∗eb

ν
1

M2
a −M2

b

ln
(

M2
a

M2
b

)
+O

(
αe

4π

))
Ceµ

D,R ≃−v2

2

(
αe

4πe

)
[YνM−2Y †

ν ]eµ, (3.4)

9Ceµ
Aheavy,L can be predicted from these four coefficients, and will be given in [89].
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where a, b are summed over the number n of sterile neutrinos. We include the finite part
of the penguin diagrams shown in figure 3a because the ratios of sterile masses and the
electroweak scale involved in the logarithms are not large (as we discuss in the introduction).
Higher-order terms in the αe/(4π) expansion are neglected because they are small and
would require including some two-loop diagrams for a consistent treatment. Consequently,
the results presented in eq. (3.4) are reliable at the ≲ 10% level.

The above coefficients, generated by the model and in principle observable, are linear
combinations of four contractions of the Yukawa and sterile neutrino mass matrices (which
we refer to as “invariants”). Since the number of coefficients equals the number of invariants,
it seems that the model could predict any observation — i.e. any point in the 4-dimensional
space of the operator coefficients — with suitable choices of the Yν and M matrices.
However, the number of invariants is reduced if the sterile neutrinos are nearly degenerate.10

In this limit, the combination entering the O(YνY †
ν ) penguin contributions aligns with the

matrix elements parameterizing the dipole coefficient. Indeed, by expanding M2
a /M2 = 1+xa

for small xa (where M now denotes the average sterile neutrino mass), we have that

1
M2

a

(
11
6 + ln

(
m2

W

M2
a

))
= 1

M2(1 + xa)

(
11
6 + ln

(
m2

W

M2

)
− ln(1 + xa)

)

= 1
M2

(
11
6 + ln

(
m2

W

M2

)
+O(xa)

)
. (3.5)

If the mass-splitting between the heavy singlets is ≲ v2, the error introduced by the
degenerate approximation is a dimension eight v2/M2 suppressed contribution, that, for
TeV scale sterile masses, would be approximately of the same order of the neglected O(αe/4π)
corrections. Similarly, the leading order term in the xa expansion of the mass function that
enters in the O(YνY †

ν YνY †
ν ) penguin and in the boxes is

1
M2

a − M2
b

ln
(

M2
a

M2
b

)
= 1

M2 (1 +O(xa, xb)) , (3.6)

so that in the nearly degenerate limit, we find11

Ceµ
D,R(mµ) ≃ −10−3 v2

M2 (YνY †
ν )eµ

Ceµ
Alight,L(mµ) ≃

v2

M2

(
10−3(YνY †

ν )eµ + 6.6× 10−4(YνY †
ν YνY †

ν )eµ

)
Ceµee

V,LR(mµ) ≃
v2

M2

(
−2.8× 10−3(YνY †

ν )eµ − 1.6× 10−3(YνY †
ν YνY †

ν )eµ

)
Ceµee

V,LL(mµ) ≃
v2

M2

(
3.3× 10−3(YνY †

ν )eµ(1 + 0.56(YνY †
ν )ee) + 1.55× 10−3(YνY †

ν YνY †
ν )eµ

)
(3.7)

10A motivation for considering this limit comes from the baryon asymmetry of the Universe, which can be
generated from resonant leptogenesis with highly degenerate TeV-scale sterile neutrinos (see e.g. refs. [76–79]),
or from the CP-violating oscillations of nearly degenerate sterile neutrinos [80] with masses in the GeV [81]
to multi-TeV [82] range.

11Recall that the operator coefficients depend logarithmically on the scale of the new states, which we
take to be around 1 TeV.
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(a) The light-gray sphere illustrate the
experimentally allowed ellipse in the
Ceµ

D,R(mµ), Ceµee
Alight,L(mµ), Ceµee

V,LR(mµ)
space. We consider the real parts of the
coefficients and normalise to the current
upper bound. If the sterile neutrinos are
nearly degenerate, the model can cover
the region defined in eq. (3.8), which
correspond to the blue plane.

