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1 Introduction

The direct observation of gravitational waves from a merger of binary black holes [1] marked
the birth of an immensely exciting scientific era: gravitational radiation now provides a new
window to observe the universe, complementing the electromagnetic signals traditionally
used in astrophysics. However, multi-messenger astronomy requires a precise understanding
and modelling of gravitational waves, which is made difficult by the nonlinear nature of
general relativity. It is therefore of interest to find new, potentially measurable quantities
sensitive to gravitational wave profiles. The goal of this paper is to describe one such
observable affecting what is, perhaps, the simplest measuring device of astronomers: a
spinning gyroscope [2–4].

A prominent manifestation of gravitational nonlinearity appears in so-called hereditary
effects [5], which depend on a system’s entire past history. In particular, gravitational wave
memory [6–10] is a permanent net change of certain metric components whose simplest con-
sequence is displacement memory, i.e. the permanent change of distance between two nearby
freely-falling test masses after the passage of gravitational waves. The detection of such
phenomena is hampered by the poor sensitivity of gravitational wave detectors at low fre-
quencies, but an encouraging fact is that memory is a Newtonian addition to the oscillatory
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waveforms emitted by bounded gravitational sources [11].1 As a result, the effect may real-
istically be large for binary systems [12–14], and could be measured in future experiments:
see e.g. [15–17]. Here we shall argue that gyroscopes similarly display a potentially observ-
able ‘orientation memory’ sensitive to gravitomagnetic components of the radiating field.

Indeed, there exists by now a plethora of distinct manifestations of gravitational mem-
ory, ranging from the aforementioned displacement memory [6–8] to the kick (velocity)
memory effect caused by planar waves [18, 19] or compact sources [20, 21], spin memory
in Sagnac interferometers [22, 23], and novel memory effects in modified theories of grav-
ity [24–27]. The unifying thread [28, 29] underlying these observables is the existence of
asymptotic Bondi-Metzner-Sachs (BMS) symmetries of gravity [30, 31] and their various
extensions [32–35] — an active field of research on its own.

We will see that gyroscopic memory is related to gravitational symmetries as well. In-
deed, the precession rate of a gyroscope in a gravitational wave background is a sum of two
terms, respectively linear and quadratic in the metric perturbation, at leading order in the
inverse distance to the source. The coefficients of this sum turn out to be just such that the
precession rate coincides with the ‘covariant dual mass aspect’ [36] whose linear part is the
boundary Noether current of dual supertranslations in an extended version of the standard
BMS group [37–44]; it is also the canonical generator of nontrivial asymptotic frame rota-
tions in the first-order formulation of general relativity [45]. Since the gyroscopic memory
effect is obtained by integrating the precession rate over time, it similarly contains two con-
tributions: the linear one coincides with the spin memory effect [22, 46] and is related to su-
perrotation charges through flux-balance equations for angular momentum, while the non-
linear flux term measures the helicity of the passing waves and generates canonical duality
transformations in radiative phase space. Remarkably, this linear + quadratic form of the
precession rate seems to be universal in gauge theory: it also occurs in the case of magnetic
dipoles subjected to electromagnetic waves [47], although we will not discuss this setup here.

To conclude this introduction, a comment is called for regarding the magnitude of
precession as a function of the observer’s distance to the source. While usual displacement
memory is proportional to the inverse distance, gyroscopic memory (like spin memory) is
proportional to its square: it is a weaker effect. This is not surprising, as even the best
known precession effect in gravitational backgrounds with angular momentum — namely
Lense-Thirring precession (see e.g. [48, section 40.7]) — involves the cube of the inverse
distance. In that respect, our computation generalizes the Lense-Thirring effect to radiative
spacetimes and ‘corrects’ it by a dominant, overleading term at large distances.

The paper is organized as follows. Section 2 is devoted to a lightning review of the
Bondi formalism for asymptotically flat gravitational fields, and introduces asymptotic
geodesics therein. These are then used in section 3 to describe the kinematics of freely-
falling (or mildly accelerated) gyroscopes with respect to a natural choice of local tetrad —
namely one that is tied to distant stars and obtained by suitably rotating a ‘source-oriented’
frame where one vector points towards the origin of radiation. Finally, section 4 displays the

1More precisely, while memory originates from the nonlinear gravitational interaction, its accumulation
over the coalescence period leads to a Newtonian correction to the waveform, i.e. one that does not involve
additional powers of Newton’s constant with respect to the leading oscillatory waveform.
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precession rate and ensuing gyroscopic memory for freely-falling observers, whereupon the
result is related to dual asymptotic symmetries and flux-balance equations of gravitational
data. Static observers are also briefly considered, and their gyroscopic memory effects are
compared to earlier statements in the literature, such as asymptotic vorticity [2, 49] and
spin memory [22]. We conclude in section 5 with a summary and a discussion of potential
follow-ups. Note that an abridged version of this material was recently published in [50].

2 Radiative asymptotically flat metrics

This preliminary section serves to set up our notation, review the Bondi formalism
for asymptotically Minkowskian metrics, and derive geodesics near null infinity. These
geodesics will eventually be the worldlines of freely-falling gyroscopes in section 3.

2.1 Off-shell metric in Bondi gauge

Consider a Lorentzian spacetime manifold endowed with (retarded) Bondi coordinates
(u, r, θa), where u is retarded time, r is a radius, and θa (a = 1, 2) are coordinates on
a celestial sphere at future null infinity (see figure 1). The manifold carries a metric
ds2 = gµνdx

µdxν whose components are taken to satisfy the Bondi gauge conditions

grr = gra = 0, ∂r det
(
r−2gab

)
= 0. (2.1)

Any such metric is commonly written as

ds2 = −e2β(Fdu2 + 2du dr
)
+ r2γab

(
dθa − Ua

r2 du

)(
dθb − U b

r2 du

)
(2.2)

in terms of a metric γab that will eventually include the effects of gravitational radiation,
a vector field Ua that will eventually carry information on angular momentum, and two
functions β, F , the second of which will eventually sense the mass of the source. Off-shell,
all these quantities are a priori arbitrary functions on spacetime. To ensure that the
metric (2.2) is in fact asymptotically flat, one imposes the extra boundary condition2

lim
r→∞

γab(u, r, θ) ≡ qab(θ), (2.3)

where the right-hand side is the static, radius-independent metric of a unit sphere (with
Ricci scalar R[q] = 2) written in coordinates θa. Eq. (2.3) and the last condition in (2.1)
then imply that a sphere at constant (u, r) has area 4πr2, so r measures areal distance. No
further boundary conditions are needed: in vacuum Einstein gravity, eq. (2.3) turns out to
fix the on-shell radial dependence of all other variables, as we shall recall below.

