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Abstract: Scattering amplitudes in planar N = 4 super Yang-Mills theory exhibit singu-
larities which reflect various aspects of the cluster algebras associated to the Grassmannians
Gr(4, n) and their tropical counterparts. Here we investigate the potential origins of such
structures and examine the extent to which they can be recovered from the Gröbner struc-
ture of the underlying Plücker ideals, focussing on the Grassmannians corresponding to
finite cluster algebras.

Starting from the Plücker ideal, we describe how the polynomial cluster variables are
encoded in non-prime initial ideals associated to certain maximal cones of the positive
tropical fan. Following [1] we show that extending the Plücker ideal by such variables leads
to a Gröbner fan with a single maximal Gröbner cone spanned by the positive tropical
rays. The associated initial ideal encodes the compatibility relations among the full set
of cluster variables. Thus we find that the Gröbner structure naturally encodes both the
symbol alphabet and the cluster adjacency relations exhibited by scattering amplitudes
without invoking the cluster algebra at all.

As a potential application of these ideas we then examine the kinematic ideal associated
to non-dual conformal massless scattering written in terms of spinor helicity variables. For
five-particle scattering we find that the ideal can be identified with the Plücker ideal for
Gr(3, 6) and the corresponding tropical fan contains a number of non-prime ideals which
encode all additional letters of the two-loop pentagon function alphabet present in various
calculations of massless five-point finite remainders.
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1 Introduction

The connection between the branch cut structure of perturbative n-point scattering am-
plitudes in planar N = 4 super Yang-Mills theory and the cluster algebras associated to
the Grassmannians Gr(4, n) is by now well established [2–4].1 Such amplitudes can be
expressed (at least for small enough n and loop order) as generalised polylogarithmic func-
tions, a class of iterated integrals built upon a specified symbol alphabet A. The set of
cluster variables of the Grassmannian cluster algebras Gr(4, 6) and Gr(4, 7) explain the 9
and 42 letter alphabets for the hexagon and heptagon amplitudes respectively, the knowl-
edge of which has since facilitated calculations in the context of the analytic bootstrap up
to high loop orders [8–17]. Furthermore, the link between the cluster algebras and the sin-
gularities of the amplitudes was deepened with the discovery of cluster adjacency [18, 19]

1The notion of cluster algebras was originally developed in [5–7].
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which states that consecutive singularities can only appear in the symbol if there exists a
cluster in which both letters are contained. This notion of cluster adjacency is closely re-
lated to the Steinmann relations, utilised by the bootstrap programme, and their extended
counterparts [13, 20].

Recently, efforts have been made to explore the connection between amplitudes and
cluster algebras at eight points and beyond where the respective Grassmannian cluster al-
gebra Gr(4, 8) is no longer of finite type. Two complications arise in this instance. Firstly,
some truncation of the infinite set of cluster coordinates must be introduced in order to
obtain a finite symbol alphabet and secondly, we must find a way of extracting algebraic
square root letters known to appear in the symbol alphabet at eight points, for example
from the four-mass one-loop box integral present in N2MHV amplitudes. This has led
to the study of the eight-point case and related problems from many closely related ap-
proaches including tropical geometry, plabic graphs, Schubert problems and more [21–29].
Notably [22], by assigning expressions to certain rays appearing in the tropicalisation of
Gr(4, 8), which can also be obtained via infinite sequences of mutations in the cluster al-
gebra, one obtains the set of 18 multiplicatively independent square root letters appearing
in the two-loop NMHV amplitude found in [30].

Since the tropicalisation of a polynomial ideal is a subset of the Gröbner fan of the ideal
by the fundamental theorem of tropical geometry ([31], section 3.2), the connection between
the cluster algebra and the tropical Grassmannian leads us to ask whether the salient
features of the cluster algebra can be obtained by considering the Gröbner structure of the
underlying ideal generated by the Plücker relations. While connections between tropical
Grassmannians [32] and cluster algebras had been discussed already in e.g. [33, 34], it is
only recently that the relationship between cluster algebras and Gröbner theory has been
investigated in detail [1, 35]. We shall see, using methods developed in these references, that
both the alphabet and the adjacency relations can indeed be obtained from the Gröbner
structure of the Plücker ideal or an appropriate extension thereof.

In the case of Gr(2, n), all cluster variables are Plücker variables. For the finite cases
Gr(3, n) for n = 6, 7, 8, we will see that cluster variables which are polynomial in Plücker
coordinates are associated to certain non-prime initial ideals associated to maximal cones
of the positive tropical fan Trop+(Ik,n) (a subfan of the Gröbner fan). Furthermore, by
extending the Plücker ideal by this additional set of cluster variables, a particular maximal
cone of the Gröbner fan will be singled out by the rays of Trop+(Iext

k,n). The associated
monomial initial ideal provides the set of forbidden pairs of cluster variables i.e. vari-
ables which do not appear together in a cluster. For the cases of Gr(2, 6) ∼= Gr(4, 6) and
Gr(3, 7) ∼= Gr(4, 7) this provides the information required for the amplitude bootstrap pro-
gramme in the form of the symbol alphabet A and adjacency rules for the symbol of the
amplitude.

Motivated by the fact that interesting physical information can be obtained from the
Gröbner structure of the kinematic ideal for amplitudes in planar N = 4 super Yang-Mills
theory, we then consider the kinematics of non-planar and non-dual conformal massless
scattering described in spinor helicity variables. We consider an ideal generated by the
polynomial relations satisfied by the spinor brackets 〈ij〉 and [ij] and investigate its Gröbner
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structure. In particular we consider the ideal I5pt corresponding to the case of scattering
five massless particles. In fact we observe that, upon an appropriate identification of
variables, this ideal can be identified with the Plücker ideal for Gr(3, 6). By searching
for non-prime initial ideals, this time in the full tropical space Trop(I5pt), not just the
positive part, we almost recover the entire non-planar alphabet found in recent two-loop
massless five-point amplitudes calculations in gauge theory [36–41] and gravity [42, 43].
Interestingly, the one letter we do not obtain also seems to drop out of appropriately
defined finite remainders [39, 40, 42, 43].

2 The Gröbner fan

The Grassmannian Gr(k, n) is the space of k-planes in n dimensions. A point in the
Grassmannian can be specified by k n-component vectors which can be organised into a k×n
matrix. These matrices are defined up to row operations which leave the plane invariant,
the resulting space of matrices modulo GL(k) transformations is k(n− k) dimensional.

Alternatively, the Grassmannian can be described through the set of
(n
k

)
maximal

minors pi1...ik or Plücker coordinates. On the set of Plücker coordinates row operations act
as an overall scaling and, modulo the overall scaling, the vector of Plücker coordinates may
be thought of as a point in the projective space P(n

k)−1. An arbitrary point in P(n
k)−1 is

not necessarily realisable as a matrix, since the set of k× k minors of any k×n matrix are
not independent, and instead obey homogenous quadratic relations known as the Plücker
relations which take the form

pi1...ir[ir+1...ikpj1...jr+1]jr+2...jk = 0. (2.1)

We call the ideal generated by the Plücker relations inside the ring of polynomials in the
Plücker coordinates the Plücker ideal Ik,n. The Grassmannian can then be thought of
as the projective variety inside P(n

k)−1 whose points vanish on the Plücker ideal, i.e. the
vanishing set V (Ik,n). As an example consider the case of Gr(2, n), whose Plücker ideal is
generated by the relations

I2,n = 〈pijpkl − pikpjl + pilpjk : 1 ≤ i < j < k < l ≤ n〉. (2.2)

Here we will actually consider the Grassmannian modulo the action of the n rescalings
which can be applied to the n columns of the k × n matrix, so that each column actually
represents an element of Pk−1. Since the overall scaling is taken into account already in the
action of GL(k), the dimension of the space is reduced to k(n−k)−(n−1) = (k−1)(n−k−1).
As is common in the literature we will also refer to this space simply as the Grassmannian
and henceforth when we discuss the Grassmannian we will always mean it in this reduced
sense. The same scalings are present as an invariance of the Plücker relations (2.1) which
are not only homogeneous in the total degree of all variables but homogeneous in the
presence of each label ik on the Plücker coordinates.

Using the general viewpoint of the Grassmannian as an ideal generated by polynomial
relations we can introduce a fan structure on R(n

k) known as the Gröbner fan. To begin to
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understand the structure of the Gröbner fan we must first introduce the notion of monomial
orderings, initial ideals, and Gröbner bases. Our presentation follows that of [1].

Let f be a polynomial in n variables (x1, . . . , xn) with coefficients in an algebraically
closed field K for which we use the notation

f =
∑
~α

c~αx~α, (2.3)

where we have introduced ~α = (α1, . . . , αn) ∈ Zn≥0, and x~α is understood as the monomial
xα1

1 . . . xαn
n . Given some weight vector ~w ∈ Rn we can define the initial form of f with

respect to ~w as
in~w(f) =

∑
~α: ~α·~w=m

c~αx~α, (2.4)

where m = min{~α · ~w : c~α 6= 0}. Furthermore, given an ideal I ⊂ K[x1, . . . , xn], we can
define its initial ideal with respect to ~w as the ideal generated by the initial forms of all
functions f ∈ I written as

in~w(I) = 〈in~w(f) : f ∈ I〉. (2.5)

If, for some finite set of generators G = {g1, . . . , gr} ∈ I, we have in~w(I) = 〈in~w(g) : g ∈ G〉
we call G a Gröbner basis for I with respect to ~w.

The next definition we need is that of a monomial order. A monomial order < on the
set of monomials x~α ∈ K[x1, . . . , xn] is a total order which satisfies

i) 1 ≤ x~α,

ii) if x~α < x~β =⇒ x~α+~γ < x~β+~γ .

This allows us to define the leading monomial of the polynomial f as in<(f) = c~βx~β , where
x~β is the leading monomial with respect to < appearing in f with non-zero coefficient i.e.
x~β=max<{x~α :c~α 6=0}. Similarly, we can define the initial ideal of I with respect to < as

in<(I) = 〈in<(f) : f ∈ I〉. (2.6)

Note, we may always choose some weight vector ~w ∈ Nn such that in~w(I) = in<(I) ([44],
Theorem 3.2.1). The converse is not generally true however.

By varying the weight vector ~w we may study all possible initial ideals of I. This leads
us to the notion of the Gröbner fan GF (I) on Rn as follows: two weight vectors ~w1 and
~w2 lie in the relative interior of the same cone C if and only if in~w1(I) = in~w2(I) i.e. they
generate the same initial ideal [45]. Note, each full-dimensional (maximal) Gröbner cone
is associated to a monomial initial ideal specified by some monomial order <, consisting
of all weight vectors ~w ∈ Rn such that in~w(I) = in<(I). A weight vector will lie on the
boundary of a maximal cone when the associated initial ideal is no longer monomial. This
collection of maximal Gröbner cones and their intersections is the Gröbner fan GF (I).