(b) The light-gray sphere illustrate the
experimentally allowed ellipse in the
Ceµ

D,R(mµ), Ceµee
Alight,L(mµ), Ceµee

V,LL(mµ)
space. We consider the real parts of the
coefficients and normalise to the current
upper bound. If the sterile neutrinos are
nearly degenerate, the model can cover the
region defined in eq. (3.9) and correspond
to the volume delimited by the two blue
planes (see figure 4c).

(c) Zoom of figure 4b. The model can cover
only the region enclosed by the two planes.

Figure 4. Parameter space covered by the inverse seesaw (with degenerate sterile neutrinos) in the
low-energy operator coefficient space.

Despite the large number of free parameters in the inverse seesaw model, even in the
degenerate limit, the coefficients of the µ → e operators can now be determined by just
two invariant contractions of the neutrino Yukawa matrix. Being linear combinations of
two invariants, the correlations of the operator coefficients that the model can predict are
restricted: by measuring two (complex) coefficients, it would be possible to predict the
others. Focusing on the first three operators of eq. (3.7), we find that

Ceµee
V,LR(mµ) = −2.4Ceµ

Alight,L(mµ) + 0.02Ceµ
D,R(mµ) (3.8)

In the purely left-handed µ → 3e vector the magnitude of the coefficient multiplying the
matrix element (YνY †

ν )eµ is dependent on the real and positive parameter (YνY †
ν )ee arising
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from the box diagram contribution. However, since the Yukawa couplings are assumed to
be perturbative (YνY †

ν )ee ≲ 1, we can similarly find that

Ceµee
V,LL(mµ) = 2.4Ceµ

Alight,L(mµ) + cdCeµ
D,R(mµ) (3.9)

where −1.99 ≲ cd ≲ −0.57. The correlations described by eqs. (3.8) and (3.9) hold, within
the accuracy of our calculations, for general complex coefficients. To visually represent the
parameter space accessible to the inverse seesaw model, we consider the real parts of the
coefficients and plot the corresponding planes in the 3D space of low-energy coefficients. By
normalizing each coefficient to the upper limit imposed by current experimental searches,
the allowed region of parameter space correspond to the interior of a sphere. The inverse
seesaw model (with nearly degenerate sterile neutrinos) can sit in the intersection of this
region with the planes defined by eq. (3.8) and eq. (3.9), as illustrated in figure 4. Since
the dipole coefficient in eq. (3.9) is unknown but bounded, the model can cover the volume
enclosed by the two extreme planes

4 Leptoquark

This section studies the µ→e predictions of an SU(2) singlet leptoquark of hypercharge
Y = 1/3 that could fit the RD anomaly [2–6, 84–87], which is an excess of b → cτ̄ν events.
Requiring the leptoquark to fit RD fixes the mass to be O(TeV) and restricts the quantum
numbers, but our µ→e interactions are independent of the couplings that contribute to
RD. Unlike the models of the previous sections, the leptoquark couples to both lepton
doublets and singlets, and can mediate µA → eA at tree level — but does not generate
neutrino masses.

The SU(2)-singlet leptoquark is denoted S1 [133] (not to be confused with the singlet
fermions {Sa} of the previous section), with interactions:

LS =(DρS1)†DρS1−m2
LQS†

1S1+(−λαj
L ℓαiτ2qc

j+λαj
R eαuc

j)S1+(λαj∗
L qc

jiτ2ℓα+λαj∗
R uc

jeα)S†
1

+ Higgs interactions

where the leptoquark mass is mLQ ≃TeV, the generation indices are α ∈ {e, µ, τ} and
j ∈ {u, c, t}, and the sign of the doublet contraction is taken to give +λαj

L eL(uL)cS1. Like
in the type II model of section 2, the leptoquark-Higgs interactions are neglected because
their contributions to LFV observables are negligible assuming perturbative couplings.

