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of pressureless matter. We show that in most cases (in particular, for arbitrarily large
bubbles with an arbitrarily small negative spatial curvature) the entropy of the black hole
exceeds the (radiation) entropy in the cosmological bubble, suggesting that a faithful CFT
description is possible. We show that unlike the case of a de Sitter bubble, the Euclidean
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of CFT states dual to the cosmological solutions via Euclidean path integral.
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1 Introduction

The holographic approach to quantum gravity provides a fully microscopic definition for
certain quantum gravitational theories in terms of dual non-gravitational quantum sys-
tems. The best understood examples describe gravitational physics in spacetimes that are
asymptotically empty and negatively curved. On the other hand, observations suggest that
our own universe is qualitatively different, an approximately homogeneous and isotropic ex-
panding spacetime filled with matter and radiation. It is a challenge to understand whether
the holographic approach can be extended to describe such cosmological spacetimes.1

In this paper, we will consider Λ < 0 cosmological spacetimes that are most similar to
spacetimes that we can already describe holographically. Pure AdS itself is an example of
a spacetime that can be written in FRW form (with negative spatial slices) as

−dt2 + L2 cos2(t/L)dH2
n−1 (1.1)

where dH2
n−1 is the unit hyperbolic metric. This FRW metric covers only a patch of

the full global AdS spacetime (see figure 1), equivalent to the domain of dependence of a
constant global-time slice of global AdS. The dual CFT vacuum state provides a holographic
description of this trivial cosmology. The “big bang” and “big crunch” at t = ∓Lπ/2
are only coordinate singularities in this case. However, by adding an arbitrarily small
homogeneous and isotropic density of matter and/or radiation to the t = 0 slice, we obtain
a big bang/big crunch cosmology with genuine curvature singularities. The spacetime
diagram for the resulting cosmology is shown in figure 1. This spacetime is no longer

1Various approaches have been considered in the past. See [1–10] for examples.
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Figure 1. Left: FRW patch of Global AdS spacetime showing constant FRW time Cauchy slices.
The surfaces t = ±Lπ/2 represent coordinate singularities. Right: adding an arbitrarily small
matter or and/or radiation density gives a Λ < 0 big-bang big crunch cosmology with Penrose
diagram shown here. The spacetime is no longer asymptotically AdS.

asymptotically AdS, so the new spacetime does not correspond to a state in the dual CFT.
This is understandable: while the energy density that we are adding to the t = 0 slice
can be arbitrarily small, the total energy on the infinite volume slice is infinite, so would
correspond to a state of infinite energy from the CFT perspective.

In order to make progress, we could attempt to define the cosmology from the CFT by
taking a limit. Instead of including a uniform density of matter and/or radiation everywhere
on the t = 0 slice, we could have a finite-sized ball filled with a uniform density of matter
and/or radiation, with empty negatively curved spacetime outside. The full spacetime
obtained by taking this slice as initial data will contain an interior region that is a patch of
the FRW cosmology and an exterior region that is a part of a Schwarzschild AdS of some
mass (figure 2). In between these two regions will be a “domain wall” that interpolates
between the two spacetimes.2 If the ball is large enough, the interior region will include the
full causal patch associated to a complete geodesic from the big bang to the big crunch,3

so one might argue that a holographic description of such a spacetime would be entirely
satisfactory for describing the physics accessible to any single observer in the cosmology.

Since these bubble-of-cosmology spacetimes are again asymptotically AdS, it is plau-
sible that they correspond to valid finite-energy states of the dual T. These states can be
understood as special microstates of the bulk black hole geometry where the black hole
interior includes a patch of cosmological spacetime.

2This doesn’t have to be a physical object; we are using the term to indicate a transition region in the
geometry that is neither FRW or Schwarzchild-AdS.

3We could also choose to include a larger patch that contains the union of the causal past and the causal
future of the observer rather than just the intersection.
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Figure 2. Left: schematic representation of the Lorentzian spacetime where the interior geometry
is FRW and the exterior geometry is a black hole. Right: Euclidean continuation where the interior
region is part of an AdS Euclidean wormhole.

The goal of this paper is to construct such solutions for various types of cosmologies,
to investigate whether these solutions can arise from legitimate dual CFT states, and to
ask in this case how the cosmological physics is encoded in the dual CFT. Related earlier
work along these lines is described below.

It is natural to ask what advantage such a construction would have over a typical
semiclassical description of cosmological physics. First, we expect that certain questions
in cosmology, for example the nature of the big bang and/or the initial conditions for
the cosmological evolution, will require a microscopic description to answer satisfactorily.
Next, in at least some cases, CFT states encoding the cosmological physics can arise from
a Euclidean path integral construction. In this case, the precise state of the cosmology
is determined by the construction, and cosmological correlators could be related directly
to correlators in an underlying CFT. This could provide new insights into their structure
and help explain some of their unusual features e.g. the horizon problem. More generally,
it might be that various semiclassical solutions are actually inconsistent, i.e. they have no
microscopic construction. Showing that a certain semiclassical cosmology can arise from
a holographic or other microscopic construction provides a check that the cosmology of
interest does not have any subtle inconsistencies (i.e. is not in the “swampland”). See [11]
for a more detailed discussion.

We now present a brief outline and summary of the results.

Constructing solutions. In section 2, we construct a family of cosmological bubble
solutions. The interior geometry is a comoving bubble (i.e. with fixed coordinate radius
in FRW coordinates) of a cosmological solution with arbitrary spatial curvature, matter
density, and radiation density. The exterior geometry is a part of the maximally extended
AdS-Schwarzschild solution. We find that (in four dimensions) these two regions can always
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be joined across a domain wall that is a thin shell of dust whose density depends only on
the radiation density in the interior.

Depending on the parameters, the cosmological bubble may lie completely behind the
horizon of the black hole, or may start outside the horizon and fall through the horizon at
some later time.

Potential entropy puzzle. For sufficiently small bubbles, it seems clear that there
should be a CFT description — the spacetimes just correspond to a small amount of matter
and/or radiation localized in some region of an otherwise empty AdS. However, for larger
bubbles, there is a potential puzzle. Since the exterior spacetime is Schwarzschild-AdS, it
has a naturally associated Bekenstein-Hawking entropy given by 1/(4G) times the area of
the horizon. We can also associate an entropy to the interior of the bubble. For example, in
a universe with radiation, this interior entropy should be bounded below by the entropy of
the radiation. As we increase the size of the bubble, the interior entropy might eventually
exceed the black hole entropy (plausible since the interior entropy scales as a volume but the
exterior entropy scales like an area). In this case, the CFT Hilbert space (restricted to the
relevant energy band) would not be large enough to accommodate all the interior radiation
microstates as independent states. Then either the bulk geometries do not correspond to
valid CFT states, or the black hole interiors must be encoded non-isometrically (as in [12]).

We investigate these entropies in section 3. We find that with arbitrarily small nega-
tive spatial curvature, the black hole entropy always exceeds the radiation entropy in the
cosmology. This is natural since for negative curvature, volume and area are proportional.
For flat cosmologies, the radiation entropy eventually exceeds the black hole entropy, but
only for bubbles that are parametrically larger than the cosmological scale (by a factor
that is a positive power of ℓAdS/ℓP

). There is never an issue with describing the region
accessible to a single observer.