The gauge conditions (2.1) imply that constant u hypersurfaces are light-like, as guu =
gµν∂µu ∂νu = 0. Their normal vector ℓ ≡ −gµν∂νu ∂ν = e−2β∂r satisfies ℓ · ∇ℓ = 0, thus
representing a congruence of outgoing affine null geodesics. Indeed, we are interested in

2Here and in the remainder of the paper, we use the single bold letter θ to denote a point on S2 with
coordinates (θ1, θ2). In particular, θ is not the polar angle of a spherical coordinate system.
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Figure 1. A Penrose diagram of some asymptotically flat spacetime, including Bondi coordinates
(u, r, θa) in terms of which the (off-shell) metric takes the form (2.2). Throughout this work, we
assume that some source of gravitational radiation is located near the origin (r = 0). The resulting
gravitational waves cross the worldline of a gyroscope (red) and cause its orientation to change with
respect to a tetrad built in section 3. This change of orientation may be seen as a gravitomagnetic
memory effect and is studied in detail in section 4.

asymptotically flat spacetimes with a gravitational source near the origin3 — the initial
center of mass of the source is assumed to be at r = 0 — so ℓ is tangent to null rays emitted
from the source, and integral curves of ℓ eventually reach future null infinity (the region
r → ∞ where all other coordinates are kept finite). One should thus think of the large-r
region as the typical location of detectors of gravitational waves. Indeed, it is the tangent
vector ℓ that will eventually be used in section 3 to build a source-oriented tetrad carried
by observers far away from the source.

2.2 On-shell metrics

The Bondi framework naturally suggests solving Einstein’s equations perturbatively in
1/r, i.e. as an expansion near null infinity. Vacuum dynamics thus constrains the arbitrary
functions of (2.2) in the form of asymptotic expansions [51]

F = 1− 2m
r

− 2F2
r2 +O(r−3), (2.4)

β = β2
r2 +O(r−3), (2.5)

γab = qab +
1
r
Cab +

1
r2Dab +O(r−3), (2.6)

Ua = Ůa + 1
r

[
−2
3L

a + 1
16D

a(CbcC
bc) + 1

2C
abDcCbc

]
+O(r−2), (2.7)

where indices a, b on celestial spheres are raised and lowered with the static metric (2.3), D
denotes the spherical Levi-Civita connection, and each coefficient of 1/rn is some function
of (u,θ), as follows. First, the subleading metric correction Cab in (2.6) is the Bondi
shear [9], measuring (as its name indicates) the shear of outgoing null geodesic congruences

3We assume that the matter stress tensor has compact support in the bulk. Delocalized (e.g. electro-
magnetic) sources would require, instead, additional fall-offs for the stress tensor (see e.g. [51]).
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near infinity. It is a symmetric and traceless tensor that depends freely on (u,θ); in fact, it
is the only genuinely free data of on-shell metrics, and it will be the key object contributing
to precession in sections 3–4. Along with initial conditions on mass and angular momentum
(see below), it determines all other subleading coefficients in (2.4)–(2.7) according to

F2 = − 1
32C

2 − 1
6 (DaL

a)− 1
8
(
DaC

ab
) (
DdC

d
b

)
, (2.8)

β2 = − 1
32C

2, Dab =
1
4qabC

2, Ůa = −1
2DbC

ab, (2.9)

where C2 ≡ CabC
ab for brevity. The only quantities that are not directly fixed by shear

are the Bondi mass aspect m(u,θ) of eq. (2.4), and the angular momentum aspect La(u,θ)
in (2.7)–(2.8) (respectively measuring densities of energy and angular momentum on ce-
lestial spheres): their initial configuration at some time u0 is arbitrary, but their time
evolution is otherwise given by the news tensor

Nab ≡ ∂uCab (2.10)

according to the balance equations [51]

ṁ = 1
4DaDbN

ab − P , L̇a = Dam+ 1
2D

bD[aD
cCb]c − Ja, (2.11)

where the dot denotes partial derivatives with respect to retarded time u, and we have
introduced local quadratic fluxes of energy and angular momentum:

P ≡ 1
8NabN

ab, Ja ≡ −1
4Db(N bcCac)−

1
2DbN

bcCac. (2.12)

The balance equations (2.11) will play an important role in section 4, allowing us to relate
gyroscopic memory to angular momentum fluxes. We stress once more that the time-
dependence of news is arbitrary, unless a specific gravitational source has been chosen.4

To summarize, the on-shell form of the Bondi metric (2.2) satisfies the asymptotics

ds2 ∼ −
(
1−2m

r
−2F2
r2

)
du2 − 2

(
1− C2

16r2

)
du dr +

(
r2qab+rCab+

1
4qabC

2
)
dθa dθb

+ 2
(1
2D

bCab −
1
r

[
−2
3La + 1

16∂a(C2)
])

du dθa

(2.13)

at large r, where the omitted components rr and ra vanish identically owing to (2.1). The
leading actor in this expression is the asymptotic shear Cab(u,θ), which fixes F2 according
to eq. (2.8) and determines the news Nab that crucially affects the balance equations (2.11)
for energy and angular momentum. Subleading corrections to the metric components
in (2.13) turn out to be irrelevant in what follows, so we systematically neglect them.

4Suitably ‘generic’ asymptotically flat initial data actually satisfy Nab ∼ O(|u|−3/2) at late and early
times u → ±∞ [52], but this will play no role for our purposes.
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2.3 Asymptotic geodesics

We conclude this section by writing down the large-r asymptotic solution of the geodesic
flow equation u · ∇u = 0. (This is a key preliminary for freely-falling tetrads and their
spin connections built in section 3). For definiteness, integration constants are fixed by
demanding that freely-falling observers have a vanishing velocity relative to the source at
some initial time u = u0. Thus, upon expressing proper velocity as

u = γ(∂u + vr∂r + va∂a), (2.14)

a mildly tedious but straightforward computation yields

γ = 1 + m0
r

+ γ2
r2 , γ2 =

∫ u

u0
du′m+ 1

16∆(C2), (2.15)

vr = ∆m
r

− 1
r2

[
γ2 +∆

(1
6DaL

a + 1
8(D · C)2

)]
, (2.16)

va = − 1
2r2Db∆Cab + 1

r3

(
Daγ2 −

2
3∆L

a + 1
2C

abDc∆Cbc

)
, (2.17)

where we write ∆X ≡ X(u)−X(u0) for any time-dependent quantity X, m0 = m(u0,θ) is
the initial mass aspect, and (D ·C)2 ≡ DbC

abDcCac. Note the following elementary consis-
tency check: in nonradiative spacetimes (where Nab = 0, hence ṁ = 0), the leading radial
velocity (2.16) contains a term −m0∆u/r2 caused by the usual Newtonian gravitational
acceleration v̇r = −m0/r

