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1 Introduction and summary

It has long been thought that a highly excited string can be regarded as a black hole: the
correspondence principle between strings and a black hole [1–5]. The correspondence stems
naturally from the fact that string theory is a quantum gravity, and that a black hole is a
gravitational phenomenon in which many particles, that are strings in string theory, gather
to form a “bound state.” In addition, this correspondence is motivated by the effort to
reveal the mystery of the black hole entropy formula, since any explicit formulation of the
correspondence may lead to the way to count the quantum states of a black hole.

In recent years, black holes were characterized by chaos, in the AdS/CFT correspon-
dence [6]. The chaotic nature of the boundary quantum field theory corresponds to the
redshift due to the black hole event horizon in the gravity side [7–9]. In view of this
development, chaos can be one of the best ways to confirm the correspondence principle
between the highly excited string and the black hole.

Since perturbative string theory is formulated through scattering amplitudes, we need
to look for any chaotic nature of the string scattering amplitudes. Recently, Gross and
Rosenhaus [10] studied the amplitudes of a highly excited string decaying into two tachyons,
and found that the amplitudes are highly erratic, which was interpreted as a sign of chaos.
In general, erratic, non-regular nature of physical observables is a necessary condition for
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the system to be chaotic. The erratic behavior was first mentioned in [11] and further
confirmed in [12].1 In addition, in our recent work [16], the imaging of the highly excited
string through the decay amplitudes revealed the nontrivial spatial structure of the string:
string is a double slit. The existence of such a structure suggests chaos.

In order to extract the chaos in the erratic behavior of the decay amplitude of the
highly excited string, we resort to an established method: the transient chaos analysis. In
classical scattering, the diagnose for finding chaos is to identify a fractal structure in the
scattering data (see [17] for a review). The methods of the transient chaos analysis has been
developed such that the chaos of bounded systems is generalized to unbounded systems —
in the scattering processes, the chaos appears only in a limited spatial and temporal domain,
while for the bounded systems one can observe the chaos using infinite amount of time.

The transient chaos analysis which we employ in this paper is summarized as follows.
Consider a particle scattered by a potential. The scattering data consists of a pair of the
incoming and outgoing angles of the particle motion, and we shall name it (θ, θ′). For a
sufficient number of numerical experiments of the scattering, one finds a lot of the pair
data, which is translated into a one-dimensional function θ′(θ). For chaotic scattering, one
should be able to find a fractal structure in this function θ′(θ). Like in the chaotic dynamics
produced by the Baker’s map, the fractal structure or the self-similar structure is a typical
nature of chaos. In scattering processes, if there exists the initial condition sensitivity in
the system, a particle destination is shared by two or more different paths. This produces
the fractal structure in the scattering data.

In this paper, we apply the transient chaos analysis described above to string scattering
amplitudes. In particular, we consider scattering amplitudes of a tachyon and a highly
excited string (HES), i.e. amplitudes of HES-tachyon to HES-tachyon, which mimic a
scattering of a tachyon by a HES. To describe the in- and out-HES state, we follow the
method adopted in the chaos analyses [10] using the DDF states [18].2

To obtain the scattering data θ′(θ) from the quantum scattering amplitudes, we extract
the outgoing angles of the largest pole θ′ of the amplitude for fixed incoming angles θ. Since
generically string scattering amplitudes have multiple poles, we regard the largest pole as
the most probable scattering in the quantum treatment.

Our final results of the scattering data of HES-tachyon scattering in open bosonic string
theory are shown in figure 4, figure 5 and figure 6. The HES states are the ones up to the
string excitation level N = 27, and the photon insertions necessary for creating the HES
state are taken up to J = 5, and we consider generic out-going angles. We do not see any
fractal structure in the scattering data, which concludes that our HES-tachyon scattering
analysis does not show the sign of transient chaos.

One caveat is that the absence of the fractal structure may originate in the quantum
nature of the string scattering amplitudes. As described above, our strategy to obtain the
scattering data is to pick the largest pole in the amplitude. There could be a refined strategy
to extract the scattering data by taking some classical limit of the scattering amplitudes.

1See also [13–15] for related recent work on scattering and chaos in string theory.
2The calculation of the HES amplitudes was developed in [19]. See also [20, 21] for HES states studied

from the viewpoint of cosmic strings, and a recent paper [22] for a classical limit of HES amplitudes.
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Figure 1. The classical scattering of a single particle in two spatial dimensions. The scattering
potential is the four-hill potential (2.1) whose equal-height slice is plotted as four circles. Left: initial
condition is θ = 0.125 with b = 0. Right: initial condition is θ = 0.127 with b = 0. For both plots,
the energy is fixed to E = 0.045.

This paper is organized as follows. In section 2, we make a brief review of the transient
chaos, and propose how the scattering data is extracted from the quantum scattering
amplitudes, which is used in our analysis. In section 3, we calculate the HES-tachyon
scattering amplitudes for various HES states and obtain the scattering data, to show
that there is no fractal structure in the scattering data of the amplitudes. In section 4,
we provide discussions on possible generalization of our method to find chaos in string
scattering amplitudes. Appendix A is for the detailed derivation of the HES-tachyon
scattering amplitudes used in section 3.

2 Transient chaos in classical scattering

In this section, we briefly review the fractal feature of transient chaos in classical scattering
processes, and propose its generalization to quantum scattering processes, for our study of
string scattering in the later sections.

2.1 Classical scattering and chaos

The chaos in classical scattering processes can be identified by finding a fractal structure
in the scattering data. We briefly review how the fractal nature appears in the classical
scattering, following [17].

Consider the motion of a single particle scattered by a potential (see figure 1). A
potential is localized around the origin of the space into which the particle is shot and
then scattered to reach the spatial infinity. The scattering data could be, for example, the
incoming angle θ and the impact parameter b for the initial state of the particle and the
outgoing angle θ′ and the impact parameter b′ for the final state of the particle. Thus the
data consists of a set of values (θ, b, θ′, b′) with many numerical experiments, for a fixed
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potential and fixed energy of the particle. In other words, the data is a set of functions
θ′(θ, b) and b′(θ, b).3

If one chooses a potential whose complexity is large enough, then it happens that the
particle which was shot in can be trapped for a certain period of time and then escapes to
the spatial infinity. During this trapping time, the particle is scattered many times by the
inner structure of the potential and loses its initial information (which is θ and b). This
causes chaos, the sensitivity to the initial condition.