Leptoquarks are strongly interacting, so can be readily produced at hadron colliders; the
current LHC searches impose mLQ >∼ 1–2 TeV [112]. Also, their peculiar Yukawa interactions
connecting quarks to leptons, can predict diverse quark and/or lepton flavour-changing
processes [66, 87, 134]. For instance, non-zero λµu

X , λµc
X , λeu

X and λec
X induce µ → e processes

on a u and c quark currents — which we study here — and also induce LFV D decays with
e±µ∓ in the final state. In addition, S1 will mediate ∆F = 2 four-quark operators via box
diagrams which can contribute to meson-anti-meson mixing [135]. We did not find relevant
constraints on the LFV interactions of S1 from quark flavour physics, but will discuss in
more detail the complementarity of quark and lepton observables in [89].
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f f

eLS1

t

Z

(a) Penguin diagram contribut-
ing to the µ → e four-fermion op-
erators.

µL
S1

eL

eL
S1

eL

uj uj

(b) Example box diagram match-
ing onto the µ → eLeLeL vector.

µR eL

H

γ

uj

S1

(c) Illustrative contribution
matching to the dipole operator.

Figure 5. Representative diagrams for the matching of the leptoquark onto four-fermion operators,
and the dipole.

In matching the leptoquark onto the QCD×QED-invariant EFT at mLQ, vector (∝
λ∗

RλR, λ∗
LλL), and scalar/tensor (∝ λ∗

RλL, λ∗
LλR) operators are generated at tree-level. We

only consider the subset which are quark flavour-diagonal and µ→e flavour-changing. The
model matches onto vector four-fermion operators of the form (ēγρPXµ)(f̄γρPY f) (where
X, Y ∈ {L, R} and f any lepton or quark) via “penguin” diagrams (see figure 5a), and
also can generate vector four lepton operators via box diagrams as in figure 5b. Finally,
the dipole operators can be generated via the last diagram of figure 5. This collection of
operators at the leptoquark mass scale is schematically represented in figure 6 as the top
row of boxes and ovals.

Several of the operators generated in matching out the leptoquark are present in
the Lagrangian of eq. (1.1). For instance, S1 matches onto vector and/or scalar ē-µ-ū-u
operators, which give large contributions to µA →eA. In addition, the log-enhanced loops
change the predictions significantly: the coefficients of scalar and tensor quark operators
respectively grow and shrink due to QCD, and QED loops can cause some O(1) mixing,
such as the top and charm tensors into the dipole, or the u-tensor into the u-scalar. The
effect of the RGEs is represented by lines in figure 6.

At the experimental scale, the S1 leptoquark generates both µ → eL and µ → eR

coefficients. For conciseness, we give results for µ → eL; the µ → eR coefficients can be
obtained by judiciously interchanging R ↔ L. The contribution to the dipole coefficients is

m2
LQ

v2 Ceµ
D,R(mµ) ≃

e[λLλ†
L]eµ

128π2

(
1− 16αe

4π
ln mLQ

mµ

)
+ 2α2

e

9π2e

[
λL ln mLQ

mQ
λ†

L

]eµ

− αe

2πeyµ

[
λLYuf̃Q ln mLQ

mQ
λ†

R

]eµ

(4.1)

where the first term is the matching contribution (times its QED running), the second term
is the 2-loop mixing of tree vector operators into the dipole, the last term is the RG-mixing
of tensor operators to dipoles, and the mQ serving as lower cutoff for the logarithms (here
and further in the paper) is max{mQ, 2 GeV}.12 For Ceµ

D,L, one interchanges R ↔ L. The
QCD running of the quark tensor operator is intricated with the QED mixing to the

12We neglect the estimates of ref. [136].
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Figure 6. A schematic representation of how the leptoquark generates µ → eγ, µ → eēe and µA →
eA. The top row represents classes of coefficients, generated in matching out the leptoquark, of given
Lorentz structure and particle type, for any flavours and chiralities. The boxes correspond to operators
with coefficients of O(λ2/m2

LQ), whereas the ovals have suppressed coefficients ∼ O(λ2/[16π2m2
LQ]),

or ∼ O(λ4/[16π2m2
LQ]). The bottom row of boxes are the six observable coefficients (for fixed e

chirality in the µ→e bilinear) of eq. (1.1). Lines represent the transformation between the mLQ

and experimental scale; a straight line means the observable coefficient can be directly obtained in
matching. Operator mixing is represented as wavy lines: a thick line indicates an O(1) contribution
of at least one operator from the class to the observable; a thin line indicates a more suppressed
O(α) contribution.

dipole [137, 138], so induces a quark-flavour-dependent rescaling f̃Q ≃ {1, 1.4} for {t, c}
quarks.

