
J
H
E
P
1
1
(
2
0
2
2
)
1
7
2

Published for SISSA by Springer

Received: October 26, 2022
Accepted: November 20, 2022
Published: November 30, 2022

Flat JT gravity and the BMS-Schwarzian

Hamid Afshara and Blagoje Oblakb
aDepartment of Physics, Faculty of Science, Ferdowsi University of Mashhad,
Mashhad, Iran

bCPHT, CNRS, Ecole Polytechnique, IP Paris,
F-91128 Palaiseau and LPTHE, Sorbonne Université,
CNRS UMR 7589, F-75005 Paris, France

E-mail: ham.afshar@gmail.com, blagoje.oblak@polytechnique.edu

Abstract: We consider Minkowskian Jackiw-Teitelboim (JT) gravity in Bondi gauge
at finite temperature, with non-zero vacuum energy. Its asymptotic symmetries span an
extension of the warped Virasoro group, dubbed ‘BMS2’, which we investigate in detail. In
particular, we show that this extension has a single coadjoint orbit when central charges
are real and non-zero. The ensuing BMS-Schwarzian action has no saddle points, and only
coincides with the boundary action functional of flat JT gravity up to a crucial dilatonic
zero-mode that ensures the existence of a well-defined bulk variational principle. We evaluate
the corresponding gravitational partition function, which turns out to be one-loop exact
precisely thanks to the presence of such a zero-mode.

Keywords: 2D Gravity, Space-Time Symmetries, Differential and Algebraic Geometry

ArXiv ePrint: 2112.14609v2

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2022)172

mailto:ham.afshar@gmail.com
mailto:blagoje.oblak@polytechnique.edu
https://arxiv.org/abs/2112.14609v2
https://doi.org/10.1007/JHEP11(2022)172


J
H
E
P
1
1
(
2
0
2
2
)
1
7
2

Contents

1 Motivation and outline 1

2 JT gravity in Bondi gauge 3
2.1 Asymptotic symmetries of JT gravity 3
2.2 Covariant phase space and its transformation laws 5
2.3 Phase space at finite temperature 6
2.4 Boundary action of flat JT gravity 8

3 The BMS2 group and BMS-Schwarzian actions 11
3.1 The BMS2 group 11
3.2 The BMS2 algebra 13
3.3 Coadjoint representation and orbits of BMS2 14
3.4 BMS-Schwarzian actions 17

4 Thermal partition function 19
4.1 Setting the stage 19
4.2 An invariant measure on BMS2 20
4.3 Computation of the path integral 21

5 Conclusion and outlook 24

A Adjoint representation of BMS2 25

B Symplectic form and measure 26

1 Motivation and outline

The holographic relation between (quantum) gravity and lower-dimensional boundary
theories has a long history by now [1, 2]. In recent years, a surprisingly rich instance of
this correspondence has come to be appreciated in two-dimensional (2D) dilaton-gravity
theories [3–10] such as Jackiw-Teitelboim (JT) gravity [11, 12] or the (gauged) Callan-
Giddings-Harvey-Strominger model [13, 14]. These systems are indeed related to the
low-energy effective theory describing the Sachdev-Ye-Kitaev (SYK) model [3–5, 15, 16]
and its generalizations. The core of the dictionary relies on symmetries: both 2D gravity
and low-energy SYK admit a broken Virasoro symmetry under time reparametrizations,
and their effective 1D action is a ‘Schwarzian’ — the zero-mode of a conformal stress tensor
on a coadjoint orbit of the Virasoro group [17–19]. This rephrasing has led to a flurry of
activity aiming to understand the relation between SYK, quantum chaos and gravitational
holography (see e.g. [20] and references therein for a pedagogical introduction).
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Following this trend, various generalizations of SYK and its gravity dual have been
proposed in the literature. A prominent recent example is the complex SYK model [21–
27], whose low-energy limit yields a ‘refined’ holographic correspondence sensitive to two
chemical potentials rather than one. From the perspective of the two-dimensional (2D) bulk,
this enhancement occurs thanks to a choice of fall-off conditions in Bondi gauge [28–31]
(see also the more recent papers [32, 33]). The resulting asymptotic symmetries span an
infinite-dimensional ‘Bondi-Metzner-Sachs’ group in 2D [34, 35], or BMS2 for short [28].
However, all references dealing with this structure so far have eventually reduced it to its
warped Virasoro subgroup [36, 37], either owing to dynamical equations of motion [28, 30],
or for convenience [29]. The resulting boundary dynamics is then described by a warped
Schwarzian action whose partition function is one-loop exact [27], similarly to the standard
Schwarzian theory of the Virasoro group [19].

The goal of this paper is to avoid this reduction to a subgroup and work with BMS2
throughout. Indeed, it is the BMS2 group, not warped Virasoro, that describes flat JT
gravity in the sense that boundary gravitons transform under its coadjoint representation.
It is therefore natural to take BMS2 seriously and investigate the ensuing physics. The
present work explores this question.

As we show, BMS2 symmetry entails subtleties that do not normally occur in the
boundary description of JT gravity, most notably the fact that the BMS-Schwarzian action
functional has no saddle points. A hint of this behaviour already appears in the BMS2
algebra, whose commutation relations in a basis of Fourier modes (Lm, Qm), respectively
generating diffeomorphisms of Euclidean time and commuting ‘translations’, read

[Lm, Ln] = (m− n)Lm+n + a

12m
3δm+n,0 , (1.1)

[Lm, Qn] = −(m+ n)Qm+n + (bm− ic)δm+n,0 , (1.2)
[Qm, Qn] = 0 , (1.3)

where a is a usual Virasoro central charge while b and c are new. (These commutators
were studied in [38, 39]; here we derive them in section 3.2.) Note that Q0 never appears
on the right-hand side of (1.2), since the Qm’s are modes of a ‘current’ with vanishing
conformal weight. Furthermore, the central charge c is actually a zero-mode of gravitational
boundary data and is not multiplied by any factor m in (1.2), so that L0 and Q0 fail to
commute and span a Heisenberg subalgebra. This ultimately entails shift transformations
of the translation current that turn the BMS2 group itself into a single, giant coadjoint
orbit, in contrast to orbits of the more standard Virasoro or warped Virasoro groups whose
codimension is strictly positive. Despite this peculiarity of BMS2, the gravitational bulk
variational principle turns out to be well-defined, as the 1D version of the flat JT action
functional differs from the BMS-Schwarzian by the addition of a crucial zero-mode. The
latter is a dynamical quantity (it is an integration variable in the path integral), but fixing
its value reduces the boundary action to the usual warped Schwarzian [27, 28], in accordance
with a deeper relation between group structures. As a corollary, the partition function of
the 1D theory is one-loop exact (even though it is not a U(1) generator on a coadjoint orbit)
and coincides with an integral of warped Schwarzian partition functions. We stress that, by

– 2 –



J
H
E
P
1
1
(
2
0
2
2
)
1
7
2

contrast, there is no such thing as a ‘one-loop partition function’ for the BMS-Schwarzian
alone, as the latter has no saddle points.

The plan is as follows. First, section 2 is purely gravitational. It is devoted to a brief
review of JT gravity at finite temperature in Bondi gauge and the ensuing asymptotic
symmetries, ending with a detailed derivation of its boundary action (eq. (2.27) below).
We then introduce the BMS2 group in section 3 and show that it generally contains three
central charges, one of which happens to be the zero-mode of a gravitational boundary
degree of freedom. We also show there that coadjoint orbits of BMS2 are qualitatively
different from those of other extensions of Diff S1 [37, 40], as their codimension vanishes
(i.e. their stabilizer is trivial up to central elements). The ensuing ‘BMS-Schwarzian’ action
functionals (eq. (3.19) below) have no saddle points and coincide with flat JT boundary
actions up to a zero-mode. Finally, section 4 is devoted to the one-loop exact partition
function of the boundary theory of flat JT gravity, computed in part thanks to the relation
between BMS2 and warped Virasoro. The appendices contain further technical details on
the adjoint representation of the BMS2 group and its Maurer-Cartan form, respectively
needed in sections 3 and 4.

2 JT gravity in Bondi gauge

This section introduces our setup: Jackiw-Teitelboim gravity at finite temperature (including
vacuum energy, with or without cosmological constant) with fall-offs imposed thanks to
a Bondi gauge choice. As a result, asymptotic symmetries span a BMS2 algebra [28] and
act on phase space in a linear way that will later (section 3) be identified as a coadjoint
representation. We end by deriving the 1D boundary action of the theory (eq. (2.27) below),
which will be crucial for all subsequent sections.

2.1 Asymptotic symmetries of JT gravity

Consider a 2D manifoldM endowed with a Lorentzian metric g with scalar curvature R, a
real dimensionless scalar dilaton field X, and a vacuum energy density Λ.1 The associated
Jackiw-Teitelboim (JT) action functional with cosmological constant −1/`2 reads

I[g,X] = κ

2

∫
d2x

√
|g|
(
X
(
R+ 2/`2

)
− 2Λ

)
(2.1)

where κ is a dimensionless normalization (the inverse of Newton’s constant in 2D). Our goal
is to study the asymptotic symmetries of this theory in Bondi gauge, focussing especially on
the Minkowskian limit where ` =∞. (Note that this is the only regime where Λ matters:
at finite `, vacuum energy can be cancelled by a constant shift of the dilaton.) The ensuing
transformation law of boundary data is treated in section 2.2 at zero temperature, and in
section 2.3 at finite temperature. The additive boundary term needed to make the full
action functional differentiable is built in section 2.4.