2.
As it happens, the metric (2.13) along with eqs. (2.14)–(2.17) already contain enough

information to reproduce the standard displacement memory effect [28]. The key lesson of
eqs. (2.15)–(2.17) is indeed that freely-falling observers nearly at rest in Bondi coordinates
have a velocity u ∼ ∂u. Then the ab components of the metric (2.13) show that the angular
distance between two nearby geodesics is (qab + 1

rCab)dθadθb, which immediately implies
that the presence of radiation (Ċab ̸= 0) generally entails a net change 1

r∆Cabdθ
adθb in

angular distance, where ∆Cab ≡
∫
du Ċab = Cab(u = +∞) − Cab(u = −∞). At a deeper

level, this reflects a deviation of nearby geodesics near null infinity (as can be confirmed
from a computation of the relevant components of the Riemann tensor). It is likely to be
the most easily observable kind of gravitational memory [15], in part thanks to its O(1/r)
behaviour, but we will not describe it in detail here. Instead, we shall focus on a subleading
notion of memory (that will scale as O(1/r2)) whose advantage is to be local on a celestial
sphere: it does not require a comparison of nearby geodesics. This first requires a discussion
of tetrads carried by freely-falling observers.

3 Gyroscopes in local frames

This section is devoted to the kinematics of a gyroscope near null infinity in an asymptoti-
cally flat gravitational field whose metric takes the Bondi form (2.2). Accordingly, we start
by reviewing the equations of motion of a spin vector relative to any local reference frame
in terms of the associated spin connection. We then construct a frame tied to distant stars

– 6 –



J
H
E
P
1
1
(
2
0
2
3
)
0
5
7

by first building a source-oriented tetrad, then performing suitable angle-dependent rota-
tions. We end by displaying the spin connections associated with freely-falling observers
and static observers in Bondi coordinates. Note that most of the discussion for now will
be off-shell: the metric (2.2) need not satisfy Einstein’s equations. This is all a key prereq-
uisite for section 4, where the spin connection gives rise to gyroscopic precession, hence to
memory effects once gravitational dynamics is taken into account.

3.1 Gyroscopic kinematics

Consider a (small5) gyroscope with proper velocity u = uµ∂µ and spin S = Sµ∂µ such that
S · u = 0. When the gyroscope falls freely, its spin obeys the parallel transport equation
u · ∇S = 0. More generally, if external forces cause an acceleration aµ = uν∇νu

µ, the
spin vector obeys Fermi-Walker transport (u · ∇S)µ = (uµaν − uνaµ)Sν so as to remain
orthogonal to velocity [48, chap. 6]. Now let an observer carrying the gyroscope measure its
orientation with respect to some local tetrad of vectors eµ̂ = e ν

µ̂ ∂ν that are orthonormal in
the sense that eµ̂ · eν̂ = ηµ̂ν̂ . The spin vector can then be written with hatted components
as S = Sµ̂eµ̂, and the Fermi-Walker equation becomes

dSµ̂

dτ
=
(
− uαω µ̂ν̂

α + uµ̂aν̂)Sν̂ (3.1)

where uµ̂ = eµ̂
νu

ν are the components of proper velocity in the observer’s frame, while

ωµ
µ̂ν̂ ≡ eµ̂

α∇µe
ν̂α = eµ̂

α
(
∂µe

ν̂α + Γα
σµe

ν̂σ) (3.2)

is the spin connection one-form associated with the tetrad {eµ̂}. (Hatted indices are raised
and lowered with ηµ̂ν̂ , plain indices with gµν .) Eq. (3.1) states that the precession of
gyroscopes is determined by the spin connection, so the latter is a key object. The fact
that the precession rate is independent of the properties of the gyroscope (e.g. moments
of inertia) may be seen as a manifestation of the equivalence principle. This would not be
the case e.g. for magnetic dipoles in electrodynamics [47].

In what follows, we always restrict attention to frames that are adapted to the observer
in the sense that e0̂ = u coincides with proper velocity. Then the spin vector S = S îeî is
purely spatial (i = 1, 2, 3) and the precession equation (3.1) becomes

dS î

dτ
= Ωî

ĵ
S ĵ , Ωîĵ ≡ −uαω îĵ

α , (3.3)

where the observer’s acceleration no longer contributes. The antisymmetric tensor Ωîĵ

thus yields the gyroscope’s precession rate. It can be dualized into a vector Ω = Ωîeî ≡
−1

2ϵ
îĵk̂Ωĵk̂eî thanks to the usual Levi-Civita symbol, so that eq. (3.3) reads Ṡ = Ω × S in

terms of the Euclidean cross product.
Determining the gyroscope’s motion thus requires that one choose a velocity u and a

local frame to compute the spin connection (3.2). Accordingly, we now build two tetrads:
5This drastically simplifies the problem: the spin of large freely-falling bodies generally satisfies intricate

relativistic evolution equations [53], but these boil down to parallel transport for small systems.
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the first will be source-oriented (section 3.2), while the second will be tied to distant stars
(section 3.3). As for the observer’s velocity, we shall consider two cases: free fall, and static
locations at constant (r,θ) in Bondi coordinates. Both types of worldlines are understood
to live at large r, so asymptotic expansions near infinity will often be used.

3.2 Source-oriented frame

Regardless of whether an observer traces a geodesic or not, let their proper velocity read

u = dxµ

dτ
∂µ = γ

(
∂u + vr∂r + va∂a

)
(3.4)

in Bondi coordinates, where the ‘time dilation factor’

γ = du

dτ
=
[
e2β(F + 2vr)− r2γab(va − Ua/r2)(vb − U b/r2)

]−1/2
(3.5)

normalizes u with respect to the off-shell metric (2.2). The earlier geodesic velocity (2.14)
is a special case of (3.4), while the velocity of a static observer just reads u = γ∂u. We
now build a local tetrad {e0̂, er̂, eâ} in a way that is compatible with the observer so that
e0̂ = u, and adapted to the source in that er̂ is aligned with light rays emitted at the
origin. To obtain er̂, recall from section 2 that ℓ = e−2β∂r is tangent (at all orders in 1/r)
to outgoing null rays; the radial tetrad vector thus coincides with ℓ up to the fact that its
component along e0̂ is projected out, i.e.

er̂ = 1
γ

ℓ − u. (3.6)

The tetrad is completed by two more vectors eâ whose orthogonality to e0̂, er̂ yields

eâ = ζ a
â

r

[
∂a + γab

(
r2vb − U b

)
ℓ
]

(3.7)

for some linearly independent vectors ζâ tangent to the sphere. The remaining orthonor-
mality conditions eâ · eb̂ = δâb̂ then imply that these ζâ’s form an orthonormal dyad with
respect to the time-dependent, radius-dependent metric γab(u, r, θ):

γab ζ
a

â ζ b
b̂

= δâb̂. (3.8)