Euclidean construction. Another hint about the existence or not of a dual CFT state
for a cosmological bubble geometry comes by looking at whether the solution has an analytic
continuation to a well-behaved Euclidean geometry. If it is well-behaved, the corresponding
Euclidean solution might represent the saddle point of a gravitational path integral whose
dual CFT description constructs the CFT state. For de Sitter bubbles embedded in AdS
(considered originally in [6]), the analytic continuations are not sensible since they have
self-intersecting domain walls [13]. In our case, we find in section 4 that the domain wall
trajectories are sensible in the Euclidean picture for all cases with K ≤ 0 and for any
bubble smaller than half of the full spatial sphere in the K > 0 case.

When the Euclidean solution is sensible, the boundary has the topology of a sphere S3,
and the Euclidean domain wall has the topology of a cylinder (S2 × I) that intersects the
sphere on a pair of S2s, as shown in figure 2. As we discuss in section 5, this suggests that
the Euclidean geometry arises holographically from a Euclidean CFT on S3 with insertions
of sources and/or operators restricted to a pair of polar regions. As a simple example,
we can consider the case with pure matter, where the matter is a collection of heavy
particles sitting at fixed coordinate locations in the FRW description. In this case, the
CFT description involves the insertion of heavy CFT operators as specific locations on the
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sphere corresponding to the endpoints of the geodesics in the Euclidean picture, similar to
the construction of shells of matter in [14, 15]. In order that the desired Euclidean solution
provides the dominant saddle of the CFT path integral with such insertions, it may be
necessary to consider an ensemble of such insertions with a certain degree of correlation
between the insertions on the two sides of the sphere. We discuss this in more detail in
the section 5.

RT surface probes. If a bubble geometry does have a valid CFT state, it is interesting to
ask how we can probe the cosmological region inside the bubble using CFT quantities. The
spherical boundary at a given time is contractible in the bulk geometry, so the entanglement
wedge of the boundary is the entire spacetime. This suggests that reconstruction is possible
in principle. However, in the cases where the cosmology is entirely behind the black hole
horizon, the horizon provides a non-minimal extremal surface for the full boundary. In this
case, the cosmology is in a “Python’s lunch”, and the general arguments of [16] suggest
that accessing the cosmology from the CFT state will be exponentially complex. We give a
precise condition for when this occurs (equation (2.19)). We also investigate the behavior
of RT surfaces for ball-shaped regions in the CFT to gain insight into how much of the
cosmological region is encoded in proper subsystems of the boundary.

Even if the cosmology is fully behind the horizon in a Python’s lunch, if there is
a Euclidean construction of the state as described above, we should be able to use this
Euclidean picture in order to calculate cosmological observables in a straightforward way.
Thus, extracting the physics from the underlying CFT physics can be simple even if the
extraction from the Lorentzian CFT state is complex.

Relation to earlier work. Describing cosmology as a bubble in AdS was considered
previously in [6], where the authors described solutions with a bubble of de Sitter spacetime
embedded in AdS with thin constant tension bubble wall. Though there is no problem in
constructing the solutions, it is unclear whether these geometries are dual to legitimate
CFT states. In particular, [13] found evidence that these solutions cannot arise from a
Euclidean path integral construction of states since the domain walls appearing in the
Lorentzian geometries are badly-behaved in the Euclidean continuation.

In [13, 17], the authors considered bubbles of vacuum AdS in exterior asymptotically
AdS spacetimes with a different cosmological constant. In this case, the solutions often do
have sensible Euclidean continuations, suggesting a Euclidean path integral construction of
the states that involves an interface between CFTs. These can be viewed as constructions
of bubbles of a trivial cosmology.

With other collaborators, some of us have considered a different approach to holo-
graphically constructing Λ < 0 cosmologies in [18–20]. We comment in the discussion
section about the relation between those works and the construction of the present paper.

2 Spherical bubbles of cosmology

In this section, we construct a family of solutions with an interior region that is a bubble of
FRW Λ < 0 radiation + matter big-bang/big-crunch cosmology with a comoving boundary,
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an exterior region that is AdS/Schwarzchild black hole, and a boundary shell of dust/non-
relativistic matter. We will assume that the cosmological constant is the same throughout
the spacetime, taking Λ = −3/ℓ2

AdS. We will use units where ℓAdS = 1.
Inside the bubble, we have an FRW metric

ds2 = −dt2 + a2(t)
(
dr2 +RK(r)2(dθ2 +sin2 θdϕ2)

)
RK(r) =


sin(

√
Kr)/

√
K K > 0

r K = 0
sinh(

√
|K|r)/

√
|K| K < 0

(2.1)
where the scale factor a(t) is taken to be dimensionless and K is the Gaussian curvature
of the spatial slices. The scale factor satisfies the Friedmann equation(

ȧ

a

)2
= ρM

a3 + ρR

a4 − K

a2 − 1 , (2.2)

where a dot denotes a t derivative. As the universe expands, the matter and radiation
dilute so eventually there is a time where ȧ = 0, after which the universe contracts to
a big crunch. The full solutions are time-reversal symmetric about this recollapse point.
Without loss of generality, we will define this time to be t = 0 and choose a(0) = 1. In this
case, ρR and ρM represent the radiation and matter densities at t = 0 as a fraction/multiple
of the “critical” energy density 3/(8πGℓ2

AdS) for a flat cosmology. The Friedmann equation
at t = 0 gives

K = ρM + ρR − 1 (2.3)

so the spatial curvature at the time-symmetric slice is fixed in terms of the matter and
radiation densities. For empty AdS, we get K = −1 as expected.

We assume that the space outside of the ball is empty and spherically symmetric, so
by Birkhoff’s theorem, the domain of dependence of the exterior of the ball must be a
part of the maximally extended Schwarzschild-AdS geometry. We can use Schwarzchild
coordinates

dS2 = −F (R)dT 2 + dR2

F (R) + R2(dθ2 + sin2 θdϕ2) , (2.4)

to describe the various patches of that geometry, where

F (R) = R2 + 1− µ

R
. (2.5)

Here, µ is related to the mass of the black hole by µ = 2MGN . Defining the horizon radius
by F (RH) = 0, we have that the past and future wedges are described using coordinates in
the range R ∈ (0, RH), T ∈ (−∞,∞) (where R = 0 represents the past/future singularity),
while the left and right wedges are described using coordinates in the range R ∈ (RH ,∞),
T ∈ (−∞,∞) (figure 3).

In our ansatz, the surface of the bubble is assumed to be comoving with respect to
the FRW interior, so it has fixed coordinate radius r(t) = r0. It is natural to use the
FRW coordinates (t, θ, ϕ) to parameterize the bubble surface in the FRW spacetime. The
intrinsic metric on the bubble is then

ds2 = −dt2 + a2(t)RK(r0)2dΩ2
2 . (2.6)
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Figure 3. Penrose diagram of a maximally extended AdS Schwarzschild black hole.

We will consider a shell of dust/non-relativistic matter living on the bubble. This can be
described via the stress-energy tensor

8πGN St
t = − ρs

a(t)2 .