1Λ does not affect space-time curvature, so we will not refer to it as a cosmological constant (although this
name is sometimes used in the literature) to stress its distinction from the actual cosmological constant, −1/`2.
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Symmetries preserve area. Label the points of M by Bondi coordinates (u, r), re-
spectively seen as retarded time and a ‘radius’, and write the space-time metric in Bondi
gauge:

ds2 = V (u, r)du2 − 2 du dr , (2.2)

where V (u, r) can be any smooth function that behaves as V (u, r) ∼ − r2

`2 +O(r) as r → +∞
at finite u. (We assume as usual that radial derivatives reduce the radial order of any
function by at least one unit. In the flat limit, one just has V = O(r).) We wish to
find asymptotic Killing vector fields, that is, vector fields in space-time that preserve the
gauge (2.2). Any such vector field ξ produces a Lie derivative such that Lξgur = Lξgrr = 0,
giving the general expression

ξε,η = ε(u)∂u −
(
rε′(u) + η(u)

)
∂r (2.3)

in terms of unconstrained real functions (ε, η) on spatial or null infinity, with prime meaning
∂u. (The fall-offs of V entail no further conditions on (ε, η).) Such vector fields span the
BMS2 algebra, with Lie bracket

[ξε1,η1 , ξε2,η2 ] = ξ[ε1,ε2],(ε1η2)′−(ε2η1)′ (2.4)

where [ε1, ε2] ≡ ε1ε
′
2 − ε2ε

′
1 is the usual bracket of 1D vector fields. The functions (ε, η)

in (2.3) thus have definite weights under reparametrizations of time: ε(u)∂u is a vector field,
while η(u)du is a one-form.2 Geometrically, ε generates diffeomorphisms of time while η
produces time-dependent radial ‘translations’. This can be made manifest by exponentiating
any vector field of the form (2.3) into a finite diffeomorphism

(u, r) 7−→
(
f(u), r

f ′(u) − η
(
f(u)

))
(2.5)

where f is an orientation-preserving diffeomorphism of the real line (so f ′(u) > 0 for all u).
Note that any such transformation preserves the area form3 du ∧ dr, as must indeed be the
case owing to the gauge choice (2.2). This holds regardless of the cosmological constant
−1/`2.

Warped Virasoro. It is worth noting that the algebra (2.3)–(2.4) is very close to (but
emphatically different from) the usual symmetry of warped CFTs [36, 37]. Indeed, consider
the subgroup of BMS2 whose one-forms are exact: η = dσ for some function σ. The
bracket (2.4) then becomes

[
(ε1, σ

′
1), (ε2, σ

′
2)
]

=
(
[ε1, ε2], (ε1σ

′
2 − ε2σ

′
1)′
)
, which reduces to

the usual commutator of warped conformal transformations [36] up to a total derivative
that makes the zero-mode of σ’s irrelevant. We shall return to this algebraic relation
in section 2.3, where generators will be defined in terms of Fourier modes on a thermal
cycle. The embedding of warped Virasoro in BMS2 will leave traces throughout this work,
including the crucial reduction of the BMS-Schwarzian (section 3) to the warped Schwarzian
action [27–29].

2We abusively write ε for both the vector field ε(u)∂u and its component ε(u); the same applies to η.
3Incidentally, area-preserving diffeomorphisms of the form (2.5) with η = 0 (and Euclidean (u, r)) appear

in the quantum Hall effect, where they span the Virasoro symmetry of gapless edge modes [41].
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2.2 Covariant phase space and its transformation laws

Our considerations were purely kinematical so far, but it is essential for future reference
to keep in mind that BMS2 acts on (covariant) phase space, i.e. on the set of on-shell
field configurations specified by the JT action (2.1). We now explore this space and its
transformations under BMS2.

Phase space. The equations of motion due to the JT action (2.1) read (we use ≈ for
on-shell equalities)4

R ≈ −2/`2, ∇µ∇νX − gµν∇2X + 1
`2
gµνX ≈ gµνΛ . (2.6)

In Bondi gauge (2.2), one has R = ∂2
rV and the rr component of (2.6) sets ∂2

rX ≈ 0, so

ds2 ≈ −
(
r2

`2
+ 2P (u)r + 2T (u)

)
du2 − 2 du dr , X ≈ x(u)r + y(u) , (2.7)

where T , P , x and y are arbitrary real functions of time at this stage. The remaining
components of (2.6) then provide genuine dynamics for (x, y), namely the linear evolution
equations

x′ − Px− Λ + y

`2
≈ 0 , y′′ + Py′ − T ′x− 2Tx′ ≈ 0 . (2.8)

Points in covariant phase space are thus, apparently, labelled by two arbitrary functions
(T, P ), along with initial conditions (x(0), y(0), y′(0)) for eqs. (2.8). Note the odd number of
initial conditions, contradicting the fact that any symplectic manifold is even-dimensional;
this will eventually be cured in section 2.4, where the existence of a well-defined variational
principle will impose an additional constraint on x, y, effectively removing one initial
condition and making the dilatonic phase space two-dimensional.

Transformation laws. Since any asymptotic Killing vector field (2.3) preserves the
Bondi gauge (2.2), it also maps any on-shell metric (2.7) on another metric of the same
form, yielding a well-defined transformation law for ‘boundary gravitons’ (T, P ). Evaluating
the relevant Lie derivatives of the metric, one finds

δT = εT ′ + 2ε′T − ηP − η′ , δP = εP ′ + ε′P − ε′′ − η

`2
. (2.9)

When η = σ′ is a total derivative, this coincides with the coadjoint representation of the
warped Virasoro algebra with a stress tensor T and a ‘momentum density’ P [37]. For
arbitrary η, however, one expects (2.9) to reproduce the coadjoint representation of BMS2,
which will indeed turn out to be the case in the flat limit `→∞ (see sections 2.3 and 3.3).5

The asymptotic Killing vector fields (2.3) also preserve the form (2.7) of the dilaton:
computing δX = ξµ∂µX, one finds the transformation law of on-shell functions (x, y),

δx = εx′ − ε′x , δy = εy′ − ηx . (2.10)
4The variation of (2.1) contains a boundary term that does not affect equations of motion, so we bluntly

discard it for now. We return to a proper construction of the differentiable improved action in section 2.4.
5Since ` is dimensionful, the limit is actually taken on dimensionless quantities — see [42] for details. We

simply write this as `→∞ for brevity.
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This suggests that x is a vector field while y is a function, up to an unfamiliar shift
transformation by η. In fact, we will see in section 3.1 that eqs. (2.10) reflect the action of
a left-invariant vector field living on the BMS2 group manifold (and specified by (ε, η)) on
a BMS2 group element (specified by (x, y)). From that perspective, the pair (T, P ) that
determines a gravitational background (2.7) is essentially an element of the dual of the
BMS2 algebra, while (x, y) labels a point in (a quotient of) the BMS2 group.

Note that asymptotic Killing vectors trivially include exact Killing vector fields, i.e.
generators of isometries. In that context, there exists a sharp difference between AdS
backgrounds and flat backgrounds. Requiring δP = 0 in (2.9) yields indeed η = `2[(εP )′−ε′′],
whereupon the transformation law of T reduces to that of the CFT stress tensor T − `2(P ′+
P 2/2) under usual conformal transformations. Isometries at finite ` thus coincide with
typical CFT stabilizers; at finite temperature, those can only be one-dimensional Abelian
groups or (covers of) SL(2,R) [18]. No such simplification occurs in the flat limit ` =∞,
where the stabilizer condition δT = δP = 0 is a pair of non-trivial differential equations for
(ε, η). This is consistent with the expectation that isometries of flat backgrounds should
not span the same groups as those of AdS backgrounds. We return to isometries at the end
of the next subsection.

2.3 Phase space at finite temperature

Most of this work will be concerned with Euclidean JT gravity at finite temperature 1/β.
Euclidean time τ = iu then becomes β-periodic and the space-time boundary at infinity
(r → ∞) is a circle whose points can be labelled by an angle ϕ = 2πτ/β ∼ ϕ + 2π. The
Bondi gauge metric (2.2) becomes ds2 = V (ϕ, r)dϕ2 − 2(β/(2πi))dϕ dr for some function
V ∼ β2r2

(2π`)2 + O(r), so that the (singular) flat limit coincides with the regime of high
temperatures in AdS2. We now describe the corresponding symmetries and phase space.

Asymptotic symmetries. Asymptotic Killing vector fields at finite temperature still
take the form (2.3), now with functions (ε, η) that are 2π-periodic in ϕ. In fact, owing to
the respective conformal weights (−1, 1) of (ε, η), we adopt the convention that the Wick
rotation of (2.3) is

ξε,η ≡ ε(ϕ)∂ϕ −
(
rε′(ϕ) + 2πi

β
η(ϕ)

)
∂r , (2.11)

where ε is real and ε′ ≡ ∂ϕε. The bracket of such vector fields is again given by eq. (2.4),
now with ′ ≡ ∂ϕ. Accordingly, a Fourier basis of the (complexified) BMS2 algebra is

`m ≡ −i ξeimϕ,0 , qm ≡ −i ξ0,eimϕ (m ∈ Z), (2.12)

whereupon the Lie bracket (2.4) yields the centreless form of eqs. (1.1)–(1.3),

[`m, `n] = (m− n)`m+n , [`m, qn] = −(m+ n)qm+n , [qm, qn] = 0 . (2.13)

The centreless warped Virasoro algebra alluded to in section 2.1 is then obtained from (2.13)
by discarding q0 and defining pm ≡ mqm for all m, including the convention p0 ≡ 0 for
the Casimir of warped translations. Also note the 2D Euclidean (complexified Poincaré)
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subalgebras of (2.13) generated by the rotation (or boost) `0 and the ‘translations’ `n, q−n
with some fixed n 6= 0. These will turn out to be the isometries of n-fold covers of the
Euclidean plane.

Covariant phase space. Similarly to asymptotic Killing vectors (2.11), one can Wick-
rotate the on-shell functions (T, P, x, y) according to their conformal weights so that the
Euclidean version of eqs. (2.7) reads

ds2 ≈
(
β2r2

(2π`)2 − 2r β

2πiP (ϕ)− 2T (ϕ)
)
dϕ2 − 2 β

2πidϕ dr , X ≈ β

2πix(ϕ)r + y(ϕ) .

(2.14)
Here all four functions (T, P, x, y) are 2π-periodic, and generally complex: for instance,
the metric of the n-fold cover of the Euclidean plane is obtained with P = −in and
T = 0. Reality conditions will eventually be chosen in section 4.3 to set up suitable path
integration contours.

Up to the replacement of u by ϕ and ′ ≡ ∂ϕ, the transformation law of the Wick-rotated
variables (T, P, x, y) under asymptotic symmetries (2.11) is still given by eqs. (2.9)–(2.10).
Furthermore, the dilaton’s equations of motion still take the form (2.8) with the same
replacements. (This coincidence between Lorentzian and Euclidean formulas is due to the
fact that Wick rotations were chosen in accordance with conformal weights, similarly to the
usual formulas for the Wick rotation of spinful fields.)