In figure 1, two examples of the scattering of a particle which goes through the four-hill
potential with the Lagrangian

L = 1
2 ẋ

2 + 1
2 ẏ

2 − x2y2e−x
2−y2 (2.1)

are presented. The particle is shot from the right hand side with the initial angle θ = 0.125
and 0.127 respectively, with b = 0. The outcome is drastically different, although the initial
conditions differ just slightly.

Generic scattering processes are different from the case of the bounded systems for which
the standard definition of chaos applies: one cannot measure the chaos for infinite duration
of time, because the particle can escape from the chaotic region. Therefore the chaotic
nature is hidden in the scattering data of the particle which goes through the potential.

In figure 2, the scattering data of the particle which goes through the four-hill poten-
tial (2.1) is presented. We have chosen b = 0 for simplicity, and look at only the function
θ′(θ). The top-left panel is the whole view of the data. The scattering data obviously finds
a lot of jumps, and in particular, the jumps are accumulated to form a dense part. If one
magnifies the dense part, as seen in the other panels, one finds a similar dense structure in
the scattering data. This is the fractal-like structure, which shows the transient chaos of
the scattering process.

The existence of the fractal structure means that a single destination of the particle
motion can have two or more paths. It is nothing but the initial condition sensitivity, that
is the definition of classical chaos.

In summary, for classical scattering, the fractal structure in the scattering data θ′(θ)
shows the chaos. In this paper, we obtain the scattering data for quantum scattering
of strings, in particular highly excited strings, and look for the chaos, that is, the frac-
tal structure.

2.2 Generalization to quantum scattering

The transient chaos in classical scattering is well-understood, as we have reviewed in the
previous subsection. However, string theory is built out of quantum scattering amplitudes.
How can we generalize the classical analysis to the quantum scattering amplitudes? Here,
let us explain our strategy to apply the transient chaos analysis for classical scattering
processes which we reviewed in the previous subsection to the quantum scattering processes.

3One can choose θ = 0 and ignore measuring b′, then the scattering data is only θ′(b), which was used
in [23].
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Figure 2. The scattering data of the particle for the four-hill potential model (2.1). The particle
energy is fixed to E = 0.045, and the impact parameter is also fixed to b = 0. Top-left: the whole
view of the scattering data θ′(θ). The top-right, bottom-left, bottom-right panels are the magnified
plots of the scattering data, while the top-left panel is the whole view of the scattering data. In the
top-left panel, one finds connected lines and scattered plots. Interestingly, also in the magnified
plots in the top-right, bottom-left and bottom-right panels, one finds a similar structure. This is the
fractal-like structure of the self-similarity.

First of all, we need to note that in quantum scattering processes, due to the Heisenberg
uncertainty principle, we do not have all the information which the classical scattering has.
Thus here we start with a discussion on what parameters are suitable for the quantum
scattering processes.

The quantum scattering in standard quantum field theories is normally described by
plane waves, as any particle state is a superposition of quantized plane waves. This means
that, the initial state and the final state are specified only by the momenta of all the particle
states, incoming and outgoing. They are the parameters for quantum scattering, and we
can further reduce the number of the independent parameters by considering some limit,
as follows.

In the analogy of the physical set-up of the transient chaos in classical scattering, we
suppose a scattering of a light particle by a potential. In the standard 2-to-2 scattering
processes in quantum field theories, this potential scattering is realized if one requires a
limit where the other particle is much heavier than the light scattered particle. Thus, in this
limit, what specifies the scattering amplitude is only the combination (p(ini)

µ , p
(fin)
µ ), which is

the momenta of the light scattered particle. Furthermore, once we specify the mass m of the
light particle, then with the energy conservation, we find p(ini)

0 = p
(fin)
0 =

√
p2 +m2 for the

momentum magnitude p (> 0). The scattering is specified by p and the pair (θ, θ′) where θ
and θ′ are the angles of the incoming and the outgoing momenta (p(ini)

i , p
(fin)
i ). Thus, the

scattering data is given by the scattering amplitude A(p, θ, θ′).
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Next, we present our procedures to extract the scattering plot similar to figure 2 from
the quantum scattering amplitudes, to find the transient chaos of the system. Note that
the classical scattering data is given by a map (b, θ)→ (b′, θ′) for a given energy, where b is
the impact parameter. In the quantum scattering we consider plane waves, meaning that
the impact parameters are uniformly integrated. Once the impact parameter dependence is
integrated, the classical scattering is specified by a map θ → θ′, i.e. a function θ′(θ) for a
given energy.

We can relate this classical scattering data θ′(θ) and the quantum scattering amplitude
A(p, θ, θ′) as follows. The absolute square of the scattering amplitude A describes the
probability. When the amplitude has a pole at some value of θ′, we can say that the value
is most probable in the scattering. Since the position of the pole depends also on the other
data (p, θ), it gives θ′ as an implicit function of (p, θ). When the amplitude has multiple
poles at θ′ = θ′m for given p and θ, as

A(p, θ, θ′) ∼
∑
m

Rm(p, θ)
θ′ − θ′m(p, θ) (2.2)

then we can say that the value θ′m(p, θ) which gives the largest residue |Rm(p, θ)| among all
poles is the most probable scattering. In this manner, we can extract the function θ′(p, θ),
which is θ′m(p, θ) with the largest |Rm(p, θ)|, from the scattering amplitude A(p, θ, θ′), and
regard θ′(p, θ) as a quantum counterpart of the classical scattering data θ′(θ).

Note that the obtained function θ′(p, θ) can be discontinuous, since the largest pole, or
equivalently the label m of the largest residue, may differ for different θ. In general, when
there are multiple poles in the scattering amplitude, the scattering data θ′(θ) for a given
value of p, which is a single-valued, consists of a set of segment functions whose domains
are disjoint with each other.

In the following section, we use this definition of θ′(θ) for the scattering data of the
string scattering amplitudes.

3 HES-tachyon to HES-tachyon scattering

In this section, we study a scattering of a tachyon by a highly excited string (HES) in open
bosonic string theory:

HES + tachyon→ HES + tachyon. (3.1)

We compute its scattering amplitude A(p, θ, θ′), and find that it has multiple poles at
θ′ = θ′m(θ). We regard the angle associated with the largest pole as a quantum counterpart of
the classical scattering data. We show that the scattering data θ′(θ) consists of disconnected
segments, and look for the fractal structure.