The leptoquark also generates vector four-lepton operators (for X ∈ {L, R})

m2
LQ

v2 Ceµee
V,LX(mµ) ≃ − Nc

64π2 [λLλ†
L]

eµ[λXλ†
X ]ee

(
1∓ 12αe

4π
ln mLQ

mµ

)
+αe

3π

[
λL ln mLQ

mQ
λ†

L

]eµ

− ge
X

Nc

16π2

[
λLYu ln

mLQ

mQ
Y †

u λ†
L

]eµ

(4.2)

where ge
L = −1 + 2 sin2 θW , ge

R = 2 sin2 θW , the first term represents the box diagram at
mLQ (and its QED running to mµ, with −/+ for X=/ ̸=Y) which is represented as the V, 4l

oval at the top of figure 6 connecting to the VXY box at the bottom, the second term is the
log-enhanced photon penguin that mixes the tree operators OQQ

V LL (for Q ∈ {u, c, t}) into
4-lepton operators (represented in figure 6 as a thin wavy line between the V, 2l2u and VXY

boxes), and the last term is the contribution of the Z-penguins shown in figure 5a (the
V 2l2f oval of figure 6), not including the negligible effect of the RGEs.

The scalar 4-lepton coefficient Ceµee
SXX can be generated via a box diagram, with Higgs

insertions on the internal quark lines (so the coefficient can be significant for internal
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top quarks); however, the coupling constant combination that appears on the flavour-
changing line is already strictly constrained by µ → eγ. So this coefficient has a very small
contribution to µ → e processes, and we neglect it.

A classic signature of leptoquarks is µA → eA, which can be mediated at tree level
via scalar or vector operators involving first generation quarks. The constraint from light
targets like Titanium or Aluminium can be written (for outgoing eL)√

BRexp
T i

250
>∼
∣∣∣0.250CD,R(mµ) + 0.37λeu

L λµu∗
L .

(
1+2α

π
ln
)
+ 0.39

(
g2

64π2 λeu
L λµu∗

L ln mLQ

mW

)

− α

6π

[
λL ln mLQ

mQ
λ†

L

]eµ

− 3
64π2

[
λLYu ln

mLQ

mQ
Y †

u λ†
L

]eµ

(4.3)

− η

(
1.95λeu

L λµu∗
R + 0.41mN

27mc
λec

L λµc∗
R

)
+ η(mt)

1.07mN

27mt
λet

L λµt∗
R

∣∣∣× v2

m2
LQ

,

where in order, the terms are: the dipole coefficient given in eq. (4.1), the tree vector
coefficient on u quarks with its QED running (represented as the upper left box of figure 6),
the electroweak box contribution to the d vector, the QED then Z penguin (see figure 5a)
contributions to the u and d vectors (where we took Vud = 1, sin2 θW = 1/4), and the scalar
u, c and t contributions. Most of the scalar top contribution comes from a loop-induced
flavour changing Higgs coupling (in SMEFT, Oeµtt

LEQU mixing into Oeµ
EH), which generates

scalar quark operators of all quark flavours. The tensor to scalar mixing is neglected,
because the model generates tensor coefficients that are proportional to the scalars. The
QCD and QED running of the scalars is contained in η:

η =
[

αs(mLQ)
αs(2GeV)

]−12/23
×
(
1 + 13α

6π
ln mLQ

2GeV

)
≈ 1.79,

η(mt) =
[

αs(mLQ)
αs(mt)

]−12/23
×
(
1 + 13α

6π
ln mLQ

mt

)
≈ 1.11. (4.4)

It is easy to see that the operator coefficients of eq. (1.1) depend on more than 12
different combinations of the leptoquark couplings, so the only prediction of the leptoquark
model is that the four-lepton scalar coefficients Ceµee

S,XX are negligible, as discussed after
eq. (4.2); the model could fit any observed values for the remaining 10 coefficients.