As mentioned in section 2.2, one expects the transformation law (2.9) of boundary
gravitons to be related to the coadjoint representation of the BMS2 algebra. To antici-
pate this, note from (2.9) that T transforms under reparametrizations as a primary with
weight two, while P is a one-form. Splitting P (ϕ) = c + Q′(ϕ) into a zero-mode c and
a total derivative, the flat version (` = ∞) of (2.9) leaves c invariant and suggests the
transformation law

δT = εT ′ + 2ε′T − η(Q′ + c)− η′ , δQ = ε(Q′ + c)− ε′ (2.15)

for the pair (T,Q). We show in section 3.3 that this is the coadjoint representation of
the BMS2 algebra with two central charges, one of which is the constant c. (One could of
course add any constant to the right-hand side of δQ in (2.15) without affecting δP , but
it turns out that it is precisely (2.15) that coincides with the coadjoint representation of
BMS2.) Note that these conventions relate the zero-modes T0 and c to the temperature and
Rindler horizon radius rH according to 2πi T0/c = −β rH. This combination turns out to
be important: we shall see in section 4.3 that 2πT0/c is essentially the on-shell Euclidean
action that yields the tree-level term of the partition function.6

Isometries of Euclidean flat metrics. To develop some intuition on the space of
metrics (2.14), one may investigate their isometry algebras. As mentioned in section 2.2,
these are just stabilizer algebras of Virasoro coadjoint orbits at finite AdS radius `. At
infinite `, the situation is more involved. Accordingly, let (T, P ) = (T0, c) be constants and

6In fact, the on-shell action of Euclidean Flat JT gravity is S(0) = κΛβ(r0 + rH), where r0 =
∫ r0

0 dr is an
infrared-divergent constant. We will not discuss possible counterterms making the on-shell action finite.
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set δT = δP = 0 in eqs. (2.9), assuming c 6= 0 for now. This yields differential equations for
(ε, η) whose general solution is

ε(ϕ) = Aec ϕ +B +O(1/`2) , η(ϕ) = AT0 e
c ϕ + Ce−c ϕ +O(1/`2) . (2.16)

Requiring 2π-periodicity sets almost all integration constants to zero when c is real, and
one is left with ε = cst, η = 0. There is much more leeway when symmetries and boundary
gravitons are complex: then the functions (ε, η) in (2.16) are 2π-periodic whenever c ∈ iZ∗,
in which case the space of BMS2 vector fields given by (2.16) coincides with a complexified
Euclidean algebra of the form mentioned below (2.13): the corresponding bulk vector
fields (2.11) are

ξ0 = ∂ϕ , ξ1 = ec ϕ∂ϕ − ec ϕ
(
r c+ 2πi

β
T0

)
∂r , ξ2 = −2πi

β
e−c ϕ∂r (2.17)

and may respectively be identified with (−i`0, `n, q−n) in terms of the modes (2.12) when
c = in. The gravitational background having these isometries is an n-fold cover of the
Euclidean plane (i.e. a thermal disk, generally with a quantized conical excess at the origin).
In the exceptional case c = 0, 2π-periodic isometry generators are given by ε = cst, η = cst′

instead of eqs. (2.16), generating the usual isometry group R×U(1) of a cylinder; however,
to the extent that c 6= 0 will be a crucial condition in what follows, the cylinder eventually
turns out to be excluded from the phase space considered in this work.

2.4 Boundary action of flat JT gravity

As in any field theory, defining the phase space of JT gravity requires a choice of fall-off
conditions. These, in turn, typically imply that the bulk action functional (2.1) is not
differentiable, i.e. that the equations of motion (2.6)–(2.8) do not provide its true extremum.
We glossed over this key detail in section 2.2, so we now rectify the omission — in great
part because the resulting boundary term recasts the entire theory as a Schwarzian-like 1D
system whose (Euclidean) action will be studied in depth in the remainder of this work. In
particular, the boundary action turns out to be closely related to BMS-Schwarzians to be
introduced in section 3. Note that the argument that follows closely parallels the derivation
of [29, section 2.1], except that we include the effects of the vacuum energy Λ (which are
non-trivial in the flat limit `→∞).

Improved action. As before, consider the space-time manifoldM (Lorentzian for now)
endowed with a metric g and a dilaton X governed by the bulk action (2.1). The latter
must generally be supplemented by a boundary term so as to ensure the existence of a
well-defined variational principle. Indeed, upon fixing Bondi gauge (2.2) and assuming
(off-shell) large r fall-offs of the form V (u, r) ∼ − r2

`2 − 2P (u)r− 2T (u) + o(1), along with the
dilaton fall-offs X(u, r) ∼ x(u)r + y(u) + o(1), the variation of the bulk action (2.1) reads

δI = κ

∫
d2x (EOM) + κ

∫
du
(
x δT − y δP

)
, (2.18)

where ‘EOM’ denotes a term that vanishes when the equations of motion (2.6) are satisfied.
The boundary term in (2.18) makes it manifest that the functional (2.1), by itself, is not
differentiable, so that the equations of motion (2.6) do not provide its true extremum.
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In order to obtain a differentiable action (or at least one that is differentiable on-shell),
one must add a boundary term to the bulk functional (2.1). Since the fields (T, P ) and
(x, y) are independent off-shell, (2.18) shows that they must, somehow, be related in order
for a suitable boundary action to cancel the term

∫
(xδT − yδP ). A common solution to

this problem in 2D dilaton gravity is to use the equations of motion (2.8). We stress that
this is somewhat exotic compared to other boundary actions in physics — most notably
Chern-Simons theory [43, 44], where one requires the action functional to be differentiable
everywhere in a space of fields subject to fall-offs. Here, by contrast, we shall require
the action to be merely differentiable at on-shell configurations. This ensures that bulk
equations of motion provide true extrema of the action, which is enough for the path integral
to admit a well-defined semi-classical regime.

Accordingly, let the full action of the system be Sfull[g,X] = I[g,X] + S[g,X], where I
is the bulk action (2.1). Our goal is to find a boundary term S such that δSfull ≈ 0 without
any boundary contribution. Owing to the variation (2.18), one must have

δS ≈ −κ
∫

du (x δT − y δP ) , (2.19)

so it seems natural to attempt S ∝
∫

(Tx− Py). This is not enough, however, as δS then
contains variations of (x, y) that do not appear in (2.19); the cure is readily found thanks
to the equations of motion (2.8), which imply that the combination

xy′ − Tx2 − Λy + y2

2`2 (2.20)

is constant (u-independent) on-shell, so that the boundary term

S ≡ −κ
∫

du
(
Tx− Py + x′

x
y − Λy

x
+ y2

2`2x

)
(2.21)

has an on-shell variation

δS ≈ −κ
∫

du (xδT − yδP )− κ
(
xy′ − Tx2 − Λy + y2

2`2

)
δ

[∫ du
x

]
. (2.22)

(Here we have neglected a total time derivative, which is harmless as usual.) This nearly
satisfies the requirement (2.19): the only issue is the extra variation of the integral of 1/x.
In both Lorentzian and Euclidean signatures, this is settled by requiring that

∫
du/x be

finite and fixed once and for all. At finite temperature, one thus declares that x(ϕ) 6= 0 at
all Euclidean times ϕ and that the integral∮ 2π

0

dϕ
x(ϕ) ≡ A (2.23)

is some finite parameter that does not vary when computing the equations of motion. One
may think of this as an extra, off-shell boundary condition on the dilaton [28, 45].

Provided the zero-mode of 1/x is fixed, off-shell, according to eq. (2.23), the improved
action Sfull = I + S does reach its extremum at on-shell field configurations (thanks to
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eq. (2.22) and the constancy of (2.20)). Since equations of motion were explicitly used to
derive (2.22), the full action is differentiable on-shell; no claim is made as to its off-shell
differentiability. In any event, the action Sfull evaluated on metrics that satisfy the constraint
R ≈ −2/`2 reduces to the pure boundary term (2.21) up to an irrelevant bulk volume
contribution ∝ Λ. Eq. (2.21) thus coincides, for all practical purposes, with the boundary
action of JT gravity, and one verifies indeed that its equations of motion reproduce (2.8).

The dilaton as a group element. For later comparison with BMS-Schwarzian actions,
it is useful to rewrite the Euclidean version of the boundary action (2.21) in terms of
group elements. Accordingly, let ϕ ≡ 2πτ/β be rescaled Euclidean time and implement the
constraint (2.23) by declaring

1
f ′(ϕ) ≡

A
2πx(ϕ) (2.24)

where f(ϕ) is a real function that satisfies f ′(ϕ) > 0 and f(ϕ+ 2π) = f(ϕ) + 2π for all ϕ.
(Thus f is really a diffeomorphism of the circle: we return to this in section 3.) As for y,
write it as a function η given by

η(ϕ) ≡ − A2πy(f−1(ϕ)) (2.25)

where f−1 is the inverse of the diffeomorphism f . Note that the off-shell condition (2.23) is
subject to a dynamical constraint: the first equation of motion in (2.8) implies

ΛA = −2π
(
c+ η0

`2

)
(2.26)

where c ≡ 1
2π
∮
P is the zero-mode of P as in (2.15) and η0 ≡ 1

2π
∮
η is the zero-mode of η.

At finite `, this suggests that η0 should be fixed off-shell when c and A are fixed, which is
indeed the choice typically made in (Bondi gauge) JT gravity on AdS2 and eventually leads
to the warped Schwarzian theory [28–30]. By contrast, in the flat limit `→∞, eq. (2.26)
does not involve η, which is left unconstrained.

We have now gathered all the ingredients needed to express the boundary action of
JT gravity in terms of group elements. The Euclidean form of the action (2.21) with the
replacements (2.24)–(2.25) thus becomes

S = 2πiκ
A

{∮ dϕ
f ′(ϕ)

[
T +

((
c+Q′

)
f ′ + f ′′ − cf ′2

)
η ◦ f

]
+
∮

dϕη
2 − 2η2

0
2`2

}
, (2.27)

where we chose to write the boundary graviton P as c+Q′. At finite `, the zero-mode of
η is fixed according to (2.26), so the term ∝ cf ′2η ◦ f is irrelevant. One can then write
η = η0+σ′ for some periodic function σ, whereupon (2.27) reduces to the warped Schwarzian
action [28]. This is consistent with the correspondence between warped Virasoro and BMS2
sketched in sections 2.1–2.2. The situation is completely different in the flat limit ` =∞,
where η0 is an unconstrained Lagrange multiplier. The term ∝ cf ′2η ◦ f then becomes
important: it is in fact responsible for the very existence of a saddle point.

The remainder of this paper is devoted to a detailed investigation of the action func-
tional (2.27) in the strict flat limit ` =∞. In particular, we show in the next section that it
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is a Schwarzian action of BMS2, up to the zero-mode of η. Note that the coefficient ∝ iκ/A
in front of the action is actually real when c and η0 are purely imaginary, owing to the
relation (2.26). Indeed, we saw around eq. (2.14) that P = c+Q′ is purely imaginary in
order to include the Euclidean plane in the gravitational phase space, while the condition
η ∈ iR will be enforced in section 4.3 in order for the path integral of the thermal theory
to converge.