In contrast to timelike and radial frame vectors, this does not fix the angular vectors
uniquely since one is free to perform local rotations of âb̂ indices that depend on all Bondi
coordinates while preserving the relation (3.8). We therefore fix this ambiguity by requiring
that angular tetrad vectors point in the same direction at different radii, which is to say
that (ℓ · ∇eâ)a = 0. Together with the on-shell expressions (2.6)–(2.9) and the identity
CacC

bc = 1
2C

2δb
a, this condition implies that

ζ a
â ∼ ζ

b
â

(
δa

b − 1
2rCb

a + 1
16r2C

2δa
b

)
, (3.9)

where ζ â(θ) is a time-independent dyad on the celestial sphere such that qabζ
a

â ζ
b

b̂ = δâb̂.
Fixing the dyad ζ̄â then determines the angular frame vectors (3.7) uniquely. Of course,
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Figure 2. An observer looks at a source at the origin. The observer’s local frame (in black, on
the far right) is initially built so that one of its axes coincides with the source’s direction, and it
also happens to point towards some distant star. As the observer moves, the source-oriented tetrad
rotates so as to remain directed towards the source (red frame). Reorienting the tetrad so that its
(black) axes point once again towards distant stars requires a (red) compensating rotation (3.13).

the dyad ζ̄â itself is only fixed up to local U(1) rotations on the sphere [54]; we briefly
return to those at the end of section 4.2.

The set of vectors {e0̂, er̂, eâ} is thus a source-oriented Lorentz tetrad; it is good enough
for many applications, including radiative effects at order O(r−1), and one may compute the
corresponding spin connection (3.2) to deduce a precession rate (3.3). However, the source-
oriented frame has a drawback for our purpose: it mixes the dynamical precession caused by
gravitational waves with a kinematical precession due to the motion of the gyroscope on the
asymptotic sphere. The source of this kinematic effect is that source-oriented frames have
to rotate continuously, regardless of the presence of radiation, simply to align the radial
basis vector towards the source (see figure 2). As we now show, the dynamical precession
caused by gravitational waves can be singled out by transforming to a new frame ‘tied to
distant stars’, whose existence is guaranteed by the asymptotically flat nature of spacetime.

3.3 Frame tied to distant stars

The aforementioned drawback in the source-oriented frame can be explained easily: one
expects free gyroscopes in Minkowski spacetime to experience no precession, but the spin
connection (3.2) of the origin-oriented frame in flat space (F = 1, β = 0, Ua = 0, γab = qab)
reads

ωr̂â = −ζ âadθ
a, ωâb̂ = ζ

b
â Daζ b̂bdθ

a, (3.10)

where bars denote quantities evaluated in a Minkowskian background. This is manifestly
nonzero: a free gyroscope with angular velocity va precesses at a rate −vaωaîĵ(θ

a) with
respect to the source-oriented frame, purely due to the fact that the tetrad needs to rotate
continuously in order to keep pointing towards the origin. It would be much more con-
venient to devise a tetrad whose spin connection vanishes in flat space. In fact, in pure
Minkowski space, the solution simply consists in using the Cartesian frame whose spin
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connection is indeed zero. However, the proper frame is not as obvious for generic asymp-
totically flat spacetimes, where one can at best define an asymptotically inertial structure.
One thus needs to build a frame tied to ‘distant stars’ whose distance from the observer is
effectively infinite, contrary to the source, which is at large but finite distance.

Local rotation. In practice, a frame {f µ̂} tied to distant stars can be obtained from
the source-oriented tetrad {eµ̂} by a celestially local rotation cancelling the spurious time-
dependent rotation of the eµ̂’s. Thus we declare that

f 0̂ ≡ e0̂ = u, f î ≡ Rî
ĵ(θ)eĵ , (3.11)

where the rotation matrix Rî
ĵ(θ) only depends on angular coordinates θa, is independent of

the dynamical bulk metric, and may be chosen to reduce to the identity at some reference
point θ0 to be thought of as the initial angular position of the observer. The change of
tetrad (3.11) entails a modification ω → ω′ of the spin connection (3.2), expressed in terms
of one-forms by the standard transformation law

ω′
îĵ
= Rî

k̂Rĵ
ℓ̂ωk̂ℓ̂ +Rî

k̂dRĵk̂. (3.12)

Accordingly, the rotation that yields a frame whose spin connection ω′ vanishes in
Minkowski space is given by a path-ordered exponential

R(θ) = P exp
∫ θ

θ0
ω, (3.13)

where ω̄ is given by (3.10) and should be seen as an so(3)-valued one-form. The curve
connecting the reference point θ0 to θ is, in principle, arbitrary, and its choice affects the
value of R since the curvature of S2 does not vanish. The choice is nevertheless ultimately
irrelevant, as one merely has to pick some path for every pair (θ0,θ) in a suitable open
neighbourhood of the observer’s initial position.6 We shall assume that one such choice
has been made, in such a way that R(θ0) = I is the identity matrix.

The geometric justification of this construction goes as follows (see figure 2). Suppose
the source-oriented frame, centred at θ0 at some arbitrary initial time u0, points towards
three stars at infinity, one of them aligned with the source’s direction. Then let time flow,
whereupon the source-oriented frame rotates in a time-dependent manner so as to keep
pointing towards the source. As it does so, the observer’s position on a celestial sphere also
changes from θ0 to some θ. Now let the observer perform a rotation (3.13) to their frame at
every step of their motion; doing so reorients the frame so that its vectors are aligned once
more with the three stars chosen at time u0, regardless of the (possibly dynamical) bulk
metric or of other time-dependent quantities. Accordingly, we refer to the tetrad (3.11) as
being ‘tied to distant stars’ at infinity.

It is worth noting that the implementation of such a tetrad in actual experiments is not
far-fetched. For instance, the gyroscopes carried by Gravity Probe B [55, 56] were designed

6There exists no globally well-defined rotation mapping the source-oriented tetrad on a frame tied to
distant stars because the second homotopy group of S2 is nontrivial. This is not an issue for our purposes,
as we only need to cover some open subset of S2 in which the observer’s motion takes place.
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in just such a way that the dragging of inertial frames with respect to distant stars (e.g. IM
Pegasi) could be observed — albeit in the stationary metric of Earth. The use of similar
methods in time-dependent, radiative metrics would undoubtedly present formidable tech-
nical challenges; we briefly return to such practical issues — and observational prospects
— in the conclusion of this work (section 5).

