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1 Introduction

Despite its prominent appearance in the AdS/CFT correspondence [1], the world-sheet
theory of type IIB string theory on AdS5 ×S5 is still not fully known. While the dual N = 4
supersymmetric Yang-Mills (SYM) theory is very well understood, making contact with
the low energy effective action of strings in AdS requires studying N = 4 SYM at strong
’t Hooft coupling λ. The planar theory can be studied with integrability methods which
give precise values for the dimensions of unprotected operators at finite ’t Hooft coupling
λ, see [2] for the latest results. However, at present, these methods are not developed
enough to do the same for OPE coefficients.1 In the series of papers [7–10] a different
approach was used to study the AdS Virasoro-Shapiro amplitude as an expansion in α′/R2

by combining properties of the putative world-sheet CFT and the dual CFT. The result
is an expression for the world-sheet integrand, an optimal target for future direct string
theory computations.

In [7–10] the correlator ⟨O2O2O2O2⟩ of four half-BPS operators of dimension two was
studied. In this paper we study ⟨O2O2OpOp⟩ where Op is a half-BPS operator of generic
integer dimension p.2 This enables us to study the OPE data of single trace operators of
nonzero R-charge and odd spin, which appear in the OPE O2 ×Op. Our main result is a
formula for the first Anti-de Sitter (AdS) curvature correction A(1)(S, T ) in ⟨O2O2OpOp⟩
(see section 2.1 and in particular formula (2.8) for the precise definition). It takes the form
of a linear combination of terms, each of which is an integral over the Riemann sphere∫

d2z|z|−2S−2|1− z|−2T−2G(S, T, z) , (1.1)

where the integrand G(S, T, z) is a sum of single-valued multiple polylogarithms of weight
3, see section 3.2 for the precise formula. This can be contrasted with the flat space
Virasoro-Shapiro amplitude A(0)(S, T ) where the integrand is simply 1/(S + T )2

A(0)(S, T ) =
∫

d2z|z|−2S−2|1− z|−2T−2 1
(S + T )2 . (1.2)

While the flat space Virasoro-Shapiro amplitude determines OPE data at leading order in
the 1√

λ
expansion, A(1)(S, T ) determines the OPE data at subleading order.

The paper is organised in the following way. In section 2 we review basic facts about
the correlator ⟨O2O2OpOp⟩, setting the stage for the computation of A(1)(S, T ). Afterwards
we compute A(1)(S, T ) using two different algorithms.

In section 3 we apply the approach of [10], assuming that A(1)(S, T ) is given by a
linear combination of integrals of the form (1.1). We write an ansatz for the integrand in
terms of single-valued multiple polylogarithms of z and rational functions of S and T . This
ansatz has a finite number of parameters, which are fixed by consistency of the residues of
A(1)(S, T ) with the OPE.

In section 4 we compute A(1)(S, T ) by making use of dispersive sum rules, following [8].
In this case we make an ansatz for the OPE data at subleading order in 1√

λ
(which involves

1See [3–6] for approaches that combine integrability and bootstrap.
2We do require that p ≪ λ

1
4 .
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an infinite number of parameters). To fix these parameters we use locality (in the form of
null constraints [11, 12]). Besides this, we assume that the Wilson coefficients that enter in
the strong coupling expansion are given by single-valued multiple zeta values. These two
conditions fully fix all of the parameters.

Both methods have numerous internal consistency checks and they both agree with each
other in the final answer. In section 5 we extract OPE data and Wilson coefficients from
A(1)(S, T ) and compare them to the literature, namely results from localisation, integrability
and the putative existence of an AdS5×S5 effective action, finding full agreement. Section 6
contains our final conclusions. We have numerous appendices with auxiliary results. In
appendix F the fully crossing symmetric dispersion relation of [13, 14] is adapted to the
present case of ⟨O2O2OpOp⟩ where only crossing symmetry between the t and u channels
is present. This might be useful in other contexts.

2 Basics

2.1 The correlator

In this paper we consider correlation functions involving half-BPS operators Op in planar
N = 4 SYM, with SU(N) gauge group, as an expansion in inverse powers of the ’t Hooft
coupling λ = g2

YMN . These half-BPS operators are Lorentz scalars transforming in the
[0, p, 0] representation of the SU(4)R symmetry group and they have protected conformal
dimension ∆ = p. For p = 2, this corresponds to the superprimary of the stress-tensor
multiplet, while for p > 2 they represent higher Kaluza-Klein supergravity excitations. In
terms of the N = 4 fundamental scalars, ϕI , I = 1, · · · , 6, they take the schematic form

Op = yI1 · · · yIptr
(
ϕI1 · · ·ϕIp

)
+ · · · (2.1)

where we have contracted the SO(6)R ≃ SU(4)R indices with auxiliary null vectors yIi .
The dots in the definition represent contributions from multi-trace operators, which are
suppressed by inverse powers of the central charge c = N2−1

4 , and will not be relevant in
the following.3

In this paper, we will focus on the four-point function involving two O2’s and two other
identical Op’s. It can be written as [18–21]

⟨O2(x1, y1)O2(x2, y2)Op(x3, y3)Op(x4, y4)⟩ =
y2

12yp
34

(x2
12)2(x2

34)p
G{22pp}(U, V ;α, α) ,

G{22pp}(U, V ;α, α) = Gfree
{22pp}(U, V ;α, α) + (z − α)(z − α)(z − α)(z − α)

(zz)2(αα)2 T (U, V ) ,

(2.2)

where definitions of cross-ratios and generalisations can be found in appendix A. The
function Gfree

{22pp} represents the free theory contributions and can be evaluated by means of

3The presence of these additional contributions, on top of the single-trace one, is necessary to make these
operators dual to single-particle states in AdS and they can be fixed by requiring that each operator is
orthogonal to any other multi-particle operator [15–17].
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Wick contractions — see (A.8) for its explicit expression. The dynamical information is
encoded in the reduced correlator T (U, V ), which can be further split as

T (U, V ) = T short(U, V ) + T long(U, V ) . (2.3)

The first part receives contributions from protected short operators, while the second part
contains the contributions of long operators. See appendix A for more details. As we will
soon see, the dimensions and OPE coefficients of these long operators get corrections at
large λ.

For our purposes, it is convenient to consider the Mellin transform M(s1, s2) of the
reduced correlator

T (U, V ) =
∫ +i∞

−i∞

ds1ds2
(4πi)2 U

s1
2 +2+ p

3 V
s2
2 −1− p

6 Γ22pp(s1, s2)M(s1, s2) ,

Γ22pp(s1, s2) = Γ
(6− p

3 − s1
2

)
Γ
(2p

3 − s1
2

)
Γ
(

p

6 + 1− s2
2

)2
Γ
(

p

6 + 1− s3
2

)2
,

(2.4)

where s1 + s2 + s3 = 0.4 Crossing symmetry of the correlator (2.2) under the exchange of
points 1 ↔ 2 and 3 ↔ 4, translates for the Mellin amplitude to

M(s1, s2) = M(s1, s3) . (2.5)

At leading order in 1/c and in an expansion around large λ, the Mellin amplitude is
given by the supergravity result (λ → ∞) plus a series of “stringy” corrections, described by
polynomials in the Mellin variables and representing contact Witten diagrams with higher
derivative vertices [22, 23]

M(s1, s2) =
4p

Γ(p−1)
1(

s1− 6−2p
3

)(
s2− p

3
) (

s3− p
3
) (2.6)

+
∞∑

b=0

∞∑
a=b

Γ(a+b+p+4)
Γ(b+1)Γ(p)Γ(p−1)sa−b

1 (s2s3)bλ− 3
2−

a
2−

b
2

(
ξ

(0)
a,b (p)+

1√
λ

ξ
(1)
a,b (p)+ . . .

)
.

The first term is the supergravity correlator and ξ
(k)
a,b (p) are usually referred to as Wilson

coefficients.
Following [8] we also consider the transform

A(S, T ) ≡ 2Γ(p − 1)Γ(p)
∫ +i∞+κ

−i∞+κ

dα

2πi
eαα−p−4M

(
2
√

λS

α
,
2
√

λT

α

)
, (2.7)

which is like the flat space limit [24], except that it applies to each layer ξ
(k)
a,b (p), whereas the

flat space limit considers only ξ
(0)
a,b (p). Applied to the low energy expansion (2.6), it implies

A(S, T ) = 1
λ

3
2

∞∑
k=0

1
λk/2 A(k)(S, T ) ,

A(k)(S, T ) = SUGRA(k) +
∞∑

b=0

∞∑
a=b

2a+b+1

Γ(b + 1)Sa−b(TU)bξ
(k)
a,b (p) .

(2.8)

4These Mellin variables are related to the more standard s, t, u by s1 = s − 2p
3 , s2 = t − 2p

3 , s3 = u − 2p
3 .
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The supergravity terms SUGRA(k) are given by

SUGRA(0) = 1
STU

, SUGRA(1) = −p

6
pS2 + 2(p − 3)TU

(STU)2 , . . . , SUGRA(k>p) = 0 , (2.9)

and the general expression can be found in (B.1). The leading contribution is the Virasoro-
Shapiro amplitude in flat space

A(0)(S, T ) = − Γ (−S) Γ (−T ) Γ (−U)
Γ (S + 1)Γ (T + 1)Γ (U + 1) , (2.10)

which fixes the first layer of Wilson coefficients ξ
(0)
a,b (p).