Note that the Gröbner fan may have a linear subspace (or lineality space) consisting of
elements ~l such that in~l(I) = I. This is the case, for example, if the ideal is homogeneous.
We are always free to shift a weight vector by any element of the lineality space of the
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〈p12p34 + p14p23〉

〈p14p23 − p13p24〉

〈p12p34 − p13p24〉

〈p14p23〉

〈p13p24〉

〈p12p34〉

x

y

Figure 1. The Gröbner fan structure of GF (I2,4) with each region labelled by its initial ideal.
Each point in the (x, y) plane corresponds to a 4-dimensional linear subspace of R6 consisting of
all weight vectors lineality equivelent to (x, y, 0, 0, 0, 0). The tropical fan corresponds to the three
rays, whilst the positive tropical fan corresponds to the two red rays.

Gröbner fan GF (I) without altering the initial ideal. Therefore it makes sense to consider
the Gröbner fan modulo the action of this linear subspace. In the case of the Grassmannians
Gr(k, n) we have an n-dimensional lineality space corresponding to the n column rescalings
mentioned previously. This is precisely because the Plücker relations are homogeneous with
respect to the appearance of all labels ir on the Plücker variables pi1...pk

.
We will also be interested in certain subfans of the Gröbner fan, the first being the

tropical fan Trop(I) defined as the subfan

Trop(I) = {~w ∈ Rn : in~w(I) contains no monomial}. (2.7)

We may restrict further and define the totally positive tropical fan Trop+(I) given by

Trop+(I) = {~w ∈ Trop(I) : in~w(I) is totally positive}, (2.8)

where we an ideal I ⊂ R[x1, . . . , xn] is called totally positive if it does not contain any
non-zero polynomial with all positive coefficients (or equivalently, it has an initial ideal
whose vanishing set intersects the positive orthant [46]).

The above discussion is most easily demonstrated with an example, the simplest case
being Gr(2, 4), whose Plücker ideal is generated by a single polynomial

I2,4 = 〈p12p34 − p13p24 + p14p23〉 ⊂ R[p12, p13, p14, p23, p24, p34]. (2.9)

Let ~w = (w12, w13, w14, w23, w24, w34) ∈ R6 and f = p12p34 − p13p24 + p14p23 which, being
the sole generator of I2,4, constitutes a Gröbner basis for any choice of weight vector ~w. A
generic weight vector ~w ∈ R6 can always be bought to the form (x, y, 0, . . . , 0) with some
suitable choice of lineality shift in the four-dimensional linear subspace. The resulting
Gröbner fan GF (I2,4) is depicted in the (x, y) plane in figure 1. The Gröbner fan GF (I2,4)
consists of three maximal cones labelled by the monomial initial ideals 〈p12p34〉, 〈p13p24〉 and
〈p14p23〉. The maximal cones intersect to give the three rays of the tropical fan Trop(I2,4)
given by e12 = (1, 0), e13 = (0, 1) and e14 = (−1,−1), whose corresponding binomial initial
ideals are 〈p14p23−p13p24〉, 〈p12p34 +p14p23〉 and 〈p12p34−p13p24〉. The positive part of the
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tropical fan Trop+(I2,4) consists of the rays e12 = (1, 0) and e14 = (−1,−1) highlighted in
red whose generators contain terms of opposite sign, the ray e13 = (0, 1) is not contained
in Trop+(I2,4) since the corresponding initial ideal is generated by a polynomial with all
positive coefficients.

2.1 Polynomial cluster variables and forbidden pairs

Moving forward, the final definition needed is that of a prime (or alternatively non-prime)
ideal. An ideal I is non-prime if there exists two polynomials f 6∈ I and g 6∈ I such that
their product f · g ∈ I. In this case we call f and g non-prime factors of I. Note, a
non-prime ideal can always be decomposed into the intersection of finitely many prime
components.

With all the necessary material reviewed let us remind ourselves of our goal: to extract
(at least in the finite cases) the cluster variables and adjacency relations of the Grassman-
nian cluster algebras Gr(k, n) from the Gröbner fan GF (Ik,n), which in the cases of Gr(4, 6)
and Gr(4, 7) provide vital information for the amplitude bootstrap in the form of the sym-
bol alphabet and adjacency rules. The ideas we will make use of have been presented in [1]
for the case Gr(2, n) and Gr(3, 6) and more generally for any cluster algebra of geometric
finite type in [35].

Cluster variables. The Plücker ideal is defined on the
(n
k

)
Plücker coordinates pi1,...,ik .

In the case of the Grassmannians Gr(2, n) these make up the full set of cluster variables.
However, for Gr(3, 6), and more importantly Gr(3, 7) relevant for heptagon amplitudes,
cluster variables quadratic in the Plücker coordinates start to appear. As we shall explain
these missing cluster variables appear as non-prime factors of initial ideals inside the
maximal cones of Trop+(Ik,n).

Forbidden pairs. Generally, the rays of the positive tropical fan Trop+(Ik,n) will span
multiple maximal Gröbner cones. That is to say taking a suitably generic2 set of weight
vectors ~w lying in the span of the rays of Trop+(Ik,n) we will generate multiple monomial
initial ideals in~w(Ik,n). However, upon extending the ideal Ik,n by the missing cluster
variables to the ideal Iext

k,n, the rays of Trop+(Iext
k,n) span a single maximal Gröbner cone

in GF (Iext
k,n). The minimal generating set of the initial ideal of this maximal Gröbner

cone provides us with a list of monomials which are exactly the forbidden pairs of cluster
variables. Note, in the case of Gr(2, n) all cluster variables are present already for I2,n and
no extension procedure is needed. The rays of Trop+(I2,n) already span a unique maximal
Gröbner cone.

In the remainder of this section we review these ideas in more detail for the case of
Gr(2, 5). Later in section 4 we return to the case of Gr(3, 6), discussed in [1], and further
apply this discussion to Gr(3, 7) ∼= Gr(4, 7) relevant for heptagon amplitudes. We also
discuss the remaining finite case Gr(3, 8) and the outlook beyond the finite type Grass-
mannians. Finally, in section 6 we will apply some of the ideas to a non-Grassmannian
case relevant for scattering in more general massless theories.

2Weight vectors not lying in the intersection of maximal cones of the Gröbner fan.
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e12

e45

e23e15

e34

e35

e13

e14e24

e25

Figure 2. The 10 vertices and 15 edges of Trop(I2,5) space. The positive part is highlighted red.

2.2 GF (I2,5)

We conclude this section with the example of Gr(2, 5). In the space of Plücker coordinates
(p12, . . . , p45) the five Plücker relations are given by

pijpkl − pikpjl + pilpjk = 0, 1 ≤ i < j < k < l ≤ 5. (2.10)

The Gröbner fan GF (I2,5) is simplicial, containing 132 maximal cones and twenty rays.
Arranging the coordinates in lexicographic order

{w12, w13, w14, w15, w23, w24, w25, w34, w35, w45}, (2.11)

the rays are defined as

e12 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,
...

e45 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (2.12)

along with ten more given by −eij .
The Gröbner fan contains twelve maximal cones with five rays given by eij from the

list (2.12). A further 60 maximal cones have four of the eij and one of the −eij rays and 60
more maximal cones have three eij and two −eij rays. The ten eij vectors defined in (2.12)
make up the rays of the tropical fan Trop(I2,5). They are connected in a Petersen graph
topology shown in figure 2. The positive tropical fan Trop+(I2,5) has five rays given by

{e12, e23, e34, e45, e15} (2.13)

which are highlighted in red.
There is exactly one maximal Gröbner cone spanned by the five rays (2.13) of

Trop+(Ik,n). This cone has a Gröbner basis whose initial monomials are all the cross-
ing chords of the pentagon, i.e.

in~w(I2,5) = 〈p13p24, p13p25, p14p25, p14p35, p24p35〉 (2.14)

for any ~w given by a strictly positive linear combination of the five rays of Trop+(I2,5).
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The case of Gr(2, n) was studied in detail in [1], where a similar construction was shown
to hold for all n. The rays of the positive tropical fan Trop+(I2,n) span a single maximal
Gröbner cone inside GF (I2,n), whose initial ideal is generated products of Plücker variables
labelled by crossing chords of the n-gon. Note that this includes the case Gr(2, 6) ∼= Gr(4, 6)
relevant for hexagon amplitudes in planar N = 4 super Yang-Mills theory. As was also
shown in [1] for the case of Gr(3, 6), and as we shall explain in section 4, it is not the case
for k > 2 that the rays of Trop+(Ik,n) span a single maximal Gröbner cone inside GF (Ik,n).
Instead, to identify a single maximal Gröbner cone, whose rays are given by the positive
tropical part, the ideal must first be extended by the missing cluster variables which are
polynomials in Plücker variables.

3 Trop+(Ik,n) and the Speyer-Williams fan

In practice, it is only possible to compute the entire Gröbner fan for the most simple of
cases. Therefore, it is highly desirable to have an efficient route to calculating the positive
tropical part Trop+(Ik,n) directly without having it embedded in the Gröbner fan, or even
in Trop(Ik,n). In this section we review the methods of [33] on this direct construction. For
further details of the structure of the resulting fans see [21, 47]. The cases of interest will be
Gr(3, n) for n = 6, 7, 8 which, along with Gr(2, n), make up the finite type Grassmannian
cluster algebras.

Generally, the Gr(k, n) initial cluster has the form of a (k − 1)× (n− k − 1) array of
active (mutable) nodes, in addition to k frozen nodes, each labelled by an A-coordinate. An
example of the initial cluster for the case of Gr(2, 5) is given in figure 3, with frozen nodes
indicated as the boxed vertices. We may also assign to each active node an X -coordinate,
given by the product of incoming A-coordinates over the product of the outgoing ones.
Following the array of active nodes, these also organise themselves into a (k−1)×(n−k−1)
array X with elements xrs.

Using the xrs we can define the k×n web matrix W (k,n) = (Ik|M). Where M is given
by the k × (n− k) matrix elements

mij = (−1)i+k
∑
~λ∈Yij

k−i∏
r=1

λr∏
s=1

xrs, (3.1)

with the summation range Yij given by 0 ≤ λk−i ≤ . . . ≤ λ1 ≤ j − 1. The web matrix thus
allows us to evaluate all A-coordinates as subtraction free polynomials in the X -coordinates
by identifying the Plücker coordinates with the maximal minors of the web matrix i.e.

pii...ik = det(W (k,n)
i1,...,ik

)(xrs) (3.2)

where W (k,n)
i1,...,ik

is understood as the matrix formed by taking columns i1 . . . ik of W (k,n).
Let us illustrate this with the example of Gr(2, 5). The initial cluster is depicted in

figure 3 from which we can read off the X -coordinates, they are given by

x11 = 〈12〉〈34〉
〈14〉〈23〉 , x12 = 〈13〉〈45〉

〈34〉〈15〉 . (3.3)
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〈1 2〉

〈1 3〉

〈2 3〉

〈1 4〉

〈3 4〉

〈1 5〉

〈4 5〉

Figure 3. The initial cluster of Gr(2, 5).