Spin connections. The spin connection of a tetrad tied to distant stars is readily de-
duced from the transformation law (3.12). Since the rotation R was chosen so as to anni-
hilate the spin connection of Minkowski space (RωR−1 +RdR−1 = 0), one finds indeed

ω′
îĵ
= Rî

m̂Rĵ
n̂(ωm̂n̂ − ωm̂n̂

)
, (3.14)

where ω is the spin connection (3.2) of the source-oriented frame built in section 3.2. The
actual components of ω and ω′ depend on one’s choice of worldline — either a geodesic
or a static line at fixed (r,θ), as mentioned at the end of section 3.1. It is therefore time
to display these results: using the velocity (2.14)–(2.17) of geodesics at large r and the
ensuing source-oriented frame (3.6)–(3.7), the spin connection (3.2) follows after a long
and painful, but otherwise straightforward calculation. The rotation (3.14) then cancels
the spurious change of orientation due to the leading angular velocity in (2.17), and one
eventually finds

(F
re

e
fa

ll) ω′
r̂â ∼ ζ

a
â

( 1
4r2NabDcC

bcdu+ 1
2r2D

bCabdr +
1
2Nabdθ

b
)
, (3.15)

ω′
âb̂

∼ − 1
2r2 ζ

a
â ζ

b
b̂

(
D[aD

cCb]c −
1
2Nc[aC

c
b]
)
du+O(r−3)dr +O(r−1)dθa (3.16)

up to subleading corrections in 1/r that are implicitly neglected. (Our convention for
antisymmetrization is A[aBb] ≡ 1

2(AaBb − AbBa).) This is expressed here in terms of
on-shell metric data appearing in eq. (2.13), specifically in terms of the asymptotic shear
Cab and the news tensor Nab = ∂uCab. Also note that we fix Cab(u = −∞) = 0 as an
initial condition: this slightly simplifies the spin connection by ensuring that the ‘∆’ of the
factors ∆C that used to affect the geodesic (2.15)–(2.17) may now be omitted. (Mass and
angular momentum aspects do not contribute to the spin connection at this order in 1/r; in
particular, Lense-Thirring precession [48, section 40.7] is hidden in subleading terms that
are unimportant for us.)

The computation is identical for worldlines at constant (r,θ), save for the fact that
proper velocity (3.4) simplifies to u = γ∂u (instead of the more involved expressions (2.14)–
(2.17)). Using once more the tetrad (3.6)–(3.7) and the source-oriented spin connec-
tion (3.2), the rotated spin connection (3.14) for a static worldline at constant (r,θ) reads

(S
ta

tic
) ω′

r̂â ∼ ζ
a

â

( 1
2rD

bNabdu+O(r−3)dr + 1
2Nabdθ

b
)
, (3.17)

ω′
âb̂

∼ − 1
2r2 ζ

a
â ζ

b
b̂

(
D[aD

cCb]c −
1
2Nc[aC

c
b]
)
du+O(r−3)dr +O(r−1)dθa, (3.18)

again up to neglected subleading corrections. Note the identical âb̂ components of the spin
connection (3.18) and its free-fall analogue (3.16). By contrast, the r̂â components (3.17)
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differ sharply from their geodesic cousin (3.15): the u component of the former scales as
1/r at large r, while that of the latter goes as 1/r2. We return to this in section 4.3.

Eqs. (3.15)–(3.18) are crucial results for the remainder of this paper. They deter-
mine the precession rate (3.3) according to Ωîĵ = −uµω′

µîĵ
, where u is either the geodesic

velocity (2.14)–(2.17) or the static velocity u = γ∂u, respectively requiring the free-fall
connection (3.15)–(3.16) or its static analogue (3.17)–(3.18). The next section will indeed
be devoted to a detailed study of this precession rate and its implications in terms of gravi-
tational memory. (Note that one can, in fact, use a simplified expression for the precession
rate: observers initially at rest in Bondi coordinates have an angular velocity va = O(r−2),
so the rotation matrix (3.13) evaluated along the angular position of an observer satisfies
R = I+O(r−2). It follows that Ωîĵ ∼ −uµ(ωµîĵ − ωµîĵ) at large r.)

4 Gravitational memory from gyroscopic precession

The spin connections (3.15)–(3.18) determine the angular velocity (3.3) of a spinning gy-
roscope, located far away from a gravitational source, with respect to a frame whose axes
are tied to distant stars. We now investigate this precession in depth, mostly focussing on
freely-falling observers. Then, the gyroscope’s motion takes place in a plane orthogonal
to the source’s direction and turns out to be related to a suitable notion of dual mass as-
pect [36]. Bursts of gravitational radiation thus lead to net changes of orientation that may
be interpreted as a memory effect. The latter turns out to involve a nonlocal superrotation
charge and a flux term for angular momentum that stem from the balance equations (2.11)
for gravitational data, plus a duality generator. In the case of static, accelerated observers,
the leading precession stems from the u component of (3.17) and yields a memory effect
that contains the same information as standard displacement memory [6–8]; the notion of
spin memory [22] is also recovered as a limit.

4.1 Precession as a dual mass aspect

Consider a freely-falling observer with velocity (2.14)–(2.17), carrying a gyroscope whose
precession rate (3.3) involves the spin connection (3.15)–(3.16). From this one readily finds
our main result:

Ωâr̂ = O(r−3), Ωâb̂ =
ϵâb̂

r2 M̃+O(r−3), M̃ ≡ 1
4DaDbC̃

ab − 1
8NabC̃

ab, (4.1)

where ϵâb̂ is the usual Levi-Civita symbol with two indices and the dual of any symmetric
tensor Xab is defined as X̃ab ≡ ϵc(aXb)

c = ϵcaXb
c − 1

2ϵabXc
c in terms of the Levi-Civita

tensor density on S2 [38] (symmetrization is defined as A(aBb) ≡ 1
2(AaBb+AbBa) and may

be dropped when X is traceless). In particular,

C̃ab ≡ ϵcaCb
c (4.2)

is the dual shear tensor that will play a key role below.
Eqs. (4.1) state that, at leading order in the 1/r expansion, the gyroscope’s axis only

rotates in the plane tangent to the celestial sphere at the observer’s location. The preces-
sion frequency is set by the quantity M̃(u,θ), dubbed ‘dual covariant mass aspect’ [36] in
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analogy with the usual covariant mass aspect m + 1
8NabC

ab [57, 58].7 Indeed, the latter
reduces to M̃ upon using the first balance equation in (2.11) to rewrite m in terms of the
shear, then dualizing Cab into C̃ab. One may think of the linear term DaDbC̃

ab as the
vorticity of the angular motion of the geodesic flow stemming from eq. (2.17); it coincides
with the vorticity of the congruence of static worldlines at large r.8 As for the nonlinear
term NabC̃

ab, it turns out to be necessary for M̃ to transform covariantly (without inhomo-
geneous terms) under Weyl-BMS transformations [36]. We will also see below that NabC̃

ab

is essentially the generator of local duality on the gravitational phase space. Gyroscopic
precession near null infinity thus provides an observational protocol for the dual covariant
mass aspect, as the latter essentially coincides with the rate (4.1). We now massage the
expression of M̃ so as to set the stage for the computation of memory in section 4.2.