3.1 Setups

To construct the HES-tachyon scattering amplitude, we start with a scattering:

(tachyon + J photons) + tachyon→ (tachyon + J photons) + tachyon. (3.2)
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Figure 3. String amplitude for the process: (tachyon + J photons) + tachyon → (tachyon + J

photons) + tachyon. The external lines on the left/right hand side are the incoming/outgoing strings.
After picking out poles labeled with v, v′, it describes the scattering of a tachyon by a highly excited
string (HES).

Its diagram is shown in figure 3. The external lines on the left/right hand side are
the incoming/outgoing strings. J photons have momenta {−Naq}a=1,...,J and the same
polarization λ is shared by all the photons. The tachyon with momentum p2 can form an
intermediate HES state by absorbing all these J photons. By picking out a pole labeled
with v, we focus on the HES state. A similar construction of a HES state has been used, for
example, in [10, 12]. The HES scatters another incoming tachyon with momentum p1. The
outgoing strings are constructed in a similar but opposite processes. The incoming strings
decay into an outgoing tachyon with momentum p′1 and a HES corresponding to a pole
labeled with v′. The outgoing HES state is constructed from a tachyon with momentum p′2
and J photons which have momenta {−N ′bq′}a=1,...,J and share the same polarization λ′,
or equivalently, the HES decays into a tachyon and J photons successively. The resulting
amplitude with the poles v, v′ extracted describes the desired process (3.1).

Let us summarize the setups and some assumptions to simplify computations. The
momentum conservation law is

0 = p1 + (p2 −Nq) + (p′2 −N ′q′) + p′1

= p1 + p2 + p′2 + p′1 −N(q + q′) , (3.3)

where

N =
J∑
a=1

Na =
J∑
b=1

N ′b = N ′, (Na, N
′
b ≥ 1) (3.4)

is the total excitation level of HES, and here, the total excitation number N ′ of the outgoing
HES is taken to be the same as that (N) of the incoming HES. The mass M of HES is
given in terms of the total excitation number N as

M2 = 2(N − 1). (3.5)

– 7 –



J
H
E
P
1
1
(
2
0
2
2
)
1
4
7

Since all photons have the same polarization, the number of photons J equals to the
total angular momentum. Here note that N ′b is not necessarily equal to Nb. The on-shell
conditions for the tachyons and photons are

p2
1 = p2

2 = p′22 = p′21 = −(−2), (3.6)

and

q2 = q′2 = 0, (3.7)

respectively. For simplicity, we assume that q ∝ q′ and λ = −λ′. Then the photon momenta
and polarization vectors satisfy

q · q′ = 0, λ2 = λ′2 = λ · λ′ = 0,
q · λ = q′ · λ′ = q · λ′ = q′ · λ = 0. (3.8)

We also assume that

(p1 + p2) · λ = (p′1 + p′2) · λ′ = 0 (3.9)

for simplicity. This is satisfied without loss of generality, for example, by taking the
center-of-mass frame of the incoming/outgoing strings. We define the Mandelstam(-like)
variables as

s = −(p1 + p2 −Nq)2 = −(p′1 + p′2 −N ′q′)2, (3.10)
t = −(p1 + p′2 −N ′q′)2 = −(p′1 + p2 −Nq)2, (3.11)
u = −(p1 + p′1)2 = −(p2 −Nq + p′2 −N ′q′)2. (3.12)

Also we define variables to describe the HES poles as

v = −(p2 −Nq)2, (3.13)
v′ = −(p′2 −N ′q′)2. (3.14)

These satisfy an identity

s+ t+ u = 4 · (−2) + 2 · (1 + v/2) + 2 · (1 + v′/2). (3.15)

3.2 Amplitude and its largest pole

Here, we calculate the HES-tachyon to HES-tachyon amplitude. The amplitude becomes a
four point amplitude after picking out the intermediate HES poles of v- and v′-channels,
and is given in the form of a worldsheet boundary integral over the position of one of
four vertex operators which cannot be fixed by the conformal symmetry. The integral can
be split into three segments. The amplitude contains poles of three channels: s-, t- and
u-channels, and each of three segments of the integral contains contributions from two of
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three channels. Here, we focus on the segment of integral Ast which contains contributions
of s- and t-channels.4

Some straightforward computations in appendix A show that the st-part contribution
for the HES-tachyon to HES-tachyon scattering amplitude is

Ast ∼
∑

{ia=2,2′}

∑
{jb=2,2′}

{Na}∑
{ka=0}

{N ′
b}∑

{lb=0}(
J∏
a=1

(pia · λ) c(ia)
ka

)(
J∏
b=1

(pjb · λ
′) d(jb)

lb

)
B(−α(s) + k + l,−α(t)). (3.16)

Here the coefficients c(i)
k , d

(j)
l are defined by

c
(2)
k = +ck(α2 + 1, α1 + 1, α′2), (3.17)

c
(2′)
k = −ck−1(α2, α1, α

′
2 + 1), (3.18)

d
(2)
l = −cl−1(β′2, β′1, β2 + 1), (3.19)

d
(2′)
l = +cl(β′2 + 1, β′1 + 1, β2), (3.20)

where

ck(α2,α1,α
′
2)

= Γ(−α2 +1)Γ(−α1 +1)
Γ(−α2−α1 +2)

Γ(α′2 +k)
Γ(α′2)

Γ(−α2 +1+k)
Γ(−α2 +1)

Γ(−α2−α1 +2)
Γ(−α2−α1 +2+k)

1
Γ(k+1) , (3.21)

and

αi = −(−Naq) · pi, βj = −(−N ′bq′) · pj . (3.22)

The last factor B(−α(s) + k + l,−α(t)) in (3.16) is the Beta function

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) , (3.23)

and k, l and α are defined by

α(x) = 1 + x/2, k =
J∑
a=1

ka, l =
J∑
b=1

lb. (3.24)

4The part Ast originates in the DDF construction of the fourth vertex operator going around one of the
other three vertex operators, see appendix A for the details. Although this is a part of the whole scattering
amplitude, we assume that this is enough for looking at any possible fractal structure. In fact, the complete
structure of the Veneziano amplitude is determined solely by Ast.
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To evaluate the amplitude (3.16), we have taken the following parameterization of the
momenta and polarization vectors,

−q = 1√
2(N−1)+p2−p cos θ


1
0
0
−1

, −(−q′) = 1√
2(N−1)+p2−p cos θ′


1
0
0
−1

,

λ = 1√
2


0
1
i

0

 −λ′ = 1√
2


0
1
i

0

,

p1 =


√
p2 − 2
p sin θ

0
p cos θ

, −p′1 =


√
p2 − 2

p sin θ′ cosϕ′

p sin θ′ sinϕ′

p cos θ′

,

p1 + p2 −Nq =


√
s

0
0
0

, −p′1 − p′2 +N ′q′ =


√
s

0
0
0

.