Note that the energy density dilutes as 1/a2 since the bubble is 2+1 dimensional.
We require that the Israel junction conditions be satisfied for the bubble. The first

junction condition requires that the induced metric from the exterior spacetime agrees with
the induced metric (2.6) from the interior spacetime. Thus, the trajectory of the bubble
in the exterior spacetime can be described as (R(t), T (t)) where we require that

R(t) = a(t)RK(r0) F (R(t))Ṫ 2 − Ṙ2

F (R(t)) = 1 (2.7)

The second junction condition requires that the difference of extrinsic curvatures between
the interior and exterior spacetimes is determined by the surface stress-energy tensor as

K in
ab − Kout

ab = 8πGN

(
Sab −

1
2habS

)
(2.8)

where Kab = ∇µnνeµ
aeν

b , and n is a unit normal vector to the surface in the relevant
spacetime, chosen to point outward (away from the FRW interior) in both cases. In the
FRW geometry, we can describe an outward pointing unit normal vector to the surface as

nµ = (0, a(t), 0, 0) .

From this, we find that the extrinsic curvature has nonzero components

Kθ
θ = −hθθΓr

θθnr = 1
2grr∂rgθθnr = R′

K(r0)
RK(r)a(t) (2.9)

Kϕ
ϕ = −hϕϕΓr

ϕϕnr = 1
2grr∂rgϕϕnr = R′

K(r0)
RK(r)a(t) . (2.10)
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In the Schwarzschild geometry near the t = 0 slice, the outward pointing unit normal vector
to the surface is

nµ = ϵ(−Ṙ, Ṫ , 0, 0) .

where ϵ = 1 if the n is outside the Schwarzschild horizon pointing towards the asymptotic
region, and ϵ = −1 if n is inside the Schwarzschild horizon pointing outward (i.e. if the
bubble is completely inside the horizon). In this case, we can write the nonzero components
of the extrinsic curvature as

Kθ
θ = Kϕ

ϕ = β

RK(r0)a(t)
Kt

t =
β̇

RK(r0)ȧ(t)
β ≡ ϵ

√
F [a(t)RK(r0)] + RK(r0)2ȧ2(t) .

(2.11)
We are now ready to write the second junction condition. The ϕ

ϕ and θ
θ components

of (2.8) give
R′

K(r0)
RK(r0)a(t)

− β

RK(r0)a(t)
= 1

2
ρS

a2(t) . (2.12)

The t
t component gives

− β̇

RK(r0)ȧ(t)
= −1

2
ρS

a2(t) .

We can check that this is satisfied provided that (2.12) is satisfied by solving for β and
differentiating. Thus, we will have a solution provided that

ϵ
√

F [a(t)RK(r0)] + R2
K(r0)ȧ2 = R′

K(r0)−
1
2

ρSRK(r0)
a(t) . (2.13)

Squaring this, and substituting the explicit expression for F from (2.5) and the result for
ȧ2 from the Friedmann equation (2.2), we find the equation holds only if

ρS = 2√ρR

µ = R3
K(r0)ρM + 2√ρRR2

K(r0)R′
K(r0) (2.14)

where we recall that r0 is the proper distance from the middle of the bubble to the bubble
wall at t = 0 and R0 ≡ RK(r0) is the proper bubble wall (areal) radius at t = 0. The first
equation shows that there is a particular density ρS of dust on the shell that is required to
“contain” the cosmology. If there is no radiation, this density goes to zero; the resulting
solution (described earlier in [21]) is an AdS version of the Oppenheimer-Snyder solution
for the collapse of a uniform ball of dust in Minkowski space.

Mass and horizon radius of the black hole. The second equation above gives the
mass parameter of the black hole in terms of the ball radius and the matter and radiation
densities inside.4 We can also relate the black hole horizon radius to these parameters
using the relation

µ = RH(R2
H + 1) . (2.15)

4Using µ = 2MG and the relationship between ρM and ρS to the physical energy densities, we see that
when K = 0 this equation says that the black hole mass is precisely equal to the energy of the dust inside
the bubble plus the energy of the dust on the bubble. Since dust energy doesn’t redshift, this is true at any
time slice.
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We can express the result for the mass completely in terms of ρM , ρR, and R0 using

R′
K(r0) = ±

√
1− KR2

0 = ±
√
1− R2

0(ρM + ρR − 1) (2.16)

where the minus sign corresponds to the case where the curvature is positive (K = ρR +
ρM − 1 > 0) and the bubble includes more than half of the full sphere, r0

√
K > π/2. Thus

µ = RH(R2
H + 1) = R3

0ρM ± 2√ρRR2
0

√
1− R2

0(ρM + ρR − 1) . (2.17)

In the positive curvature case where we have more than half of the sphere, there is a
restriction R0 > 2√ρR/

√
(ρM + 2ρR)2 − 4ρR in order that the black hole has positive

mass.5 We can check that R0 > RH in all cases, which is required since RH is the
smallest sphere radius on the T = 0 slice of the Schwarzchild geometry. To see this it is
sufficient to check the sign of F (R0). Using the black hole mass from eq. (2.14), we see
F (R0) =

(√
ρRR0 + R′

K(r0)
)2 which is positive, implying R0 > RH .

Condition for bubbles behind the horizon. The bubble cosmology will be completely
behind the black hole horizon if and only if ϵ < 0. Considering equation (2.13) at t = 0,
we see that this is equivalent to

R′
K(r0)

RK(r0)
<

√
ρR . (2.18)

This will be true if and only if

ρM + 2ρR > 1 and r0 > rc

where rc is the smallest value of r0 such that

RK(r0) = 1/
√
2ρR + ρM − 1 .

Condition for a complete causal patch. If we want the cosmology to contain the
entire causal patch of a comoving observer, we require that r0 > robs, where robs is the
proper radius at t = 0 of the forward light cone of a point on the big bang singularity. This
light cone is described by a trajectory with dt = a(t)dr. Expressing dt in terms of da using
the Friedmann equation, we have

robs =
∫ 1

0

da√
ρM a + ρR − a4 − (ρM + ρR − 1)a2 . (2.19)

Full Lorentzian solutions. Since the bubble wall follows a comoving trajectory in the
FRW region, the bubble geometry exists for finite proper time, starting from zero size at
the big bang singularity in the past and ending at zero size at the big crunch singularity.
In the Schwarzchild geometry, the bubble wall trajectory must also be timelike, with finite
proper time, and from this perspective the interpretation is that the bubble starts at the
past singularity of the black hole and ends at the future singularity of the black hole. If
the bubble starts outside the horizon, it must cross the horizon at some finite proper time.
If the bubble starts inside the horizon, it remains inside the black hole at all times. The
causal structures of the full Lorentzian solutions are depicted in figure 4.

5It is interesting that as this critical value of R0 is approached from above, the solution degenerates into
two disconnected parts, the exterior spacetime becoming pure AdS and the interior spacetime becoming a
closed universe with a bubble of FRW spacetime glued together with a bubble of pure AdS spacetime.
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Figure 4. Lorentzian spacetime diagrams for solutions with an FRW bubble inside a Schwarzschild
geometry. Top: shaded regions indicate spherical bubble of flat/open (left) and closed (right) Λ < 0
FRW cosmology, bounded by a comoving domain wall. Bottom: these bubbles are patched on part
of an AdS-Schwarzschild spacetime indicated by the shaded region. The bubble may be completely
inside the horizon (left) or begin outside the horizon (right).