However, the leptoquark has the interesting feature of predicting specific patterns of
µ→e LFV when this occurs with only one quark generation: in this case, all the four-lepton
coefficients are of comparable magnitude, and knowing in addition the dipole allows to
predict CAL,X (or vice versa). To illustrate this, we neglect the box contributions to 4-lepton
operators (discussed in more detail in [89]), which are subdominant for internal t quarks,
but can give an O(1), same-sign contribution for internal u and c quarks when λeQ

X ∼ 1.
Without the boxes, all the coefficients are determined by four combinations of coupling
constants: λeQ

X λµQ∗
X and λeQ

X λµQ∗
Y for X, Y ∈ {L, R} and Y ̸= X (the expressions for the

coefficients are given in appendix C). This leads to correlations among operator coefficients,
as occurred in the inverse seesaw. In figure 7, we illustrate this correlation by plotting
ratios of coefficients, rather than the 3-d plots of section 3 (notice that the horizontal axis
is in log10 scale, but runs from negative to positive values, so small values of CAl,X have
been deleted at the origin).
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Figure 7. The S1 leptoquark interacting only with one quark generation predicts relations among
coefficients given in appendix C: for large positive values of the four-fermion coefficient on light
targets Ceµ

Alight,L/Ceµee
V,LL (horizontal,in log), the ratio Ceµ

DR/Ceµee
V,LL (magnitude on the vertical) is

large and positive. The four-lepton coefficients are comparable for all quark generations.

One sees that “generically”, a leptoquark coupled to the t gives a large dipole, whereas
a large µA →eA rate is expected for leptoquarks interacting with the up quark. However,
neither of these expectations is an unambiguous footprint of the quark flavour dominantly
coupled to the leptoquark, because CAl,X (resp. CD,X) can vanish for leptoquarks interacting
with u (resp. t) quarks. Therefore, the observation of µ → 3e without µ → eγ would not
exclude an S1 leptoquark coupling mostly to top quarks; it would just exclude generic
values of the parameters of that model (i.e., values of the parameters that do not lead to
cancellation in some Wilson coefficients). Similarly, the observation of µ → eγ but not
µ → e conversion on light nuclei would not exclude an S1 leptoquark coupling only to
up quarks.

5 Discussion and summary

In this paper, we explored whether a bottom-up EFT analysis (outlined in section 1)
can give a perspective on LFV models that is complementary to top-down studies. We
emphasize that in EFT, the data for µ → eγ, µ → eēe and µA → eA consists of twelve
Wilson coefficients, given in eq. (1.1), and not just three branching ratios. The current
experimental null-results confine the coefficients to the interior of a 12-D ellipse centered at
the origin, and the aim of this paper was to determine whether a future observation could
exclude models. To address this question, we searched for the regions of coefficient space
accessible-to-future-experiments that each model cannot reach, as an observation in that
part of the ellipse would rule the model out.
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We studied three TeV-scale13 models: the type II seesaw, the inverse type I seesaw
and a singlet scalar leptoquark added to the SM. We chose the first two because they can
explain neutrino masses (which are the best motivation for LFV), while we considered the
scalar leptoquark in light of the charged current anomaly observed in b → clν transitions.
The model predictions depend on combinations of NP and SM parameters which we refer
to as “invariants”, see e.g. eqs. (3.4) and (3.7).

The type II and inverse seesaw models generate Majorana neutrino masses via the
tree-level exchange of heavy new particles, respectively a scalar triplet and fermion singlets.
Large lepton-flavour-changing rates are possible because the models can contain LFV
without lepton number violation, avoiding any suppression by small neutrino masses. In
both models the new particles interact with lepton doublets, so the coefficients of operators
with flavour-changing currents involving singlet charged leptons are suppressed by the
lepton Yukawa couplings14 and neglected here:

CD,L , Ceµee
V,RR , Ceµee

V,RL , Ceµee
S,RR , Ceµ

Alight,R , Ceµ
Aheavy,R , Ceµee

S,LL ≃ 0 (type II, inverse seesaw)

So in the twelve-dimensional space that can be probed by experiment, these models can
only occupy 5 dimensions: should one of the above coefficients be observed (in the absence of
the unsuppressed ones), then these models would be excluded. In addition, these vanishing
coefficients imply that µA →eA only occurs via the dipole and vector interactions.