Parity decomposition. It is convenient, for later use, to Hodge-decompose tensors on
the sphere in terms of scalar quantities with definite parity. This will indeed allow us to
relate the linear term of (4.1) to superrotation charges in section 4.2. Accordingly, in what
follows we write angular momentum and shear as

La ≡ DaL
+ + ϵabD

bL−, Cab ≡ D⟨aDb⟩C
+ + ϵc(aDb)D

cC−, (4.3)

where superscripts ± refer to parity eigenvalues of the respective functions, while angular
brackets denote the symmetric, trace-free projection D⟨aDb⟩ ≡ 1

2(DaDb +DbDa)− 1
2qabD

2.
(Without loss of generality, we shall assume that L± have no zero mode, while C± have
no ℓ = 0, 1 harmonics; this will be useful below when ‘inverting’ the decomposition (4.3).)
Using this, one finds that the linear term in the precession rate (4.1) has odd parity:

M̃ = 1
8D

2(D2 + 2)C− − 1
8NabC̃

ab. (4.4)

The balance equation (2.11) for angular momentum now implies the relation 1
8D

2(D2 +
2)C− = L̇− +J −, where the pseudoscalar flux J − is defined analogously to the decompo-
sition (4.3) for angular momentum and similarly has no zero mode by definition. It follows
that the dual mass aspect (4.4) can finally be recast as

M̃ = L̇− + J − − 1
8NabC̃

ab. (4.5)

A corollary of this rewriting is the absence of precession in nonradiative spacetimes, where
the angular momentum aspect is constant and fluxes vanish since they are proportional to
the news. We now exploit the decomposition (4.5) to relate gyroscopic memory to certain
symmetries of the gravitational phase space.

7This justifies the notation M̃, as M normally indicates the usual (non-dual) covariant mass aspect.
We stress that M̃ has nothing to do with mass as such: it is related, instead, to multipole moments of
the gravitational angular momentum (see eq. (4.4) where C− is written solely in terms of spin multipole
moments, or eq. (4.8b) of [59]). Mass and spin are indeed mutually dual in general relativity.

8To be precise, DaDbC̃ab is the leading term of vorticity near null infinity. That both static worldlines
and geodesics have the same leading-order vorticity stems from the asymptotic geodesic velocity u ∼ ∂u.
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4.2 Gyroscopic memory and gravitational symmetries

The gyroscope carried by a freely-falling observer precesses according to eq. (3.3), with a
rate (4.1) that vanishes in the absence of radiation thanks to the rewriting (4.5) of the dual
mass aspect. It follows that any finite burst of gravitational radiation leaves a permanent
imprint — a memory — of its passage on the gyroscope’s orientation. To compute this
effect, our starting point is the precession equation (3.3), whose solution can formally
be written as a time-ordered exponential of Ω acting on the initial spin vector. Since the
angular velocity (4.1) is only accurate up to order O(r−2), the expansion of the exponential
is only reliable up to first order in Ω. The net change of orientation due to gravitational
waves is therefore

∆S r̂ = O(r−3), ∆Sâ = Φ ϵâb̂Sinitial
b̂

+O(r−3), (4.6)

where the net rotation angle Φ = Φ
r2 decays as the square of the inverse distance to the

source and involves the crucial radius-independent factor

Φ ≡ 1
4DaDb

∫
du C̃ab − 1

8

∫
duNabC̃

ab . (4.7)

(Henceforth, we write ∆X ≡ X(u = +∞) −X(u = −∞) and all time integrals run from
u = −∞ to u = +∞.) The gyroscopic memory effect thus consists of a ‘soft’ part linear
in the shear and a ‘hard’ quadratic part, respectively given by the first and second terms
of (4.7). We now discuss these effects, justifying the nomenclature along the way, and end
by comparing the precession rate (4.1) to asymptotic rotations of the dyad (3.9) [54].

Linear gyroscopic memory. The linear part of gyroscopic memory (4.7) coincides with
the spin memory effect [22], which can be formulated in terms of superrotation charges and
fluxes [46]. Indeed, the first two terms on the right-hand side of (4.5) allow us to write

Φsoft ≡
1
4DaDb

∫
du C̃ab = ∆L− +

∫
duJ − (4.8)

where ∆L− ≡
∫
du L̇− is the net change of the parity-odd part of the angular momentum

aspect of the source, and
∫
duJ − is the corresponding flux carried by hard gravitational

radiation. To relate this to charges of asymptotic symmetries, note from the Hodge de-
composition (4.3) that L− = D−2(ϵabDbLa) where D−2 is the inverse of the Laplacian on
the sphere, given by the Green’s function

D2G(θ,θ′) = 1√
q(θ)

δ2(θ − θ′)− 1
4π , G(θ,θ′) = 1

4π log sin2 |θ − θ′|
2 (4.9)

with |θ − θ′| the geodesic distance between the points θ and θ′ on the round sphere. (The
Green’s function can be derived by exploiting rotational symmetry to turn the Poisson
equation in (4.9) into an ordinary differential equation: see e.g. [60, section 4.2] for details.)
Accordingly, the soft memory contribution (4.8) can be written as

Φsoft = 8π
(
∆QY + FY

)
(4.10)
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where Y a(θ′) ≡ ϵabD′
bG(θ,θ

′) is a divergence-free vector field on S2, depending paramet-
rically on θ, whose superrotation charge QY and flux FY are given by9

QY ≡ 1
8π

∮
S2

√
q d2θ′ Y a(θ′)La(θ′), FY ≡ 1

8π

∫
du

∮
S2

√
q d2θ′ Y a(θ′)Ja(θ′). (4.11)

These expressions now involve the usual angular momentum aspect La and its flux Ja

defined in (2.12), without parity-odd projection; the projection is actually automatic (i.e.
only pseudoscalars contribute) thanks to the parity-odd form of the vector field Y a.