2.1 Examples

It will be useful to have some explicit examples.

Pure radiation. For pure radiation, we can solve the Friedmann equation explicitly to find

a(t) =
√
(1 + ρR) cos2(t)− ρR pure radiation. (2.20)

The spatial curvature is K = ρR − 1, so ρR = 1 gives the special case of flat cosmology,
where a(t) =

√
cos(2t).

From (2.19), we find that the size of a bubble corresponding to the causal diamond of
a single observer is6

robs =
1√

ρR + 1K

( 1√
ρR + 1

)
pure radiation . (2.21)

In the flat case ρR = 1, we have

robs =
√

πΓ(5/4)/Γ(1/4) ≈ 1.311 flat, pure radiation .
6Here K(x) is the elliptic integral that approaches π/2 for small x and ln(8/(1 − x))/2 as x → 1.
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Pure matter. For bubbles of pure matter cosmology, the black hole mass parameter µ

is simply
µ = R3

0ρM (2.22)

In the flat case, this equal to the total mass of matter inside the bubble.
For a flat cosmology with pure matter, we have ρM = 1 and the Friedmann equation

can be solved explicitly to give

a(t) = cos
2
3

(3
2 t

)
flat, pure matter (2.23)

Here, the proper radius of the causal patch accessible to a single observer is

robs = 2
√

πΓ(7/6)/Γ(2/3) ≈ 2.43 flat, pure matter .

3 Thermodynamics

We have seen that it is possible to construct a solution for which a bubble of Λ < 0
cosmology with arbitrary matter and radiation densities and arbitrary size is embedded in
an asymptotically AdS Schwarzchild geometry. We would like to understand whether such
solutions can correspond to legitimate states of a CFT.

An initial worry is a sharp version of the well-known bag-of-gold puzzle. For cosmolo-
gies with radiation, we can calculate the entropy of this radiation and compare it with the
Bekenstein-Hawking entropy of the black hole that contains the cosmological bubble. If
the black hole entropy is smaller, then the putative dual CFT cannot accommodate all of
the states of the radiation as independent states. It’s still possible that these bulk states
are encoded non-isometrically; this would imply that certain cosmological bubble states
can be expressed as linear combinations of other such states.

The Bekenstein-Hawking entropy of the black hole is

SBH = AH

4GN
= πR2

H

GN
. (3.1)

Below, it will also be useful to have the black hole temperature and energy

T = 1 + 3R2
H

4πRH
E = 1

2GN
(RH + R3

H) . (3.2)

The volume of the bubble of cosmology can be calculated as

VK(r0) =
∫ r0

0
4πR2

K(r)dr =


πK− 3

2
(
2r0

√
K − sin(2r0

√
K)
)

K > 0
4
3πr3

0 K = 0
π|K|−

3
2
(
sinh(2r0

√
|K|)− 2r0

√
|K|

)
K < 0 .

(3.3)

Assuming an order one number of light fields in the cosmology and ignoring factors of order
one, the entropy density s of radiation is related to the energy density u by s ∼ u3/4. We
defined ρR as 8πGN /3 times the energy density, so the entropy of radiation is

Srad ∼ V

(
ρR

GN

) 3
4

.
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If r0, ρM , and ρR are all of the scale set by the cosmological constant, the black hole entropy
will be much larger, SBH/Srad ∼

√
ℓAdS/ℓP ≫ 1. In particular, this will hold for bubbles

containing the full region accessible to a single observer, but also much larger bubbles that
are not parametrically larger.7

If we consider bubbles much larger than the cosmological scale (for the K ≤ 0 cases),
we have for K < 0 that

RH ≈ R0

(
ρM + 2

√
ρR(1− ρM − ρR)

) 1
3

.

In this negatively curved case, the volume behaves for large R0 like R2
0/
√
|K|, so the black

hole entropy and the radiation entropy both scale as R2
0 for large R0. In this case, the

black hole entropy remains larger than the radiation entropy by a factor of
√

ℓAdS/ℓP for
bubbles of all size.

In the flat case, we can have sufficiently large bubbles such that an entropy puzzle
arises. Here, for large R0, we have V ∼ R3

0. If there is matter, we find for large R0 that

RH ≈ R0ρ
1
3
M

and the entropy of the radiation becomes larger than the black hole entropy when

R0
ℓAdS

≳
ρ

2
3
M

ρ
3
4
R

√
ℓAdS
ℓP

.

For a flat universe with radiation only, we have for large R0 that

RH ≈ R
2
3
0 ρ

1
6
R .

In this case the entropy of the radiation will exceed the black hole entropy when

R0
ℓAdS

≳
(

ℓAdS
ℓP

) 3
10

. (3.4)

Both of these critical bubble sizes would become infinite in the usual large N limit of the
CFT where ℓAdS/ℓP → ∞.

In both of these cases, the geometries would correspond to extremely large CFT ener-
gies. In units of the CFT sphere radius, the energies are E ≳ ρ3

M /ρ
9/4
R (ℓAdS/ℓP )7/2 in the

case with matter and radiation and E ≳ (ℓAdS/ℓP )13/5 in the pure radiation case.
In general, we should also expect some interior entropy associated with the matter,

but the details of this will depend on the construction. In situations where a significant
fraction of the energy density is in radiation, we would expect the matter entropy to be
smaller. For pure matter cases, it could be interesting to perform an analysis similar to
that of [15], replacing the shells of matter with the approximately uniform ball of matter
that we are considering here.

7We do have a special case for K > 0 when considering bubbles containing more than half of the
sphere. Here, the black hole mass and entropy decrease as r0 increases and go to zero at R0 =
2√ρR/

√
(ρM + 2ρR)2 − 4ρR. At this point, the spacetime pinches off into pure AdS outside and a dis-

connected closed universe with a cosmological bubble joined to a bubble of pure AdS. Here, the cosmology
is clearly not described by a dual CFT state.
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4 Euclidean continuations

We have constructed asymptotically AdS geometries containing a bubble of Λ < 0 cosmol-
ogy with arbitrary initial matter densities ρM and ρR and arbitrary radius r0 (subject to
the constraint of footnote 4 in the positive curvature case). In order to understand better
whether these can correspond to some legitimate states of a dual CFT, we will consider in
this section the possibility of constructing such states directly via a Euclidean path integral
construction. Path integral states describing bubbles of pure AdS cosmology inside asymp-
totically AdS spacetimes with a different cosmological constant were constructed in [13, 17].
On the other hand, [13] found that geometries with a bubble of de Sitter cosmology inside
AdS appear not to have a path-integral construction.

Pure global AdS spacetime corresponds to the CFT vacuum state, which can be con-
structed via the Euclidean path integral on an infinite cylinder S2×R where the R direction
represents Euclidean time. This CFT path integral corresponds to a gravity path integral
whose saddle-point geometry is pure global AdS. By inserting operators or sources into
this CFT path integral, we can construct other states. To produce time-reversal invariant
Lorentzian geometries, we can choose sources in the Euclidean picture to be symmetric
under Euclidean time reversal. The Lorentzian geometry can be obtained by determining
the dual Euclidean geometry via the rules of AdS/CFT (where the sources and operator
insertions determine the boundary conditions for the Euclidean spacetime) and then per-
forming an analytic continuation τ → it of the Euclidean time coordinate, where t = τ = 0
represents the time-reversal/reflection invariant slice.