Section 2 showed that in the type II model, three of the remaining coefficients, Ceµ
Alight,L,

Ceµ
Aheavy,L and Ceµee

V,LR (given in eqs. (2.4), (2.5)) arise from the same loop diagrams and are
all proportional to the same combination of invariants. This implies that the model occupies
a line in the three-dimensional space of these three coefficients, and that one of the three
rates for µ → eLγ, µ → eLēReR and µA → eLA being predicted by the other two. The
coefficients Ceµ

D,R and Ceµee
V,LL can be expressed in terms of two other invariants, all of which

are constructed with the Yukawa matrix of the triplet scalar. This is proportional to the
neutrino mass matrix, so known, up to the overall magnitude, the neutrino mass hierarchy,
the lightest mass mmin and the Majorana Phases α1,2. So although the model generates
Ceµee

V,LL at tree level, suggesting µ → eēe to discover the type II seesaw, this coefficient can
vanish (for specific values of the Majorana phases and a range of mmin), as could Ceµ

D,R

or Ceµee
V,LR. When this occurs, the ratio of the remaining two coefficients is restricted, so

there are combinations of observations that the type II seesaw cannot predict. This is
illustrated in figure 2, where coefficient ratios (that correspond to angular coordinates in the
three remaining dimensions of the original ellipse) are varied over the ranges accessible to
upcoming experiments. We find that at least one of the four-fermion coefficients is always
larger than the dipole, so that observing µ → eγ with a branching ratio Br(µ → eγ) ≳ 10−14

without detecting µ → 3e in upcoming searches with Br(µ → 3e) ≳ 10−16 can rule out the
type II seesaw model studied here.

13Although the EFT calculations are only logarithmically sensitive to the choice ΛNP ∼ TeV, our results
may depend on this assumption, especially in the cases where cancellations between different contributions
are envisaged.

14A muon Yukawa coupling also appears in Ceµ
DR, but since the operator is defined with the muon mass —

see eq. (1.1) — this does not count as a suppression in this case.
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Section 3 studied the inverse seesaw model and showed that Ceµ
D,R, Ceµee

V,LL, Ceµee
V,LR,

Ceµ
Alight,L and Ceµ

Aheavy,L are functions of four invariants constructed from the neutrino
Yukawa and sterile neutrino mass matrices, as given in eq. (3.4). This implies that
Br(µAu → eLAu) could be predicted, given the rates for µAl → eLAl, µ → eLēLeL,
µ → eLēReR and µ → eLγ. The relevant contributions to these µ → e coefficients arise
via loop diagrams in matching (no four-SM-fermion operators are generated at tree-level),
and are non-linear functions of the nondegenerate singlet masses. The RGEs of QED just
renormalise these coefficients by a few percent, but do not generate additional invariants.
So we observe that the number of invariants is reduced, if the sterile neutrino masses can
be approximated as degenerate — as occurs for mass differences of O(v), see eq. (3.5). In
this limit, the five non-negligeable coefficients are controlled by two invariants constructed
from the neutrino Yukawa matrices: O(YνY †

ν ) and O(YνY †
ν YνY †

ν ). This implies that when
two coefficients are known, the remaining three are predicted, implying, eg, that the model
predicts Br(µA →eA), from the rates for µ → eγ and µ → eēe. In the twelve-dimensional
ellipse, our inverse seesaw model with degenerate sterile neutrinos therefore occupies a
two-dimensional subspace (see eqs. (3.8) and (3.9)), which we illustrate in figure 4 by
plotting the model prediction for the real part of three coefficients.