Nonlinear gyroscopic memory. Let us now discuss the nonlinear term of the gyro-
scopic memory effect (4.7):

Φhard ≡ −1
8

∫
duNabC̃

ab. (4.12)

We will show that this quantity has several neat interpretations: it is the generator of local
gravitoelectric-gravitomagnetic duality on celestial spheres, and it may also be seen as the
local helicity of passing waves. Indeed, recall first that the linearized Einstein equations are
invariant under infinitesimal duality transformations δRµναβ = ε ⋆ Rµναβ , where ⋆ denotes
the Hodge dual and ε is a small parameter [62]. The corresponding transformation of Bondi
shear at null infinity reads δCab = εC̃ab, where C̃ab is the dual shear (4.2). For our purposes,
it will be of interest to consider local duality transformations on celestial spheres, namely

δCab = ε(θ)C̃ab , δNab = ε(θ)Ñab (4.13)

where ε(θ) is any smooth function on S2. These transformations turn out to be canonical:
they preserve the symplectic form on radiative phase space [63],

Ω = 1
32π

∫
du

∮
S2

√
q d2θ δNab ∧ δCab, (4.14)

in the sense that the functional Lie derivative LδεΩ = δ[Ω(δε, ·)] = 0 vanishes.10 One can
thus build the corresponding canonical generator H such that δH = Ω(δε, ·), which yields
H = 1

4π

∮ √
q d2θ εΦhard in terms of the quadratic memory (4.12). As announced, this con-

firms that nonlinear gyroscopic memory involves the generator of electric-magnetic duality.
We now turn to the link between the nonlinear memory (4.12) and the helicity of

gravitational radiation. This requires the mode expansion of the Bondi shear, obtained from
the null-infinity limit of the solution of the linearized Einstein equations. Namely, following
the conventions of [64, eqs. (5.4)–(5.10)] and using natural units in which G = 1, one has

Cab(u,θ) =
√
32π

(2π)3 lim
r→∞

1
r

∂xµ

∂θa

∂xν

∂θb

∑
α=1,2

∫
d3q

2|q|
[
ϵαµν(q)∗ âα(q) e−i|q|u−i|q|r(1−n·n′) + h.c.

]
.

(4.15)
9There is a subtlety here: one can redefine the charge and flux (4.11) by mapping La → L̂a = La + αa

and Ja → Ĵa = Ja − α̇a for any one-form αa, and using hatted quantities in (4.11). For the charge to
match its Wald-Zoupas version [61], one has to take αa = −uDam − 1

16 Da

(
CbcCbc

)
− 1

4 CabDcCbc [51].
Fortunately, the sum ∆QY + FY in (4.10) is unaffected by this ambiguity.

10The normalization of the symplectic form (4.14) is merely chosen for convenience here, and differs from
the standard normalization that involves Newton’s constant owing to the Einstein-Hilbert action.
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Here n′ ≡ q/|q| and n is the unit normal vector at the observation point θ, while âα(q)(†)

is the annihilation (creation) operator for a graviton with momentum q and polarization
tensor ϵαµν(q), with α labelling its polarization. The integration measure d3q/2|q| on the
mass shell is Lorentz-invariant, so the commutators of Fock space operators read[

âα(q), âβ(k)†
]
= δαβ 2|q|(2π)3 δ3(q − k). (4.16)

The large-r limit in (4.15) crucially localizes the momentum integral to the saddle point
where q points along the observation direction θ [64].11 As a result, one can rewrite the
shear as

Cab(u,θ) =
iπ
√
32π

(2π)3

∑
α=1,2

∫ ∞

0
dω
(
fα

ab(θ)∗ âα(ω,θ) e−iωu − h.c.
)

(4.17)

where fα
ab(θ) ≡ 1

r2∂ax
µ∂bx

νϵαµν(θ) maps the polarization tensor to a symmetric-trace free
tensor on the celestial sphere. It is then a simple matter to write the integral (4.12) as a
Fock space operator; after some algebra involving polarization tensors, one finds

Φhard = 1
2π2 iϵ

αβ
∫ ∞

0
dω ω aαa

†
β = 1

2π2

∫ ∞

0
dω ω (a†+a+ − a†−a−), (4.18)

where the second equality was obtained in a complex dyad (helicity basis) in which ϵαβ =
diag(−i, i). This is the result announced above: the nonlinear memory measures the net he-
licity of the wave burst that has crossed the gyroscope’s worldline, i.e. the difference between
the numbers of left- and right-handed gravitons that have crossed future null infinity at θ.

Precession and residual frame symmetry. Recall from section 3.2 that the tetrad
with angular vectors (3.9) is only fixed up to local U(1) rotations of the dyad ζ â(θ) on
the celestial sphere. As it turns out, such transformations are (subleading) asymptotic
symmetries of first-order general relativity [54] provided the Einstein-Hilbert action is sup-
plemented by a (boundary) Gauss-Bonnet term. It is thus tempting to think that gyro-
scopic memory is an effect of vacuum transitions under such rotations, similarly to the
link between displacement memory and supertranslations [28]. After all, the two effects
involve analogous equations: displacement memory is a net change ∆Xâ = 1

rX0
b̂ ∆Câb̂

in the separation X âζâ of nearby geodesics (with initial separation X0
b̂), and gyroscopic

memory (4.6) reads ∆Sâ = 1
r2S0

b̂ ϵâb̂ Φ in terms of the quantity (4.7) discussed at length
above. But several key differences lurk behind this superficial similarity. First, the change
of shear that enters displacement memory can be seen as a genuine supertranslation, while
the rotation (4.6) of the gyroscope’s spin is subleading compared to the asymptotic sym-
metry transformations in [54]. Second, the precession rate (4.1) is essentially the boundary
Noether current of U(1) asymptotic symmetries (just like the Bondi mass aspect is the
current of supertranslations), so the rotation (4.6) cannot be interpreted as a net change in
the value of U(1) surface charges. There are thus striking links between gyroscopic memory
and the U(1) symmetries of [54], but one should be careful when comparing them to the
simpler relation between displacement memory and supertranslations.

11This is actually a group-theoretic statement that relates massless representations of Poincaré to those
of BMS: see e.g. [65, section 2.4] for details and references.
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4.3 Comments on related works

The study of gravitational-wave effects on spinning bodies is not new, going back at least to
the early works [2–4]. Following the discovery of a relation between displacement memory
and BMS supertranslations [28], memory effects involving angular momentum were simi-
larly considered in [22] in terms of Sagnac interferometers, and in [20, 66, 67] in terms of
the relative precession of nearby gyroscopes. Here we shall briefly compare our construc-
tion above to two such results in the literature: the papers [2, 49] on vorticity in radiative
spacetimes, and the spin memory effect of [22].

A first general remark is that these references have one common aspect: they use static
observers at large r, as opposed to freely-falling ones. While this simplifies computations
since the corresponding velocity is just u = γ∂u, it complicates their comparison to exper-
iments where a detector is typically expected to fall freely as radiation crosses its path —
think e.g. of the freely-falling Gravity Probe B experiment [55, 56]. Forcing the detector to
remain static while being subjected to a dynamical metric requires delicately fine-tuned,
time-dependent accelerations whose practical feasibility is questionable — with the tiniest
of errors likely to affect the measurement of an already tiny observable.