(3.25)

Here, p stands for the magnitude of the momentum of the incoming tachyon, and the
scattering amplitude is parametrized by the angles5 θ, θ′ and ϕ′. The Mandelstam(-like)
variables are now expressed as

s =
(√

2 (N − 1) + p2 +
√
p2 − 2

)2
, (3.26)

t =
(√

2 (N − 1) + p2 −
√
p2 − 2

)2
− 2p2 (1 + cos θ cos θ′ + sin θ sin θ′ cosϕ′

)
, (3.27)

u = −2p2 (1− cos θ cos θ′ − sin θ sin θ′ cosϕ′
)
. (3.28)

It is straightforward to check that these variables satisfy the identify (3.15). Also we easily
find for (3.22) that

p1 · q = +
√

2(−1)+p2+p cos θ√
2(N−1)+p2−p cos θ

, p2 · q = +1, p′2 · q = −
√

2(N−1)+p2−p cos θ′
√

2(N−1)+p2−p cos θ
,

p′1 · q′ = +
√

2(−1)+p2+p cos θ′
√

2(N−1)+p2−p cos θ′ , p
′
2 · q′ = +1, p2 · q′ = −

√
2(N−1)+p2−p cos θ√
2(N−1)+p2−p cos θ′ ,

(3.29)

and for the coefficients in (3.16) that

p2 · λ = −p2 · λ′ =
−1√

2
p sin θ, (3.30)

p′2 · λ′ = −p′2 · λ = −1√
2
peiϕ

′ sin θ′. (3.31)

5In 2 → 2 scattering of scalar particles, one can take the center of mass frame with which the scattering
angle is fixed. However, our HES has a specific spatial orientation which is its polarization. Our spherical
coordinate system respects the polarization of the photons which are used to make the HES. There is no
remaining rotation symmetry which could fix the angular variables.
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Under these parametrization, the HES-tachyon to HES-tachyon amplitude is given by the
momentum and the incoming/outgoing angles A = A({Na}, {N ′b}; p, θ, θ′, ϕ′).

We apply the strategy in section 2.2 to this amplitude and find the largest pole, to
extract the scattering data. Let us consider the amplitude for given excitation levels
{Na}, {N ′b} and magnitude of momentum p. Since the Mandelstam variable s depends only
on the total excitation level N and magnitude of momentum p, the s-channel poles are
independent of the angular variables. On the other hand, the t-channel poles come from
the divergences of the Beta function in (3.16), and appear in certain outgoing angles for
given incoming angles. The t-channel poles form a line in two-dimensional space of outgoing
angles θ′ and ϕ′. For a fixed ϕ′, the positions of poles in the outgoing angle {θ′m(θ)} is
given as functions of the incoming angle θ. They can be obtained by solving

α(t(θ, θ′)) = n, n ∈ Z≥, (3.32)

as the t-channel poles come from the poles of Γ(−α(t)) in the Beta function in (3.16). We
evaluate this equation numerically. Among the data {θ′m(θ)}, we look for their maximum
poles, which has the largest residue of the poles. The residue around the poles is

Ãst = lim
α(t)→n

lim
{α2}→{Na}

lim
{β′

2}→{N
′
b
}

sin π(−α(t))
π

J∏
a=1

sin πα2
π

J∏
b=1

sin πβ′2
π

Ast

= Ast|B→B̃,c→c̃,d→d̃ . (3.33)

Here we have defined

B̃(−α(s) + k + l,−α(t)) = lim
α(t)→n

sin π(−α(t))
π

B(−α(s) + k + l,−α(t))

= Γ(−α(s) + k + l)
Γ(−α(s)− n+ k + l)Γ(1 + n) , (3.34)

c̃k(α2, α1, α
′
2) = lim

α2→Na

sin πα2
π

ck(α2, α1, α
′
2)

= 1
Γ(k + 1)Γ(α2 − k)

Γ(α2 − k + α1 − 1)
Γ(α1)

Γ(α′2 + k)
Γ(α′2) , (3.35)

and have also defined

c̃
(2)
k = −c̃k(α2 + 1, α1 + 1, α′2), (3.36)

c̃
(2′)
k = −c̃k−1(α2, α1, α

′
2 + 1), (3.37)

d̃
(2)
l = −c̃l−1(β′2, β′1, β2 + 1), (3.38)

d̃
(2′)
l = −c̃l(β′2 + 1, β′1 + 1, β2). (3.39)

Note that the signs of the coefficients c̃(2), d̃(2′) are flipped since sin π(α2 + 1) = − sin πα2.
Numerically evaluating the reside at {θ′m(θ)}, and finding the largest one among them, we
construct the scattering data θ′(θ) of the HES-tachyon scattering amplitudes.
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Figure 4. Scattering data θ′(θ) involving a HES with the angular momentum J = 1. The
top/middle/bottom two panels are the plots when the excitation level is N = N1 = N ′

1 = 1, 5, 9.
The three panels on the left/right hand side are the plots when ϕ′ = 0, π/4. The momentum is fixed
at p = 2.6. Although the plots are highly erratic, fractal structure has not been observed.

3.3 Transient chaos analysis of the scattering amplitude

In this subsection, we show numerical plots of the scattering data θ′(θ) for various fixed
parameters, and discuss their fractal feature (the self-similarity).

The results for a scattering of a tachyon and a HES with the angular momentum J = 1
are shown in figure 4. The top/middle/bottom two panels are the plots for the excitation
levels N = N1 = N ′1 = 1, 5, 9. The three panels on the left and right hand side are the plots
for ϕ′ = 0 and ϕ = π/4, respectively. The momentum is fixed at p = 2.6 so that the energy
squared is positive, E2 = p2 − 2 ≈ 7− 2 > 0.
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Figure 5. Scattering data θ′(θ) when J = 1, N = 27. The excitation level is chosen so that as many
t-channel poles appear as possible. Other parameters are fixed as figure 4. Still fractal structure
does not appear.