2.2 Dispersion relation

The ingredients to write a dispersion relation for the Mellin amplitude are its physical poles
and residues and its behaviour at infinity. As briefly discussed before, and more widely in
appendix A, the (12) OPE of T (U, V ) contains superconformal primaries that are singlets
under SU(4)R. We will indicate them by Os: τs will label their twist and Cs the product of
OPE coefficients ⟨O2O2Os⟩ × ⟨OpOpOs⟩. In the Mellin amplitude, the exchange of these
operators and their descendants results in an infinite sequence of poles at s1 = τs +2m− 2

3p,
for m ∈ N0. Similarly, the Mellin amplitude has also poles in s2 and s3, due to the exchange
of superprimaries in the other OPE channels. We will denote them by Ot. They transform
in the [0, p − 2, 0] representation of R-symmetry, have twist τt and we will use Ct to label
the product of OPE coefficients ⟨O2OpOt⟩ × ⟨O2OpOt⟩. The exact position of their poles is
at s2, s3 = τt + 2m − 2

3p, for m ∈ N0.
Due to the bound on chaos, [25] the planar Mellin amplitude is bounded in the Regge

limit [26]5
lim

s1→∞ M(s1, s2) ≤ O(s−2
1 ) , Re(s2) ≤

p

3 . (2.11)

This allows us to write a dispersion relation for the Mellin amplitude M(s1, s2). To do
that, we keep the variable s3 fixed and rewrite the Mellin amplitude at a generic point as
a contour integral in the s1 plane. Afterwards, we deform the contour as illustrated in
figure 1. The dispersion relation reads

M(s1, s2) =
∮

s1

ds′

2πi

M(s′,−s3 − s′)
s′ − s1

=
∑
Os

∞∑
m=0

Cs
Qs(s3; τs, ℓ, m)

s1 − τs − 2m + 2
3p

+
∑
Ot

∞∑
m=0

Ct
Qt(s3; τt, ℓ, m)

s2 − τt − 2m + 2
3p

,
(2.12)

where ℓ labels the spin of the exchanged operator. The kinematic functions Qs(s3; τs, ℓ, m)
and Qt(s3; τt, ℓ, m) are related to Mack polynomials [27] and their expressions can be found
in appendix C.

Similarly to (2.3), M(s1, s2) receives contributions from short and long multiplets.
When plugged in into the dispersion relation (2.12), the information of protected operators6

5The condition Re(s2) ≤ p
3 comes from the fact that in the correlator ⟨O2O2OpOp⟩ the lowest twist

exchanged in the t channel has twist equal to p.
6See appendix A for explicit OPE coefficients.
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s1

s′
1

τs + 2m − 2
3p−s3 − τt − 2m + 2

3p

Figure 1. Contour deformation involved in the dispersion relation. The integral around a generic
point is equal to the sum over the physical poles plus a contribution from the arc at infinity. The
contribution coming from the arc at infinity vanishes due to the bound on chaos.

completely determines the supergravity amplitude. Away from the strict λ → ∞, single-trace
long multiplets start gaining corrections to their OPE data, thus producing the “stringy”

1√
λ

corrections in (2.6). We will comment more on that in the next section.7

2.3 OPE data of stringy operators

At strong coupling, the superprimaries belonging to long multiplets gain large anomalous
dimensions. Holographically these are related to massive string states. In fact, at leading
order in 1√

λ
, their twist τ is given by mR, where m is the mass of the string state and R is

the radius of AdS. In type IIB string theory, the string energy levels are m2 = 4 δ
α′ , with

δ ∈ N. As a consequence

τ = 2
√

δ λ
1
4 , δ ∈ N , (2.13)

where recall λ = R4

α′2 . Apart from δ, the OPE data of each stringy operator will depend on
λ, p, the spin ℓ and on other possible quantum numbers, which we will collectively denote
by r̂. At leading order, multiple operators can share the same δ, ℓ and transform in the
same R-symmetry representations. This degeneracy (i.e. the range of r̂) has been discussed
in [28] and, unfortunately, can not be resolved by just looking at four-point functions of
half-BPS operators. As a consequence, in our setup, we will not be able to obtain OPE
data for the unmixed operators, but just to compute averages over the quantum numbers r̂

⟨. . .⟩δ,ℓ =
∑

r̂

. . . . (2.14)

7Double trace operators do not contribute to (2.12) at O( 1
c
).
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When the exchanged operators have very large dimensions, as in this case, we can actually
perform the sums ∑∞

m=0 in (2.12). It was shown in [7] that this sum is dominated by
m ∼ τ2, so we can set m = xτ2 and replace the sum with the integral

∞∑
m=0

→ τ2
∫ ∞

0
dx . (2.15)

Some details on this can be found in appendix D. In this way we can completely fix the
functional dependence of the OPE data on λ. The twists go as

τs(δ, ℓ, r̂;λ, p) = 2
√

δ λ
1
4 + τs,1(δ, ℓ, r̂; p) + τs,2(δ, ℓ, r̂; p)λ− 1

4 + . . . ,

τt(δ, ℓ, r̂;λ, p) = 2
√

δ λ
1
4 + τt,1(δ, ℓ, r̂; p) + τt,2(δ, ℓ, r̂; p)λ− 1

4 + . . . ,
(2.16)

and the OPE coefficients read

Cs(δ, ℓ, r̂;λ, p) = π3(−1)p τs(δ, ℓ, r̂;λ, p)2p+2 2−2ℓ−2p−2τs(δ,ℓ,r̂;λ,p)−8

(ℓ + 1)Γ(p − 1)Γ(p) sin2
(

πτs(δ,ℓ,r̂;λ,p)
2

) fs(δ, ℓ, r̂;λ, p) ,

Ct(δ, ℓ, r̂;λ, p) = π3(−1)ℓτt(δ, ℓ, r̂;λ, p)2p+22−2ℓ−2p−2τt(δ,ℓ,r̂;λ,p)−8

(ℓ + 1)Γ(p − 1)Γ(p) sin2
(

πp
2 + πτ(δ,ℓ,r̂;λ,p)

2

) ft(δ, ℓ, r̂;λ, p) ,

fs(δ, ℓ, r̂;λ, p) = fs,0(δ, ℓ, r̂; p) + fs,1(δ, ℓ, r̂; p)λ− 1
4 + fs,2(δ, ℓ, r̂; p)λ− 1

2 + . . . ,

ft(δ, ℓ, r̂;λ, p) = ft,0(δ, ℓ, r̂; p) + ft,1(δ, ℓ, r̂; p)λ− 1
4 + ft,2(δ, ℓ, r̂; p)λ− 1

2 + . . . .

(2.17)

3 Worldsheet method

In this section we determine A(1)(S, T ) using the method developed in [9] for the correlator
⟨O2O2O2O2⟩. We make an ansatz for the world-sheet integrand which has transcendentality
three and contains single-valued multiple polylogs and single-valued multiple zeta values.
This was motivated in [9, 10] with a simple toy model of strings in AdS expanded around flat
space. The parameters of the ansatz are fixed by matching the residues with those predicted
by the OPE. We determine these residues directly by applying the Borel transform (2.7) to
the OPE poles of the Mellin amplitude in (2.12).

3.1 Poles and residues

To discuss how the poles and residues of A(S, T ) in the 1/
√

λ expansion depend on OPE
data, we follow appendix C of [8]. For the Mellin amplitude we know that non-perturbatively
all its poles originate from the OPE and have the form (we consider the poles in s1 for
concreteness)

M(s1, s2) ∼
CsQs(s3; τ, ℓ, m)
s1 − τ − 2m + 2

3p
, (3.1)

where m labels conformal descendants. We will see that each conformal family will become
one particle in the flat space limit, so we have to consider the sum over descendants8

Mτ,ℓ(s1, s2) =
∞∑

m=0

CsQs(s3; τ, ℓ, m)
s1 − τ − 2m + 2

3p
. (3.2)

8Considering this sum over poles is justified by the dispersion relation (2.12).
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The transform (2.7) of (3.2) is

Aτ,ℓ(S, T ) = 2Γ(p − 1)Γ(p)
∫ +i∞+κ

−i∞+κ

dα

2πi
eαα−p−4

∞∑
m=0

CsQs(2
√

λU
α ; τ, ℓ, m)

2
√

λS
α − τ − 2m + 2

3p
. (3.3)

We exchange the integral and summation and for each m pick the pole at9

α = α∗ ≡
2
√

λS

τ + 2m − 2
3p

. (3.4)

Next we have to sum over m as explained in (2.15). We arrive at

Aτ,ℓ(S, T ) = −2Γ(p − 1)Γ(p) τ2

2
√

λS

∫ ∞

0
dx eα∗α−p−2

∗ CsQs

(
2
√

λU
α∗

; τ, ℓ, xτ2
)

. (3.5)

We can now expand the integrand at large λ, using that τ ∼ λ1/4. The answer has the form

−2Γ(p − 1)Γ(p) τ2

2
√

λS
eα∗α−p−2

∗ CsQs

(
2
√

λU
α∗

; τ, ℓ, xτ2
)
= 1

λ
3
2

e−
1

4x
+

√
λS

τ2x

x2

∞∑
i=0

1
λi/4 P (i)

(
1
x

)
,

(3.6)
where P (i)

(
1
x

)
are polynomials in 1

x with increasing degree, for instance degree 3
2 i for even

i. The leading term is given by

P (0)
(

1
x

)
=

δpS−p−3fs;0(δ, ℓ)C(1)
ℓ

(
1 + 2T

S

)
4(ℓ + 1) , (3.7)

where C
(1)
ℓ (x) is a Gegenbauer polynomial, as appropriate for partial waves in flat space.