3 The BMS2 group and BMS-Schwarzian actions

We have seen that the BMS2 algebra describes asymptotic symmetries of JT gravity in
Bondi gauge (with or without cosmological constant), and that the Euclidean boundary
action (2.27) can be written in Schwarzian-like form, similarly to other known examples
in dilaton-gravity theories (see e.g. the sample [3–8, 28–30]). The goal of this section is
therefore (i) to describe in detail the structure of the centrally extended BMS2 group,
along with its adjoint and coadjoint representations, and (ii) to deduce the corresponding
Schwarzian-like action functionals. As we shall see, coadjoint orbits of BMS2 are peculiar
in that their codimension vanishes: there is a single orbit, diffeomorphic to the centreless
BMS2 group itself, for all non-zero real values of BMS2 central charges. As a result, BMS-
Schwarzian actions have no saddle points, contradicting the naive expectation that (2.27)
(which does have saddle points) is in fact a Schwarzian. This tension is resolved by the
fact that (2.27) with ` =∞ is actually a BMS-Schwarzian plus the crucial zero-mode of η,
which reinstates the presence of saddle points.

Note that this entire section is focussed on the Euclidean theory at finite temperature, so
that group and algebra elements are functions of a periodic coordinate 2πτ/β ≡ ϕ ∼ ϕ+ 2π.
Furthermore, we mostly restrict attention to the real form of the BMS2 group. Aspects
of complexification will only be addressed in passing for now, postponing a more careful
treatment to the path integral considerations of section 4.3.

3.1 The BMS2 group

Here we provide a detailed definition of the BMS2 group and its central extensions. As it
turns out, BMS2 admits three central charges, two of which are realized in flat JT gravity
(and implicitly appear e.g. in the transformation laws (2.15)). This is a key prerequisite for
the upcoming considerations on the BMS2 algebra (section 3.2), on BMS2 coadjoint orbits
(section 3.3), and on their Schwarzian actions (section 3.4).

Centreless group. Consider the group DiffS1 of (orientation-preserving) diffeomor-
phisms of the circle, whose elements are real functions f of an angle ϕ ∈ R such that
f ′(ϕ) > 0 and f(ϕ+2π) = f(ϕ)+2π for all ϕ. (We anticipated this definition below (2.24).)
Consider also the vector space Ω1(S1) of one-forms on the circle, written as η = η(ϕ)dϕ in
terms of their 2π-periodic component η(ϕ). Diffeomorphisms act on one-forms by pullback,
defined as (f∗η)(ϕ)dϕ = η(f(ϕ))f ′(ϕ)dϕ. In CFT language, this says that η is a primary
field with unit weight (a current), in accordance with the Lie bracket (2.4). The centreless
BMS2 group then is a semi-direct product DiffS1 n Ω1(S1), whose elements are pairs (f, η),
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with multiplication

(f1, η1) · (f2, η2) ≡
(
f1 ◦ f2, η1 + (f−1

1 )∗η2
)
. (3.1)

Following the terminology introduced above (2.5), we refer to f as a diffeomorphism or a
reparametrization (of retarded time), while η is a ‘translation’. As in higher-dimensional
BMS groups, translations span an Abelian normal subgroup of BMS2.

Despite its simplicity, the group structure (3.1) already contains information that can
be matched with gravitational observations in section 2. For instance, the centreless BMS2
algebra consists of pairs (ε, ζ), where ε = ε(ϕ)∂ϕ is a vector field while ζ is again a one-form,
as in the asymptotic Killing vector fields (2.3)–(2.11). (The bracket (2.4) will similarly be
recovered in section 3.2.) As in any Lie group, the Lie algebra can be seen as the tangent
space at the identity, or, equivalently, as the space of left-invariant vector fields on the
group manifold [46, section 4.1]. Each pair (ε, ζ) thus defines a left-invariant vector field on
BMS2 acting on a point (f, η) according to

(δf, δη) ≡ ∂

∂t

∣∣∣∣
t=0

[
(f, η) · (etε, tζ)

] (3.1)=
(
εf ′, ζ ◦ f−1 (f−1)′

)
, (3.2)

from which it follows that the combinations x ≡ 1/f ′ and y ≡ −η ◦ f transform under
BMS2 exactly as the components of the dilaton in eqs. (2.10), up to renaming η as ζ. This
confirms that the earlier identifications (2.24)–(2.25) are indeed compatible with the BMS2
group structure.

As an aside, note that warped conformal transformations [36] span a subgroup of (3.1)
obtained by declaring that all BMS2 translations are total derivatives (η = σ′). Eq. (3.1),
however, only provides a realization of this ‘warped DiffS1 group’ in which the Casimir
generating constant translations is set to zero. Non-zero Casimirs turn out to be allowed
only when central charges are switched on.

Central extensions. We have already encountered two central charges, implicitly at
least, in the inhomogeneous terms of eqs. (2.15). It is therefore essential to classify the
possible central extensions of BMS2. To do this we follow [47], where extensions of the
BMS2 algebra were classified on a cohomological basis; here we describe the corresponding
group extensions.

Consider therefore the set DiffS1 × Ω1(S1)× R3, whose elements (f, η; z) extend our
earlier notation by a three-component7 central element z = (x, y, z) ∈ R3. We endow this
set with the following binary operation, extending the multiplication (3.1):

(f1, η1; z1) · (f2, η2; z2) ≡
(
f1 ◦ f2, η1 + (f−1

1 )∗η2; z1 + z2 + C[f1, f2, η2]
)
, (3.3)

7The presence of exactly three central terms, and no more, stems from Lie algebra cohomology [47].
The variables x, y are just numbers and have nothing to do with the components of the dilaton introduced
in (2.7). That they are real is merely a choice: one is free to consider complex central charges as well.
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where C[f1, f2, η2] =
(
A[f1, f2],B[f1, η2],C[f1, η2]

)
∈ R3 is a triple of real cocycles given by

A[f1, f2] ≡ − 1
48π

∮
dϕ log

(
f ′1(f2(ϕ))

) f ′′2 (ϕ)
f ′2(ϕ) , (3.4)

B[f, η] ≡ 1
2π

∮
log

(
f ′(ϕ)

)
η(ϕ) dϕ , (3.5)

C[f, η] ≡ 1
2π

∮ (
f(ϕ)− ϕ

)
η(ϕ) dϕ , (3.6)

all integrals being taken over ϕ ∈ [0, 2π]. The fact that these are cocycles ensures that (3.3)
is associative, defining the centrally extended BMS2 group. In particular, the functional (3.4)
is the standard Virasoro-Bott cocycle [48, 49], while (3.5)–(3.6) appear to be new. Eq. (3.5),
for instance, pairs the one-form η with the one-cocycle log f ′; it is similar in this sense
to the BMS3 extension that pairs supertranslations with the Schwarzian derivative of
superrotations [50]. The last cocycle, eq. (3.6), is somewhat atypical in that it involves no
derivatives; it will eventually turn out to be crucial for 2D gravity, as its central charge is
the zero-mode c that appears in the transformation law (2.15) of gravitational data.

Before turning to the Lie algebra of BMS2, we stress again that the restriction to exact
one-forms yields a warped Virasoro subgroup of BMS2. At the level of central extensions,
this relation ‘explains’ why the derivative-free cocycle (3.6) has not been spotted so far
in the physics literature. Indeed, writing η = dσ for some periodic function σ reduces
C(f, η) to the zero-mode of (f−1)∗σ − σ, which trivializes the cocycle C.8 By contrast, the
cocycle (3.5) remains non-trivial in that subgroup, since it then pairs the one-cocycle f ′′/f ′

with the function σ, reproducing the non-trivial extension of the warped Virasoro group
investigated in [37].

3.2 The BMS2 algebra

In accordance with the definitions just provided, the centrally extended BMS2 algebra
consists of triples (ε, η, z) where ε = ε(ϕ)∂ϕ is a vector field (an infinitesimal diffeomorphism),
η = η(ϕ)dϕ is a one-form (an infinitesimal translation), and z ∈ R3 (or C3 if needed) is
again a triple of central terms. The BMS2 group acts on this space according to the adjoint
representation, whose computation is omitted here for brevity and relegated instead to
appendix A. The differential of the adjoint at the identity then yields the Lie bracket
of BMS2,[

(ε1, η1,z1), (ε2, η2,z2)
]

=
(

[ε1, ε2], (ε1η2)′−(ε2η1)′;
∮ dϕ

24π ε
′′′
1 ε2,

∮ dϕ
2π
(
ε′2η1−ε′1η2

)
,

∮ dϕ
2π
(
ε2η1−ε1η2

)) (3.7)

where [ε1, ε2] ≡ ε1ε
′
2− ε2ε

′
1 is the standard Lie bracket of vector fields on the circle, and the

centreless part more generally reproduces the algebra defined in (2.4) in terms of asymptotic
Killing vector fields. In the central terms, the factor ε′′′1 is the infinitesimal Schwarzian
derivative, while the last two extensions coincide with [47, eqs. (17)–(18)].9

8For exact BMS2 translations, one can define the one-cochain K(f, σ) ≡ −
∮
σ, whereupon the exten-

sion (3.6) becomes a trivial cocycle C(f1, dσ2) = K
(
(f1, σ1) · (f2, σ2)

)
− K(f1, σ1)− K(f2, σ2).

9Our notation differs from that of [47]: what we call ε1, ε2 and η1, η2, they respectively write as f, g
and a, b.
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Following the earlier definitions (2.12), the bracket (3.7) can also be displayed in
the Fourier basis Lm ≡ (−ieimϕ∂ϕ, 0; 0), Qm ≡ (0,−ieimϕdϕ; 0) with central charges
X ≡ (0, 0;−i, 0, 0), Y ≡ (0, 0; 0,−i, 0) and Z ≡ (0, 0; 0, 0,−i). Eq. (3.7) is then equivalent
to the algebra initially announced in eqs. (1.1)–(1.3):

[Lm, Ln] = (m− n)Lm+n + X

12m
3 δm+n,0 , (3.8)

[Lm, Qn] = −(m+ n)Qm+n +
(
Y m− iZ

)
δm+n,0 , (3.9)

[Qm, Qn] = 0 . (3.10)

This extends the asymptotic symmetry algebra (2.13) by a Virasoro central charge X and
two ‘exotic’ central terms Y, Z whose coefficients (m and 1) are strikingly different from the
m3 encountered in the BMS3 algebra [51] or the m2 of the warped Virasoro algebra [36, 37].
In particular, Z implies that rigid rotations and translations no longer commute, since
[L0, Q0] = −iZ. Note again that the warped Virasoro algebra with vanishing Abelian
zero-mode is a subalgebra of (3.8)–(3.10) obtained by discarding Q0, defining Pm ≡ mQm
for non-zero m and declaring P0 ≡ iZ. The central charge Z then plays the role of the
translational Casimir of the warped Virasoro algebra while Y is the ‘twist’ extension of
Rindler holography [37].