Having said this, it is still true that the static-observer spin connection (3.17)–
(3.18) contains valuable insights on gravitational radiation. Consider first the leading
r̂â part (3.17), whose time component decays like 1/r as opposed to 1/r2 in (3.18). The
corresponding precession rate is

Ωâr̂ ∼ 1
2r ζ

a
â DbNab, (4.19)

so that the main rotation of gyroscopes carried by static observers occurs along an axis
tangent to the celestial sphere. As it turns out, this effect was first found and discussed
in [2–4] thanks to the vorticity of static worldlines in Bondi coordinates. Its radial or-
der O(r−1) could have been expected, since worldlines at constant (r,θ) have a nonzero
acceleration uν∇νu

µ ∼ ( ṁ
r ,−

ṁ
r ,

1
2r2DbN

ab) at large r. From the perspective of gravita-
tional memory, the net rotation due to (4.19) is proportional to the parity-even variation
of shear ∆C+ (recall the Hodge decomposition (4.3)), so it contains the same information
as standard displacement memory, determined by the balance equation for supertransla-
tions [6–8]. Amusingly, an analogous leading-order precession in the r̂â plane occurs for
magnetic dipoles near null infinity [47].

Let us now turn to the subleading time component of the static spin connection, namely
the âb̂ part (3.18). As we have seen, this is the same contribution that gives rise to the
leading precession (4.1) of freely-falling gyroscopes. But it can also be used to compute the
effect of gravitational waves on a Sagnac interferometer facing their source, which connects
our work to the spin memory effect [22]. To see this, recall the Sagnac effect: when a light
beam of wavelength λ is split in two separate beams moving in opposite directions along
some planar closed path C (say an optical fibre), the apparatus’s constant angular velocity
Ω causes a relative phase shift [68]

δψ = 8π
λc

∫
Int(C)

Ωij dx
i ∧ dxj (4.20)
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after one orbit, where c is the speed of light that we momentarily reinstate. The phase
accumulated over n such periods is just n δψ. Now suppose Ω depends on time and vanishes
at early and late times, but varies very slowly so that Ωij(u) is nearly constant over the
course of one period δt = ℓ/c, where ℓ is the length of the loop C. Then the total Sagnac
phase accumulated during the experiment is

∆ψ =
∫ +∞

−∞
du
δψ(u)
δt

= 8π
λℓ

∫
Int(C)

∫
duΩij(u) dxi ∧ dxj . (4.21)

This exactly applies to the gyroscopic setup of the present paper. Indeed, consider a Sagnac
interferometer located far away from a gravitational source, and assume that the closed
path C lies in a plane transverse to the direction of wave propagation (i.e. tangent to the
sphere at some large radius). The precession rate (4.1) plugged into (4.21) then reveals a
net phase shift proportional to the gyroscopic memory (4.7),

∆ψ = 4πR
λ

Φ, (4.22)

where R ≡ 2 area(C)/ℓ is the effective radius of the interferometer. Since gyroscopic mem-
ory contains a term (4.8) linear in the Bondi shear, the phase shift (4.22) is very similar
to the spin memory effect [22] but crucially differs from it by the nonlinear term (4.12),
i.e. the net helicity of radiation. A more detailed comparison between our result and spin
memory is therefore relegated to future investigations.

5 Conclusion

This work was devoted to a seemingly elementary exercise in general relativity, with strik-
ing results. Simply put, we addressed the analogue of Lense-Thirring precession for freely-
falling gyroscopes in radiative spacetime manifolds. The key subtlety was to choose a tetrad
tied to distant stars whose existence is guaranteed by asymptotic flatness; the orientation
of the gyroscope was then measured relative to that tetrad. As we have seen, this yields
a precession rate (4.1) proportional to the covariant dual mass aspect M̃ of Bondi met-
rics [36]; the problem is thus deeply related to symmetries of the gravitational phase space
at null infinity. The same is true of the net memory effect (4.10), whose linear term repro-
duces the known expression of spin memory [22] while also containing a surprising new,
nonlinear contribution, due to the generator of celestially local electric-magnetic duality.

These conclusions illustrate the predictive power of large-distance asymptotic symme-
tries in gauge theories and gravity, even beyond the strict limit where observers sit ‘at
the boundary of spacetime’. Furthermore, a number of related questions deserve to be
investigated. A first fundamental puzzle is the following: one could have guessed that
the orientation of a gyroscope would be related to gravitomagnetic effects, hence to ‘dual
charges’, but the justification for the appearance of the specific covariant dual mass in (4.1)
is mysterious. It would be pleasing to find a more intuitive argument that ‘explains’ the
appearance of this quantity in a precession equation. Relatedly, it may be of interest to
compute the analogous spin precession in backgrounds that possess an explicit gravitomag-
netic monopole — typically the Taub-NUT metric [69, 70] — where the celestial average of
the precession rate is expected to be quantized. In fact, in that last case, the assumption
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that L− has no zero-mode in the decomposition (4.3) fails to hold and the rewriting (4.5)
of the dual mass aspect generally involves a nonzero derivative L̇− even in the absence of
radiation. It is unclear if a well-defined notion of memory even exists in such a setup.

From a more practical perspective, a key issue is to understand the order of magnitude
of the memory effect described here and the feasibility of its actual observation. The first
thing to say is that the effect, unsurprisingly, is extremely weak: as explained at the end of
the short companion paper [50], elementary dimensional analysis predicts a total rotation
angle

Φ ∼ G2

c4
M2

r2 ≃ 2× 10−39
(
M/M⊙
r/1Mpc

)2
(5.1)

where M is some mass scale determined by the source of radiation, M⊙ is the solar mass
and r is the distance between source and observer. This is indeed tiny for relatively ‘light’
sources of radiation, but it grows substantially for supermassive black hole mergers where
values such as Φ ≃ 10−26 rad are conceivable. Unfortunately, even such an enhanced signal
is too weak for the current precision of gyroscopes; a good point of comparison is given by
the Gravity Probe B experiment [55, 56], whose measurement of frame dragging involved
precession rates of about 2 × 10−7 rad/year, corresponding to a total rotation angle of
roughly 10−6 rad. Improving these figures by the many orders of magnitude needed for
gyroscopic memory seems difficult, to say the least.

But this is not the end of the story. After all, standard displacement memory suffers
from the similar issue of its tininess, and it is still likely to be observed in the coming
decade thanks to the combination of the many gravitational wave events currently being
observed [16, 17, 71]. An analogous method could be applied to gyroscopic memory by su-
perimposing data on gyroscope orientations from a large number of detections — although
one would then have to forego detailed quantitative checks in favour of merely qualitative as-
sessments.12 Alternatively, one may turn to the sky and use distant pulsars instead of gyro-
scopes near Earth: if such a pulsar happens to be located close enough to a source of gravita-
tional waves, its rotation (5.1) could be sizeable enough to be visible from Earth — at least
provided the time scale of radiation is much longer than the pulsar’s period [72]. Observing
effects of this kind would provide shining examples of general-relativistic dynamics at work.
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