We can now do the integrals in x using

∫ ∞

0
dx

e−
1

4x
+

√
λS

τ2x

x2 = −
τ2√

λ

S − τ2

4
√

λ

= − 4δ

S − δ
+ O

(
λ− 1

4
)

. (3.8)

The effect of the polynomials P (i)
(

1
x

)
is that each additional power of 1

x increases the order
of the pole by one, as 1

x can be replaced by τ2√
λ

∂S acting on both sides of (3.8).
We first compute the poles and residues of Aτ,ℓ(S, T ) at order λ− 1

4 . Since Aτ,ℓ(S, T )
should have no corrections at this order (2.8) we set the residues to zero, which fixes the
OPE data at this order to the values given in (4.9) below.

At the next order P (2)
(

1
x

)
is a polynomial of degree 3 so that there are poles up to

fourth order. The residues in terms of OPE data are p-dependent generalisations of equation
(C.22) of [8]. We include them in an ancillary Mathematica file. Crucially, the poles of
order four and three depend only on OPE data that was fixed at lower orders.

9At this point we should explain why we do not pick up the pole at α = 0. The reason is the absence of
a bulk point UV singularity of planar N = 4 SYM at finite ’t Hooft coupling λ, as discussed in [29]. In the
bulk point limit, we expect a divergence like 1

(z−z)d−3 = 1
z−z

. Translating that to Mellin space implies that
the Mellin amplitude grows at most as M(ξS, ξT ) ∼ ξ−p−4 in the limit of very large ξ [26].
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3.2 World-sheet correlator

Next we make an ansatz for the world-sheet integral representation of our correlator that
respects the crossing symmetry A(1)(S, T ) = A(1)(S, U)

A(1)(S, T ) = B
(1)
1 (S, T ) + B

(1)
1 (S, U) + B

(1)
1 (U, T ) + B

(1)
2 (S, T ) + B

(1)
2 (S, U) , (3.9)

where
B

(1)
i (S, T ) =

∫
d2z|z|−2S−2|1− z|−2T−2G

(1)
i (S, T, z) , i = 1, 2 , (3.10)

and crossing symmetry implies

B
(1)
1 (U, T ) = B

(1)
1 (T, U) ⇔ G

(1)
1 (S, T, z) = G

(1)
1 (T, S, 1− z) . (3.11)

Note that there is no symmetry constraint on B
(1)
2 (S, T ) and the only reason to include the

terms B
(1)
1 (S, T ) and B

(1)
1 (S, U) in the ansatz is to make it easier to compare to the fully

crossing symmetric case p = 2, since in this case it is easy to see that our ansatz implies

B
(1)
2 (S, T ) = 0 , p = 2 . (3.12)

We also impose symmetry under the exchange z ↔ z and define the following combinations
of single-valued multiple polylogarithms10

Ls
w(z) = Lw(z) + Lw(1− z) + Lw(z) + Lw(1− z) ,

La
w(z) = Lw(z)− Lw(1− z) + Lw(z)− Lw(1− z) .

(3.13)

We choose the following weight 3 basis [10]

L(1)s =
(
Ls

000(z),Ls
001(z),Ls

010(z), ζ(3)
)

,

L(1)a =
(
La

000(z),La
001(z),La

010(z)
)

.
(3.14)

Our ansatz for the worldsheet correlator is then

G
(1)
i (S, T, z) =

4∑
u=1

r
(1)s
i,u (S, T )L(1)s

u +
3∑

u=1
r

(1)a
i,u (S, T )L(1)a

u , (3.15)

where r
(1)s/a
i,u (S, T ) are rational functions of homogeneity 0 and we assume the denominator

to be U2. Furthermore r
(1)s/a
1,u (S, T ) have symmetry properties according to (3.11)

r
(1)s
1,u (S, T ) = f1,u(p)(S + T )2 + f2,u(p)ST

(S + T )2 , r
(1)a
1,u (S, T ) = f3,u(p)

S − T

S + T
, (3.16)

10See [30, 31] and also [9, 10] for details on these functions in this context.
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whereas r
(1)s/a
2,u (S, T ) are of the form

f4,u(p)(S + T )2 + f5,u(p)ST + f6,u(p)(S2 − T 2)
(S + T )2 . (3.17)

In total our ansatz depends on 32 functions of p.
We can now compute the residues of our ansatz at S = 1, 2, . . . and T = 1, 2, . . . and

match them with those computed in section 3.1 in terms of OPE data. We further compute
the residues at S = 0 and T = 0 and match them to the supergravity term (2.9). As
discussed in [10] the functions G

(1)
i (S, T, z) have certain ambiguities, i.e. terms that we can

add to G
(1)
i (S, T, z) without changing A(1)(S, T ). With the ansatz discussed here, there are

6 such ambiguities, so that our final answer has the form

G
(1)
i (S, T, z) =

4∑
u=1

r
(1)s
i,u L(1)s

u +
3∑

u=1
r

(1)a
i,u L(1)a

u +
6∑

j=1
aj

( 4∑
u=1

r̂
(1)s
i,juL(1)s

u +
3∑

u=1
r̂

(1)a
i,ju L(1)a

u

)
,

(3.18)
with

r
(1)s
1 = 1

24
(
−p2, 2(p − 2)p, p2 − 2p − 6, 48

)
,

r
(1)a
1 = p2(S − T )

24(S + T ) (−1, 2, 1) ,

r
(1)s
2 = p(p − 2)

24(S + T ) (3S,−2(2S + T ),−2S − T, 0) ,

r
(1)a
2 = p(p − 2)

24(S + T ) (3S,−2(2S − T ),−2S + T ) .

(3.19)

The coefficients aj are unfixed and multiply the ambiguities, which are given in appendix E.

4 Dispersive sum rules method

In this section we compute A(1)(S, T ) with a different method, following [8]. We apply the
low energy expansion (2.6) to a dispersion relation to obtain dispersive sum rules, which
relate Wilson coefficients to OPE data. We then make an ansatz in terms of nested sums
for certain combinations of OPE data, and fix the parameters of the ansatz with locality
and single-valuedness constraints for the Wilson coefficients.

In (2.12) we have seen a way to write M(s1, s2) dispersively in terms of two channels.
Unfortunately, written in this way, the symmetry under the exchange of s2 and s3 is
obscured. Therefore, to make it manifest, in this section we implement a different dispersion
relation, where, instead of s3, we keep fixed a new parameter r = s2s3

s1
. With this change

of coordinates, s2 and s3 are now treated on the same footing, thus leading to a more
symmetric dispersion relation and eventually to simpler sum rules.11 The details on how
this dispersion relation is derived are deferred to appendix F. In the following we simply
report the associated sum rules and the corresponding results for the Wilson coefficients
and OPE data.

11In spirit, this is very similar to the crossing symmetric dispersion relations of [13, 14] for the fully
crossing symmetric case.
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4.1 Flat space OPE data

The first of the dispersive sum rules relating Wilson coefficients and OPE data reads

ξ
(0)
a,b (p) =

∞∑
δ=1

b∑
q=0

c
(0)
s,a,b,qF

(0)
s;q (δ) + c

(0)
t,a,b,qF

(0)
t;q (δ)

δ3+a+b
, (4.1)

where

F (0)
s;q (δ) =

4q

Γ(2q + 2)

2δ−2∑
ℓ=0,2

⟨fs,0⟩δ,ℓ(ℓ − q + 1)q(2 + ℓ)q ,

F
(0)
t;q (δ) = 4q

Γ(2q + 2)

2δ−2∑
ℓ=0,1

⟨ft,0⟩δ,ℓ(ℓ − q + 1)q(2 + ℓ)q ,

(4.2)

and

c
(0)
s,a,b,q = (−1)qq2−a−b−1Γ(2b − q)

Γ(b − q + 1) , q > 0 ,

c
(0)
s,a,b,0 = 2−a−1δb,0, q = 0 ,

c
(0)
t,a,b,q = (−1)a+1+qΓ(a)Γ(b + 1)2−a−b−1(−a − b + q)

Γ(b − q + 1)Γ(a − b + q + 1)
× 3F2(q, q − b,−a − b + q + 1;−a − b + q, a − b + q + 1; 1), q > 0 ,

c
(0)
t,a,b,0 = (−2)−a−b−1(a + b)Γ(b − a)

Γ(1− a) , q = 0 .