The plots are highly erratic, for larger excitation levels. The tilted lines in the case
N = 1 split into smaller segments in the cases N = 5, 9. However, we do not see any fractal
structure. In particular, the number of the small segments does not increase exponentially
in N . Note that typical fractal data is produced by a repeated action of an operation
creating self-similar structure, and the number of small structure grows exponentially in the
number of the action, thus also in our case, it is expected that the number of the smaller
segments would have grown exponentially in N if the scattering were chaotic.

This is further confirmed in figure 5, where the excitation level is chosen as N = 27.
This number N = 27 ≈ 4p2 was chosen so that as many t-channel poles, found in (3.32),
appear as possible, nevertheless, the fractal feature, or the exponentially smaller structure,
does not appear. Thus we conclude that the scattering data is not fractal. Assuming
that the fractal nature is the sign of chaos in quantum systems, our result means that our
HES-tachyon scattering is not chaotic.

The results for the scattering of the HES with J > 1 are shown in figure 6. The top,
bottom-left and bottom-right panels are the plots for the excitation levels {Na} = {N ′b} =
{5}, {3, 1, 1}, {1, 1, 1, 1, 1}, respectively. Other parameters are fixed as ϕ′ = 0, p = 2.6. As
the photons of which the HES with the total excitation level N consists are partitioned into
more photons to form a HES with smaller excitation levels {Na}, {N ′b}, we find in figure 6
that the small segments disappear. We conclude that even with the HES with J > 1 the
fractal nature is not found, therefore, the scattering amplitudes are not chaotic.6

This behavior on the partitions is explained as follows. As seen from the examples of
the case J = 1, the smaller segments appear for larger N (or Na, N

′
b). In the scattering

amplitude, there exist several lines of poles. When we pick out the pole with the largest
residue, the largest pole depends on the incoming angles. Thus, the line in the scattering
data of the largest pole is segmented. This magnitude of the residue at each pole is mostly
determined by the coefficients c(i)

k (α), d(j)
l (β), where α, β are proportional to Na, N

′
b times

oscillating functions (see (3.22), (3.29)). These coefficients oscillate more rapidly for larger

6We have used the typical value of p so that the total energy is positive. Even with other values of p, the
scattering data does not show the fractal structure.
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Figure 6. Scattering data θ′(θ) involving a HES with the angular momentum J > 1. The
top/bottom-left/bottom-right panels are the plots when the excitation level is {Na} = {N ′

b} =
{5}, {3, 1, 1}, {1, 1, 1, 1, 1}. Other parameters are fixed as ϕ′ = 0, p = 2.6. As the level N is
partitioned into smaller numbers {Na}, {N ′

b}, the small segments disappear.

values of {Na}, {N ′b}. Then, the largest pole frequently changes from a line to another, and
then, the line of the largest pole is split into smaller segments. The minimum length of the
segments is bounded by the maximum of {Na}, {N ′b}.

From the reasons described above, we expect that a larger N and a change in J does
not produce the fractal behavior. First of all, for the fractal structure the scattering data
needs to have exponentially small segments. The smallness of the segments is bounded by
the maximum of {Na}, {N ′b}. Increasing N provides only linearly small segments, which
does not help giving a fractal structure. Increasing J just lowers the maximum of {Na},
{N ′b} and thus reduces the fractalness. The complexity of the J-partitions of N is not
related to the fractal nature.7 This is the reason why the scattering data is not fractal.

4 Conclusion and discussions

In this paper, following the observation of the erratic nature of the decay amplitudes of
highly excited strings [10, 12], we have proposed a way to define the scattering data of
quantum scattering amplitudes in open bosonic string theory, and have looked for any
fractal structure in the scattering data of the scattering of a tachyon and a highly excited

7Note that the exponential growth of the number of states in string excitations is not related to the
small segments in the scattering data. In some other setup of the amplitudes, this exponential growth might
produce some chaotic behavior, though it does not in our case.
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string (HES). Our search has gone up to the HES excitation level N = 27 with various
manners of forming the HES states. The scattering data of the tachyon-HES amplitudes
is summarized in figure 4, figure 5 and figure 6. Within our search, we could not identify
any fractal structure in the scattering data. Since the fractal structure in the scattering
data is one of the established diagnoses for pinning down the existence of classical transient
chaos, assuming that the diagnosis can be extended to quantum cases with the largest pole
extraction as we have used, we have come to the observation that the string scattering is
not chaotic.

Nevertheless, it is too early to admit that string scattering has no chaos. Our HES
states are made by following the construction given in [10], while generic HES can have
more degrees of freedom. For example, the photons which are introduced to create the
HES have shared the identical momentum/polarization in our HES, and they could be
generalized. In fact, as shown in [16], the imaging of the HES by the decay amplitude of
the HES to 2 tachyons, with the same definition of the HES states, results in just a set
of slits which are aligned on a line in the target space. Although the classical scattering
by the four-hill potential in section 2 shows chaos because the particle is scattered many
times by the potential, such multiple scattering would not happen if the hills were aligned
on a line. The imaging of the HES decay amplitude implies that it is difficult for any
tachyon probe to be scattered many times by the HES. The HES decay amplitudes should
have more complicated, namely, higher dimensional structures to have chaos. The multiple
scattering is the essence of the transient chaos, thus the imaging results of the HES in [16]
suggests that more general HES states are needed to produce any transient chaos. In
other words, if the HES is the one formed by more variety of strings, the HES can be
complicated enough to produce the chaos. This also translates to the consideration of
5-point or 6-point amplitudes.

One of the other possibilities to generate chaos is the modification of the definition of
the scattering data. Since our definition of the scattering data extracts just an aspect of
the quantum amplitudes (although we believe that it is a natural definition), there could be
more sophisticated definition of the scattering data which may manifest possible transient
chaos. For example, we have ignored the impact parameter b in our definition because
usually the quantum scatterings are defined by plane waves. However, if one considers wave
packets rather than the plane waves, the amplitudes would contain more information about
the locality of the HES structure.