Since we are starting from a set of Lorentzian geometries, we will try to apply this
procedure in reverse, first performing an analytic continuation to Euclidean geometries and
then (if these are sensible) looking at the asymptotic behaviour to understand what types
of insertions/sources are required in the dual CFT path integral.

FRW part. The FRW part of the spacetime continues to a geometry

ds2 = dτ2 + a2
E(τ)(dr2 + RK(r)dΩ2) (4.1)

with boundary r(τ) = r0. Here, the Euclidean scale factor is defined via aE(τ) = a(iτ) and
satisfies the analytically continued Friedmann equation(

a′

a

)2
= −ρM

a3 − ρR

a4 + K

a2 + 1 ≡ H(a)2 . (4.2)

In the Euclidean picture, the scale factor grows away from τ = 0 so that the cosmological
constant term comes to dominate and we have aE(τ) ∼ e±τ for τ → ±∞. We thus have
asymptotically AdS regions for Euclidean times τ → ±∞; for this reason, this solution is
sometimes described as an asymptotically AdS Euclidean wormhole.

Schwarzschild exterior. The exterior region forms a part of the Euclidean AdS-Schwarz-
schild geometry. This can be described as

ds2 = dR2

F (R) + F (R)dT 2 + R2dΩ2 F (R) = R2 + 1− µ

R
, (4.3)
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with F (R) as before. We have F (R) = 0 at R = RH . If this point is part of our solution
(required when the bubble is fully inside the black hole), it is necessary that T is taken to
be periodic with period

∆T = 4πRH

1 + 3R2
H

(4.4)

to avoid a conical singularity. Matching the induced metric from the FRW region with
the induced metric from the Schwarzchild region, the bubble trajectory in this Euclidean
spacetime must satisfy

R(τ) = aE(τ)R0 ≡ aE(τ)RK(r0)
R′(τ)2

F (R(τ)) + F (R(τ))(T ′(τ))2 = 1 , (4.5)

the analytically continued version of (2.7). It is convenient to parametrize the trajectories
in terms of aE (which we will write as a going forward). In this case, we have

R(a) = R0a
dT
da

= ± 1
F (R0a)aH(a)

√
F (R0a)− R2

0a2H2(a) . (4.6)

The square root here is precisely the one appearing in the analytically continued version
of (2.13), so we can rewrite the T equation as

dT
da

= 1
F (R0a)aH(a)

(
R1 −

√
ρR

R0
a

)
(4.7)

where R1 ≡ R′
K(r0). The expression in brackets is exactly the quantity that is positive if

bubble is initially outside the horizon and negative otherwise.

Bubble initially outside horizon. If the bubble is initially outside the black hole
horizon, the expression (4.7) is initially positive (when a = 1) and therefore positive on
the entire trajectory, since a ≥ 1 in the Euclidean solution. We can take the region
{T = 0, R > R0} of the Schwarzschild geometry as the initial slice for the part of the
solution we are keeping (leftmost figures in figure 5). The boundary of the region we keep
is determined by solving (4.7).

The T coordinate increases from 0 to some maximum value T0 with

T0 =
∫ ∞

1

da

F (R0a)aH(a)

(
R1 −

√
ρR

R0
a

)
. (4.8)

Since the solution in this case does not include the Euclidean horizon (the point R = RH),
there is no restriction on how large the range can be (i.e. we do not require 2T0 ≤ ∆T ).

Bubble initially inside horizon. When the cosmological bubble is fully inside the
horizon, we can take the region {T = 0} ∪ {T = ∆T /2, R < R0} of the Schwarzschild
geometry as the initial slice for the part of the solution we are keeping (four figures on the
right in figure 5).

In this case, the T coordinate initially decreases. If R1 < 0 (positive curvature with
more than half of the sphere), T ′ remains negative for all time. If R1 > 0, T ′ will initially
be negative, but drops to zero when a = a0 ≡ √

ρRR0/R1 and switches sign afterwards.
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Figure 5. Possible domain wall trajectories (thick maroon lines) in the Euclidean Schwarzschild
spacetime with the shaded region corresponding to the part that is glued to the Euclidean FRW
bubble. The first column corresponds to spacetimes where the domain wall is initially outside the
horizon in the Lorentzian solution. In the bottom row, the bubble wall self-intersects (shaded in
gray) in the second and third examples and the spacetime is not sensible. The first example on the
bottom is sensible as it corresponds to a part of the covering space with T ∈ (−∞,∞).

In either case, the range of T on the Euclidean boundary corresponding to the part of
the geometry we are keeping is [−T0, T0]

T0 = ∆T
2 +

∫ ∞

1

da

F (R0a)aH(a)

(
R1 −

√
ρR

R0
a

)
. (4.9)

For the geometry to make sense, we require that the domain wall is not self-intersecting.
In the R1 < 0 case, this requires that T0 > 0. In the other case when T ′ switches sign at
a = a0, we require that

∆T
2 +

∫ a0

1

da

F (R0a)aH(a)

(
R1 −

√
ρR

R0
a

)
> 0 . (4.10)

The region of parameter space for which the geometries with the bubble initially inside the
horizon have good Euclidean asymptotics (i.e. the domain wall does not self intersect) are
shown in figure 6

Exploring these conditions numerically, we find that for K ≤ 0 where the spatial
geometry is infinite, the solutions make sense for arbitrarily large bubbles. For cases with
K > 0 (positively curved spatial geometry), we find that there is generally some rint above
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Figure 6. The shaded regions are parameter values for which the Lorentzian solution has a positive
mass black hole. The Euclidean solution is sensible (the domain wall does not self-intersect) in the
orange and green regions. The cosmological bubble is initially outside the horizon in the green
region. The dashed line corresponds to K = 0; below it K < 0 and above it K > 0.

which the boundary self-intersects in the Euclidean solution. As far as we can tell, this
is always larger than half the sphere diameter rmax = π/

√
K but smaller than the value

rpinch at which the exterior black hole mass goes to zero.
For the K > 0 case with fixed ρ and fR = ρR/ρ we generally have 0 ≤ rout ≤

rint ≤ rpos ≤ rmax, where the cosmological bubble is outside the horizon for r0 < rout,
the Euclidean continuation of the solution makes sense (the domain wall does not self-
intersect) for r0 < rint, the Lorentzian solution has positive mass if r0 < rpos, and rmax =
π/

√
K is the maximum value of r corresponding to the sphere diameter. In figure 7, we

show the behaviour of rout/rmax, rpos/rmax, and rpos/rmax as a function of ρ for a few
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Figure 7. Behaviour of rout/rmax (green-orange boundary), rpos/rmax (orange-blue boundary),
and rpos/rmax (blue-white boundary) with varying log ρ for fixed fR = ρR/ρ in the K > 0 case,
where rmax = π/

√
K is the sphere diameter. In the shaded regions, the Lorentzian solution has a

positive mass black hole. The Euclidean solution is sensible (the domain wall does not self-intersect)
in the orange and green regions. The cosmological bubble is initially outside the horizon in the
green region.

different fixed ratios fR = ρR/ρ. We note that in all cases, both Euclidean and Lorentzian
solutions are sensible if the cosmological bubble includes less that half of the spatial sphere,
i.e. r0 < π/

(
2
√

K
)
.