(4.3)

The Wilson coefficients ξ
(0)
a,b (p) can be read off from the flat space Virasoro-Shapiro amplitude(

see (F.11) and (F.12)
)
. Thus we can systematically analyse the equations (4.1), solving

for the functions F
(0)
s;q (δ) and F

(0)
t;q (δ). As an example, we work out the b = 0 case in

appendix G.2. After studying many cases, the general conclusion we extract is that

F (0)
s;q (δ) = F

(0)
t;q (δ) = F (0)

q (δ), ∀q ∈ N0 , ⇔ ⟨fs,0⟩δ,ℓ = ⟨ft,0⟩δ,ℓ = ⟨f0⟩δ,ℓ , (4.4)

where F
(0)
q (δ) and ⟨f0⟩δ,ℓ are the same as in the ⟨O2O2O2O2⟩ case [8], i.e.

F (0)
q (δ) =

q∑
d=⌊ q+1

2 ⌋

∑
s1,...,sd∈{1,2}
s1+...+sd=q

2
∑

i
δsi,1δqZs1,...,sd

(δ − 1) , (4.5)

where Zs1,...,sd
(δ − 1) is an Euler-Zagier sum defined by

Zs1,s2,s3,...(N) =
N∑

n=1

Zs2,s3,...(n − 1)
ns1

, Z(N) = 1 , Zs1,s2,s3,...(0) = 0 . (4.6)

In particular we find that ⟨ft,0⟩δ,ℓ = 0, if ℓ is odd. Also, we find that any ⟨fs,0⟩δ,ℓ does not
depend on p, i.e. at leading order in λ the full p-dependence of the OPE coefficients is in
the prefactor in (2.17). All this is in agreement with the more general result of [28] for the
product of leading OPE coefficients ⟨Op1Op2O∆,ℓ,[0,n,0]⟩ × ⟨Op3Op4O∆,ℓ,[0,n,0]⟩.
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At the next order we impose that there are no λ− 1
4 corrections to the flat space Wilson

coefficients. From the string theory perspective, this would correspond to fractional powers
of α′/R2, and we assume that such powers are absent. This leads to the equation

0 =
∞∑

δ=1

b∑
q=0

c
(0)
s,a,b,q

(
F

(1)
s;q (δ)− (3 + a + b)T (1)

s;q (δ)
)

δ
7
2 +a+b

+
∞∑

δ=1

b∑
q=0

c
(0)
t,a,b,q

(
F

(1)
t;q (δ)− (3 + a + b)T (1)

t;q (δ)
)

δ
7
2 +a+b

,

(4.7)

where

F (1)
s;q (δ) =

4q

Γ(2q + 2)

2δ−2∑
ℓ=0,2

(ℓ − q + 1)q(2 + ℓ)q

(√
δ⟨fs,1⟩δ,ℓ − ⟨fs,0⟩δ,ℓ

(
ℓp + ℓ + 2p + 7

4

))
,

T (1)
s;q (δ) =

4q

Γ(2q + 2)

2δ−2∑
ℓ=0,2

⟨fs,0⟩δ,ℓ(ℓ − q + 1)q(2 + ℓ)q(τs,1(δ, ℓ) + ℓ + 2),

F
(1)
t;q (δ) = 4q

Γ(2q + 2)

2δ−2∑
ℓ=0,1

(ℓ − q + 1)q(2 + ℓ)q

(√
δ⟨ft,1⟩δ,ℓ − ⟨ft,0⟩δ,ℓ

(
ℓp + ℓ + p2

2 + 15
4

))
,

T
(1)
t;q (δ) = 4q

Γ(2q + 2)

2δ−2∑
ℓ=0,1

⟨ft,0⟩δ,ℓ(ℓ − q + 1)q(2 + ℓ)q(τt,1(δ, ℓ) + ℓ + 2). (4.8)

The solution to these equations is12

τs,1(δ, ℓ) = τt,1(δ, ℓ) = −2− ℓ ,

⟨fs,1⟩δ,ℓ =
⟨fs,0⟩δ,ℓ√

δ

(
ℓp + ℓ + 2p + 7

4

)
,

⟨ft,1⟩δ,ℓ =
⟨ft,0⟩δ,ℓ√

δ

(
ℓp + ℓ + p2

2 + 15
4

)
.

(4.9)

4.2 First curvature correction

At the next order we find the dispersive sum rule

ξ
(1)
a,b (p) =

∞∑
δ=1

b∑
q=0

c
(0)
s,a,b,q

(
F

(2)
s;q (δ)− (3 + a + b)T (2)

s;q (δ)
)
+ c

(2,0)
s,a,b,qF

(0)
s;q (δ) + c

(2,1)
s,a,b,qF

(0)
s;q+1(δ)

δ4+a+b

+
∞∑

δ=1

b∑
q=0

c
(0)
t,a,b,q

(
F

(2)
t;q (δ)− (3 + a + b)T (2)

t;q (δ)
)
+ c

(2,0)
t,a,b,qF

(0)
t;q (δ) + c

(2,1)
t,a,b,qF

(0)
t;q+1(δ)

δ4+a+b
,

(4.10)

12We assumed in this analysis that all operators acquire the same finite shift, as argued in section 6.1.1
of [2].

– 11 –



J
H
E
P
1
1
(
2
0
2
3
)
0
6
4

where

F (2)
s;q (δ) =

4q

Γ(2q+2)

2δ−2∑
ℓ=0,1

(ℓ−q+1)q(2+ℓ)q

(
δ⟨fs,2⟩δ,ℓ−

1
4(4p2+9p+5)ℓ⟨fs,0⟩δ,ℓ

)
,

T (2)
s;q (δ) =

4q

Γ(2q+2)

2δ−2∑
ℓ=0,1

√
δ(ℓ−q+1)q(2+ℓ)q⟨fs,0τs,2⟩δ,ℓ,

F
(2)
t;q (δ) = 4q

Γ(2q+2)

2δ−2∑
ℓ=0,1

(ℓ−q+1)q(2+ℓ)q

(
δ⟨ft,2⟩δ,ℓ−

1
4
(
2p3−2p2+9p+13

)
ℓ⟨ft,0⟩δ,ℓ

)
,

T
(2)
t;q (δ) = 4q

Γ(2q+2)

2δ−2∑
ℓ=0,1

√
δ(ℓ−q+1)q(2+ℓ)q⟨ft,0τt,2⟩δ,ℓ, (4.11)

and we wrote c
(2,0)
s,a,b,q, c

(2,1)
s,a,b,q, c

(2,0)
t,a,b,q and c

(2,1)
t,a,b,q in (G.1). The OPE data (4.11) is truly

sensitive to AdS curvature corrections, since it depends on Wilson coefficients ξ
(1)
a,b (p) which

are not fixed by the flat space Virasoro-Shapiro amplitude. The Wilson coefficients ξ
(1)
a,b (p)

are in general unknown.
The situation regarding the sum rules (4.10) is now different from the one we encountered

in section 4.1. In section 4.1 the l.h.s. of the sum rules was known and the Wilson coefficients
were an input into the dispersive sum rules and the OPE data was the output. To make
progress we will proceed along the same lines of [8]. Fixing b, we make a general ansatz for
the OPE data that enters (4.10), as a linear combination of Euler-Zagier sums involving
a few undetermined functions of p. Using (4.10) this determines the Wilson coefficients
in terms of those functions. Afterwards, we impose physical conditions on the Wilson
coefficients (namely single-valuedness) and these will completely fix all of these functions.

Let us see how this comes about in practice. In complete analogy with the p = 2 case,
we first assume that T

(2)
s;q (δ) and T

(2)
t;q (δ) are linear combinations of Euler-Zagier sums with

maximal depth q + 1 and maximal weight q + 2 and that F
(2)
s;q (δ) and F

(2)
t;q (δ) are linear

combinations of Euler-Zagier sums with maximal depth q + 1 and maximal weight q + 3:

T (2)
s;q (δ) = A1

q+2,q+1,

T
(2)
t;q (δ) = A2

q+2,q+1,

F (2)
s;q (δ) = A3

q+3,q+1 + δ3ζ(3)A4
q,q,

F
(2)
t;q (δ) = A5

q+3,q+1 + δ3ζ(3)A6
q,q,

(4.12)

for q ≥ 1 where

Ai
wmax,dmax =

wmax∑
w=1

dmax∑
d=1

∑
s1,...,sd∈N

s1+...+sd=w

ci
s1,...,sd

(p)δwZs1,...,sd
(δ − 1) . (4.13)

ci
s1,...,sd

(p) are the functions of p that are fixed by our procedure. For q = 0, see formula (G.6).
Second, we impose that the strong coupling expansion cannot contain negative powers

of the Mellin variables apart from the supergravity term. This simple condition is nontrivial
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from the point of view of equations (4.10) and leads to

ξ
(1)
a,b (p) = 0, for a = 0, . . . , b − 1, ∀ b ∈ N. (4.14)

Plugging (4.10) into (4.14) leads to constraints on the OPE data.
Third, we impose that ξ

(1)
a,b (p) is in the ring of single-valued multiple zeta values. For

a practical introduction to this topic, see section 3.1 of [8]. We use the MAPLE program
HyperlogProcedures [32] to do so. In practice, for any fixed b it is enough to impose single-
valuedness for a few values of a to fix all of the undetermined functions. Afterwards, we
check that the resulting expression for ξ

(1)
a,b (p) is single-valued for other values of a that we

did not use before.13

In this manner we solved (4.10) for b = 0, . . . , 5. In appendix G.3 we write all the
details on how to implement this for the b = 0 case. From these cases, we extract the
following general conclusions

T (2)
s;q (δ) = T (2)

q (δ) ,

T
(2)
t;q (δ) = T (2)

q (δ) + p2 − 4
4 F (0)

q (δ) ,
(4.15)

where T
(2)
q (δ) is the value obtained in the ⟨O2O2O2O2⟩ case [8] for T

(2)
s;q (δ).