If we regard the multiple scattering in classical transient chaos as multiple scattering
in string theory, it could mean that we need to visit higher loop amplitudes. The scattering
amplitudes which we have studied in this paper is the tree level scattering, which is of order
of the string coupling constant. However, the particle scattering by a fixed potential is a
non-perturbative process in the sense that the scattering potential can be decomposed into
its radial modes. Therefore, naively speaking, for a possible transient chaos, higher loop
amplitudes would be necessary. As a first guess, we can use the tree level scattering data
given in figure 4, figure 5 and figure 6 to produce the multiple scattering. For example,
we can use the function θ′(θ) and apply this map many times, as θ′(θ′(θ)), · · · . This is an
analogy of the popular Baker’s map which produces the chaos. Unfortunately, since the
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slope of the scattering data in the left panels of figure 4 and figure 5 and in figure 6 is
identical to 1, this map does not work to magnify a part of the scattering data (which is
necessary for any chaotic map). Therefore, at this stage, our naive multiple application of
the scattering data map does not seem to produce the chaos.8

To explicitly formulate the correspondence principle between a black hole and highly
excited strings, we need to pin down the place where the chaos shows up in string perturbation
theory. One may need some statistical approach. Once the transient chaos is spotted, one
may proceed to derive the Lyapunov exponent to be compared with the surface gravity of
the black holes.9 The quest for the formulation of the correspondence principle continues,
and we hope that our present work serves as a step toward the formulation of it.
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A Explicit formulas of HES-tachyon to HES-tachyon amplitude

We start with a general formula for the bosonic open string tree-level amplitude, and pick
out poles corresponding to HES states as was done in [12]. We use the same strategy to
compute the four-point amplitude of the scattering of the HES-tachyon to HES-tachyon, to
obtain the scattering data θ′(θ).

A.1 Channels

The general formula for the tree-level amplitude involving any number of tachyons and
photons is given by

A = 1
vol.

∫
dwi dza

∏
i<j

|wij |pi·pj
∏
a<b

|zab|pa·pb
∏
i,a

|wi − za|pi·pa

× exp

∑
a 6=b

λa · λb
2z2
ab

−
∑
i,a

pi · λa
wi − za

∣∣∣∣∣∣
O(λa)

, (A.1)

where wij = wi−wj , zab = za− zb. Here the indices i run over the tachyons, and the indices
a run over the photons. The photon polarizations are denoted by λa.

8The slope of some parts of the scattering data with ϕ′ = π/4 exceeds 1, and the measure analysis is
necessary to figure out whether the map can generate chaos or not.

9Recent result [15] relates the HES decay amplitudes and the Wigner-Dyson statistical spectrum which
is typical for quantum chaos. Any possible relation to the fractal feature would be of importance.
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We focus on the case q ∝ q′ but applied to general integer J .10 Using the assumption
q ∝ q′, the amplitude reduces to

A = 1
vol.

∫ ∞
−∞

∏
i=1,2,2′,1′

dwi
∏
i<j

|wij |pi·pj

×
∫ ∞
−∞

J∏
a=1

dza
∏
a,i

|za − wi|−αi
∑
i

−pi · λ
wi − za

×
∫ ∞
−∞

J∏
b=1

dz′b
∏
b,j

∣∣z′b − wj∣∣−βj
∑
j

−pj · λ′

wj − z′b
(A.2)

where we defined

αi = −(−Naq) · pi, βj = −(−N ′bq′) · pj . (A.3)

The integral over wi can be divided into six parts as in the case of the Veneziano amplitude,

A = (Ast +Atu +Aus) + (Ats +Aut +Asu) , (A.4)

where

Ast = A|w′
1=−∞,w2=0,w1=w,w′

2=1

=
∫ 1

0
dw wp1·p2(1− w)p1·p′

2

J∏
a=1

Z212′
a (α, p, λ;w)

J∏
b=1

Z212′
b (β, p, λ′;w) (A.5)

Atu = A|w2=−∞,w′
2=0,w1=w,w′

1=1 = Ast|2→2′,2′→1′ , (A.6)

Aus = A|w′
2=−∞,w′

1=0,w1=w,w2=1 = Ast|2→1′,2′→2 , (A.7)

Ats = Ast|2↔2′ , (A.8)
Aut = Atu|2′↔1′ , (A.9)
Asu = Aus|1′↔2 . (A.10)

Here we have defined the photon integral

Zijka (α, p, λ;w) =
∫ ∞
−∞

dza |za|−αi |za − w|−αj |za − 1|−αk

(−pi · λ
−za

+ −pj · λ
w − za

+ −pk · λ1− za

)
(A.11)

A.2 Photon integral

To proceed, we define following integrals and evaluate them.

12

2′1′
∞
0 w

1

a

=
∫ w

0
dza |za|−α2 |za−w|−α1 |za−1|−α

′
2

=
∫ 1

0
dx w1−α2−α1 x

−α2(1−x)−α1

(1−wx)α′
2

(z =wx)

=w1−α2−α1Γ(−α2 +1)Γ(−α1 +1)F
(
α′2, −α2 +1
−α2−α1 +2

;w
)
, (A.12)

10See also [19] for a recent study on computation of the amplitudes.
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12

2′1′
∞
0 w

1
a =

∫ 0

−∞
dza |za|−α2 |za−w|−α1 |za−1|−α

′
2

=
∫ 1

0
dx x

−2+α2+α1+α′
2(1−x)−α2

(1−(1−w)x)α1
(1−z = 1/x)

= Γ(α2 +α1 +α′2−1)Γ(−α2 +1)F
(
α1, α2 +α1 +α′2−1

α1 +α′2
; 1−w

)
, (A.13)

12

2′1′
∞
0 w

1
a =

∫ 1

w
dza |za|−α2 |za−w|−α1 |za−1|−α

′
2

=
∫ 1

0
dx (1−w)1−α′

2−α1 x
−α′

2(1−x)−α1

(1−(1−w)x)α2
(z = (1−w)(1−x)+w)

= (1−w)1−α′
2−α1Γ(−α′2 +1)Γ(−α1 +1)F

(
α2, −α′2 +1
−α′2−α1 +2

;1−w
)

=

12

2′1′
∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣∣
2↔2′,w↔1−w

, (A.14)

12

2′1′
∞
0 w

1

a

=
∫ ∞

1
dza |za|−α2 |za−w|−α1 |za−1|−α

′
2

=
∫ 1

0
dx x

−2+α′
2+α1+α2(1−x)−α′

2

(1−wx)−α1
(z = 1/x)

= Γ(α′2 +α1 +α2−1)Γ(−α′2 +1)F
(
α1, α

′
2 +α1 +α2−1
α1 +α2

;w
)

=

12

2′1′
∞
0 w

1
a

∣∣∣∣∣∣∣∣∣∣
2↔2′,w↔1−w

. (A.15)

Then the photon integrals are evaluated as follows.