With the X -coordinates to hand we can write down the web matrix,

W (2,5) =
[
1 0 −1 −1− x11 −1− x11 − x11x12
0 1 1 1 1

]
. (3.4)

By identifying the Plücker coordinates pij with the maximal minor formed by columns i
and j of the web matrix as

pij = det(W (2,5)
ij )(x11, x12), (3.5)

we immediately arrive at an expression for all A-coordinates as subtraction free polynomials
in the X -coordinates. As an example we have

p25 = x11 + x11x12,

We can now consider tropicalising the expressions for the A-coordinates, which amounts to
replacing (+,×) by their tropical counterparts (min,+). The tropical version of the above
expression for p25 is given by

p̃25 = min(x̃11, x̃11 + x̃12) , (3.6)

where p̃ and x̃ are used to emphasise that we are dealing with tropical expressions. This
tropical expression defines a piecewise linear map on R2 with coordinates {x̃11, x̃12}, where
regions of linearity are separated by tropical hypersurfaces, and as such provide a fan
structure on the space of {x̃11, x̃12}. For example the tropical hypersurface of p̃25 is given by

x̃12 = 0 . (3.7)

By tropicalising different subsets of the A-coordinates we can define different tropical fans
given by the common refinement of all fans in the subset of tropical expressions. In prac-
tice, we calculate the refinement of the tropical fan for a subset, S, of A-coordinates via
the Minkowski sum of their Newton polytopes. The tropical expressions for the frozen
coordinates do not contain any tropical hypersurface and hence do not contribute to the
structure of the fan.

Our focus will be on two fans in particular: the Speyer-Williams fan [33], which is
obtained by tropicalising the set of all Plücker coordinates; and the cluster fan, where we
choose to tropicalise the entire set of A-coordinates. Note, for the case of Gr(2, n) the
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Plücker coordinates do make up the entire set of A-coordinates and hence the Speyer-
Williams and cluster fans coincide. However, when considering Gr(3, 6) A-coordinates
quadratic in the Plücker variables begin to appear and hence the structure of the two fans
begins to differ.

While we have used the initial cluster to explain the definition of the xrs we would
like to emphasise that we are merely using them as a convenient choice of coordinates.
We will not be using any of the mutation structure of the cluster algebra and indeed one
of the main points of this investigation is to recover information about the Grassmannian
cluster algebras (including the set of A-coordinates) just by carefully studying the Gröbner
structure of the Plücker ideals.

3.1 Gr(2, 5)

The Gr(2, 5) web matrix, written in (3.4), allows us to write the 10 Plücker variables pij
in terms of the two X -coordinates (x11, x12) as

p1i = p23 = 1, p24 = 1 + x11, p25 = 1 + x11 + x11x12,

p34 = x11, p35 = x11 + x11x12, p45 = x11x12. (3.8)

Taking these expressions we can compute the corresponding tropical fan via the Minkowski
sum operation of e.g. gfan [48] and obtain the Speyer-Williams fan. The resulting fan
depicted in figure 4. It has five regions of linearity whose boundaries are given by the
five rays

{(1, 0), (0, 1), (−1, 0), (0,−1), (1,−1)}. (3.9)

Note, the tropical fan as described is parameterised in the space of the (x̃11, x̃12) variables.
However, as discussed in [21, 47], we can map the five rays above to those of the positive
tropical Grassmannian [32] presented in section 2.2, by taking the scalar product of the
unit vectors eij with the vector of tropicalised Plücker coordinates evaluated at particular
values of the x̃ variables, i.e.

ev : (x̃11, x̃12) 7→
∑

1≤i<j≤5
p̃ij(x̃11, x̃12)eij . (3.10)

The five rays given above up to lineality map to {e12, e45, e23, e15, e34}. In particular, the
regions between the rays of figure 4 map to the red edges between the corresponding rays
in figure 2.

The positive tropical Grassmannian Trop+(I2,5) is the image under the map (3.10)
of the Speyer-Williams fan. In particular, note that in this case the fan structures map
precisely which in fact is the case for all Gr(2, n) Grassmannians. It is important to note
that the fan structures are not the same in general, as is already the case for Gr(3, 6). While
the support of the Speyer-Williams and positive tropical fans coincide, their fan structures
do not, and Trop+(Ik,n) can be viewed as a refinement of the Speyer-Williams fan.
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x̃11

x̃12

Figure 4. The tropical fan Trop+(I2,5) via the Speyer-Williams construction.

4 Alphabets and adjacency from the Gröbner fan

In the case of Gr(2, n), the Speyer-Williams fan and the cluster fan coincide since the full set
of A-coordinates are given solely by Plückers. For the remaining finite-type Grassmannians
this is no longer the case. In this section we wish to begin with the Speyer-Williams fan,
by tropicalising only the Plücker coordinates, and see where the additional information
of the missing A-coordinates and adjacency conditions is hidden inside the structure of
Trop+(Ik,n) and GF (Ik,n). This question is inspired by the ideas appearing in [1]. Before
we begin let us remind ourselves where we will find this additional information:

Cluster variables. The missing A-coordinates appear as non-prime factors in the initial
ideals of maximal cones of Trop+(Ik,n).

Forbidden pairs. Upon extending the ideal by the missing A-coordinates the rays of
Trop+(Ik,n) span a single maximal Gröbner cone. The initial ideal of this maximal Gröbner
cone, of the extended ideal, provides us with a list of monomials which are exactly the
forbidden pairs of A-coordinates.

4.1 Gr(3, 6)

The case of Gr(3, 6) was covered in detail in [1] and we review here the relevant parts of
the discussion. The Plücker Ideal I3,6 is generated by three and four-terms relations of
the form

p123p145 + p125p134 − p124p135 = 0, . . . (4.1)
p123p456 − p156p234 + p146p235 − p145p236 = 0, . . . (4.2)

in the ring of polynomials in the 20 Plücker coordinates pijk.
The tropical fan Trop(I3,6) was studied in [32, 49, 50]. It is simplicial with an f -vector

given by
(1, 65, 550, 1395, 1035), (4.3)
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The 65 rays are given by the permutation copies of the following three basic types [32, 51],

e123,

e123 + e124 + e134 + e234,

e123 + e124 + e134 + e234 + e125 + e126 . (4.4)

The positive part of the tropical fan Trop+(I3,6) is spanned by 16 rays given by the cyclic
copies of the rays listed above in (4.4) (six of the first type, six of the second and four
of the third). By restricting to the subfan spanned by these rays we obtain the positive
tropical fan Trop+(I3,6) with the f -vector

(1, 16, 68, 104, 52). (4.5)

To obtain the corresponding Speyer-Williams fan we first evaluate all Plücker coor-
dinates as minors of the web matrix W (3,6), as defined in (3.1). Then we tropicalise the
resulting polynomials as explained in section 3. Note, the frozen Plücker coordinates
pii+1i+2 are themselves monomial and do not contribute to the structure of the fan. The
fan obtained is spanned by 16 rays given by [33]

(1, 0, 0, 0), (−1, 0, 0, 0), (1,−1, 0, 0), (0, 0, 1,−1),
(0, 1, 0, 0), (0,−1, 0, 0), (1, 0,−1, 0), (−1, 0, 0, 1),
(0, 0, 1, 0), (0, 0,−1, 0), (1, 0, 0,−1), (0, 1, 1,−1),
(0, 0, 0, 1), (0, 0, 0,−1), (0, 1, 0,−1), (1,−1,−1, 0) , (4.6)

in x̃ space with the ordering (x̃11, x̃21, x̃12, x̃22). The maximal cones of the fan are four-
dimensional regions within which all minors are linear, which can be intersected with
the unit sphere to produce 3-dimensional facets of a polyhedral complex. The fan has
48 maximal facets given by 46 terahedra and 2 bipyramids. They themselves have 2-
dimensional boundaries corresponding to some minor being between two regions of linearity.
There are 98 of these 2-dimensional boundaries, which themselves are bounded by 66 edges,
which are further bounded by 16 points. The 16 points correspond to the intersection of
the rays in (4.6) with the unit sphere. This information can be summarised by the f -vector
given by f3,6 = (1, 16, 66, 98, 48). Sometimes we would also like to keep information on the
number of vertices of each facet, for this we use the notation

f3,6 = (10, 161, 662, 983, 464 + 25),

where we understand the right most element as 46 tetrahedrons (4-vertex objects) and two,
non-simplicial, bipyramids (5-vertex objects). The two bipyramids will play a role in the
following discussion so let us discuss their structure in more detail. They are each spanned
by 5 rays from (4.6) as follows,

b1 = span{(−1, 0, 0, 1), (0, 0, 1, 0), (−1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1,−1)}
:= span{b11, b12, b13, b14, b15},

b2 = span{(1,−1,−1, 0), (1, 0,−1, 0), (1,−1, 0, 0), (0, 0, 0,−1), (1, 0, 0,−1)}
:= span{b21, b22, b23, b24, b25}. (4.7)
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As discussed before in the example of Gr(2, 5), we can map the Speyer-Williams fan
to the positive tropical Grassmannian discussed in section 2 via the map

ev : (x̃11, x̃12, x̃21, x̃22) 7→
∑

1≤i<j<k≤6
p̃ijk(x̃11, x̃12, x̃21, x̃22)eijk, (4.8)

with the eijk comprising the unit vectors in R20,

e123 = (1, 0, . . . , 0) ,
...

e456 = (0, . . . , 0, 1) . (4.9)

For example, modulo the lineality shift of I3,6, the five rays of the bipyramid b1 map to (as
discussed in [21])

b11 7→ e123 + e124 + e125 + e126 + e134 + e234 ,

b12 7→ e123 + e124 + e134 + e234 ,

b13 7→ e125 + e126 + e156 + e256 ,

b14 7→ e345 + e346 + e356 + e456 ,

b15 7→ e123 + e124 + e134 + e234 + e345 + e346 . (4.10)

In particular note that image of the centre of the bipyramid can be represented in two
equivalent ways (as always modulo lineality),

ev(b11) + ev(b15) = ev(b12) + ev(b13) + ev(b14) . (4.11)

The sixteen rays given in (4.6) map to the sixteen rays of Trop+(I3,6) but the fan
structures differ slightly. In fact, Trop+(I3,6) which, as introduced in section 2, inherits its
fan structure from the Gröbner fan GF (I3,6), has two additional edges and six additional
triangles in comparison to the Speyer-Williams fan. In other words, as a fan Trop+(I3,6)
is a refinement of (the image under ev of) the Speyer-Williams fan. The additional edges
and triangles actually slice each of the two bipyramids into three tetrahedra, each with its
own initial ideal, as illustrated in figure 5.