As to the OPE coefficients, they are determined by

F (2)
s;q (δ) = F (2)

q (δ) + (p − 2)
(
g1(q, p)F (0)

q (δ) + g2(q, p)F (0)
q+1(δ)

)
,

F
(2)
t;q (δ) = F (2)

q (δ) + (p − 2)
(
g3(q, p)F (0)

q (δ) + g4(q, p)F (0)
q+1(δ)

)
,

(4.16)

where F
(2)
q (δ) is the value obtained in the ⟨O2O2O2O2⟩ case [8] for F

(2)
s;q (δ) and

g1(q, p) = −p2

3 + 1
6p
(
3q2 + 3q + 5

)
+ 2q2 + 3q + 6,

g2(q, p) = 1
2(q + 1)(pq + p + 4q + 5),

g3(q, p) = 1
24
(
3p3 + 4p2 + p

(
12q2 + 18q + 41

)
+ 48q2 + 84q + 78

)
,

g4(q, p) = g2(q, p).

(4.17)

The solution for the OPE data completely fixes the Wilson coefficients ξ
(1)
a,b (p). At the next

order in 1√
λ

this procedure does not allow us to fix all the undetermined functions.

5 Data and checks

5.1 OPE data

We can determine all of the averages of the OPE data for each δ and ℓ, either by computing
the residues of the poles of the world-sheet integral (3.9) and comparing with the residues

13For example, for b = 0, we impose single-valuedness for a = 0, . . . , 6 and checked it for a = 7, . . . , 10. For
b = 1 we imposed it for a = 1, . . . , 8 and checked it for a = 9, 10, 11. For b = 2 we imposed it for a = 2, . . . , 8
and checked it for a = 9, 10, 11.
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computed in section 3.1, or by equating (4.15) and (4.16) with (4.11). For example, for the
leading Regge trajectory we find

⟨fs,0τs,2⟩δ,2δ−2 = r0(δ)
2δ

3
2
(3δ2 − δ + 2),

⟨ft,0τt,2⟩δ,2δ−2 = r0(δ)
2δ

3
2

(
3δ2 − δ + p2

2

)
,

⟨fs,2⟩δ,2δ−2 = r0(δ)
δ2

(
7δ2

2 − 7δ

12 − p3

3 +
(
2δ2 − δ + 1

2

)
p2

+ 1
6
(
24δ2 + 3δ − 1

)
p + δ3

(
2ζ(3)− 7

6

)
− 35

32

)
,

⟨ft,2⟩δ,2δ−2 = r0(δ)
δ2

(
7δ2

2 + 17δ

12 + p4

8 +
(

δ − 13
12

)
p3 +

(
2δ2 − 7δ

2 + 23
8

)
p2

+ 1
6
(
24δ2 + 3δ − 28

)
p + δ3

(
2ζ(3)− 7

6

)
+ 77

32

)
,

(5.1)

where

rn(δ) =
42−2δδ2δ−2n−1(2δ − 2n − 1)

Γ(δ)Γ
(
δ − ⌊n

2
⌋) . (5.2)

Using that the operators on the leading Regge trajectory are non-degenerate, we can extract
the twists for these operators with SU(4)R representation [0, p − 2, 0] from the second
equation in (5.1)

τ [0,p−2,0]
(

ℓ
2 + 1, ℓ

)
=
√
2(ℓ + 2)λ

1
4 − ℓ − 2 + 3ℓ2 + 10ℓ + 2p2 + 8

4
√
2(ℓ + 2)

λ− 1
4 + O

(
λ− 3

4
)

. (5.3)

This is in agreement with [33].14 A few of the anomalous dimensions for p > 2 have also
been recomputed recently in [2] using the quantum spectral curve, namely

τ
[0,1,0]
2 (1, 0) = 13

4 , τ
[0,2,0]
2 (1, 0) = 5 , τ

[0,3,0]
2 (1, 0) = 29

4 ,

τ
[0,1,0]
2 (2, 2) = 29

4
√
2

, τ
[0,2,0]
2 (2, 2) = 9√

2
,

(5.4)

also in perfect agreement with (5.3).
At the order we are considering, operators with odd spin only contribute to the quantity

⟨ft,2⟩δ,ℓ, which is the leading contribution to the OPE coefficients for these operators. For
the first few odd spin Regge trajectories our results for this quantity are

⟨ft,2⟩δ≥2,2δ−3 = −
r 1

2
(δ)
δ

(δ − 1)
(
p2 − 4

)
,

⟨ft,2⟩δ≥3,2δ−5 = −
2r 3

2
(δ)
3 (δ − 2)(δ − 1)(δ + 4)

(
p2 − 4

)
, (5.5)

⟨ft,2⟩δ≥4,2δ−7 = −
r 5

2
(δ)
45 (δ − 3)

(
10δ4 + 73δ3 + 128δ2 − 352δ − 192

) (
p2 − 4

)
.

14With the respect to the conventions of (2.28) of [33], we need to identify S = ℓ + 2 and remember the
shift J = (p − 2) + 2.
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Anomalous dimensions for operators with odd spin appear only at higher orders in the
1/
√

λ expansion, i.e. in A(k>1)(S, T ). In terms of degeneracies, the leading odd spin Regge
trajectory with ℓ = 2δ − 3 is particularly simple: it was shown in [28] that all the operators
on this trajectory have degeneracy 2.

5.2 Wilson coefficients

The Wilson coefficients that appear in the low energy expansion (2.8) can be computed
either from the world-sheet correlator (3.18), as explained in [9] (which uses the methods
of [34]), or by plugging the solutions (4.15)–(4.16) into the dispersive sum rule (4.10) and
performing the sums, following [8]. The first few terms in the expansion are given by

A(1)(S,T ) =− p

S2T 2U2

(
p

6S2+ p−3
3 TU

)
+p(p−2)Sζ(5) (5.6)

+ ζ(3)2

3
((

p2−6p−36
)

S2+2
(
p2+18

)
TU

)
+ζ(7)

(
2p(p−2)S3−

(
2p2+2p+ 441

8

)
STU

)
+ 2ζ(3)ζ(5)

3
((

p2−10p−81
)

S4+2
(
2p2+4p+81

)
S2TU −

(
2p2+4p+81

)
T 2U2

)
+ . . . .

Some values of the Wilson coefficients ξ
(1)
a,b (p) had been computed before in the literature.

Below we perform a detailed comparison of our results with all available results in the
literature and we find full agreement. In [23] the Mellin amplitude was computed to order
λ− 5

2 using localisation methods. We find full agreement when comparing their results to
our prediction for ξ

(1)
a,0(p) for a = 0, 1, which is

ξ
(1)
0,0(p) = 0 , (5.7)

ξ
(1)
1,0(p) =

1
4(p − 2)pζ(5) . (5.8)

In [35] an algorithm to compute the p-dependence of Wilson coefficients in a generic
correlator ⟨Op1Op2Op3Op4⟩ was proposed.15 This algorithm is based on considering an
effective field theory in full AdS5 × S5. With this algorithm it is possible to compute the
p-dependence of Wilson coefficients up to a finite number of undetermined parameters.
Take for example the Wilson coefficient ξ

(1)
2,0(p), which enters at O(λ−3). [35] predicts

ξ
(1)
2,0(p) =

1
24ζ(3)2(3B̃1 − 24Ẽ0 + (p − 6)p − 20), (5.9)

where B̃1 and Ẽ0 are undetermined rational numbers.16 Our own computation gives

ξ
(1)
2,0(p) =

1
24((p − 6)p − 36)ζ(3)2 . (5.10)

We see that (5.9) and (5.10) are fully compatible and together they imply 3B̃1−24Ẽ0+16 = 0.
Combining this approach with our results and extending the localisation constraints in [23]

15Similar results were obtained in [36].
16More specifically, B1 = B̃1ζ2(3) and E0 = Ẽ0ζ2(3) are defined in equation (84) of [35].
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at order λ−3 we were able to fix the Mellin amplitude up to an unknown number β,17

M(s1,s2)
∣∣∣
λ−3

= ζ2
3 (p)4

8Γ(p−1)

(
(p+4)3 s1s2s3+

(p+4)2
3 (p2−6p−36)s2

1

+2(p+4)2
3 (p2+18)s2s3+

(p+4)
3 (p−2)

(
(p3−7p2−24p+36)+3

2β(p+2)
)

s1

+2(p−12)
27 (p5−3p4+2p3+138p2+288p+216)+β

3 (p−2)2p(p+2)
)

. (5.11)

6 Conclusions

In this paper we determined the first curvature correction to the AdS Virasoro-Shapiro
amplitude with external KK modes, for the correlator ⟨O2O2OpOp⟩, generalising the
⟨O2O2O2O2⟩ results of [7–9]. We expect that higher curvature corrections can be obtained
in an analogous way, as demonstrated in [10], where the second curvature correction for
⟨O2O2O2O2⟩ was computed.