3.3 Coadjoint representation and orbits of BMS2

The Schwarzian description of JT gravity is closely related to coadjoint orbits of the
asymptotic symmetry group, so we now describe the coadjoint representation of BMS2
and classify its orbits. Owing to the gravitational transformation laws (2.9), we focus on
coadjoint vectors with non-zero central charges (b, c) dual to (Y,Z). As we shall see, the
resulting BMS2 orbits are ‘large’ in that their codimension in Diff S1 vanishes, in contrast
to Virasoro orbits [18, 49], BMS3 orbits [40] or warped orbits [37]. This has important
consequences for the BMS-Schwarzian actions described in section 3.4, which turn out
to lack saddle points as a result. Note, however, that we systematically focus on real
functions and central charges, in keeping with standard literature on the Virasoro group [49].
Complexification will only be addressed at the level of the Lie algebra, in terms of stabilizers
of coadjoint orbits.

Coadjoint representation. The coadjoint representation of any Lie group acts on the
dual of its algebra. Elements of the BMS2 algebra are triples (ε, η, z), so the (smooth) dual
space consists of triples (T,Q, c), where T (ϕ) and Q(ϕ) are functions while c = (a, b, c) is a
triple of central charges. Owing to the respective conformal weights (−1, 1) of (ε, η), one
should think of their duals (T,Q) as densities with respective weights (2, 0). In other words,
T is akin to a CFT stress tensor, while Q is a genuine function (with zero weight) to which
we shall refer as a ‘momentum’ since it is dual to ‘translations’ η.10 The pairing between

10Incidentally, the fact that the central extension Y in (3.9) is non-trivial is precisely due to the vanishing
weight of the ‘current’ Q(ϕ) under reparametrizations [38].
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the BMS2 algebra and its dual is thus11

〈
(T,Q, c), (ε, η, z)

〉
≡ 1

2π

∮
dϕ
(
T (ϕ)ε(ϕ) +Q(ϕ)η(ϕ)

)
+ ax+ by + cz . (3.11)

The coadjoint representation is then defined so as to leave this pairing invariant, in the sense
that 〈Ad∗(f,η)(T,Q, c), (ε, η, z)〉 ≡ 〈(T,Q, c),Ad−1

(f,η)(ε, η, z)〉. This fixes all central charges,
while T and Q transform non-trivially according to Ad∗(f,η)(T,Q, c) ≡

(
T̃ , Q̃, c

)
. Since the

weights of T and Q are known, the only problem is to find the inhomogeneous terms of
these transformations. The solution follows from the adjoint representation worked out in
appendix A, and is written in eqs. (A.6)–(A.7) below. Including a change of argument for
readability, one thus finds

T̃ (f(ϕ)) = 1
f ′2(ϕ)

[
T + a

12S[f ]− b
(
f ′η ◦ f

)′ + (Q′ + c)f ′η ◦ f
]
, (3.12)

Q̃(f(ϕ)) = Q(ϕ)− b log f ′(ϕ)− c(f(ϕ)− ϕ) , (3.13)

where all terms on the right-hand side are implicitly evaluated at ϕ and S[f ] ≡ f ′′′/f ′ −
(3/2)(f ′′/f ′)2 is the usual Schwarzian derivative. These equations are the BMS2 analogue
of the transformation law of a (warped) CFT stress tensor [36, 37]. In particular, the first
terms on the right-hand side of (3.12) reproduce the standard CFT transformation of T ,
while the other terms are new. The transformation law (3.13) of Q is especially unusual,
as it involves the exotic cocycles log f ′ and (f(ϕ) − ϕ). We will soon see that the term
(f(ϕ)− ϕ) has dramatic consequences for coadjoint orbits and Schwarzian actions.

The coadjoint representation of the BMS2 algebra is the infinitesimal form of (3.12)–
(3.13), obtained by writing f(ϕ) ∼ ϕ+ ε(ϕ) and expanding to first order in ε, η. The result
reads

δε,ηT = εT ′ + 2ε′T − a

12ε
′′′ + bη′ − η(Q′ + c) , δε,ηQ = bε′ + ε(Q′ + c) , (3.14)

which coincides with the gravitational transformation laws (2.15) for a = 0 and b = −1.
This includes, as a special case, the coadjoint representation of the warped Virasoro algebra
with vanishing level [37]. Indeed, letting P ≡ c+Q′ and η ≡ σ′ for some function σ, the
infinitesimal transformations (3.14) become

δT = εT ′ + 2ε′T − a

12ε
′′′ − σ′P + bσ′′ , δP = εP ′ + bε′′ , (3.15)

which coincides with [37, eq. (3.12)] up to minor differences in notation. Similarly, one
verifies that eqs. (3.12)–(3.13) reduce to the coadjoint representation of the warped Virasoro
group (in terms of T and P = c+Q′) when η is exact: see eqs. (A.21)–(A.22) of [37]. This
is consistent with the fact, emphasized throughout, that the warped Virasoro group is a
subgroup of BMS2.

11In contrast to 3D gravity, the ‘charges’ (3.11) do not coincide with surface charges of 2D gravity, as the
latter are pointwise quantities on the boundary [52, 53]. The pairing (3.11) is nevertheless useful because
it leads to the coadjoint representation, which coincides with the action of asymptotic symmetries on
phase space.
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A single coadjoint orbit. The coadjoint representation (3.12)–(3.13) displays a common
feature of all semi-direct products with an Abelian factor [54]: the ‘momentum’ transforma-
tion law (3.13) is insensitive to translations η and involves no stress tensor T . (Indeed, the
same general structure appears in the Poincaré group, the BMS3 group [40] and the warped
Virasoro group with vanishing level [37].) As a result, any coadjoint orbit of BMS2 is a fibre
bundle over the orbit of some momentum Q under diffeomorphisms. We therefore focus for
now on eq. (3.13) alone, and classify the orbits of momenta under reparametrizations.

What is special about BMS2 (in contrast to the other examples mentioned above) is
that there is only one momentum orbit at fixed central charges — at least provided b 6= 0
and c 6= 0 are both real. In fact, the following statement holds:

Theorem 1. The coadjoint representation of the real BMS2 group with real non-zero central
charges b, c can be used to map any momentum Q on Q̃ = 0. The orbit of Q = 0 under
diffeomorphisms is thus (diffeomorphic to) the entire group Diff S1.

The proof is straightforward if b 6= 0 and c 6= 0 are both real: given Q(ϕ), set Q̃ = 0
in (3.13) to find an ordinary differential equation for f(ϕ) whose general solution is12

f̂(ϕ) = b

c
log

[
K + c

b

∫ ϕ

0
dθ e(Q(θ)+c θ)/b

]
(3.16)

for some integration constant K. The latter is uniquely fixed by the requirement that f̂
be a diffeomorphism of the circle (f̂(ϕ+ 2π) = f̂(ϕ) + 2π), which thus yields an explicit
diffeomorphism mapping Q on Q̃ = 0.13 �

A corollary of theorem 1 is that any zero-mode configuration Q can be mapped on any
other one. This is obvious from eq. (3.13): the rotation f(ϕ) = ϕ + θ sends Q = cst on
Q̃ = Q− c θ. To the extent that ‘rotations’ in ϕ are really (Euclidean) time translations
in JT gravity, this states that the zero-mode of Q ‘rotates’ at a velocity set by the central
charge c. One can also confirm these results from an analysis of stabilizers at the level of
the Lie algebra: when c 6= 0 and b are real, setting δQ = 0 in the second equation of (3.14)
yields an equation for ε whose only 2π-periodic solution is ε = 0, regardless of the form of Q.

Starting from the trivial ‘classification’ just outlined, it is immediate to derive the
structure of coadjoint orbits of the real BMS2 group. Indeed, as explained e.g. in [40],
coadjoint orbits of semi-direct products are bundles of little group orbits over the cotangent
bundle of a momentum orbit. In the case at hand, we have just seen that the stabilizer of
any momentum (with c 6= 0) is trivial, so all little groups are trivial and any stress tensor T
can be mapped on any other one, say T̃ = 0, by the action of suitable BMS2 group elements.
It follows that

Theorem 2. The BMS2 group has a single coadjoint orbit for all real values of its three
real central charges such that b 6= 0 and c 6= 0; this orbit is diffeomorphic to the cotangent
bundle T ∗DiffS1.

12We write the solution as f̂ instead of f to stress that it is a specific group element, determined (uniquely)
by Q; this notation will be useful in section 4.3 below.

13When b = 0, one can similarly write f̂(ϕ) = ϕ+Q(ϕ)/c to map Q on Q̃ = 0, but this generally fails to
satisfy the condition f̂ ′ > 0 if Q(ϕ) happens to be ‘too steep’; we therefore assume b 6= 0 from now on.
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The ‘abstract nonsense’ proof is immediate based on theorem 1 and [40, section 2], but
it is also illuminating to carry it out directly from the transformation law (3.12). Indeed,
one can use the diffeomorphism (3.16) to map Q on f̂ · Q ≡ Q̃ = 0, thereby mapping
T on some new stress tensor T̃ according to (3.12) with η = 0; this is a standard CFT
transformation law with central charge a:

T̃ = [(f̂−1)′]2 T ◦ f̂−1 − a

12S[f̂−1] . (3.17)

As a second step, one can implement a pure translation η̂ (letting f = I be the identity) to
leave Q̃ = 0 invariant while also mapping T̃ on ˜̃T = 0;14 this is the case provided η̂ is the
unique 2π-periodic solution of

T̃ − b η̂′ + c η̂ = 0 , (3.18)

which will turn out to be useful in section 4.3. The composition (I, η̂) ◦ (f̂, 0) = (f̂, η̂) is
thus the unique BMS2 group element mapping (T,Q) on (0, 0), as was to be shown.