Related to the splitting of the bipyramids (and in contrast with the Gr(2, n) case), the
16 rays of Trop+(I3,6) do not single out an individual maximal Gröbner cone of GF (I3,6).
In fact, calculating initial ideals inside the span of the 16 positive rays of Trop+(I3,6) we
find nine maximal Gröbner cones. The splitting of the bipyramids can be understood as
each bipyramid intersecting three of the nine maximal Gröbner cones spanned by the rays
of Trop+(I3,6).

As shown in [1], we can resolve the span of the positive tropical rays into a single
maximal Gröbner cone by extending the ideal. To decide how to extend the ideal we
search the maximal cones of Trop+(I3,6) for initial ideals which are not prime and whose
factors will provide for us the missing A-coordinates. In fact the bipyramids themselves
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=b12 b14

b11

b15

b13

+

p126p345 − p125p346

+

p124p356 − p123p456 p256p134 − p234p156

Figure 5. The image of the bipyramid b1 inside Trop+(I3,6), on the left hand we have the full
bipyramid with its 5 rays, on the right the bipyramid is split into three tetrahedra by the structure
of the Gröbner fan. Each tetrahedron is labelled by the quadratic non-prime factor found in the
initial ideal. Note all three expressions are equivalent modulo the Plücker relations.

are the source of the non-prime initial ideals. The three non-prime initial ideals generated
inside b1 can be written as the intersection of two prime ideals as

inb1\{b12}(I3,6) = 〈inb1\{b12}(I3,6) ∪M1〉 ∩ 〈inb1\{b12}(I3,6) ∪ {p256p134 − p234p156}〉,
inb1\{b13}(I3,6) = 〈inb1\{b13}(I3,6) ∪M1〉 ∩ 〈inb1\{b13}(I3,6) ∪ {p124p356 − p123p456}〉,
inb1\{b14}(I3,6) = 〈inb1\{b14}(I3,6) ∪M1〉 ∩ 〈inb1\{b14}(I3,6) ∪ {p126p345 − p125p346}〉.

Similarly for b2 we have the cyclic copy of the above given by

inb2\{b22}(I3,6) = 〈inb2\{b22}(I3,6) ∪M2〉 ∩ 〈inb2\{b22}(I3,6) ∪ {p145p236 − p123p456}〉,
inb2\{b23}(I3,6) = 〈inb2\{b23}(I3,6) ∪M2〉 ∩ 〈inb2\{b23}(I3,6) ∪ {p136p245 − p126p345}〉,
inb2\{b24}(I3,6) = 〈inb2\{b24}(I3,6) ∪M2〉 ∩ 〈inb2\{b24}(I3,6) ∪ {p156p234 − p146p235}〉.

In the above equations we understand inb1\{b11}(I3,6) for instance, as the initial ideal of
I3,6 associated to the cone spanned by the rays b1 \ {b11} and we have defined the sets of
monomials

M1 = {p235, p236, p245, p246, p135, p136, p145, p146},
M2 = {p124, p125, p134, p135, p246, p256, p346, p356}.

Most importantly notice the three quadratic non-prime factors appearing in each cone
modulo the Plücker ideal are equivalent to either

p12[34]56 or p23[45]61, (4.12)

where we have defined pij[kl]mn = pijlpkmn − pijkplmn. These are exactly the two missing
A-coordinates, which along with the 14 monomials contained in M1∪M2, make up the full
set of active A-coordinates.
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The appearance of the quadratic A-coordinates (4.12) suggests extending our original
ideal by including them as new variables. Extending the Plücker ideal as

I ′3,6 = I3,6 ∩ 〈q1 − p12[34]56〉 ⊂ R[p123, . . . , p456, q1], (4.13)

defines a new ideal and hence a new Gröbner fan GF (I ′3,6). The Speyer-Williams fan can
also be refined by evaluating q1 = p12[34]56,3 in terms of minors of the web matrix and
including it in the set of tropical polynomials defining the fan. In this way we obtain a
refined Speyer-Williams fan with f -vector

f ′3,6 = (10, 161, 662, 993, 484 + 15), (4.14)

where we now have only a single five-vertex bipyramid (b2). The bipyramid b1 has been
broken into two tetrahedra with an additional triangle separating them. Indeed, let us
consider the natural extension of the map (4.8)

ev′ : (x̃11, x̃12, x̃21, x̃22) 7→
∑

1≤i<j<k≤6
p̃ijk(x̃11, x̃12, x̃21, x̃22)eijk

+ q̃1(x̃11, x̃12, x̃21, x̃22)eq1 (4.15)

which takes a point in the refined Speyer-Williams fan into Trop+(I ′3,6), where we intro-
duced eq1 as a unit vector for the q1 direction. Under this map the images of the five rays
of b1 are now [47]

b11 7→ e123 + e124 + e125 + e126 + e134 + e234 + eq1 ,

b12 7→ e123 + e124 + e134 + e234 + eq1 ,

b13 7→ e125 + e126 + e156 + e256 + eq1 ,

b14 7→ e345 + e346 + e356 + e456 + eq1 ,

b15 7→ e123 + e124 + e134 + e234 + e345 + e346 + eq1 , (4.16)

and the relation (4.11) no longer holds if we replace ev with ev′.
The transition from f3,6 to f ′3,6 can be seen as adding a triangle to the equator of the

bipyramid b1 as shown in figure 6 which now splits into two tetrahedra whose images in
Trop+(I ′3,6) now correspond to prime initial ideals. In other words, at least as far as these
five rays are concerned, the fan structures of the extended Speyer-Williams fan and the
positive tropical fan of I ′3,6 match. Also we find that the sixteen rays of Trop+(I ′3,6) now
span only 3 maximal Gröbner cones inside GF (I ′3,6).

Extending the ideal further as

Iext
3,6 = I ′3,6 ∩ 〈q2 − p23[45]61〉 ⊂ R[p123, . . . , p456, q1, q2], (4.17)

defines yet again a new Gröbner fan GF (Iext
3,6 ). We can further refine the Speyer-Williams

fan by tropically evaluating q2 = p23[45]61. This fan was referred to as the cluster fan in [47]
3Similar to the notation in (2.1) p12[34]56 = p124p356 − p123p456.

– 15 –



J
H
E
P
1
1
(
2
0
2
3
)
0
0
2

→b12 b14

b11

b15

b13

+

Figure 6. The bipyramid b1 maps to two tetrahedra inside Trop+(I ′
3,6), both of which are

associated to prime ideals.

because it coincides with the g-vector fan of the Gr(3, 6) cluster algebra. The cluster fan
has f-vector

f ext
3,6 = (10, 161, 662, 1003, 504) (4.18)

and now its fan structure coincides with that of Trop+(Iext
3,6 ) which is the image of the

cluster fan under the natural extension of (4.15),

evext : (x̃11, x̃12, x̃21, x̃22) 7→
∑

1≤i<j<k≤6
p̃ijk(x̃11, x̃12, x̃21, x̃22)eijk (4.19)

+ q̃1(x̃11, x̃12, x̃21, x̃22)eq1 + q̃2(x̃11, x̃12, x̃21, x̃22)eq2 .

Note that Trop+(Iext
3,6 ) contains no non-prime maximal cones! The effect of the further

extension can be viewed as adding a triangle to the equator of bipyramid b2 in an exact
copy of figure 6, while the rays of b2 are extended in the new eq2 direction in an analogous
manner to (4.16).

Furthermore, the rays of Trop+(Iext
3,6 ) now span a single maximal Gröbner cone whose

initial ideal is generated by

{q1q2, p124q2, p125q2, p134q2, p135q1, p135q2, p124p135, p136q1, p124p136, p125p136, p145q1,

p146q1, p125p146, p135p146, p235q1, p124p235, p134p235, p146p235, p236q1, p124p236, p125p236,

p134p236, p135p236, p145p236, p245q1, p134p245, p135p245, p136p245, p246q1, p246q2, p125p246,

p134p246, p135p246, p136p246, p145p246, p235p246, p256q2, p134p256, p135p256, p136p256, p145p256,

p146p256, p346q2, p125p346, p135p346, p145p346, p235p346, p245p346, p356q2, p124p356, p145p356,

p146p356, p245p356, p246p356},

which are exactly the 54 forbidden pairs of A-coordinates (i.e. those pairs which never sit
together in a cluster).

In summary, we have seen explicitly that the non-prime initial ideals provided the
missing quadratic A coordinates. These new variables also tell us how to extend the
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Plücker ideal I3,6 to a new ideal Iext
3,6 so as to find a single maximal Gröbner cone inside the

span of the rays of the corresponding positive tropical fan Trop+(Iext
3,6 ). The initial ideal

associated to this maximal Gröbner cone provides the adjacency information of the cluster
algebra. Thus these two key pieces of information (A-coordinates and adjacency) can be
obtained from the Gröbner structure of the relevant ideals without direct reference to the
cluster algebra at all.

4.2 Gr(3, 7) ∼= Gr(4, 7)

We now go beyond the results of [1] and consider Gr(3, 7) ∼= Gr(4, 7). We again wish
to compare the structure of the positive tropical fan Trop+(I3,7) to the Speyer-Williams
fan obtained from tropicalising the 35 Plücker coordinates evaluated as minors of the web
matrix.

Let us begin by detailing the structure of the full tropical fan Trop(I3,7) which was
calculated in [49, 52]. The tropical fan Trop(I3,7) is simplicial with an f -vector given by

(1, 721, 16800, 124180, 386155, 522585, 252000) . (4.20)

where the 721 rays are given by the permutation copies of [53]

b1,1234567 = e123,

b2,1234567 = e123 + e124 + e134 + e234,

b3,1234567 = e123 + e124 + e125 + e126 + e127,

b4,1234567 = e123 + e124 + e125 + e126 + e127 + e134 + e234,

b5,1234567 = e123 + e124 + e125 + e126 + e127 + e134 + e156 + e234 + e256,

b6,1234567 = b3,1234567 + b3,3456712 + b3,6712345. (4.21)

The positive part of the tropical fan Trop+(I3,7) is spanned by 49 rays given by the cyclic
copies of

{b1,1234567, b2,1234567, b3,1234567, b4,1234567, b4,1562347, b5,1234675, b6,1234567}. (4.22)

By restricting to the subfan spanned by these rays we obtain the positive tropical fan
Trop+(I3,7) with the f -vector

(1, 49, 490, 1964, 3633, 3192, 1064). (4.23)

Now we turn our attention to the Speyer-Williams fan [33] whose structure is sum-
marised by the f-vector

f3,7 = (1, 42, 392, 1463, 2583, 2163, 5956 + 637 + 288 + 79), (4.24)

where we have included the information on the number of vertices for the maximal cones
only (in the final element above). This fan is spanned by 42 rays given by the first six
elements of (4.22) along with their cyclic copies and has 6-dimensional maximal cones.
Note that Trop+(I3,7) has seven more rays than the Speyer-Williams fan. These additional
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p124p367 − p123p467

+

p167p234 − p134p267 p127p346 − p126p347

Figure 7. On the left a 6-vertex simplex of the Speyer-Williams fan (note the green node at the
top really stands for a combination of three vertices). On the right the refinement of the Speyer-
Williams cone by the positive tropical fan Trop+(I3,7). Note the appearance of a new orange vertex.

rays correspond to b6,1234567 and cyclic copies. As discussed in [21, 53] these extra rays
actually appear in the middle of triangular faces formed by three rays of b3-type.