We also used the opportunity to recapitulate and contrast the two methods that were
previously used to solve the problem at hand. The method introduced in [10] and used in
section 3 assumes the existence of a world-sheet integral with insertions of single-valued
multiple polylogs, which is suggested by the fact that world-sheet non-linear sigma models
for AdS expanded around flat space receive contributions from flat space string amplitudes
with insertions of additional soft gravitons [9, 10]. The ansatz is then fixed essentially by
consistency with the OPE.

The method used in section 4 was introduced earlier, in [8], and involves an ansatz for
certain combinations of OPE data in terms of Euler-Zagier sums. This ansatz was inspired
by the structure of the dispersive sum rules and their leading solution which can be inferred
from flat space. Of course, both methods lead to the same results.

An obvious future direction in the same line as the present paper would be to consider
the correlator with generic half-BPS operators ⟨Op1Op2Op3Op4⟩. This would give access to
operators in even more general SU(4)R representations, see (A.6).

Another generalisation would be to relax the assumption p ≪ λ
1
4 . As discussed in [28]

(see also [37]), in the regime p ≪ λ
1
4 all operators that are not KK modes of the SO(5) singlet

are suppressed by powers of λ− 1
4 . Studying correlators in the regime p ∼ λ

1
4 would make it

easier to access those operators, which can also be characterised as having momentum in
the S5 directions.
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A N = 4 stress tensor four point function

We normalise two point functions of half-BPS operators Op(x, y) as

⟨Op(x1, y1)Op(x2, y2)⟩ = gp
12 (A.1)

with gij ≡ yij

x2
ij

, where yij = yi · yj and xij = xi − xj . The correlator of four generic half-BPS
operators Opi can be written as [19]

⟨Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)⟩ = K{pi}(xi, yi)G{pi}(z, z;α, α) , (A.2)

K{pi}(xi, yi) = g
p1+p2

2
12 g

p3+p4
2

34

(
g24
g14

) p21
2
(

g13
g14

) p34
2

, (A.3)

where pij = pi − pj . We have introduced the cross-ratios

U = x2
12x2

34
x2

13x2
24

= zz , V = x2
14x2

23
x2

13x2
24

= (1− z)(1− z) , (A.4)

1
σ
= y12y34

y13y24
= αα ,

τ

σ
= y23y14

y13y24
= (1− α)(1− α) . (A.5)

If we consider the s-channel superconformal block decomposition, G{pi} contains all the
SU(4)R representations in [0, p1 − 2, 0]⊗ [0, p2 − 2, 0] ∩ [0, p3 − 2, 0]⊗ [0, p4 − 2, 0]. These
can be labelled as

[n − m, 2m + s, n − m] , n = 0, · · ·P = min
(

pi,
pi + pj + pk − pl

2

)
− 2 , m = 0, · · · , n ,

(A.6)
with s = max(|p12|, |p34|).

We decompose G{pi} into its free-theory value plus the reduced correlator T{pi}

G{pi}(z, z;α, α) = Gfree
{pi}(z, z;α, α) + (z − α)(z − α)(z − α)(z − α)

(zz)2(αα)2 T{pi}(z, z;α, α) . (A.7)

In the case under analysis, namely the one with two O2’s and two Op’s, the free correlator
takes the form

Gfree
{22pp} = g2

12gp
34 +

p

2c

(
g12g14g23gp−1

34 + g12g13g24gp−1
34

)
+ p(p − 1)

2c
g13g14g23g24gp−2

34 . (A.8)

Only one representation is exchanged in the OPE decomposition and T{pi}(z, z;α, α) is just
a known function of α, α times a function of the cross-ratios

T{22pp}(z, z;α, α) = T{22pp}(U, V ) ,

T{p22p}/{2p2p}(z, z;α, α) = (αα)
2−p

2 T ′
{p22p}/{2p2p}(U, V ) .

(A.9)

By imposing superconformal Ward identities, it is possible to disentangle contributions
from short, protected operators and long, unprotected ones in T{pi} — see [18, 20, 21, 38, 39]
for details. So we can write

T{pi} = T short
{pi} + T long

{pi} , (A.10)
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and each part can be expanded in superconformal blocks. For the correlators under analysis,
the protected contribution reads

T short
{22pp}(z, z;α, α) = −

∞∑
λ≥1

A
(s)
2[λ+1]G

(0,0)
λ+5,λ−1(z, z) ,

T short
{2p2p}(z, z;α, α) = −(αα)

2−p
2

∞∑
λ≥1

A
(t)
p[λ+1]G

(p−2,2−p)
λ+p+3,λ−1(z, z) , (A.11)

T short
{p22p}(z, z;α, α) = −(αα)

2−p
2

∞∑
λ≥1

(−1)λA
(t)
p[λ+1]G

(2−p,2−p)
λ+p+3,λ−1(z, z) ,

where we have introduced the conformal blocks

G
(r,s)
∆,ℓ (z, z) = zz

z − z

[
kr,s

∆−ℓ−2
2

(z)kr,s
∆+ℓ

2
(z)− kr,s

∆+ℓ
2
(z)kr,s

∆−ℓ−2
2

(z)
]

, (A.12)

kr,s
h (z) = zh

2F1

(
h + r

2 , h + s

2; 2h, z

)
. (A.13)

The OPE coefficients appearing in (A.11), necessary to reproduce the supergravity correlator
in the dispersion relation, are given by

A
(s)
2[λ] =

p

2c

1 + (−1)λ

2
2(λ!)2

(2λ)! ,

A
(t)
p[λ] =

p

2c

Γ(p + λ − 1)
(
(p − 1)Γ(λ + 1) + (−1)λ(p − 1)λ

)
Γ(p + 2λ − 1) .

(A.14)

Finally, the long contribution can be expanded in superconformal blocks as

T long
{22pp}(z, z, α, α) =

∑
∆,ℓ

Cs G
(0,0)
∆+4,ℓ(z, z) ,

T long
{2p2p}(z, z, α, α) = (αα)

2−p
2
∑
∆,ℓ

Ct G
(p−2,2−p)
∆+4,ℓ (z, z) , (A.15)

T long
{p22p}(z, z, α, α) = (αα)

2−p
2
∑
∆,ℓ

(−1)ℓCt G
(2−p,2−p)
∆+4,ℓ (z, z) .

B SUGRA(k)

SUGRA(1≤k≤p) = 2−kΓ(1+p)
Γ(1+p−k)

1
(STU)k+1

{(
−p

3

)k

S2k +
(
−2
3(p−3)

)k

(TU)k

+
⌊ k

2 ⌋∑
j=1

(
−p

3

)j(
−p−6

3

)j(
−2
3(p−3)

)k−2j

S2j(TU)k−j +
k−1∑

j=⌊ k
2 ⌋+1

(
−p

3

)j

S2j(TU)k−j

×
k−j∑
i=0

(
−p−6

3

)k−j−i(
−2
3(p−3)

)i j(i+2j−k+1)−i−j+k−1(−i−2j+k+1)i

i!(−i−j+k)!

}
,

(B.1)

SUGRA(k>p) = 0 . (B.2)
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C Mack polynomials

To reproduce the superconformal block expansion of T (U, V ) in (A.15), the Mellin ampli-
tudes should have poles at precise locations, whose residues can be shown to be given in
terms of Mack polynomials Q∆12,∆34,τ

ℓ,m (s) [27, 40]

Qs(s3; τ, ℓ, m) = κ
(4,4,p+2,p+2)
ℓ,m,τ+4 Q0,0,τ+4

ℓ,m

(
s3 − 2− p

3

)
,

Qt(s3; τ, ℓ, m) = κ
(p+2,4,4,p+2)
ℓ,m,τ+4 (−1)ℓQp−2,2−p,τ+4

ℓ,m

(
s3 −

4
3p

)
.

(C.1)

We obtain a closed expression for Qℓ,m starting from (3.47) of [41],

Pi(∆−d/2),ℓ(s, t) =
√

π2−d−ℓ+3Γ(d + ℓ − 2)
Γ
(

d−1
2

)
Γ
(

d
2 + ℓ − 1

) αℓ , (C.2)

where Pν,ℓ(s, t) is the Mellin transform for the conformal partial wave in the convention
of [42]. From this data, it is straightforward to obtain a compact expression for the Mack
polynomials, by partially resumming the expression of αℓ

Q∆12,∆34,τ
ℓ,m (s)= 2ℓℓ!Γ(ℓ+τ−1)

Γ(2ℓ+τ−1)

ℓ∑
k=0

ℓ−k∑
n=0

(−m)k

(
m+ s+τ

2

)
n

µ(ℓ,k,n,∆12,∆34, τ) ,

µ(ℓ,k,n,∆12,∆34, τ)= (−1)k+n+1(ℓ+τ−1)n

k!n!(−k−n+ℓ)!