Finally, in section 4, we investigated the µ → e predictions of a singlet scalar leptoquark,
selected to fit the excess of b → cτ̄ν events observed in the RD ratio. The model contributes
to all but two of the µ → e observable coefficients with different coupling combinations,
implying that it could entirely fill 10 dimensions of the 12-D ellipse. Only the observation
of a non-zero µ → 3e scalar coefficient Ceµee

S,XX could not be explained by the leptoquark. On
the other hand, the model is more predictive when the leptoquark only interacts with one
quark generation. In this case, all the invariants become ∝ λeQ

X λµQ∗
L or λeQ

X λµQ∗
R , so once

four coefficients are measured, the remaining eight can be predicted. For a specific chirality
of the outgoing electron in the LFV current, this resembles the degenerate inverse seesaw
case, and the equations relating the coefficients are given in appendix C. The relations
between coefficient ratios that are expected when the leptoquark only interacts with one
quark generation are illustrated in figure 7.

The results of this paper will be extended in a subsequent publication, where also some
technical details of our EFT calculations will be discussed. We will explore the impact of
complementary observables and the uses of invariants, and we will discuss the consequences
of relative complex phases for the operator coefficients.

In summary, we find that there are observations of µ → e processes that could rule out
the three models we considered. The type II seesaw model predicts coefficients in part of a
3-dimensional subspace of the 12-d coefficient space accessible to experiments. The inverse
seesaw maps onto a 4-d subspace of the 12-d space, in the case of non-dengenerate sterile
neutrinos, but is more predictive for (nearly) degenerate steriles, where it is restricted to a
2-dimensional subspace. The singlet scalar leptoquark model does not generate sizable scalar
four-lepton operators but can give arbitrary contributions to all other Wilson coefficients,
thus completely filling 10 dimensions of the 12-d ellipse. However, if the leptoquark couplings
to the electron and muon involve a single quark generation, the model predictions are
restricted to a 4-dimensional subspace.
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A Branching ratios

For completeness, we list here the branching ratios for µ → eγ, and µ → eēe:

BR(µ → eγ) = 384π2(|Ceµ
DL|

2 + |Ceµ
DR|

2) , (A.1)

BR(µ → eēe) =
|Ceµee

S,LL|2 + |Ceµee
S,RR|2

8 +
(
64 ln mµ

me
− 136

)
(|eCeµ

D,R|
2 + |eCeµ

D,L|
2)

+ 2|Ceµee
V,RR + 4eCeµ

D,L|
2 + 2|Ceµee

V,LL + 4eCeµ
D,R|

2 (A.2)

+ |Ceµee
V,RL + 4eCeµ

D,L|
2 + |Ceµee

V,LR + 4eCeµ
D,R|

2 .

B The µA →eA operators

The Spin-Independent µ → e conversion rate, normalised to the µ capture rate [99, 139]
can be written [99]

BRSI(µA → eA) =
32G2

F m5
µ

Γcap

[∣∣C̃pp
V,RI

(p)
A,V + C̃pp

S,LI
(p)
A,S + C̃nn

V,RI
(n)
A,V + C̃

′nn
S,LI

(n)
A,S + CD,L

IA,D

4
∣∣2

+ {L ↔ R}
]

, (B.1)

where I
(N)
A,V , I

(N)
A,S and IA,D are target(A)-dependent “overlap integrals” inside the nucleus

of the lepton wavefunctions and the appropriate nucleon density. This shows that a target
probes a linear combination of coefficients identified by the overlap integrals. With current
theoretical uncertainties on the overlap integrals, at least two independent combinations
of the coefficients-on-nucleons {C̃} could be constrained [14]. We will take these two
combinations to correspond to light and heavy nuclei.