As discussed in previous cases, we can map the Speyer-Williams fan to the positive
tropical Grassmannian Trop+(I3,7) via the evaluation map,

ev : (x̃11, . . . , x̃23) 7→
∑

p̃ijk(x̃11, . . . , x̃23)eijk . (4.25)

Once again we find that the fan structure of Trop+(I3,7) is a refinement of the (image of
the) Speyer-Williams fan. Let us explore this refinement in more detail.

Let us look at each of the maximal cones in turn starting with the six-vertex cones of
the Speyer-Williams fan. There 595 simplicial maximal cones of the Speyer-Williams fan:
567 are un-refined by the positive tropical fan, and 28 are refined by the positive tropical
fan coming in 2 dihedral classes. As an example, a representative from the first dihedral
class has the rays given by

{b1,5671234, b4,1234567, b4,6712345, b3,6712345, b3,3456712, b3,1234567} (4.26)

and is refined by the tropical fan with three simplices given by b1,5671234 b4,1234567 b4,6712345 b3,6712345 b3,1234567 b6,1234567
b1,5671234 b4,1234567 b4,6712345 b3,6712345 b3,3456712 b6,1234567
b1,5671234 b4,1234567 b4,6712345 b3,3456712 b3,1234567 b6,1234567

 . (4.27)

Note, in particular the appearance of the extra positive ray b6,1234567, which is a ray of
Trop+(I3,7) but not of the Speyer-Williams fan. We give a sketch showing the appearance
of the extra ray in the middle of a face as shown in figure 7. Below each part of the
refinement in figure 7 we note the missing binomial contained as a factor in the non-prime
initial ideal associated to this cone of Trop+(I3,7).

The second dihedral set of 6-vertex cones which are refined by the positive tropical fan
have the rays (in the Speyer-Williams fan) given by

{b1,5671234, b1,3456712, b4,6712345, b3,6712345, b3,3456712, b3,1234567} (4.28)
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which are split into three simplices (in the positive tropical fan) with the rays b1,5671234 b1,3456712 b4,6712345 b3,6712345 b3,1234567 b6,1234567
b1,5671234 b1,3456712 b4,6712345 b3,6712345 b3,3456712 b6,1234567
b1,5671234 b1,3456712 b4,6712345 b3,3456712 b3,1234567 b6,1234567

 . (4.29)

Again we note the appearance of a spurious positive ray. The picture for this cone looks
identical to figure 7, with the same missing binomials appearing, but with the coloured
nodes referring to (4.28) and (4.29) instead of (4.26) and (4.27).

The remaining 6-vertex cones coincide in both fans, i.e. are unrefined. The remaining
maximal cones have 7, 8 or 9 vertices. We explore their refinements in appendix A, with
particular focus on the ‘missing binomials’ appearing as factors of non-prime initial ideals.

In summary, we find all 14 missing quadratic A-coordinates (with each one arising as
a factor of non-prime initial ideals in many cones).

q51 = p12[34]56 and cyclic,
q61 = p61[23]45 and cyclic, (4.30)

appearing as non-prime factors of the 79 maximal cones. By extending the ideal by all 14
variables as

Iext
3,7 = I3,7 ∩ 〈q51 − p12[34]56, . . . , q67 − p56[12]34〉 ⊂ R[p123, . . . , p567, q51, . . . , q67], (4.31)

the extended Speyer-Williams fan (again the cluster fan) and the positive tropical fan
Trop+(Iext

3,7 ) become identical simplicial fans with the f -vector

f ext
3,7 = (1, 42, 399, 1547, 2856, 2499, 833).

Moreover, the rays of Trop+(Iext
3,7 ) span a single maximal Gröbner cone in GF (Iext

3,7 ) whose
initial ideal gives us precisely the list of 462 forbidden neighbours for 7-point scattering
amplitudes as given in [18].

4.3 Gr(3, 8)

In the space of variables (x̃11, x̃12, x̃13, x̃14, x̃21, x̃22, x̃23, x̃24) the Speyer-Willliams fan is
spanned by 120 rays with 8-dimensional maximal cones. The structure of the fan is sum-
marised by the f-vector

f3,8 = (1, 120, 2072, 14088, 48544, 93104, 100852, 57768, 13612),

with the 13612 maximal cones given by

96728 + 16969 + 109210 + 48011 + 41612 + 10413 + 8814 + 3215 + 2416 + 817.

For the case of Gr(3, 8) there two new features which we wish to emphasise. First, there are
8 more A-coordinates than there are rays of the Speyer-Williams fan, which must appear
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when we begin to extend the ideal. Second, the A-coordinates not only contain expressions
quadratic in the Plückers but also contain cubic expressions given by

{p12[34]5[67]89, p12[35]8[67]45, p12[34]8[67]35} and cylic, (4.32)

where we have made the definition pij[kl]m[nr]st = pijlpkm[nr]st − pijkplm[nr]st.
Up to this point we have been searching the entire positive part of the tropical fan

for the appearance of non-prime factors. However, for Gr(3, 8) this calculation becomes
cumbersome and instead we satisfy ourselves with a local approach. Concretely, we begin
by searching for non-prime factors appearing in the 17-vertex cone spanned by the rays

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
−1 −1 −1 −1 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 0
0 0 −1 −1 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 −1 0 0 0 0 −1 −1 0 0 0
−1 −1 −1 −1 −1 0 −1 0 0 0 −1 −1 0 0 −1 −1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1
1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0

 , (4.33)

where we find the following 6 non-prime factors4

{p81[23]45, p81[23]46, p56[78]14, p56[78]23, p23[45]71, p23[46]71}. (4.34)

Including these factors into the Speyer-Williams calculation we arrive at a fan with
121 rays and maximal cones given by

114548 + 16969 + 97110 + 41211 + 32812 + 8913 + 6914 + 2815 + 1716 + 717,

where the new ‘18th’ ray is given by

(1, 1,−2, 0, 0,−1, 0, 1). (4.35)

An interesting question to ask is which of the maximal cones contain this new ray, they
are given by

2708 + 709 + 4610 + 1811 + 1012 + 413 + 214. (4.36)

By searching inside the 214 cones we are able to find the final cyclic type of quadratic
non-prime factor p56[71]23.

Alternatively, we can consider the subset of cones of the extended Speyer-Williams fan
contained in the span of the 18 rays described above, we find 24 such cones interestingly
all of which contain the new ray; 18 of these cones are simplicial; 4 contain 9 vertices; and
2 contain 10 vertices and are spanned by the rays

(1, 2, 3, 4, 5, 6, 10, 15, 17, 18) and (6, 8, 9, 11, 12, 13, 14, 16, 17, 18). (4.37)

Searching in these two cones we find three additional non-prime factors

{p23[46]71p578− p23[45]71p678, p81[23]46p578− p81[23]45p678, p56[78]23p146− p123p456p678}, (4.38)

which are the three classes of cubic A-coordinates appearing in the Gr(3, 8) cluster algebra.
4Note, we do not include non-prime factors related to those in the list by rotation.
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To summarise we are able to find one representative from each cyclic class of A-
coordinate appearing as non-prime factors of initial ideals of Trop+(I3,8) and its various
extensions. Therefore, cyclic symmetry would suggest, by following the same procedure
outlined above considering each of the 7 remaining 17-vertex cones in turn we would recover
the entire set of A-coordinates in a similar manner. After extending the ideal by the full
set of A-coordinates the results of [35], applying to any finite cluster algebra of geometric
type, tell us that we would again see the rays of Trop+(Iext

3,8 ) spanning a single maximal
Gröbner cone whose initial ideal is generated by the forbidden pairs of the cluster algebra.

The procedure outline above for locally resolving the Speyer-Williams fan by inclusion
of non-prime factors may prove useful when considering how square root letters appear for
Gr(4, 8) from the structure of the Gröbner fan. Such square root letters were accounted
for in [22] by considering coordinates associated to so called limit rays arising from limits
of affine sequences of mutations inside the Gr(4, 8) cluster algebra. Interestingly, these
limit rays also show up in the Speyer-Williams fan, where in particular they appear in
non-simplicial maximal cones with large numbers of vertices. Presumably, by attempting
to locally resolve these special cones, as we have done for the case of Gr(3, 8) above, we
will see that instead an infinite number of non-prime factors is now needed corresponding
to the infinite mutation sequences in the cluster picture. It would be interesting to study
this in further detail.

5 Missing binomials and cluster variables

In this section we explain the techniques used above from the point of view of cluster
algebras.

5.1 The g-vectors as multiweights

We have already seen Fomin-Zelevinsky’s g-vectors appear as rays in the Speyer-Williams
fan. However, the g-vectors of Plücker coordinates or more general cluster variables carry
even more information, they can detect whether a given cone in the Speyer-Williams fan
corresponds to a prime cone in the positive tropicalization. To be more precise we need to
understand how g-vectors can be used as multiweights to compute initial ideals. For this
purpose it is important to work with extended g-vectors that can be computed recursively
(just like normal g-vectors) with the only difference that also frozen nodes are taken into
account. For example, for the quiver in figure 3, extended g-vectors are elements in Z7

(with entries corresponding to all nodes) while normal g-vectors lie in Z2 (with entries
corresponding to the active nodes 〈13〉 and 〈14〉). Given a quiver Q with n active and
m frozen nodes we associate a matrix B := BQ with entries for i an active node and j

any node
bij := #{arrows i→ j} −#{arrows j → i}.

This matrix defines a partial order on Zn+m (called the dominance order) where p >B q if
and only if there is an element r ∈ Zn+m

≥0 such that p = q +Br.
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Example 5.1. Consider Gr(2, 4) with Plücker ideal I = (p12p34 − p13p24 + p14p23). For
the cluster algebra consider the quiver

〈13〉 〈14〉

〈23〉 〈34〉

〈12〉

with associated matrix B=(0, 1,−1,−1, 1)T and cluster variables s={p13, p12, p14, p23, p34}.
The extended g-vectors of Plücker coordinates are

gs(p13) = (1, 0, 0, 0, 0), gs(p24) = (−1, 0, 1, 1, 0), gs(p12) = (0, 1, 0, 0, 0),
gs(p14) = (0, 0, 1, 0, 0), gs(p23) = (0, 0, 0, 1, 0), gs(p34) = (0, 0, 0, 0, 1).