Again, one can confirm this result with the Lie-algebraic formulas (3.14): simultaneously
setting δT = 0 and δQ = 0 under the assumption that c 6= 0 and b are real yields ε = η = 0
as the only periodic solution, confirming that the stabilizer of any pair (T,Q) is trivial. �

We stress that these results hinge on the assumption that functions and central charges
are all real. The presence of complex quantities, such as the purely imaginary boundary
graviton P in eq. (2.14), would alter our conclusions drastically. For example, setting δQ = 0
in eq. (3.14) with a purely imaginary ratio c/b leaves room for complex periodic solutions
provided c/b ∈ iZ∗. This is the situation anticipated around eq. (2.16), where the stabilizer
of the background (T, P ) was interpreted as a Euclidean isometry group. It goes without
saying that the corresponding orbits are different from those described in theorems 1–2.
However, we refrain from attempting to classify such complex orbits, as the complexification
of diffeomorphism groups is a notoriously thorny issue [49]. Infinitesimal considerations
of the kind just described will suffice nevertheless, since path integral computations in
section 4.3 will eventually localize to the identity.

3.4 BMS-Schwarzian actions

We saw in eq. (2.27) that the boundary action of flat JT gravity can be seen as a functional
of a pair (f, η) belonging to the BMS2 group, with transformation laws (2.10) that stem
from left-invariant vector fields (3.2) on the group manifold. From that perspective, the pair
(T,Q) is merely a parameter specifying the background around which dilaton fluctuations
are being considered. In the analogous case of JT gravity on AdS2, it is then typically
possible to interpret the boundary action as a ‘Schwarzian action’, i.e. as a rotation generator
on a Virasoro coadjoint orbit [19]. Is there a similar interpretation in flat JT?

To begin, note that the answer is very nearly positive. Indeed, the generator of rotations
ϕ 7→ ϕ+ θ (i.e. Euclidean time translations) is the zero-mode of the ‘stress tensor’ T (ϕ).
More precisely, on the BMS2 orbit of a ‘seed’ (T,Q), the stress tensor is given by (3.12)

14As in theorem 1 and footnote 12, the hat in η̂ stresses that η̂ is a specific translation determined by
(T,Q) rather than an arbitrary one.
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and its zero-mode is the BMS-Schwarzian action

SBMS[f, η] ≡ 1
2π

∮ dϕ
f ′

(
T + a

12S[f ]− bf ′′η ◦ f + (Q′ + c)f ′η ◦ f
)
. (3.19)

This almost coincides with the JT action (2.27) when a = 0 and b = −1: the only mismatch
is the absence of the zero-mode of η that appears in (2.27). The difference was to be
expected, since the would-be equations of motion derived by varying η ◦ f in (3.19) read
−bf ′′+(Q′+c)f ′ = 0, and only admit solutions that satisfy f ′ > 0 and f(ϕ+2π) = f(ϕ)+2π
in the exceptional case c = 0. In other words, the action (3.19) generally has no saddle
points at all, in stark contrast to the JT action (2.27) that was precisely designed so as to
admit saddles.

The existence of saddle points thus hinges on the additional term ∝ c
∮
η on the far

right-hand side of (2.27). One way to justify its presence, irrespective of flat JT dynamics,
is to investigate the transformation law of the Schwarzian action (3.19) under left- and
right-invariant vector fields. Indeed, recall from eq. (3.2) that left-invariant vector fields
act on pairs (f, η) so as to reproduce the transformation of the dilaton under asymptotic
symmetries; one then finds that the variation of the Schwarzian action under a left pure
translation ζ is

δL
(0,ζ)SBMS = 1

2π

∮ dϕ
f ′

(
−b f

′′

f ′
+Q′ + c

)
ζ , (3.20)

where it is understood that ζ acts on (f, η) according to eq. (3.2), while (T,Q) are fixed, and
the integrand is evaluated at ϕ. A similar computation can be carried out for right-invariant
vector fields whose action on (f, η) is obtained similarly to the left-invariant equation (3.2):(

δR
(ε,ζ)f, δ

R
(ε,ζ)η

)
≡ ∂

∂t

∣∣∣∣
t=0

[
(etε, tζ) · (f, η)

] (3.1)=
(
ε ◦ f, ζ − (εη)′

)
. (3.21)

Applying this to the Schwarzian functional (3.19) with ε = 0 yields

δR
(0,ζ)SBMS = 1

2π

∮
dϕ
(
−b f

′′

f ′
+Q′ + c

)
ζ ◦ f , (3.22)

which only differs from (3.20) by the replacement of ζ by ζ ◦ f and the crucial absence of
the denominator f ′(ϕ). Indeed, let us compare these transformation laws to those of the
zero-mode of η: using either the left action (3.2) or the right action (3.21), one finds

δL,R
(ε,ζ)

∮
η =

∮
ζ (3.23)

for any (ε, ζ) in the BMS2 algebra. Comparing this with the transformations (3.20)–(3.22),
it is clear that neither the Schwarzian action (3.19) nor the full boundary action (2.27) is
invariant under all pure translations — regardless of whether one acts with left- or right-
invariant vector fields. But an exception occurs for constant translations (ζ(ϕ) = cst ≡ ζ0),
in which case

δL
(0,ζ0)SBMS = ζ0

2π

∮ dϕ
f ′(ϕ)(Q′ + c) and δR

(0,ζ0)SBMS = c ζ0 . (3.24)

It then follows from (3.23) that the full boundary action 2πSBMS − c
∮
η is invariant under

constant translations generated by right-invariant vector fields. This is the sense in which
adding the zero-mode of η to the Schwarzian (3.19) enhances the symmetries of the theory.
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4 Thermal partition function

Here we evaluate the partition function of flat JT gravity at finite temperature, as described
by the action (2.27) with ` =∞. The plan is as follows: we first summarize the problem at
hand, then choose a suitable measure on the BMS2 group manifold, and finally integrate
the exponential of the action to obtain the partition function. The result will be consistent
with earlier similar considerations in the literature [27]; it is one-loop exact and exhibits the
expected symmetry enhancement that occurs on backgrounds that cover Euclidean space.

4.1 Setting the stage

The difference between the flat JT action (2.27) and the Schwarzian (3.19) implies that
the former is not a Schwarzian: it is not a Hamiltonian function generating a U(1) action
on a coadjoint orbit endowed with its Kirillov-Kostant symplectic form [55]. One may
therefore worry that the partition function of the theory cannot be evaluated exactly, in
contrast to more standard cases where the Duistermaat-Heckman theorem localizes the
path integral [19, 27, 29]. (See e.g. [56] for a pedagogical introduction to localization.)
Nevertheless, one-loop exactness is actually trivial in the present case, as the dilaton
component η acts as a Lagrange multiplier that enforces the equation of motion for f ,
somewhat similarly to BMS3 characters [57]. At a deeper level, a conceivable explanation
of this simple result is that the flat JT action (2.27) is a U(1) generator on some larger
symplectic manifold (say the cotangent bundle of BMS2). We refrain from attempting to
build such a framework, as it will be unnecessary anyway.

Let us set the stage for the problem we wish to address. Fixing a pair (T,Q) that
specifies some gravitational background (2.14) with P = c+Q′, our goal is to evaluate a
dilatonic partition function

Z ≡
∫

BMS2

Df Dη e−S[f,η] (4.1)

where the path integral is taken over all elements (f, η) of the (centreless) BMS2 group and
the Euclidean action functional generalizes the flat limit of the JT boundary action (2.27):

S[f, η] = − iκΛ
c

∮ dϕ
f ′(ϕ)

[
T + a

12S[f ] +
((
c+Q′(ϕ)

)
f ′ − bf ′′ − cf ′2

)
η ◦ f

]
. (4.2)

The integration measure Df Dη remains to be fixed; following the literature on Schwarzian
actions and 2D gravity (see e.g. [19, 27]), we shall choose it to be (right-)invariant under the
asymptotic symmetry group — BMS2 in the case at hand. Note again that the prefactor
−iκΛ/c (2.26)= 2πiκ/A in (4.2) is real when c is purely imaginary. This will indeed be
assumed throughout, and it is consistent with the inclusion of the Euclidean plane in the
phase space of Euclidean metrics (2.14).

The expression (4.2) mimics the BMS-Schwarzian (3.19), including all three BMS2
central charges, but it crucially also includes the vacuum energy zero-mode ∝

∮
η that

ensures the existence of saddle points, as in the gravitational action (2.27). Accordingly, it
makes sense to evaluate the path integral (4.1) perturbatively around saddle points; this
will yield an exact result thanks to the flatness of the measure along η ◦ f . To carry out the
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integration, we start by building a right-invariant measure (section 4.2), then exploit it to
evaluate the partition function (section 4.3).

4.2 An invariant measure on BMS2

As emphasized above, typical partition functions of the form (4.1) in JT gravity are integrals
over coadjoint orbits of asymptotic symmetry groups [19]. The (Liouville) path integration
measure is then induced by the Kirillov-Kostant symplectic form on an orbit. In the case at
hand, theorem 2 ensures that the entire BMS2 group is itself (diffeomorphic to) a coadjoint
orbit. The Liouville measure thus coincides with the Haar measure on the group manifold,
and can be found by evaluating expectation values of the (left or right) Maurer-Cartan
form. We now summarize this computation, while details involving coadjoint orbits and
central charges are relegated to appendix B.

It is worth recalling first how the Haar measure is built for any Lie group. Let G be
an n-dimensional group with Lie algebra g, and let µ0 be a (translation-invariant) volume
form on g; this form is unique up to normalization. A right-invariant measure µ on G is
then defined by the right Maurer-Cartan form of G,

µ(v1, . . . , vn) ≡ µ0
(
d(Rg−1)gv1, . . . , d(Rg−1)gvn

)
(4.3)

where g is any point onG, Rg means right multiplication by g, and the vi’s are tangent vectors
of G at g. The application to BMS2 is straightforward: since the Lie algebra consists of pairs
(ε, η), the only translation-invariant measure in (ε, η) space is µ0 ∝

∏
ϕ∈[0,2π) δε(ϕ) ∧ δη(ϕ),

where δ denotes a ‘vertical’ functional exterior derivative. The invariant measure (4.3) then
takes the same form, except that δε and δη are replaced by the corresponding components
of the right Maurer-Cartan form. The latter is the Lie algebra-valued one-form

δ
(
R(f,η)−1

)
(f,η) =

(
δf ◦ f−1, δη +

(
η δf ◦ f−1)′) , (4.4)

obtained e.g. by using the centreless group operation (3.1) to compute the right logarithmic
time derivative ∂τ [(fτ , ητ )(ft, ηt)−1] of a path (ft, ηt) in BMS2 (see appendix B). It follows
that the right Haar measure on the centreless BMS2 group, evaluated at the point (f, η),
reads

Haar measure = N
∏

ϕ∈[0,2π)
δf
(
f−1(ϕ)

)
∧ δη(ϕ) = N

∏
ϕ∈[0,2π)

δf(ϕ) ∧ δ(η ◦ f)(ϕ) (4.5)

for some unimportant normalization N . Note that the extra term ∼ (η δf)′ in the Maurer-
Cartan form (4.4) drops out thanks to the antisymmetric wedge product of one-forms.
Incidentally, it follows that the right measure coincides with the left one, as in the standard
Virasoro group [19].