For light targets like Aluminium or Titanium, all the four-fermion overlap integrals are
comparable, so the four-fermion operator that is probed is approximately

OAlight,X ≈ 1
2
(
(ePXµ)(pp)+(eγαPXµ)(pγαp)+(ePXµ)(nn)+(eγαPXµ)(nγαn)

)
(B.2)

or more precisely, the KKO calculation says that the combination of coefficients probed by
Aluminium is [14]

C̃Alight,X = 0.455C̃pp
S,X + 0.473C̃pp

V,Y + 0.490C̃nn
S,X + 0.508C̃nn

V,Y ) .
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For Gold, the coefficient combination is slightly misaligned:

C̃Aheavy,X = 0.289C̃pp
S,X + 0.458C̃pp

V,Y + 0.432C̃nn
S,X + 0.686C̃nn

V,Y ,

indeed, the operator probed by heavy targets can be written as OAheavy,X = cosϕOAlight,X +
sinϕOAheavy⊥,X . Measuring the coefficient of OAheavy⊥,X is the new information that can
be obtained from heavy targets, but not light ones.

The definition of OAheavy⊥,X depends on whether it is constructed in the nucleon EFT,
or the quark EFT relevant above a scale of 2 GeV. This is because there is information
loss in matching nucleons to quarks, because the scalar densities of both u and d quarks
in the neutron and proton are all comparable, so the scalar u and d coefficients Cqq

SX are
indistinguishable unless the scalar nucleon coefficients C̃NN

S,X are accurately measured. In
addition, there is a several-σ discrepancy between the determinations of the scalar quark
densities in the nucleon from the lattice and pion data.

So in this paper we focus on µA →eA on light targets, because only the leptoquark
induces scalar quark coefficients, and we prefer to avoid the quark-scalar uncertainties
associated with defining OAheavy⊥,X . We will consider the complementary information from
heavy targets in [89].

C If the leptoquark interacts only with one generation of quarks

In this appendix, we give formulae for the operator coefficients in the leptoquark model, for
the case where the leptoquak interacts only with one generation of quarks.

If the leptoquark only interacts with top quarks, one obtains:

m2
LQ

v2 CDR(mµ) ≃ 2.3× 10−4[λLλ†
L]eµ − 12[λLλ†

R]eµ (C.1)

m2
LQ

v2 Ceµee
V,XY (mµ) ≃ −4.45× 10−3[λXλ†

X ]eµ[λY λ†
Y ]ee

+ (1.36× 10−3 − ge
Y 0.033)[λXλ†

X ]eµ (C.2)
m2

LQ

v2 CAlight,L ≃ −6.8× 10−4
[
λLλ†

L

]eµ
− 0.0084[λLλ†

L]
eµ+2.4× 10−4λet

L λµt∗
R

where X, Y ∈ {L, R} for the vector four-lepton coefficients, for which the contributions
due to boxes are included. The three terms of the four-fermion contribution to µA →eA

are induced by the photon and Z penguins, and the top-loop contribution to the µ→ e

Yukawa coupling.
If the leptoquark only interacts with charm quarks, then:

m2
LQ

v2 CDR(mµ) ≃ 2.3× 10−4[λLλ†
L]eµ − 0.42[λLλ†

R]eµ (C.3)

m2
LQ

v2 Ceµee
V,XY (mµ) ≃ −4.5× 10−3[λXλ†

X ]eµ[λY λ†
Y ]ee+(4.8× 10−3 − ge

Y 1.9× 10−6)[λXλ†
X ]eµ

m2
LQ

v2 CAlight,L ≃ −2.4× 10−3
[
λLλ†

L

]eµ
−0.02λec

L λµc∗
R
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where X, Y ∈ {L, R} in the vector four-lepton coefficients, for which the Z-penguin (the
last term) is suppressed ∝ m2

c/v2, and any box can contribute because (g − 2)e only
constrains λec

L λec∗
R < 0.7.

And finally for a leptoquark that only has µ→e interactions on u quarks, one obtains:

m2
LQ

v2 CDR(mµ) ≃ 2.3× 10−4[λLλ†
L]eµ − 7.3× 10−4[λLλ†

R]eµ (C.4)

m2
LQ

v2 Ceµee
V,XY (mµ) ≃ −4.5× 10−3[λXλ†

X ]eµ[λY λ†
Y ]ee+4.8× 10−3[λXλ†

X ]eµ

m2
LQ

v2 CAlight,L ≃ 0.38λeu
L λµu∗

L − 2.0ηλeu
L λµu∗

R (C.5)
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