12

2′1′
∞
0 w

1

a

=
∫ w

0
dza |za|−α2 |za − w|−α1 |za − 1|−α

′
2
−p2 · λ
−za
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= −(−p2 · λ)

12

2′1′
∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣∣
α2→α2+1

, (A.16)

12

2′1′
∞
0 w

1

a

=
∫ w

0
dza |za|−α2 |za − w|−α1 |za − 1|−α

′
2
−p1 · λ
w − za

= +(−p1 · λ)

12

2′1′
∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣∣
α1→α1+1

, (A.17)

12

2′1′
∞
0 w

1

a

=
∫ w

0
dza |za|−α2 |za − w|−α1 |za − 1|−α

′
2
−p′2 · λ
1− za

= +(−p′2 · λ)

12

2′1′
∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣∣
α′

2→α
′
2+1

. (A.18)

Other integrals over the intervals (−∞, 0), (w, 1), (1,∞) are evaluated in a similar manner.
We are interested in the HES-tachyon to HES-tachyon scattering. Picking out the

HES-pole:

v, v′ ∼ 2(N − 1), i.e. α2 ∼ Na, β
′
2 ∼ N ′b, (A.19)

the photon integral reduces to

Z212′
a (α,p,λ;w) =

∫ ∞
−∞

dza |za|−α2 |za−w|−α1 |za−1|−α
′
2

(−p2 ·λ
−za

+−p1 ·λ
w−za

+−p
′
2 ·λ

1−za

)

∼

 12

2′1′
∞
0 w

1

a

+

12

2′1′
∞
0 w

1
a



+

 12

2′1′
∞
0 w

1

a

+

12

2′1′
∞
0 w

1
a
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+

 12

2′1′
∞
0 w

1

a

+

12

2′1′
∞
0 w

1
a



= +(−p2 ·λ)

−
12

2′1′
∞
0 w

1

a

+

12

2′1′
∞
0 w

1
a



∣∣∣∣∣∣∣∣∣∣∣
α2→α2+1

+(−p1 ·λ)

+

12

2′1′
∞
0 w

1

a

+

12

2′1′
∞
0 w

1
a



∣∣∣∣∣∣∣∣∣∣∣
α1→α1+1

+(−p′2 ·λ)

+

12

2′1′
∞
0 w

1

a

+

12

2′1′
∞
0 w

1
a



∣∣∣∣∣∣∣∣∣∣∣
α′

2→α
′
2+1

(A.20)

Using a formula for the hypergeometric function (see e.g. eq. 15.8.4 in [24]),

±

12

2′1′
∞
0 w

1

a

+

12

2′1′
∞
0 w

1
a

= ±w1−α2−α1Γ(−α2 + 1)Γ(−α1 + 1) F
(
α′2, −α2 + 1
−α2 − α1 + 2

;w
)

+ Γ(α2 + α1 + α′2 − 1)Γ(−α2 + 1) F
(
α1, α2 + α1 + α′2 − 1

α1 + α′2
; 1− w

)

= ±w1−α2−α1Γ(−α2 + 1)Γ(−α1 + 1) F
(
α′2, −α2 + 1
−α2 − α1 + 2

;w
)

+ Γ(α2 + α1 + α′2 − 1)Γ(−α2 + 1) π

sin π(−α2 − α1 + 1)

×
[

1
Γ(α′2)Γ(−α2 + 1)F

(
α1, α2 + α1 + α′2 − 1

α2 + α1
;w
)

− w−α2−α1+1

Γ(α1)Γ(α2 + α1 + α′2 − 1)F
(
α′2, −α2 + 1
−α2 − α1 + 2

;w
)]
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∼ ±w1−α2−α1Γ(−α2 + 1)Γ(−α1 + 1) F
(
α′2, −α2 + 1
−α2 − α1 + 2

;w
)

− Γ(α2 + α1 + α′2 − 1)Γ(−α2 + 1) π

sin π(−α2 − α1 + 1)

× w−α2−α1+1

Γ(α1)Γ(α2 + α1 + α′2 − 1)F
(
α′2, −α2 + 1
−α2 − α1 + 2

;w
)

=
(
±1− sin πα1

sin π(−α2 − α1 + 1)

)
Γ(−α2 + 1)Γ(−α1 + 1) w−α2−α1+1F

(
α′2, −α2 + 1
−α2 − α1 + 2

;w
)

∼
(
±1 + (−1)−α2+1

)
12

2′1′
∞
0 w

1

a

(A.21)

When Na is even, the integral Z212′
a (α, p, λ;w) trivially vanishes. Thus in the following

computations, we assume that Na is odd for any a = 1, . . . , J . Then

Z212′
a (α, p, λ;w)

∼ +(p2 · λ)(+2)

12

2′1′
∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣∣
α2→α2+1

+ (p1 · λ)(−2)

12

2′1′
∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣∣
α1→α1+1

+ (p′2 · λ)(−2)

12

2′1′
∞
0 w

1

a

∣∣∣∣∣∣∣∣∣∣∣
α′

2→α
′
2+1

. (A.22)

A.3 Tachyon integral

To proceed, let us expand the hypergeometric function as

12

2′1′
∞
0 w

1

a

= w−α2−α1+1Γ(−α2 + 1)Γ(−α1 + 1) F
(
α′2, −α2 + 1
−α2 − α1 + 2

;w
)

= w−α2−α1+1
∞∑
k=0

ck(α2, α1, α
′
2) wk. (A.23)
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Here we have defined

ck(α2, α1, α
′
2)

= Γ(−α2 + 1)Γ(−α1 + 1)
Γ(−α2 − α1 + 2)

Γ(α′2 + k)
Γ(α′2)

Γ(−α2 + 1 + k)
Γ(−α2 + 1)

Γ(−α2 − α1 + 2)
Γ(−α2 − α1 + 2 + k)

1
Γ(k + 1)

∼ π

sin πα2

1
Γ(k + 1)Γ(α2 − k)

Γ(α2 − k + α1 − 1)
Γ(α1)

Γ(α′2 + k)
Γ(α′2) . (A.24)

Then

Z212′
a (α,p,λ;w)
∼ (p2 ·λ)(+2)w−α2−α1ck(α2 +1,α1,α

′
2)wk+(p1 ·λ)(−2)w−α2−α1ck(α2,α1 +1,α′2)wk

+(p′2 ·λ)(−2)w−α2−α1
∞∑
k=0

ck(α2,α1,α
′
2 +1)wk+1. (A.25)