The measure (4.5) is flat on the space of functions (f, η), suggesting that the partition
function (4.1) may be computed with straightforward path integral methods. There is
a problem, however: the action of BMS2 on phase space is projective, including non-
commuting zero-modes L0, Q0 (recall the algebra (3.8)–(3.10)). As a result, the correct
invariant measure is not quite the one written here, but its centrally extended generalization
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on a coadjoint orbit, crucially sensitive to the central charge-dependent complex stabilizers
mentioned at the very end of section 3.3. The relevant computation involves the Kirillov-
Kostant symplectic form Ω and is presented in appendix B for brevity. In particular, the
symplectic structure is displayed in eq. (B.3); it leads to a Liouville measure Df Dη = Ω∧∞

that takes the general form

Liouville measure = N Pf[Ω](f)
∏

ϕ∈[0,2π)
δf(ϕ) ∧ δ(η ◦ f)(ϕ) ≡ Df Dη . (4.6)

Here Pf[Ω](f) is the Pfaffian of the symplectic form evaluated at f , and it only depends
on f . Accordingly, the measure (4.6) is flat in η ◦ f , even after including central charges.
The action (4.2) thus ensures that the integral over η ◦ f yields a straightforward Dirac
distribution on the equation of motion of f . Localization is therefore trivial, as in [57].

4.3 Computation of the path integral

Here we compute the one-loop exact partition function (4.1). This is done for any background
(T,Q) by first making the dependence on (T,Q) explicit and reducing the problem to that
of a ‘reference’ background (0, 0). The actual path integration is then carried out as a
second step, by evaluating the Pfaffian in (4.6) at the saddle point and multiplying it by
the appropriate determinant.

Background dependence. If the action S in (4.1) were a pure Schwarzian, right-
invariance of the measure (4.6) would immediately imply that the value of the integral (4.1)
is independent of the orbit representative (T,Q) chosen as ‘background’, and only depends
on its orbit. One would then conclude from theorem 2 that the choice (T,Q) = (0, 0) entails
no loss of generality, since BMS2 has a unique orbit. But there is a catch: the action (4.2)
is a Schwarzian plus a zero-mode of η, so right-invariance of the measure does not imply
that the integral (4.1) only depends on the orbit of (T,Q).

In fact, it is a simple matter to exhibit the dependence of (4.1) on (T,Q): for generic
central charges, theorem 2 ensures that there exists a unique BMS2 group element (g, ζ)
such that (T,Q, c) = Ad∗(g,ζ)(0, 0, c) in terms of the coadjoint representation of section 3.3.
This group element is the inverse of the one built in the proof of theorems 1–2, i.e. g = f̂−1

is the inverse of the diffeomorphism (3.16) determined by Q, while ζ = −f̂∗η̂ involves the
unique solution η̂ of (3.18), determined by Q and T . This can be plugged in the action (4.2)
to yield

S(T,Q)[f, η] = S(0,0)
[
(f, η) ·

(
f̂−1,−f̂∗η̂

)]
+ iκΛ

∮
dϕ η̂(ϕ) , (4.7)

where the subscript of S indicates the corresponding background and the argument of S on
the right-hand side involves the BMS2 group operation (3.1); this shift of argument will
eventually be unimportant thanks to the right-invariance of the measure. The second term
on the right-hand side of (4.7) is a non-local functional of (T,Q) that can be found by
integrating eq. (3.18) over the circle and letting T̃ be the conformally transformed stress
tensor (3.17) to obtain

cE[T,Q] ≡ −c
∮

dϕ η̂(ϕ) =
∮ dϕ
f̂ ′(ϕ)

[
T (ϕ) + a

12S[f̂ ](ϕ)
]
, (4.8)
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where the diffeomorphism f̂(ϕ) takes the form (3.16) in terms of Q, and the notation ‘E’
is adopted to stress that the zero-mode of η̂(ϕ) should now be interpreted as a ‘ground
state energy’. The key point is that (4.8) depends neither on f nor on η (the dynamical
fields), so it can be pulled out of the partition function (4.1). Since the latter involves a
right-invariant measure, it can be recast as

Z = eiκΛE[T,Q]
∫

BMS2

Df Dη e−S(0,0)[f,η] , (4.9)

with an integral over (f, η) that now only involves the action (4.2) on the background
(T,Q) = (0, 0). This is the sense in which theorem 2 allows us to focus on the orbit
representative (T,Q) = (0, 0) without loss of generality.

Note that the prefactor ∼ e#E of (4.9) is nearly trivial in many cases of physical interest.
For instance, if the pair (T,Q) hasQ(ϕ) = cst, then the uniformizing diffeomorphism (3.16) is
just a rotation and (4.8) yields cE = 2π T0 in terms of the zero-mode of T (ϕ). Complications
only occur when Q′ 6= 0, in which case the uniformizing map (3.16) is more involved and E
becomes the zero-mode (4.8) of a conformally transformed stress tensor with f̂ ′ 6= 1.

Path integration. Let us now compute the path integral in eq. (4.9). Taking (T,Q) =
(0, 0) in the action (4.2) yields∫
Df Dη e−S(0,0)[f,η] =

∫
Df Dη exp

[
iκΛ
c

∮ dϕ
f ′(ϕ)

(
a

12S[f ]−bf ′′η◦f+c(f ′−f ′2)η◦f
)]

(4.10)
where Df Dη is the Liouville measure (4.6). The equations of motion simply set f ′ = 1
and η = 0, so we expand the action to second order around its saddle point by letting
f(ϕ) = ϕ+ ε(ϕ) and assuming that ε and η are of the same order. This gives

Z = N eiκΛE[T,Q] Pf[Ω](I)
∫
DεDη exp

[
iκΛ
c

∮
dϕ
(
a

24ε
′′2 − bε′′η − cε′η

)]
(4.11)

where Pf[Ω](I) is the Pfaffian of the symplectic form (B.3) evaluated at the identity in
BMS2, while the measures Dε and Dη are now standard ‘flat’ functional measures. To
proceed, we assume that ε is real while η is purely imaginary, and expand them in Fourier
modes. (As before, c is assumed to be purely imaginary while Λ is real.) Performing the
resulting Gaussian/Fresnel integrals eventually yields

Z = N eiκΛE[T,Q] Pf[Ω](I)
+∞∏
m=1

−c2

4κ2Λ2m2

+∞∏
m=1

1
c2 + b2m2 . (4.12)

Note the divergence of the nth factor of the infinite product when c = ±ibn. We return to
this exceptional case below, assuming for the time being that c is ‘generic’ in the sense that
it cannot be written as ±ibn for any integer n.

It now only remains to evaluate the Pfaffian term in (4.12), which involves once more
some symplectic considerations that are relegated to appendix B. In terms of Fourier modes
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εn, ηn of ε and η respectively, one thus finds from eq. (B.3) that the symplectic form at the
identity is

Ω =
+∞∑
m=1

[
(. . .)δεm∧δε−m−(c+ibm)δηm∧δε−m−(c−ibm)δη−m∧δεm+c δε0∧δη0

]
(4.13)

where the omitted coefficient (. . . ) denotes an irrelevant m-dependent term.15 The c± ibm
coefficients may be seen as structure constants appearing in the BMS2 Lie bracket (3.9).
The Pfaffian of (4.13) therefore reads

Pf[Ω](I) = c
+∞∏
m=1

(c2 + b2m2) , (4.14)

where we note again the cancellation that occurs when c = ±ibn for some integer n. Plugging
this back in the partition function (4.12) and assuming once more that c is generic cancels
the one-loop determinant

∏ 1
c2+b2m2 , so one finally finds

Z = N c eiκΛE[T,Q]
+∞∏
m=1

−c2

4κ2Λ2m2 ∝ e
iκΛE[T,Q]

+∞∏
m=1

1
m2 . (4.15)

On the far right-hand side, the neglected proportionality factor only contains temperature-
independent (and possibly divergent) contributions that are ultimately irrelevant for ther-
modynamics. What is crucial is the product of 1/m2 factors: had we worked in terms of
Matsubara frequencies instead of Fourier modes, each such factor would have taken the
form β2/(2πm)2. Zeta function regularization can then be used to write

+∞∏
m=1

(
β

2πm

)2
= exp

[
2ζ ′(0) + 2 log( β2π ) ζ(0)

]
= 1
β
, (4.16)

implying that the partition function (4.15) satisfies

Z ∝ eiκΛE[T,Q] 1
β

(4.17)

up to temperature-independent factors. This result was to be expected: the action (4.2) is
invariant under Euclidean time translations and rigid translations, so the modes ε0 and
η0 are modded out when the path integral (4.1) is performed on generic gravitational
backgrounds, as was assumed here. The result (4.17) thus reproduces similar one-loop
partition functions found in the warped Schwarzian theory [27].

The thermal partition function on n-fold covers of the Euclidean plane differs from (4.17).
Indeed, in that case one has c = ±ibn for some integer n, and the symplectic form (4.13)
acquires one additional (complex) degenerate direction. One should therefore mod out
this one extra dimension when performing the integral, resulting in an infinite product

15This coefficient also depends on the Virasoro central charge a and would play a key role if we were
integrating over a Virasoro coadjoint orbit [19], but this is not so in the BMS2 case treated here.
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Zn-fold plane ⊃
∏
m∈Z∗,
m 6=n

1
|m| instead of (4.15). Reinstating Matsubara frequencies and using

once more zeta function regularization, as in eqs. (4.16), yields a partition function

Zn-fold plane ∝ eiκΛE[T,Q] 1
β2 . (4.18)

Here the tree-level piece takes the same form as in (4.17) despite the presence of an
additional dimension in the stabilizer; this is because the additional Fourier modes allowed
by eq. (3.18) when c = ±ibn do not affect the zero-mode of its solution ζ. But the one-loop
determinant ∝ β−2 manifestly differs from the β−1 of eq. (4.17). The distinction arises
from the symmetry enhancement that occurs for (covers of) the Euclidean plane as opposed
to more generic backgrounds: recall our discussion of isometries at the end of section 2.3,
as well as the complexified orbit stabilizers of section 3.3. The same type of enhancement
occurs in the Schwarzian theory [19], except that the relevant stabilizers in that case are
those of Virasoro orbits (i.e. isometries of AdS2 backgrounds).