(
n+1+∆34−∆12

2

)
k

×
(

k+n−∆12
2 + τ

2

)
−k−n+ℓ

(
k+n+∆34

2 + τ

2

)
−k−n+ℓ

(C.3)

× 4F3

(
−k,−1−n−ℓ,−1+∆12

2 + τ
2 ,−1−∆34

2 + τ
2

−ℓ, ∆12
2 −∆34

2 −k−n,−2+τ
;1
)

,

and

κ
(p1,p2,p3,p4)
ℓ,m,τ = −

21−ℓ(ℓ + τ − 1)ℓΓ(2ℓ + τ)Γ
(
−p1−p2

2 + ℓ + τ
2

)
m! (−1 + ℓ + τ)m Γ

(−m + p1
2 + p2

2 − τ
2
)
Γ
(−m + p3

2 + p4
2 − τ

2
) (C.4)

× Γ
(

p1 − p2
2 + ℓ + τ

2

)
Γ
(
−p3 − p4

2 + ℓ + τ

2

)
Γ
(

p3 − p4
2 + ℓ + τ

2

)
.

We checked that these polynomials satisfy the expected recursion relations [42]

(Ds − λℓ)Qℓ,m(s) = 4m

(
d

2 − τ − ℓ − m

)
(2Qℓ,m(s)− Qℓ,m−1(s + 2)− Qℓ,m−1(s)) ,

DsQℓ,m(s) = ((2m + s + τ)Qℓ,m(s + 2)− 2sQℓ,m(s))(∆12 −∆34 + 2m + s + τ) ,

+ (∆12 + s)(s −∆34)Qℓ,m(s − 2) , (C.5)
λℓ = (∆12 + 2m + τ)(−∆34 + 2m + τ) + 4ℓ(2m + τ − 1) + 4ℓ2 .

In particular the case m = 0 takes a very simple form

Q
(∆12,∆34)
ℓ,0 (s) = −2ℓ

(
τ
2 − ∆12

2

)
ℓ

(
∆34

2 + τ
2

)
ℓ

(ℓ + τ − 1)ℓ
3F2

(
−ℓ, s

2 + τ
2 , τ + ℓ − 1

τ
2 − ∆12

2 , ∆34
2 + τ

2
; 1
)

.

– 19 –



J
H
E
P
1
1
(
2
0
2
3
)
0
6
4

D Large twist sums

Given the dispersion relation

M(s1, s2) =
∑
Os

∞∑
m=0

Cs
Qs(s3; τs, ℓ, m)

s1 − τs − 2m + 2
3p

+
∑
Ot

∞∑
m=0

Ct
Qt(s3; τt, ℓ, m)

s2 − τt − 2m + 2
3p

(D.1)

and given that the operators exchanged have twist τ ∼ λ1/4, we ask how do the OPE
coefficients Cs, Ct depend on λ in such a way as to reproduce the first stringy correction

p(p + 1)(p + 2)(p + 3)
λ3/2Γ(p − 1)

× ζ(3). (D.2)

At large τ the sum in m in (D.1) is dominated by terms of order τ2. The large τ

expansion of (D.1) can be obtained by setting m → xτ2 and replacing ∑∞
m=0 → ∫

dxτ2. In
this limit

lim
τs→∞

∫ ∞

0
dxτ2

s

Qs(s3; τs, ℓ, xτ 2
s )

s1 − τs − 2xτ2
s + 2

3p
=

(ℓ + 1)(−1)−pΓ(p + 4) sin2 (πτs
2
)
22ℓ+2p+2τs+13

π3τ
2(p+4)
s

,

lim
τt→∞

∫ ∞

0
dxτ2

t

Qt(s3; τt, ℓ, xτ 2
t )

s2 − τt − 2xτ2
t + 2

3p
=

(−1)ℓ(ℓ + 1)Γ(p + 4)22ℓ+2p+2τt+13 sin2
(

1
2π(p − τt)

)
π3τ

2(p+4)
t

.

(D.3)
Inserting (D.3) and (D.2) into (D.1) we derive (2.17).

E Ambiguities of the world-sheet integrand

The ambiguous terms in the world-sheet correlator (3.18) are given by

r̂
(1)s
1,1 =

(
0,0,0, S2+4ST +T 2

(S+T )2

)
, r̂

(1)a
1,1 = (0,0,0) , r̂

(1)s
2,1 = (0,0,0,0) , r̂

(1)a
2,1 = (0,0,0) ,

r̂
(1)s
1,2 =

(
−5S2+8ST +5T 2

12(S+T )2 , S2+ST +T 2

3(S+T )2 ,−5S2+8ST +5T 2

12(S+T )2 ,4
)

,

r̂
(1)a
1,2 =

(
− 5(S−T )

12(S+T ) , S−T
3(S+T ) , S−T

4(S+T )

)
, r̂

(1)s
2,2 = (0,0,0,0) , r̂

(1)a
2,2 = (0,0,0) ,

r̂
(1)s
1,3 = (0,0,0,0) , r̂

(1)a
1,3 = (0,0,0) , r̂

(1)s
2,3 =

(
0,0,0,

2(S2+2ST)
(S+T )2

)
, r̂

(1)a
2,3 = (0,0,0) ,

r̂
(1)s
1,4 = (0,0,0,1) , r̂

(1)a
1,4 = (0,0,0) , r̂

(1)s
2,4 =

(
0,0,0,−2S+T

S+T

)
, r̂

(1)a
2,4 = (0,0,0) ,

r̂
(1)s
1,5 = (1,0,1,0) , r̂

(1)a
1,5 = S−T

S+T (1,−2,−1) , r̂
(1)a
2,5 =

(
− T 2−2S2

4(S+T )2 ,−2S2+9ST +8T 2

2(S+T )2 ,− (S+2T )2

4(S+T )2

)
,

r̂
(1)s
2,5 =

(
2S2+T 2

4(S+T )2 ,−2S2+3ST +4T 2

2(S+T )2 ,− S2−4T 2

4(S+T )2 ,
4(4S2+9ST−4T 2)

(S+T )2

)
,

r̂
(1)s
1,6 = (0,1,0,0) , r̂

(1)a
1,6 = (0,0,0) , r̂

(1)a
2,6 =

(
6S2+4ST +T 2

8(S+T )2 ,−6S2+7ST +4T 2

4(S+T )2 ,− 3S2

8(S+T )2

)
,

r̂
(1)s
2,6 =

(
6S2+4ST−T 2

8(S+T )2 ,−6S2+13ST +8T 2

4(S+T )2 , −3S2+4ST +8T 2

8(S+T )2 , 8S2+6ST−8T 2

(S+T )2

)
. (E.1)
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F Crossing-symmetric dispersion relation

Our Mellin amplitude has the symmetry M(s1, s2) = M(s1, s3). Following [13, 14], it is
useful to construct a dispersion relation where this symmetry is manifest, since that will
lead to simpler dispersive sum rules.18

We will use the variables s1 and r, where r = s2s3
s1

. In terms of these variables we have

s′2(s1, r) = 1
2

(
−s1 +

√
s1(s1 − 4r)

)
, s′3(s1, r) = 1

2

(
−s1 −

√
s1(s1 − 4r)

)
, (F.1)

and we will consider

M̃(s1, r) = M(s1, s′2(s1, r)). (F.2)

Although s′2(s1, r) has a branch cut from s1 = 0 to s1 = 4r, M̃(s1, r) does not have a branch
cut because of the symmetry M(s1, s′2(s1, r)) = M(s1, s′3(s1, r)). In the new variables the
bound on chaos (2.11) becomes

M̃(s1, r) = O(s−2
1 ) , for |s1| → ∞ with Re(r) > −p

3 . (F.3)

Thus, keeping r fixed and with Re(r) > −p
3 we can write a dispersion relation in the new

variables
M̃(s1, r) =

∮
s1

ds′1
2πi

M̃(s′1, r)
(s′1 − s1)

. (F.4)

In the s1 plane M̃(s1, r) has poles at s1 = τm
s and s1 = − (τm

t )2

τm
t +r , where τm

s = τs + 2m − 2
3p

and τm
t = τt + 2m − 2

3p. This leads to

M̃(s1, r) =
∑
Os

∞∑
m=0

Cs
Q̃s
(
s′2(τm

s , r)−2− p
3
)

s1−τm
s

−
∑
Ot

∞∑
m=0

Ct
τm

t (2r+τm
t )