Arbitrarily large bubbles with K = 0. It is possible to show analytically that flat
cosmology bubbles always have sensible Euclidean asymptotics, i.e. for any values of r0,
ρR, ρM satisfying K = 0. As we explained above, if the bubble is initially outside the
horizon, the Euclidean solution does not include the point R = RH and so it is always a
sensible geometry.
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On the other hand, if the bubble is initially inside the horizon, the solution has good
Euclidean asymptotics only if condition (4.10) is satisfied. For K = 0 this condition is
equivalent to the requirement f1(r0, ρR)− f2(r0, ρR) > 0, where we define

f1(r0, ρR) ≡
2πRH

1+3R2
H

(4.11)

f2(r0, ρR) ≡
∫ √

ρRr0

1
da g(a, r0, ρR) (4.12)

g(a, r0, ρR) ≡ −
a
(
a−√

ρRr0
)√

(a− 1) (a3 + a2 + a+ ρR)
[
a3r2

0 + a+ r0
(
(ρR − 1)r0 − 2√ρR

)] . (4.13)

We can obtain an analytic upper bound fub
2 of f2 as follows

f2 ≤ fub
2 ≡ −

∫ √
ρRr0

1
da

a
(
a −√

ρRr0
)√

(a − 1)a3
(
(a − 1)

(
3r2

0 + 1
)
+
(√

ρRr0 − 1
)2) (4.14)

= 2
y

(x + y − 1) tan−1
(√

y−(x−1)2

(x−1)x

)
√

y − (x − 1)2 − sinh−1
(√

x − 1
) , (4.15)

where x ≡ r0
√

ρR and y ≡ 1 + 3r2
0. Comparing this to the analytic expression for f1 it is

straightforward to check that f1(r0, ρR) − f2(r0, ρR) ≥ f1(r0, ρR) − fub
2 (r0, ρR) > 0 for all

values of r0 and ρR. In particular, for large bubbles, we have

lim
r0→∞

f1
fub

2
= π

√
3− ρR

3(1− ρR)1/3 sin−1
(√

3−ρR√
3

) , (4.16)

which is greater than 1 for all values of ρR. This shows that geometries containing arbi-
trarily large bubbles of flat cosmology (with arbitrary matter to radiation density) have
sensible Euclidean analytic continuations. It is interesting that we apparently have a Eu-
clidean construction even for the extremely large flat bubbles where an entropy puzzle
arises; in this case it would appear that any possible encoding of the possible states of the
cosmological spacetime into the CFT would have to be non-isometric.

5 CFT construction

In cases where we have a sensible Euclidean construction, we can look at the asymptotics
of this solution to understand the properties of a potential CFT dual construction.

For the Schwarzschild part of the geometry, the asymptotic solution behaves as

ds2 = 1
Z2

(
dZ2 + dT 2 + dΩ2

)
, (5.1)

where we have defined Z = 1/R. From this metric in Fefferman-Graham form, we can see
that the boundary metric is conformal to part of a cylinder

ds2 = dT 2 + dΩ2 T ∈ [−T0, T0] . (5.2)
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The part of the Euclidean solution corresponding to the FRW regions has two asymptotic
regions. We can represent the geometry of each of these in Fefferman-Graham form as

ds2 = 1
z2

(
dz2 + z2

0(dr2 + R2
K(r)dΩ2)

)
(5.3)

where we have taken |τ | = ln(z0/z) for τ → ±∞. The boundary geometry is then confor-
mal to

ds2 = z2
0(dr2 + R2

K(r)dΩ2) (5.4)

which has the topology of a ball. Choosing z0 = 1/RK(r0) makes the S2 at the bound-
ary of this ball of unit radius so that the two balls corresponding to the two asymptotic
regions of the Euclidean FRW geometry can be glued in to the two boundaries of the cylin-
der (5.2). Thus, the full boundary geometry has the topology of a sphere. By a conformal
transformation, this can be mapped to an infinite cylinder.

Constructing matter cosmologies by operator insertion. As a simple case, we can
consider the situation where there is no radiation and the matter is made up of heavy
particles travelling along geodesics specified by fixed (r, θ, ϕ) in the FRW spacetime. In
the Euclidean picture, these geodesics continue to spatial geodesics, also at fixed (r, θ, ϕ)
extending between the two asymptotic regions. These particles can be obtained via the
insertion of heavy operators in the CFT, similar to the construction of shells of matter
in [14, 15].

If we consider particles of mass m ≫ 1/ℓAdS in the bulk, the total number of these
particles is

n = 3
8πGℓ2

AdS

ρM VK(r0)
m

(5.5)

where VK(r0) is the proper volume of the FRW bubble given in (3.3). For the CFT
construction, we thus insert n scalar operators with dimension

∆ ≈ mℓAdS (5.6)

uniformly on the boundary geometries (5.4) associated with two asymptotic regions of the
Euclidean FRW spacetime. Of course, we need to pick specific locations for these operators,
but we can also imagine some ensemble of such insertion locations, so that the resulting
state would be a mixed state corresponding to an ensemble of cosmologies with the matter
particles in some ensemble of locations. In order to achieve an approximately uniform
matter distribution, we can take the number of operators to be large while still requiring
the corresponding operators to be heavy. This gives:

1 ≪ mℓAdS ≪
(

ℓAdS
ℓP

)2
, (5.7)

assuming that r0 is of order ℓAdS.
When considering a CFT path integral with operator insertions suggested by a certain

Euclidean solution, it is important to understand whether the Euclidean solution of interest
is actually the dominant saddle corresponding to that path integral. Otherwise, leading
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Figure 8. Preparation of the CFT state using correlated operator insertions in the Euclidean path
integral. Operators are inserted in polar regions. Vertical dashed lines correspond to geodesics on
which the matter particles live. Generally we may require an ensemble of such insertions.

order calculations based on the CFT path integral might correspond to some other geometry
that dominates the gravitational path integral. For the construction with the insertion of
heavy operators, we are interested in a dual solution with Euclidean particle trajectories
connecting the two ends of the wormhole. For these to be favoured over other solutions
(e.g. where the geodesics connect operator insertions on the same side of the wormhole),
it may be necessary to assume a correlated insertion of operators on the two sides (e.g.
to consider a sum

∑
i piOi(x+)Oi(x−)) where x+ and x− correspond to the two ends of

a geodesic, rather than just a single insertion O(x+)Oi(x−) (see figure 8 for a schematic
picture). We plan to discuss this in more detail in a forthcoming publication.

6 Probing the cosmology from CFT physics

Given a CFT state describing a bubble-of-cosmology spacetime, it is interesting to ask how
the spacetime can be reconstructed, e.g. to extract cosmological observables.

A first observation is that in all of our spacetimes, the full spatial boundary is homolo-
gous to a point, so the entanglement wedge of the boundary is the full spacetime geometry.
This suggests that the cosmological physics should be reconstructible in principle from the
CFT [22, 23].