As a concluding aside, note that we could have kept track of all numerical factors in
the derivation above: eqs. (4.17) and (4.18) would then read

Z = N eiκΛE[T,Q] 1
β
, Zn-fold plane = N eiκΛE[T,Q] 4πκΛ

b

1
β2 , (4.19)

where N denotes the same normalization constant in both cases. This is likely to be useful
when using a replica trick to compute thermodynamic observables, in the spirit of [58],
though we refrain from pursuing this line of thought here.

5 Conclusion and outlook

This work was devoted to the Bondi-Metzner-Sachs group in two space-time dimensions [28],
describing the asymptotic symmetries of JT gravity in Bondi gauge. We have seen that
the group is a semi-direct product, similarly to its higher-dimensional peers [34, 35, 50].
It can be defined with the same degree of rigour as the Virasoro group [49] or its warped
generalization [36, 37]. However, the central extensions involved in the definition and in
the resulting algebra (3.8)–(3.10) are sharply different from those encountered so far in the
literature, implying subtleties that do not normally affect discussions of JT gravity. In
particular, the crucial presence of an extra zero-mode in the gravity action made it slightly
different from the BMS-Schwarzian, in just the right way to reinstate the presence of saddle
points along with translation symmetry. This eventually allowed us to evaluate the one-loop
partition function of the theory.

One can think of this work as a first step towards the study of BMS2 symmetry and
its application to 2D gravity. Indeed, a number of issues have been omitted here and
deserve deeper treatment. The complexification of BMS2, for instance, is a seemingly
abstract problem that happens to have crucial physical consequences: it explains the
difference between partition functions (4.17) and (4.18) from the presence of enhanced
complex symmetries for (covers of) the Euclidean plane. It would be satisfactory to build a
framework where such complex orbits appear naturally, as opposed to the rough arguments
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exposed in section 3.3. Another aspect of BMS2 symmetry that was not addressed here
is its application to warped CFTs. Indeed, as stressed repeatedly, BMS2 extends the
warped Virasoro group, so it is natural to wonder if it can be defined as a space-time
symmetry of the kind that normally defines warped CFTs. One may then wonder if BMS2
entails a Cardy-like formula similar to those of more standard extensions of the Virasoro
group [36, 59, 60]. Applications to black hole entropy would then be conceivable, e.g. along
the lines of [37] or [61, 62].
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A Adjoint representation of BMS2

This appendix completes section 3.2 and describes the adjoint representation of the (centrally
extended) BMS2 group. This is a key technical step for the computation of Lie brackets (3.7)
and that of the BMS2 coadjoint representation (3.12)–(3.13).

The Lie algebra of the BMS2 group is its tangent space at the identity, whose elements
are triples (ε, η, z) ∈ VectS1 × Ω1(S1)×R3. It is acted upon by the adjoint representation,
i.e. the differential of conjugation at the identity:

Ad(f,η1,z1)(ε, η2, z2) ≡ d
dt

∣∣∣∣
t=0

(f, η1, z1) · (etε, tη2, tz2) · (f, η1, z1)−1 . (A.1)

Owing to the group operation (3.3), the operator Ad(f,η,z) is actually independent of central
entries z, so we omit them in the subscript from now on. In fact, using (3.3), one finds

Ad(f,η1)(ε, η2, z) =
(
f∗ε, (f−1)∗η2 + Lf∗εη1; z + C̃[f, ε, η1, η2]

)
(A.2)

where (f∗ε)(ϕ)∂ϕ ≡ ε(f−1(ϕ))[(f−1)′(ϕ)]−1∂ϕ is the pushforward of the vec-
tor ε by the diffeomorphism f , while the three functionals in C̃[f, ε, η1, η2] =(
Ã[f, ε], B̃[f, ε, η1, η2], C̃[f, ε, η1, η2]

)
respectively stem from the three cocycles (3.4)–(3.6)

and are given by

Ã[f, ε] = −
∮ dϕ

24π ε(ϕ)
(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2)
, (A.3)

B̃[f, ε, η1, η2] =
∮ dϕ

2π
[
η2 log f ′ + η′1 f∗ε

]
, (A.4)

C̃[f, ε, η1, η2] =
∮ dϕ

2π
[
η2
(
f(ϕ)− ϕ

)
− η1 f∗ε

]
. (A.5)
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It is understood here that all integrals run over the circle ϕ ∈ [0, 2π), and we abuse
notation by writing forms and vector fields and their components with the same symbols
(for instance (f∗ε)(ϕ) ≡ ε(f−1(ϕ))[(f−1)′(ϕ)]−1, etc.). Note that Ã involves the usual
Schwarzian derivative and also appears in the adjoint representation of the Virasoro group
(see e.g. [63, eq. (6.98)]), while the quantities (A.4)–(A.5) are new.

Eqs. (A.2)–(A.5) are implicitly used at two important points in the main text. First,
the Lie bracket (3.7) is obtained by differentiating the adjoint representation at the identity:
schematically, [ε1, ε2] ≡ adε1ε2 ≡ − d

dt

∣∣∣
t=0

Adetε1ε2 where the minus sign is included on
the right-hand side for convenience. Generalizing this to triples (ε, η, z) and using (A.2)–
(A.5) yields the result quoted in eq. (3.7) above. Second, the coadjoint representation of
eqs. (3.12)–(3.13) crucially relies on eqs. (A.2)–(A.5), since it is the dual of the adjoint.
Concretely, one schematically has 〈Ad∗fT, ε〉 ≡ −〈T,Adf−1ε〉, and generalizing to triples
(ε, η, z) and (T,Q, c) provides

T̃ = [(f−1)′]2 T ◦ f−1 − a

12S[f−1] + b η
(f−1)′′

(f−1)′ − b η
′ + c η(f−1)′ + η(Q ◦ f−1)′ , (A.6)

Q̃ = Q ◦ f−1 + b log[(f−1)′] + c (f−1(ϕ)− ϕ) . (A.7)

The first term on the right-hand side of (A.6) is a CFT transformation law with central
charge a and involves the standard Schwarzian derivative, while the remaining terms are
new. Evaluating both equations at f(ϕ) instead of ϕ yields eqs. (3.12)–(3.13) above.

B Symplectic form and measure

This appendix completes sections 4.2–4.3 by displaying the construction of the Liouville/Haar
measure on BMS2. The technical core of the computation is the evaluation of the Maurer-
Cartan form of the centrally extended BMS2 group. Since the path integral of section 4.3
localizes to the identity in BMS2, we will focus on the value of the measure at the saddle
point. Furthermore, as explained in section 4.3, choosing a right-invariant measure allows
us to limit ourselves to the simplest orbit representative (T,Q) = (0, 0) without loss
of generality.

The strategy is as follows. We first evaluate the Maurer-Cartan form of BMS2, then
pair it with a coadjoint vector (0, 0; a, b, c), and finally take the exterior derivative in field
space to read off the Kirillov-Kostant symplectic form. The corresponding path integral
measure then is the infinite power of the symplectic form and involves the Pfaffian described
in section 4.3.

The right Maurer-Cartan form of BMS2 follows from the centrally extended group
operation (3.3), and thus generalizes the centreless Maurer-Cartan form (4.4). To evaluate
it, let (ft, ηt) be some path in BMS2, defining a tangent vector (ḟ0, η̇0) at t = 0. (For
simplicity we exclude central components from the path; these components do not contribute
to the measure anyway.) One then finds from (3.3) that the right logarithmic derivative of
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the path is

∂τ
∣∣∣
0

[
(fτ , ητ ; 0) · (ft, ηt; 0)−1

]
=
(
ḟ ◦ f−1, η̇ + (η ḟ ◦ f−1)′,

∮ dϕ
48π (log f ′)′∂t(log f ′),

−
∮ dϕ

2π ḟ
′ η ◦ f,−

∮ dϕ
2π ḟ f

′ η ◦ f
)
.

(B.1)

The first two entries on the right-hand side reproduce the centreless result (4.4), while the
central entries are new and involve among others the standard Virasoro geometric action
∝
∮
φ′φ̇ in terms of φ = log f ′ [64]. The corresponding Lie algebra-valued one-form Θ is, by

definition, the right Maurer-Cartan form on the (centrally extended) BMS2 group, obtained
by trading all time derivatives in (B.1) for functional exterior derivatives (as already done
in (4.4)):

Θ =
(
δf ◦f−1, δη+(η δf ◦f−1)′,

∮
dϕ
48π (log f ′)′δ(log f ′),−

∮
dϕ
2π δf

′ η◦f,−
∮

dϕ
2π δf f

′ η◦f
)
.

(B.2)
The Kirillov-Kostant symplectic form Ω evaluated at the point (T,Q; a, b, c) is then obtained
by pairing the latter with the Maurer-Cartan form and taking the exterior derivative:
Ω ≡ δ〈(T,Q; a, b, c),Θ〉 in terms of the adjoint-coadjoint pairing (3.11). (See e.g. [63,
section 5.3.2] for the details of this procedure.) As announced above, we take (T,Q) = (0, 0)
without loss of generality so that only the central entries of (B.2) contribute, which yields

Ω = − a

24

∮ dϕ
2π

δf ′ ∧ δf ′′

f ′2
− b

∮ dϕ
2π δ(η ◦ f) ∧ δf ′ + c

∮ dϕ
2π δf ∧ δ (f ′η ◦ f) . (B.3)

The first term is the well-known central part of the symplectic structure of Virasoro coadjoint
orbits [18, 64], while the second and third terms are specific to BMS2. This is the expression
used in section 4.3 to evaluate the Pfaffian (4.14) that is eventually crucial for the value of
the partition function.

Note that (B.3) reduces to the symplectic form of warped Virasoro orbits [27] when
η = σ′ is exact. Indeed, the second and third terms on the right-hand side of (B.3) then
become

−
∮ dϕ

2π
δσ′

f ′
∧ δf ′ + c

∮ dϕ
2π δf ∧ δσ

′ , (B.4)

which coincides indeed with the symplectic form of warped Virasoro coadjoint orbits at
vanishing U(1) level [27]. This is consistent with the embedding of warped Virasoro in
BMS2 emphasized throughout this work.
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