(r+τm
t )2

Q̃t

(
−2− p

3 −
(τm

t )2

r+τm
t

)
s1+ (τm

t )2

r+τm
t

,

(F.5)
where

Q̃s(x) ≡ κ
(4,4,p+2,p+2)
ℓ,m,τ+4 Q0,0,τ+4

ℓ,m (x) ,

Q̃t(x) ≡ κ
(p+2,4,4,p+2)
ℓ,m,τ+4 Q2−p,2−p,τ+4

ℓ,m (x) .
(F.6)

It is important to have formulas that connect OPE data with the low energy expansion of
M̃(s1, r). Expanding (F.5) as

M̃(s1, r) =
∞∑

a,b=0
ξa,bs

a
1rb , (F.7)

the coefficients read

ξa,b =
∑
Os

∞∑
m=0

Cs

b∑
q=0

U
τm

s , s
a,b,q ∂q

xQs(x)|x=0 +
∑
Ot

∞∑
m=0

Ct

b∑
q=0

U
τm

t , t
a,b,q ∂q

xQt(x)|x=0 , (F.8)

18See [43] for a review of analytic bootstrap methods.
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where

Uτ, s
a,b,0 =− δb,0

τa+1 ,

Uτ, s
a,b,q>0 =

(−1)q+1Γ(2b−q)
Γ(b+1)Γ(q)Γ(b−q+1)τa+b+1−q

,

Uτ, t
a,b,0 =

(−1)−a−b(a+b)(1−a)b−1
Γ(b+1)τa+b+1 , (F.9)

Uτ, t
a,b,q>0 =

(−1)a−1Γ(a)(a+b−q) 3F2(q, q−b,−a−b+q+1;−a−b+q,a−b+q+1;1)
Γ(q+1)Γ(b−q+1)Γ(a−b+q+1)τ1+a+b−q

,

and
Qs(x) ≡ κ

(4,4,p+2,p+2)
ℓ,m,τ+4 Q0,0,τ+4

ℓ,m

(
x − 2− p

3

)
,

Qt(x) ≡ κ
(p+2,4,4,p+2)
ℓ,m,τ+4 (−1)ℓQp−2,2−p,τ+4

ℓ,m

(
−x − 4

3p

)
.

(F.10)

Using formula (F.8) and the large twist expansions of appendix D we can derive the
expressions relating the Wilson coefficients and the OPE data that we present in the
main text. Finally, the Wilson coefficients ξ

(0)
a,b (p) can be read off from the flat space

Virasoro-Shapiro amplitude through [15]

4p

Γ(p − 1)
1

s1s2s3
+ Mflat(s1, s2) =

4
Γ(p)Γ(p − 1)s1s2s3

∫ ∞

0
dβ e−β βp Aflat(2βs1, 2βs2) ,

(F.11)

where

Aflat(s1, s2) = exp
( ∞∑

k=1

2ζ(2k + 1)
2k + 1

( 1
4
√

λ

)2k+1 (
s2k+1

1 + s2k+1
2 + s2k+1

3

))
,

Mflat(s1, s2) =
∞∑

a=0

a∑
b=0

Γ(a + b + p + 4)
Γ(b + 1)Γ(p)Γ(p − 1)sa−b

1
(
s2s3

)b
λ− 3

2−
a
2−

b
2 ξ

(0)
a,b (p) .

(F.12)

G Details about dispersive sum rules

G.1 Formulas

The functions appearing in (4.10) are given by

c
(2,0)
s,a,b,q =

1
96
(
−16a3−16b3−16b2(p−3q+6)+32p3−112p2−480p+321

−16a2(3b+p−3q+6)−80p2q−80pq−168q2+228q−48p2q2−144pq2

+8b
(
4p2+8pq−10p−3q2+36q+2

)
−8a

(
6b2+4b(p−3q+6)−4p2−8pq+10p+3q2−36q−2

))
c

(0)
s,a,b,q ,

c
(2,1)
s,a,b,q =− 1

48(q+1)
(
−12a2−12b2−2b(8p−6q+33)+32p2+56p−15

−2a(12b+8p−6q+33)+24p2q+72pq+84q
)
c

(0)
s,a,b,q ,
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c
(2,0)
t,a,b,q =

1
96
(
−16a3−16b3−16b2(p−3q+6)+32p3−112p2−480p+321

−16a2(3b+p−3q+6)−80p2q−80pq−168q2+228q−48p2q2−144pq2

+8b
(
4p2+8pq−10p−3q2+36q+2

)
−12(p−2)2

(
2a+2b+p2+6p−2q+17

)
−8a

(
6b2+4b(p−3q+6)−4p2−8pq+10p+3q2−36q−2

))
c

(0)
t,a,b,q ,

c
(2,1)
t,a,b,q =− 1

48(q+1)
(
−12a2−12b2−2b(8p−6q+33)+32p2+56p−15

−2a(12b+8p−6q+33)+24p2q+72pq+84q
)
c

(0)
t,a,b,q . (G.1)

G.2 Dispersive sum rule for b = 0

The simplest dispersive sum rule is the one for the flat space Wilson coefficient ξ
(0)
a,0(p). It

leads to the equations

ζ(3 + a) = 1
2

∞∑
δ=1

∑2δ−2
ℓ=0,2 fs,0(δ, ℓ)

δ3+a
+ 1

2

∞∑
δ=1

∑2δ−2
ℓ=0,1 ft,0(δ, ℓ)

δ3+a
, a ∈ 2N0 , (G.2)

0 =
∞∑

δ=1

∑2δ−2
ℓ=0,2 fs,0(δ, ℓ)

δ3+a
−

∞∑
δ=1

∑2δ−2
ℓ=0,1 ft,0(δ, ℓ)

δ3+a
, a ∈ (2N0 + 1) , (G.3)

i.e. the first equation holds for a even and the second for a odd. This separation between a

even and odd has to do with the fact that in the flat space limit the Mellin amplitude only
contains terms of type (s2

1 + s2
2 + s2

3)n1(s1s2s3)n2 . The equations for odd a imply that

2δ−2∑
ℓ=0,2

fs,0(δ, ℓ) =
2δ−2∑
ℓ=0,1

ft,0(δ, ℓ). (G.4)

As to the equations with even a, since ζ(3 + a) =∑∞
δ=1

1
δ3+a they imply that

2δ−2∑
ℓ=0,2

fs,0(δ, ℓ) = 1. (G.5)

G.3 Example

In this appendix we demonstrate how we solve (4.10) for b = 0. For q = 0 the ansatz for
the OPE data is

T
(2)
s;q=0(δ) = d1(p)Z(δ − 1) + d2(p)δZ1(δ − 1) + d3(p)δ2Z2(δ − 1) ,

T
(2)
t;q=0(δ) = d4(p)Z(δ − 1) + d5(p)δZ1(δ − 1) + d6(p)δ2Z2(δ − 1) ,

F
(2)
s;q=0(δ) = d7(p)Z(δ − 1) + d8(p)δZ1(δ − 1) + d9(p)δ2Z2(δ − 1)

+ d10(p)δ3Z3(δ − 1) + d11(p)δ3ζ(3)Z(δ − 1),

F
(2)
t;q=0(δ) = d12(p)Z(δ − 1) + d13(p)δZ1(δ − 1) + d14(p)δ2Z2(δ − 1)

+ d15(p)δ3Z3(δ − 1) + d16(p)δ3ζ(3)Z(δ − 1).

(G.6)
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di(p) are 16 functions of p that we will fix by our procedure.19 We plug (G.6) into (4.10)
for b = 0 and use the formula

ζ(s, s1, s2, . . .) =
∞∑

δ=1

Zs1,s2,...(δ − 1)
δs

, (G.7)

to express ξ
(1)
a,0(p) in terms of multiple zeta values and as a function of di(p). Convergence

of the δ sum implies that

d10(p) + d11(p) + d15(p) + d16(p) = 0. (G.8)

Finally, we impose that ξ
(1)
a,0(p) is a linear combination of single-valued multiple zeta values.

We do so using the MAPLE program HyperlogProcedures [32]. It was enough to impose
this for a = 0, . . . , 6. In this manner we fix 13 out of the 16 functions di(p),20

d2(p) =
1
4 ,

d3(p) = 1,

d5(p) =
1
4 ,

d6(p) = 1,

d7(p) = 2d1(p) + 2d4(p)− d12(p) +
p4

8 − 5p3

12 + 19p2

8 + 25p

6 + 13
16 ,

d8(p) = 2d1(p) + 2d4(p) +
p2

2 + 3p − 39
8 ,

d9(p) = 2,

d10(p) = −2,

d13(p) = 2d1 + 2d4 +
p2

2 + 3p − 39
8 ,

d14(p) = 2,

d15(p) = −2,

d16(p) = 2.

(G.9)

The 3 functions d1(p), d4(p) and d12(p) are not fixed by this procedure. However, they are
fixed by repeating this exercise for b = 0, 1, . . . .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

19The terms proportional to Z(δ − 1) are required, by contrast to the q ≥ 1 case. The reason is that the
functions in (4.11) vanish for (δ = 1, q ≥ 1), but do not vanish when (δ = 1, q = 0).

20After fixing the functions di(p) in this way we checked that the resulting expression for ξ
(1)
a,0(p) is

single-valued for a = 7, . . . , 10.
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