In particular, the monomials in the Plücker relation have multiweights

(0,1,0,0,1)
p12p34 −

(0,0,1,1,0)
p13p24 +

(0,0,1,1,0)
p14p23 .

As (0, 0, 1, 1, 0) = (0, 1, 0, 0, 1)+(0, 1,−1,−1, 1) we deduce that (0, 0, 1, 1, 0) >B (0, 1, 0, 0, 1).
Hence, the initial form is −p13p24+p14p23 which corresponds to a prime cone in Trop+(I2,4).

We are interested in the Gröbner fan structure of the positive part of the tropicalization.
However, it is computationally expensive to compute initial ideals which is necessary to
determine this fan structure. The Speyer-Williams fan (a coarsening of the g-vector fan)
on the other hand is easy and fast to compute. We can use the g-vectors to compare the
fan structures as follows.5

Corollary 5.1. [55, 56] Let s be a seed in the cluster algebra of a finite type Grassmannian
with n mutable and m frozen nodes. Then the initial ideal of the Plücker ideal with respect
to the g-vectors of Plücker coordinates obtained from s is prime if and only if every point
in Zn × Zm≥0 can be obtained as a positive combination of g-vectors of Plücker coordinates.

In fact, it suffices to consider the usual g-vectors in Zn to verify the Corollary as the
extended g-vectors of frozen Plücker coordinates always span Zm≥0. Whenever the Corollary
fails to apply to a seed s, the initial ideal obtained from extended g-vectors is not prime
and we expect to find missing binomials.

5.2 Cluster variables as missing binomials

The phenomenon observed in section 4 can be explained from the point of view of cluster
algebras and tropical geometry: for every cluster algebra of finite type A there exists a
presentation

A ∼= K[x1, . . . , xN ]/I (5.1)
5This result relies on the theory of valuations and its connection to tropicalization [54]. Further, it uses

the fact that the g-vector fan is complete for finite type cluster algebras.
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where x1, . . . , xN correspond to all cluster variables and I is the ideal obtained by saturat-
ing6 the ideal generated by all exchange relations (see e.g. [57], section 6.8). In the cases
of the Grassmannian Gr(3, n) with n ∈ {6, 7, 8} the Plücker ideal I3,n is obtained from
I = Iext3,n by eliminating those cluster variables that are not Plücker coordinates.7

Let us assume additionally that A is positively graded, as is true for the cases of interest
to us. As mentioned above [35] implies that there exists a unique maximal cone C in the
Gröbner fan of I whose initial ideal encodes the adjacencies of all cluster variables. In
other words, the monomial initial ideal is the Stanley-Reisner ideal of the cluster complex
(cluster fan) that is minimally generated by degree two monomials of cluster variables that
do not occur in any seed together (these are called non-compatible by Fomin-Zelevinsky).
The results predict that the procedure of adding (the right) missing binomials as variables
to the presentation converges.

The presentation of A from (5.1) is of such a form that is for every seed s there exists
a maximal cone τs ∈ Trop+(I) such that the initial ideal with respect to the multiweights
determined by g-vectors of s coincides with the initial ideal of τs [56]. Moreover, in I we
have a trinomial corresponding to every exchange relation. It is not hard to see that for
every such trinomial

f = xx′ −M1 −M2

and every seed s we have either

inτs(f) = xx′ −M1 or inτs(f) = xx′ −M2.

Suppose that one of the monomials M1,M2 consists of a single variable, say M1 = y. Then
y = xx′ −M2 holds in A. All exchange relations involving y yield 4-term relations in I.
For example,

yy′ = M ′1 +M ′2 gives y′(xx′ −M2) = M ′1 +M ′2.

What we observe in the case of the Grassmannians is that there exist weight vectors
w ∈ Trop+(I) such that

inw(y′(xx′ −M2)−M ′1 −M ′2) = y′(xx′ −M2).

In this case xx′ −M2 is a missing binomial contributing to the fact that the initial ideal
is not prime. If on the other hand y is a variable in the chosen presentation of the cluster
algebra then xx′− y−M2 ∈ I and so xx′−M2 ∈ inw(I) is not ‘missing’. This may happen
precisely for those seeds (and their g-vectors) for which the Corollary 5.1 does not apply.

Example 5.2. For Gr(3, 6) take the seed s with mutable cluster variables p124, p246, p256
and p346 (see figure 8). According to the computations in section 4.1 and the results in [1]

6The saturation of an ideal is an ideal that contains all elements f for which there exist a monomial
xm1

1 · · ·xmN
N such that f · xm1

1 · · ·xmN
N ∈ I.

7The elimination ideal is obtained from I by intersecting with the smaller polynomial ring generated
only by Plücker variables.
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p135 p125 p126

p134 p356 p156

p234 p356 p456

p123

Figure 8. The Gr(3, 6) quiver of the seed used in Example 5.2.

this seed is associated with one of the bipyramids. Hence, Corollary 5.1 should fail in this
case. The (truncated) g-vectors of mutable Plücker coordinates with respect to s are

gs(p124) = (0, 1, 0, 0), gs(p125) = (0, 0, 0,−1), gs(p134) = (−1, 0, 0, 0),
gs(p135) = (−1,−1, 1,−1), gs(p136) = (−1,−1, 1, 0), gs(p145) = (−1, 0, 1,−1),
gs(p146) = (−1, 0, 1, 0), gs(p235) = (0,−1, 1,−1), gs(p236) = (0,−1, 1, 0),
gs(p245) = (0, 0, 1,−1), gs(p246) = (0, 0, 1, 0), gs(p256) = (1, 0, 0, 0),
gs(p346) = (0, 0, 0, 1), gs(p356) = (0,−1, 0, 0).

Notice that all g-vectors lie in the half space {(a1, a2, a3, a4) ∈ Z4 : a3 ≥ 0}. So, Corol-
lary 5.1 does not apply.

6 Massless scattering ideals

So far our discussion has been focused on extracting A-coordinates and adjacency rules
from the Gröbner fan of the Plücker ideal for the finite type Grassmannians Gr(3, n)
for n = 6, 7, 8. In fact, in [35], it was shown that the data of all cluster variables and
their adjacencies in finite type cluster algebras of geometric type can be recovered from
polyhedral data of a single maximal Gröbner cone of an appropriate ideal. However, what
we are most interested in is how much physical information can be extracted from the
Gröbner fan. For the cases of Gr(4, 6) and Gr(4, 7) the answer is the entire symbol alphabet
and adjacency rules relevant for constructing the hexagon and heptagon amplitudes of
planar N = 4 SYM. This motivates the question of whether the Gröbner fan provides a
useful tool for the study of other kinematic ideals beyond the dual-conformal invariant case?

In this section we hope to provide a positive answer to this question by considering
the example of general five-point massless scattering relevant for e.g. QCD processes. At
two loops, all functions relevant for planar five-particle scattering were computed in [36],
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leading to the 26 letter alphabet Ap. This was then extended to 31 letters relevant for the
non-planar case Anp in [37] where it was used to bootstrap individual two-loop Feynman
integrals.

The goal of this section is to demonstrate how an analogous exploration of the Gröbner
fan associated to a suitably defined five-point kinematic ideal I5pt can generate (almost)
the entire non-planar alphabet relevant for constructing (at least at two loops) five-point
massless amplitudes. Note that we do in fact miss one symbol letter, known as W31 in [37].
However, the failure to recover W31 is consistent with the various calculations made for
five-point processes, where it has been observed to be absent from (the suitably defined
finite part of) the two-loop N = 4 SYM [39, 40] and N = 8 SUGRA [42, 43] amplitudes
at two-loops. Similar two-loop observations have been made for qq̄ → γγγ processes [58]
and gluon amplitudes [59, 60] in QCD.

It is important to note that the computation we present here is only an analogy to
the Grassmannian cases discussed in the previous sections for two reasons. Firstly, in
the case of the Grassmannian we imposed positivity conditions by considering only non-
prime factors appearing in the positive part of the tropical fan Trop+(Ik,n). However, for
the five-point ideal, we do not impose any such positivity conditions and consider non-
prime factors appearing in the full tropical fan Trop(I5pt). In part this is because we are
interested in non-planar theories, but also it is not totally clear, even in the planar case,
which positivity conditions to impose. We suspect that there may well be multiple relevant
positive regions. Secondly, in the case of the Grassmannian, having obtained the non-prime
factors, we subsequently used them in order to extend the ideal, perhaps repeating this
procedure multiple times as detailed for Gr(3, 8). This had the effect of eventually resolving
the positive tropical fan of the fully extended ideal into a collection of simplices all with
prime initial ideals. Furthermore, this singled out a single maximal Gröbner fan whose
initial ideal contained the forbidden pairs of A-coordinates, providing us with physical
adjacency conditions on the symbol alphabet in the cases of Gr(4, 6) and Gr(4, 7). For the
five-point case we perform no such extension however, again because we do not (yet) have
a canonical notion of the relevant positivity conditions. Having obtained the non-prime
factors appearing in the tropical fan we terminate the procedure since we already find the
full non-planar alphabet. Note therefore that we do not extract any adjacency rules. That
being said, it is encouraging that the same idea of symbol letters appearing as non-prime
factors of the kinematic ideal follows through to the case of five-point massless scattering.

6.1 The five-point two-loop symbol alphabet

The kinematics of five-point massless scattering is described on the five external momenta
pµi subject to the massless on-shell condition p2

i = 0 and momentum conservation
∑
i p
µ
i = 0.

Out of the momenta we can construct ten scalar products sij = 2pi · pj , five of which are
independent upon imposing momentum conservation. Following the choice of [38] they are
given by8

vi = sii+1 = 2pi · pi+1. (6.1)
8The five remaining non-adjacent scalar products may be written as s13 = s45 − s12 − s23 and its cyclic

rotations.
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Note that there are four independent dimensionless ratios that can be formed from these
variables. It will also prove useful to introduce the following Gram determinant

∆ = det(2pi · pj) = (tr5)2, (6.2)

where we have introduced the notation tr5 = tr(γ5/p4/p5/p1/p2). Note, when written in terms
of ‘β-variables’ [61]

√
∆ = tr5 can be expressed as a purely rational function.

The planar (two-loop) five point alphabet Ap = {W1, . . . ,W20} ∪ {W26, . . . ,W31} was
originally obtained in [36] and consists of 26 letters given by

Wi = vi, W5+i = vi+2 + vi+3, W10+i = vi − vi+3,

W15+i = vi+3 − vi − vi+1, W25+i = ai −
√

∆
ai +

√
∆
, W31 =

√
∆, (6.3)

where the i indices run from 1 to 5 and we have introduced the notation

ai = vivi+1 − vi+1vi+2 + vi+2vi+3 − vivi+4 − vi+3vi+4.