On the other hand, reconstruction of black hole interiors in AdS/CFT is famously
challenging, and in many cases, most or all of the cosmological region lies behind the
black hole horizon. When the states we describe have a Euclidean CFT construction,
this should not be a problem. Working in the Euclidean picture, it should be possible to
use standard bulk reconstruction techniques (e.g. HKLL [24, 25]) to calculate observables
in the Euclidean geometry. The Lorentzian observables are related to these by analytic
continuation.
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Now suppose that we don’t have a Euclidean construction or we wish to probe the cos-
mological physics directly from the Lorentzian state. Here, the recently proposed “Python’s
Lunch” criterion gives a precise suggestion for when the reconstruction will be difficult. Ac-
cording to the conjecture in [16] and [26], the reconstruction of local bulk physics from the
Lorentzian CFT state is highly complex when the region of interest lies in a Python’s
Lunch, that is, behind a non-minimal extremal surface. Our geometries have such a sur-
face precisely when the bubble of cosmology lies completely behind the black hole horizon.
In this case, the horizon at the t = 0 slice is the non-minimal extremal surface. Spatially,
this is a place where the S2 areas begin to increase in size again as we move inward from
the boundary. From our analysis above, the geometry will contain a python’s lunch if and
only if

ρM + 2ρR > 1 and r0 > rc

where rc is the smallest value of r0 such that

RK(r0) = 1/
√
2ρR + ρM − 1 .

In other cases, reconstruction of the entire spacetime should be simple; according to [26]
it can be accomplished by a combination of HKLL, the application of various Lorentzian
sources and forward and backward evolution with the CFT Hamiltonian.

Probing with Ryu-Takayanagi surfaces. In order to understand further how the
cosmological spacetime is encoded in the boundary CFT state, it is useful to understand
the Ryu-Takayanagi surfaces corresponding to various spatial subsystems of the boundary.
These surfaces can indicate the extent of the entanglement wedge of a boundary spatial
region of the CFT. The entanglement entropies of the boundary regions (suitably regu-
larized e.g. by vacuum subtraction) also provide direct geometrical information about the
interior via the usual Ryu-Takayanagi formula.

We will focus on ball-shaped sub-regions B of the T = 0 spatial slice of the boundary
spacetime. We can choose angular coordinates so that θ = 0 is the center of the ball and
the boundary of B is θ = θ∞; see figure 9. By the time-reversal and spherical symmetries
of the bulk spacetime, the Ryu-Takayanagi surface is expected to lie on the time-symmetric
slice in the bulk and preserve the rotational symmetry that leaves B invariant. We can
describe the RT surface trajectory as R(θ) in the Schwarzschild region and r(θ) in the
cosmological region (if the surface extends into the bubble). In cases where the cosmology
is completely inside the horizon, we need to consider separate Schwarzchild coordinate
patches corresponding to the exterior region and the region past the horizon but outside
the bubble.

The RT surface is the surface homologous to B that minimizes the area functional.
The area functional may have multiple extremal surfaces homologous to B, in which case
we need to compare the areas. It is convenient to parametrize the extremal surfaces by
the location of their deepest point in the bulk (e.g. the distance r∗ from the center of
the bubble), where dr/dθ = 0 or dR/dθ = 0. There will be a unique extremal surface
for each such point, and we can integrate the extremal surface equations (below) to find
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Figure 9. Schematic plot of an extremal surface at the time symmetric slice which probes the
FRW region of the spacetime.

the asymptotic behavior of this extremal surface. This gives some function θ∞(r∗), as
schematically shown in figure 9.

When the surface lies entirely in the Schwarzschild exterior region, the area functional is

Σ(B) = 2π

∫ ∞

R∗
R sin θ

√
R2dθ2 + dR2

F (R) ,

where we can take θ(R) or R(θ). When r∗ corresponds to a point in the FRW region, we
have (assuming that the bubble is initially outside the horizon)

Σ(B) = 2π

∫ r0

r∗
drRK(r) sin θ−(r)

√
R2

K(r)(θ′−(r))2 + 1

+ 2π

∫ ∞

RK(r0)
dRR sin θ+(R)

√
R2(θ′+(R))2 + 1

F (R) .

where θ−(r) and θ+(R) parameterize the surface in the FRW and Schwarzschild regions
respectively. Taking a variation θ → θ + δθ of this functional with fixed θ+(R = ∞) = θ∞
and θ−(r∗) = 0, we get

δΣ = 2π

∫ r0

r∗
dr

(
RK(r) cos θ−

√
L− − d

dr

R3
K(r) sin θ−θ′−√

L−

)
δθ

+2π

∫ ∞

r0
dR

(
R cos θ+

√
L+ − d

dR

R3 sin θ+θ′+√
L+

)
δθ+

+
[

R3
K(r) sin θθ′−δθ−√

L−

]
r0

−
[

R3 sin θ+θ′+δθ+√
L+

]
RK(r0)

(6.1)

where
L− = RK(r)2θ′−(r)2 + 1, L+ = R2θ′+(R)2 + 1

F (R) . (6.2)
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For the variation to vanish in general, the two integrands must vanish, giving differential
equations for θ(r) and θ(R) in the FRW and Schwarzchild regions. Furthermore, the
variations in the last line must also cancel, giving

θ′−(r0)√
R2

0(θ′−(r0))2 + 1
=

θ′+(R0)√
R2

0(θ′+(R0))2 + 1/F (R0)
, (6.3)

where we have defined R0 = RK(r0). This condition can be simplified to

θ′−(r0) = θ′+(R0)
√

F (R0). (6.4)

In the FRW region, we have a symmetric space, so it is straightforward to derive an
analytic expression for the extremal surfaces. For the surface with closest approach r = r∗
to r = 0 at θ = 0, we find8

cos(θ) =


tan(r∗

√
K)

tan(r
√

K) K > 0
r∗
r K = 0
tanh(r∗

√
|K|)

tanh(r
√

|K|)
K < 0 .

(6.5)

To investigate the extremal surfaces starting at some radius r∗ in the FRW region, we can
use the expressions (6.5) to calculate θ0 = θ−(r0). The exterior portion of the RT surface
can be determined by solving the differential equation for that region with θ+(R0) = θ0
and θ′+(R0) obtained using (6.3). In cases where two different values of r∗ give the same
θ∗, we need to compare the areas of the surfaces and choose the one with smaller area.

We show plots of θ∞ as a function of R∗ in figure 10, where we define R∗ to be the
areal radius corresponding to the deepest point of the extremal surface. In these plots we
fix the areal radius of the bubble separating the FRW region from the Schwarzschild region
to be R0 = 1. As a result θ∞(R∗) has a discontinuous first derivative at R∗ = 1. Also
notice that in all cases R∗ = 0 implies θ∞ = π/2, i.e. the extremal surface passing through
the centre of the FRW region corresponds to the hemispherical cap of the boundary CFT.

Notice that for some parameter values (e.g. a flat bubble of dust; top left in the figure),
θ∞ is a monotonically decreasing function of R∗. In such cases the function θ∞(R∗) is
invertible to R∗(θ∞), and thus there is a unique extremal surface homologous to a CFT
cap of a given angular size. By the usual RT prescription this extremal surface must be
the RT surface corresponding to the spherical cap. Furthermore, R∗(θ∞) ranges from ∞
to 0 as θ∞ ranges from 0 to π, and hence the RT surfaces probe all parts of the spacetime,
including all parts of the cosmological bubble.