By closing the planar alphabet under permutations the authors of [37] generalised the
alphabet to the non-planar case Anp = Ap ∪ {W21, . . .W26}, where we introduce the five
additional non-planar letters given by

W20+i = vi+2 + vi+3 − vi − vi+1. (6.4)

As for the planar N = 4 SYM case the non planar alphabet Anp provides the starting
point for the construction of integrable polylogarithmic symbols relevant for the bootstrap
of five-point massless non-planar amplitudes/integrals [37].

6.2 Non-planar alphabet from a Gröbner fan

Inspired by the appearance of symbol letters (A-coordinates) as non-prime factors of the
Plücker ideal we wish to apply similar ideas to a suitably defined five-point ideal I5pt in
order to generate the non-planar alphabet Anp.

To define the kinematic space for general n-point massless scattering, instead of using
momentum twistor variables, it is instructive to consider spinor-helicity variables. We
introduce these in the usual way by defining each null momentum as a bispinor,

pαα̇i = (σµ)αα̇pµi = λαi λ̃
α̇
i . (6.5)

Then we consider the Lorentz invariant brackets9

〈ij〉 = λαi λjα , [ij] = λ̃α̇i λ̃iα̇ . (6.6)
9Note that we are interested in the generic case without dual conformal symmetry. One could use

momentum twistors also in this case, allowing for the appearance of the infinity bitwistor, i.e. for both
four-brackets 〈ijkl〉 and two-brackets 〈ij〉 = 〈ijI〉, however these variables are most natural in the case of
planar amplitudes with ordered external legs. Here we will not impose any particular ordering.
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The spinor brackets defined above are constrained by two sets of relations, the Plücker (or
Schouten) identities,

〈ij〉〈kl〉 − 〈ik〉〈jl〉+ 〈il〉〈jk〉 = 0; [ij][kl]− [ik][jl] + [il][jk] = 0, (6.7)

for 1 ≤ i < j < k < l ≤ n and momentum conservation,
n∑
j=1
〈ij〉[jk] = 0, (6.8)

for i, k ∈ {1, . . . , n}. Note that the Plücker relations are three-term relations, while the
momentum conservation relations can be three-term (for the off-diagonal case i 6= k) or
four-term (for the diagonal case i = k).

As we wish to recast the kinematic space in the language of polynomial ideals, we will
introduce new variables aij and ãij which obey the corresponding polynomial relations,

aijakl − aikajl + ailajk = 0 , ãij ãkl − ãikãjl + ãilãjk = 0 ,
n∑
j=1

aij ãjk = 0 . (6.9)

We take these relations to define an ideal Inpt on 2×
(n

2
)
variables aij and ãij .

We will study the ideal, I5pt, defined on the ten aij and ten ãij variables with i < j

organised as (a12, . . . , a45, ã12, . . . , ã45) and subject to (6.9) for n = 5. In particular, we
focus our attention on the Gröbner fan GF (I5pt) and tropical fan Trop(I5pt). Note the
ideal has a six-dimensional linear subspace (or lineality space), corresponding to the five
little group rescalings of the spinor variables,

λi → αiλi, λ̃i → α−1
i λ̃i ; aij → αiαjaij , ãij → α−1

i α−1
j ãij . (6.10)

and the single overall dimension rescaling,

λi → βλi , λ̃i → βλ̃i ; aij → β2aij , ãij → β2ãij . (6.11)

In fact we can identify the ideal I5pt with the Grassmannian Plücker ideal I3,6 via the
following identification of variables,

aij = pij6 , ãij = (−1)j−i−1pklm , (6.12)

where in the second equality {k, l,m} is the ordered complement of {i, j} in the set
{1, 2, 3, 4, 5}. Thus the aij correspond to all the Plücker variables involving the label
6, while the ãij give all those which do not. The Plücker relations for the aij and the
ãij together with the off-diagonal three-term momentum conservation relations, give the
three-term Plücker relations for Gr(3, 6) while the five diagonal four-term momentum con-
servation relations are the minimal set of four-term Plücker relations needed to complete
a generating set of the Plücker ideal for Gr(3, 6).

Thus to study the tropical fan Trop(I5pt) we can simply refer to results already de-
scribed for Gr(3, 6). In particular we know the fan has the f-vector (4.3) and, in particular,
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Figure 9. A bipyramid b1 of Trop(I5pt), on the left hand side we have the full bipyramid labelled
by its 5 rays, on the right hand side the bipyramid is split into three tetrahedra. Each tetrahedron
is labelled by the quadratic non-prime factor found in the initial ideal, where all three expressions
are equivalent modulo I5pt.

has 65 rays. In the variables aij and ãij used to define I5pt these rays take the following
form: 20 unit vectors eij and ẽij where eij is the unit vector in the aij direction and respec-
tively ẽij is the unit vector in the ãij direction; 5 vectors of the form zi =

∑
j 6=i eij , lineality

equivalent to z̃i =
∑
j 6=i ẽij ; 10 permutations of r45 = v123 + ẽ45, lineality equivalent to

r̃45 = ṽ123 + e45, where we have defined vijk = eij + eik + ejk and similarly for ṽijk; finally
the 30 permutations of y1,23,45 = v123 + ṽ145 = ỹ1,23,45.

Amongst the 1035 maximal cones only 45 are non-prime: 30 given by the permutation
copies of {y1,23,45, z1, r45,y1,45,23}; and an additional 15 given by the permutation copies
of {y1,23,45, r23, r45,y1,45,23}. As already described in our discussion of Gr(3, 6), these
tetrahedra fit together into bipyramids. In fact we have 15 such bipyramids across the full
tropical fan. As an example consider figure 9 where we have a single bipyramid: the left
tetrahedron with the rays {y1,23,45, z1, r45,y1,45,23}, produces the non-prime factor a12ã12 +
a13ã13 = 〈12〉[12] + 〈13〉[13]; transposing 2 ↔ 4 and 3 ↔ 5 we find the right tetrahedron
with the rays {y1,23,45, z1, r23,y1,45,23}, and non-prime factor a14ã14 + a15ã15 = 〈14〉[14] +
〈15〉[15]; finally the middle tetrahedron has the rays given by {y1,23,45, r23, r45,y1,45,23},
which produces the non-prime factor a23ã23 − a45ã45 = 〈23〉[23] − 〈45〉[45]. The three
non-prime factors appearing in the bipyramid are equivalant modulo the ideal I5pt.

To generate the full set of non-prime factors modulo the ideal I5pt we need only take the
permutation copies of 〈23〉[23]−〈45〉[45] which produces 15 quadratic expressions given by

〈23〉[23]− 〈45〉[45], 〈24〉[24]− 〈35〉[35], 〈25〉[25]− 〈34〉[34],
〈13〉[13]− 〈45〉[45], 〈14〉[14]− 〈35〉[35], 〈15〉[15]− 〈34〉[34],
〈12〉[12]− 〈45〉[45], 〈14〉[14]− 〈25〉[25], 〈15〉[15]− 〈24〉[24],
〈12〉[12]− 〈35〉[35], 〈13〉[13]− 〈25〉[25], 〈15〉[15]− 〈23〉[23],
〈12〉[12]− 〈34〉[34], 〈13〉[13]− 〈24〉[24], 〈14〉[14]− 〈23〉[23]. (6.13)
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Along with the {aij = 〈ij〉, ãij = [ij]} this provides us 35 expressions from which to form
homogenous combinations.

To see that we are in fact recovering the same content as the symbol alphabet Anp we
re-write the entire non-planar alphabet in terms of spinor helicity variables given by the
cyclic copies of10

W1 = 〈12〉[12], W6 = 〈34〉[34] + 〈45〉[45],
W11 = 〈34〉[34] + 〈35〉[35], W16 = 〈13〉[13],

W21 = 〈13〉[13] + 〈34〉[34], W26 = 〈45〉[51]〈12〉[24]
[45]〈51〉[12]〈24〉 ,

W31 = [45]〈51〉[12]〈24〉 − 〈45〉[51]〈12〉[24]. (6.14)

With this representation it is clear that letters {Wi}5i=1 ∪ {Wi}20
i=16 ∪ {Wi}30

i=26 are given
by multiplicative combinations of the {aij , ãij} variables. Furthermore, the remaining 15
letters {Wi}10

i=6∪{Wi}15
i=11∪{Wi}25

i=21, themselves related by the S5 permutation symmetry,
are exactly the 15 non-prime factors appearing in the Gröbner fan of the spinor-helicity
ideal! To see this explicitly note we have

W6 = 〈34〉[34] + 〈45〉[45] = 〈12〉[12]− 〈35〉[35],
W11 = 〈34〉[34] + 〈35〉[35] = 〈12〉[12]− 〈45〉[45],
W21 = 〈13〉[13] + 〈34〉[34] = 〈14〉[14]− 〈25〉[25], (6.15)

all of which appear in (6.13). It follows then that taking homogenous combinations of
letters {Wi}30

i=1 is equivalent to taking homogenous combinations of {〈ij〉, [ij]} and the
permutations of the non-prime factors 〈23〉[23]−〈45〉[45]. Note, as already emphasised, we
do not recover the letter W31. However, this is consistent with W31 not appearing in the
expressions for suitably defined amplitudes.

7 Conclusion

We have presented a prescription for exploring the alphabet associated to the kinematic
space of scattering amplitudes via the Gröbner fan. The construction was demonstrated for
the cases Gr(3, n) with n = 6, 7, 8 to extract the A-coordinates from a combination of the
Speyer-Williams and Gröbner fans. Let us recap the various steps taken in the procedure.
Our starting point is to identify the maximal cones of the positive tropical fan, Trop+(k, n),
whose associated initial ideals are non-prime. An efficient way of identifying such maximal
cones is by comparison to a closely related object, the Speyer-Williams fan, which has the
same support as Trop+(Ik,n) but, in general, differing fan structure. In particular, the
Speyer-Williams fan contains non-simplicial maximal cones which are further resolved by
Trop+(Ik,n). These maximal cones are of particular interest, as their associated initial
ideals are non-prime and allow us to identify certain non-prime factors which are exactly
the non-plücker A-coordinates of the cluster algebra. By searching for non-prime factors

10Let us emphasise the fact that in spinor-helicity variables the rationality of letters {W26, . . . , W31}
becomes manifest.
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in this way we are able to recover the full set of A-coordinates. Having obtained the full
set of A-coordinates, following the results of [1], we are able to extract the forbidden pairs
by computing the initial ideal of a Gröbner cone singled out by the positive tropical part
of the extended ideal.11 In the case of Gr(3, 7) this allows us to extract the alphabet and
adjacency rules relevant for constructing seven point amplitudes in planar N = 4 SYM.