More generically however (remaining plots in figure 10), θ∞(R∗) fails to be monotonic
for values of R∗ close to R0. This can occur for spatially flat FRW bubbles (top right),

8For positive curvature, we can describe the sphere as
∑

x2
i = 1/K in Euclidean space. An extremal

surface with closest distance r∗ to
(
1
/√

K, 0⃗
)

is the plane x⃗ ·
(
− sin

(
r∗
√

K
)

, cos
(
r∗
√

K
)

, 0⃗
)

= 0. The
change of variables x1 = cos

(
r
√

K
)/√

K, x2 = sin
(
r
√

K
)/√

K cos(θ) maps back to our coordinates,
giving the result. The flat and negatively curved results can be obtained by taking K to be zero or
negative, respectively.
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Figure 10. Angular size θ∞ of spherical caps in the CFT, versus the smallest areal radius R∗
probed by corresponding extremal surfaces.

spatially hyperbolic bubbles (bottom left), and spatially spherical bubbles (bottom right).
When there are multiple values of R∗ which give the same θ∞, the areas of the surfaces must
be compared and the RT surface would correspond to the minimum area extremal surface.

There are two possible manifestations of this non-monotonicity. In the first case when
θ∞(R0) < π/2 there is some range θ∞ ∈ (θ1, θ2), with θ1, θ2 < π/2 where there are
multiple candidate RT surfaces for the same θ∞. However, for large enough CFT balls, i.e.
θ2 < θ∞ < π/2, there is a unique extremal surface (and hence RT surface) passing through
the cosmological region. This is illustrated in the bottom two figures of figure 10.

In the second case the non-monotonicity is more severe, and θ∞(R∗) for R∗ > R0
covers the entire range (0, π/2). An example of such a case is illustrated in the top right
plot in figure 10. In this case surface areas of extremal surfaces would have to be compared
in order to check whether any RT surfaces probe the cosmological bubble.

7 Discussion

In this paper, we have analyzed a family of exact solutions of Λ < 0 gravitational effective
field theories where a comoving bubble of an FRW spacetime is embedded in an exterior
spacetime that is Schwarzschild-AdS. We found that for arbitrary matter and radiation
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densities and an arbitrary bubble size, the two parts of the spacetime can be patched
across a thin shell of pressureless matter with density proportional to the square root of
the interior radiation density. Physically, we can think of this as some perfectly reflecting
dust. This construction appears to be special to 3+1 dimensions; in other dimensions, with
both matter and radiation the required domain wall requires more complicated physics.
Our choice to consider a domain wall with pressureless dust was purely for convenience; this
allowed explicit analytic solutions that we could analyze. Of course, we could have more
general solutions where the domain wall is not a thin shell. For example, there should exist
a solution with only radiation, where the radiation is initially localized inside a ball-shaped
region; while the radiation will spread out, the domain of dependence of the initial ball will
still be FRW. In [27], the authors provide numerical evidence for formation of de-Sitter
bubbles dynamically by collapse of massless scalar matter in asymptotically AdS spacetime;
in many cases with several reflections of the shell of matter off the AdS boundary.

We found some promising signs that these cosmological bubble solutions, in some cases
with arbitrarily large radius, can be dual to legitimate CFT states. The entropy of the
exterior black hole is larger than the entropy associated with the cosmology except in the
flat case for bubbles parametrically larger than the cosmological scale. The Euclidean
continuations of the solutions appear to make sense for almost all cases and suggest a
Euclidean CFT construction where operators and/or sources are inserted in ball shaped
regions centered at opposite poles of an S3 on which the CFT lives. We plan to investigate
and discuss the Euclidean construction in more detail in a future work.

In various recent works with other collaborators, some of us have considered another
approach to holographically describing Λ < 0 cosmologies. There, the idea was to holo-
graphically construct the Euclidean wormhole that is the analytic continuation of a full
FRW cosmology. The connected wormhole solution with disconnected boundaries sug-
gests that some type of ensemble or interaction between the CFTs should be involved.
In [11, 19, 28], we proposed an interaction between the CFTs involving a higher-dimensional
field theory. In the setting of the present paper with a finite bubble of cosmology, the two
asymptotic regions associated with the τ → ±∞ regions of the cosmological bubble are
connected with each other via the asymptotic region of the Euclidean Schwarzschild ge-
ometry, so there is not a factorization puzzle. However, as we discussed in section 5 it
may be that obtaining the desired saddle with an FRW bubble requires some correlation
between the operator insertions on opposite sides of the sphere. In this case, taking the
limit of an infinitely large bubble, we would end up with two disconnected CFTs, but with
operator insertions correlated between the two CFTs. This would be a type of ensemble
(over the operator insertions), but associated with a single CFT. The resulting picture is
then similar to the construction in [11, 19, 28], since there we could imagine integrating
out the auxiliary theory, again leaving an ensemble of sources/operator insertions that are
correlated between the two CFTs.

The cosmologies that we have considered are not realistic in that they have constant
negative vacuum energy and never accelerate. However, as discussed recently in [29], more
general solutions with a time-dependent scalar field could have an accelerating phase in
the Lorentzian cosmology; such an accelerating phase produced by a time-dependent scalar
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appears to be consistent with the direct observations of scale factor evolution [30]. Con-
structing solutions with time-dependent scalars from the Euclidean picture would require
additional sources for relevant scalar operators in the Euclidean CFT. These would need
to have a particular dependence on the polar angle of the sphere for the scalar field homo-
geneous in the cosmological bubble. However, at this point, the main goal is to just able
to study examples of four-dimensional big-bang cosmology using holography, so we are not
particularly concerned with making these cosmologies realistic.

Having a fully microscopic description of cosmological spacetimes should allow in prin-
ciple an investigation of questions that go beyond effective field theory. One such question
is the nature of the big bang. In our construction, the big bang and big crunch singular-
ities are special cases of past and future singularities in asymptotically AdS black holes.
A precise CFT description should also allow us to understand the quantum state of the
cosmology and compute arbitrary cosmological observables. An interesting point is that
the Euclidean constructions naturally construct a state at the time-symmetric point of the
Lorentzian picture, rather than at the big-bang. Thus, for understanding the cosmological
state away from the singularities, a detailed understanding of the big bang is not needed.
Many of the conceptual issues associated with the holographic construction in this paper
are shared with our other proposed construction in [11, 20]. See those works for a more
detailed discussion.

As a final comment, we note that for a given homogeneous and isotropic cosmology,
the physics accessible to a single observer can likely be encoded holographically via dual
CFT physics in many different ways, with various choices for the physics of the bubble
wall and of the exterior spacetime. In [17], we considered bubbles of pure AdS spacetime
(the trivial Λ < 0 cosmology), arguing that these could be described via many different
possible dual CFTs by considering specific states of those theories defined by performing
a certain Euclidean quench starting from the vacuum state of the CFT dual to the full
AdS spacetime. Via a similar quench [31–33], we can also encode the physics in the state
of a collection of many non-interacting quantum systems. Similar constructions should
exist for the more general cosmological spacetimes considered here. Thus, there may be
many possible ways to holographically encode the physics accessible to a single observer
in a cosmological spacetime. It would be interesting to understand if there is some more
minimal description that avoids the excess baggage of an asymptotically AdS exterior
spacetime.
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