An interesting example for future study is the case of Gr(4, 8) whose corresponding
cluster algebra is no longer of finite type. The infinities of this cluster algebra arise due to
alternate mutation on the nodes of affine A2 subalgebras. The series of mutations obtained
in this way gives rise to a series of g-vectors which asymptote to certain special directions
referred to as limit rays. It is to these limit rays the 18 multiplicatively independent square
root letters appearing in the two-loop NMHV amplitude [30] are associated, see [22–24]
for further details. It would be very interesting to see such infinities arising in the context
of the Gröbner fan. We should expect that extending I4,8 by some finite set of non-prime
factors is not enough to render all cones of the extended ideal prime.

We have also provided hints that the Gröbner fan may be a useful tool when considering
more general scattering processes. We were able to find the entire non-planar alphabet
relevant for five-point non dual conformal scattering processes by considering the Gröbner
fan of a suitably defined kinematic ideal. In fact, this ideal turns out to be none other
than the Grassmannian Plücker ideal for Gr(3, 6). Note, as emphasised in the main text
no positivity criteria was imposed in this calculation. It would be interesting to study
this case further to determine what is the correct notion of positivity for reducing to the
planar alphabet for five-point scattering (clearly this will not be the same as reducing to
the positive region in Gr(3, 6)) and whether this sheds light on any adjacency properties.

Finally, the six-point alphabet was recently studied at one-loop by [62], it would be
interesting to apply the techniques developed here to see how much of the alphabet we
can obtain.

A Details of Trop+(I3,7)

Let us look at the 7-vertex cones in the Speyer-Williams fan for Gr(3, 7). There are 63
cones with 7 vertices which come in five dihedral orbits each of length {14, 14, 7, 14, 14}.
They have representatives with rays given by

b4,2345671 b3,2345671 b2,7123456 b5,2345716 b4,2371456 b4,4567123 b3,4567123
b5,7123564 b1,1234567 b4,7123456 b3,2345671 b4,5671234 b2,5671234 b3,5671234
b5,7123564 b1,1234567 b4,7123456 b5,5671342 b2,5671234 b4,5634712 b1,3456712
b5,7123564 b4,7123456 b4,2345671 b2,5671234 b4,7156234 b1,3456712 b3,7123456
b1,1234567 b3,2345671 b4,4567123 b3,4567123 b4,6745123 b3,6712345 b2,4567123

 (A.1)

Starting from top to bottom the cones are refined as(
b2,7123456 b3,4567123 b3,2345671 b4,2345671 b4,2371456 b4,4567123
b2,7123456 b3,4567123 b4,2345671 b4,2371456 b4,4567123 b5,2345716

)
, (A.2)

11Note, having extended the Plücker ideal by the full set of A-coordinates ensures that the Speyer-
Williams fan and the positive tropical fan (of the extended ideal) are identical.

– 30 –



J
H
E
P
1
1
(
2
0
2
3
)
0
0
2

containing the missing binomials p145p237−p123p457 and p137p245−p127p345 respectively for
the cone defined by the first row. We then have b1,1234567 b2,5671234 b3,2345671 b4,7123456 b4,5671234 b5,7123564

b1,1234567 b3,5671234 b3,2345671 b4,7123456 b4,5671234 b5,7123564
b1,1234567 b2,5671234 b3,5671234 b3,2345671 b4,5671234 b5,7123564

 , (A.3)

for the second row containing the missing binomials {p167p345−p157p346, p167p245−p157p246},
{p147p356−p137p456, p147p256−p127p456} and {p156p347−p134p567, p156p247−p124p567} respec-
tively. Note that p167p245 − p157p246 is in a different cyclic class to the missing binomials
found up to this point. Thus it is already clear at this stage that we will find all 14
quadratic A-coordinates appearing as factors of non-prime initial ideals. For the third row
we have  b1,3456712 b1,1234567 b2,5671234 b4,7123456 b5,7123564 b5,5671342

b1,3456712 b1,1234567 b4,7123456 b4,5634712 b5,7123564 b5,5671342
b1,3456712 b1,1234567 b2,5671234 b4,5634712 b5,7123564 b5,5671342

 , (A.4)

with the missing binomials p167p245 − p157p246, p147p256 − p127p456 and p156p247 − p124p567.
For the fourth row we have(

b1,3456712 b2,5671234 b4,2345671 b4,7156234 b4,7123456 b5,7123564
b1,3456712 b2,5671234 b3,7123456 b4,2345671 b4,7156234 b4,7123456

)
, (A.5)

containing the missing binomials p156p237 − p123p567 and p167p235 − p157p236.
Before moving onto the final row of (A.1) let us observe here that none of the above

refinements has utilised an extra positive ray of b6 type. The remaining case does however.
For convenience we repeat the seven vertices here,

{b1,1234567, b4,4567123, b4,6745123, b3,2345671, b3,4567123, b3,6712345, b2,4567123} . (A.6)

This 7-cone is refined as follows,
b1,1234567 b4,4567123 b4,6745123 b2,4567123 b3,2345671 b3,4567123
b1,1234567 b4,4567123 b4,6745123 b2,4567123 b3,2345671 b3,6712345
b1,1234567 b4,4567123 b4,6745123 b6,4567123 b3,2345671 b3,4567123
b1,1234567 b4,4567123 b4,6745123 b6,4567123 b3,2345671 b3,6712345
b1,1234567 b4,4567123 b4,6745123 b6,4567123 b3,6712345 b3,4567123

 , (A.7)

with each part providing the following missing binomials
p237p456 − p236p457, p137p456 − p136p457, p127p456 − p126p457
p235p467 − p234p567, p135p467 − p134p567, p125p467 − p124p567
p237p456 − p236p457, p167p345 − p145p367, p167p245 − p145p267
p235p467 − p234p567, p167p345 − p145p367, p167p245 − p145p267
p267p345 − p245p367, p167p345 − p145p367, p167p245 − p145p267

 . (A.8)

We illustrate this refinement below in figure 10.
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Figure 10. A 7-vertex Speyer-Williams cone is refined into 5 simplices in the tropical fan, three
of which use the spurious orange vertex and two of which do not.

Next we consider the 8-vertex cones of the Speyer-Williams fan. There are 28 of these
coming in two dihedral classes. The first has a representative given by

{b4,7123456, b4,2345671, b3,2345671, b2,7123456, b5,2345716, b4,2371456, b3,4567123, b3,7123456} , (A.9)

which has the refinement
b2,7123456 b3,4567123 b3,2345671 b4,2371456 b4,7123456 b4,2345671
b2,7123456 b3,4567123 b4,2345671 b4,2371456 b4,7123456 b5,2345716
b3,4567123 b3,7123456 b4,2345671 b4,2371456 b4,7123456 b5,2345716
b2,7123456 b3,4567123 b3,7123456 b4,2371456 b4,7123456 b5,2345716
b3,4567123 b3,2345671 b4,2345671 b4,2371456 b4,7123456 b6,2345671
b3,2345671 b3,7123456 b4,2345671 b4,2371456 b4,7123456 b6,2345671
b3,4567123 b3,7123456 b4,2345671 b4,2371456 b4,7123456 b6,2345671

 . (A.10)

The missing binomials associated to each piece of the refinement are

p156p237 − p123p567, p146p237 − p123p467, p145p237 − p123p457
p137p245 − p127p345, p156p237 − p123p567, p146p237 − p123p467
p137p245 − p127p345, p167p235 − p157p236, p167p234 − p147p236
p137p256 − p127p356, p137p246 − p127p346, p137p245 − p127p345
p145p237 − p123p457, p167p235 − p157p236, p167p234 − p147p236
p167p235 − p157p236, p167p234 − p147p236, p157p234 − p147p235
p137p245 − p127p345, p167p235 − p157p236, p167p234 − p147p236


(A.11)

The second class has a representative with rays

{b5,7123564, b1,1234567, b4,7123456, b5,5671342, b4,5671234, b2,5671234, b4,5634712, b3,5671234} , (A.12)

which has the refinement
b1,1234567 b2,5671234 b4,7123456 b4,5671234 b5,7123564 b5,5671342
b1,1234567 b4,7123456 b4,5634712 b4,5671234 b5,7123564 b5,5671342
b1,1234567 b3,5671234 b4,7123456 b4,5634712 b4,5671234 b5,7123564
b1,1234567 b2,5671234 b4,5634712 b4,5671234 b5,7123564 b5,5671342
b1,1234567 b2,5671234 b3,5671234 b4,5634712 b4,5671234 b5,7123564

 (A.13)
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and the missing binomials
p167p345 − p157p346, p167p245 − p157p246
p167p345 − p157p346, p147p256 − p127p456
p147p356 − p137p456, p147p256 − p127p456
p167p345 − p157p346, p156p247 − p124p567
p156p347 − p134p567, p156p247 − p124p567

 . (A.14)

Finally, we arrive at the 9-vertex cones of which there are 7 in a single dihedral class.
A representative has the rays

{b4,2345671, b3,2345671, b5,2345716, b4,2371456, b4,4567123, b3,4567123, b5,4567231, b4,4523671, b2,2345671}
(A.15)

and a refinement given by

b3,4567123 b3,2345671 b4,2345671 b4,2371456 b4,4567123 b4,4523671
b3,2345671 b4,2345671 b4,2371456 b4,4567123 b4,4523671 b5,4567231
b2,2345671 b3,2345671 b4,2345671 b4,2371456 b4,4523671 b5,4567231
b3,4567123 b4,2345671 b4,2371456 b4,4567123 b4,4523671 b5,2345716
b4,2345671 b4,2371456 b4,4567123 b4,4523671 b5,2345716 b5,4567231
b2,2345671 b4,2345671 b4,2371456 b4,4523671 b5,2345716 b5,4567231
b2,2345671 b3,4567123 b4,2345671 b4,4567123 b4,4523671 b5,2345716
b2,2345671 b4,2345671 b4,4567123 b4,4523671 b5,2345716 b5,4567231


, (A.16)

with the missing binomials

p237p456 − p236p457, p145p237 − p123p457, p145p236 − p123p456
p235p467 − p234p567, p145p237 − p123p457, p145p236 − p123p456
p235p467 − p234p567, p157p234 − p147p235, p156p234 − p146p235
p237p456 − p236p457, p137p245 − p127p345, p145p236 − p123p456
p235p467 − p234p567, p137p245 − p127p345, p145p236 − p123p456
p235p467 − p234p567, p137p245 − p127p345, p156p234 − p146p235
p267p345 − p245p367, p137p245 − p127p345, p136p245 − p126p345
p235p467 − p234p567, p137p245 − p127p345, p136p245 − p126p345


. (A.17)
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