Now let us assume that

(p1 + p2) · λ = (p′2 + p′1) · λ′ = 0 (A.26)

for simplicity. These conditions are satisfied, for example, in the center-of-mass frame. The
first two terms in (A.25) are rearranged as

Z212′
a (α, p, λ;w) ∼ (p2 · λ)(+2) w−α2−α1

α2∼Na∑
k=0

ck(α2 + 1, α1 + 1, α′2) wk

+ (p′2 · λ)(−2) w−α2−α1
α2∼Na∑
k=0

ck−1(α2, α1, α
′
2 + 1) wk. (A.27)

Similarly, by replacements 2↔ 2′, w → 1− w,α→ β, λ→ λ′, we obtain

Z212′
b (β,p,λ′;w)∼ (p′2 ·λ′)(+2)(1−w)−β′

2−β1

β′
2∼N

′
b∑

l=0
cl(β′2 +1, β1 +1, β2)(1−w)l

+(p2 ·λ′)(−2)(1−w)−β′
2−β1

β′
2∼N

′
b∑

l=0
cl−1(β′2, β1, β2 +1)(1−w)l. (A.28)

Substituting these into (A.5), we can perform the integral over w. Noting that

p1 · p2 −
J∑
a=1

α2 −
J∑
a=1

α1 = −2− s/2, (A.29)

p1 · p′2 −
J∑
b=1

β′2 −
J∑
b=1

β1 = −2− t/2, (A.30)

the result is

Ast ∼
∑

{ia=2,2′}

∑
{jb=2,2′}

{Na}∑
{ka=0}

{N ′
b}∑

{lb=0}(
J∏
a=1

(pia · λ) c(ia)
ka

)(
J∏
b=1

(pjb · λ
′) d(jb)

lb

)
B(−α(s) + k,−α(t) + l) (A.31)
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where

c
(2)
k = ck(α2 + 1, α1 + 1, α′2), (A.32)

c
(2′)
k = −ck−1(α2, α1, α

′
2 + 1), (A.33)

d
(2)
l = −cl−1(β′2, β1, β2 + 1), (A.34)

d
(2′)
l = cl(β′2 + 1, β1 + 1, β2), (A.35)

and where

B(a, b) = Γ(a)Γ(b)
Γ(a+ b) , α(x) = 1 + x/2, (A.36)

k =
J∑
a=1

ka, l =
J∑
b=1

lb. (A.37)

Here ends the derivation of the HES-tachyon to HES-tachyon amplitude, given in (A.31).

A.4 Another expression for the amplitude

In this subsection, for a consistency check of our amplitude formula (A.31), we study another
expression of the amplitude.

Similar computations show that

Z212′
b (β, p, λ′, w)

∼ +(p2 · λ′)(+2)

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β2→β2+1

+ (p1 · λ′)(+2)

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β1→β1+1

+ (p′2 · λ′)(+2)

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β′

2→β
′
2+1

∼ +(p2 · λ′)(+2)

 12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β2→β2+1

−

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β1→β1+1



+ (p′2 · λ′)(+2)

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β′

2→β
′
2+1

(A.38)
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Using a formula for the hypergeometric function (see e.g. eq. 15.8.1 in [24]),

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β2→β2+1

−

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β1→β1+1

= Γ(β′2 + β1 + β2)Γ(−β′2 + 1)
[
F
(
β1, β

′
2 + β1 + β2

β1 + β2 + 1
;w
)
− F

(
β1 + 1, β′2 + β1 + β2

β1 + β2 + 1
;w
)]

= Γ(β′2 + β1 + β2 + 1)Γ(−β′2 + 1) (−w) F
(
β1 + 1, β′2 + β1 + β2 + 1

β1 + β2 + 2
;w
)

= (1− w)−β′
2−β1 Γ(β′2 + β1 + β2 + 1)Γ(−β′2 + 1) (−w) F

(
β2 + 1, −β′2 + 1
β1 + β2 + 2

;w
)

= (1− w)−β′
2−β1 Γ(−β′1 + 1)Γ(−β′2 + 1) (−w) F

(
β2 + 1, −β′2 + 1
−β′2 − β′1 + 2

;w
)

= (1− w)−β′
2−β1 (−w)

∞∑
l=0

cl(β′2, β′1, β2 + 1) wl

= (1− w)−β′
2−β1

β′
2∼N

′
b∑

l=0
−cl−1(β′2, β′1, β2 + 1) wl, (A.39)

12

2′1′
∞
0 w

1

b
∣∣∣∣∣∣∣∣∣∣∣∣
β′

2→β
′
2+1

= Γ(β′2 + β1 + β2)Γ(−β′2) F
(
β1, β

′
2 + β1 + β2
β1 + β2

;w
)

= (1− w)−β′
2−β1 Γ(β′2 + β1 + β2)Γ(−β′2) F

(
β2, −β′2
β1 + β2

;w
)

= (1− w)−β′
2−β1 Γ(−β′1)Γ(−β′2) F

(
β2, −β′2
−β′2 − β′1

;w
)

= (1− w)−β′
2−β1

β′
2∼N

′
b∑

l=0
cl(β′2 + 1, β′1 + 1, β2) wl. (A.40)

Substituting these into (A.5), and noting that

p1 · p2 −
J∑
a=1

α2 −
J∑
a=1

α1 = −2− s/2, (A.41)

p1 · p′2 −
J∑
b=1

β′2 −
J∑
b=1

β1 = −2− t/2, (A.42)
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we can perform the integral over w. The result is

Ast ∼
∑

{ia=2,2′}

∑
{jb=2,2′}

{Na}∑
{ka=0}

{N ′
b}∑

{lb=0}(
J∏
a=1

(pia · λ) c(ia)
ka

)(
J∏
b=1

(pjb · λ
′) d(jb)

lb

)
B(−α(s) + k + l,−α(t)) (A.43)

where

c
(2)
k = ck(α2 + 1, α1 + 1, α′2), (A.44)

c
(2′)
k = −ck−1(α2, α1, α

′
2 + 1), (A.45)

d
(2)
l = −cl−1(β′2, β′1, β2 + 1), (A.46)

d
(2′)
l = cl(β′2 + 1, β′1 + 1, β2), (A.47)

and where

k =
J∑
a=1

ka, l =
J∑
b=1

lb, (A.48)

B(a, b) = Γ(a)Γ(b)
Γ(a+ b) , α(x) = 1 + x/2. (A.49)

In spite of the superficially different appearance of the amplitude formula (A.31) and the
formula (A.43), they are equivalent. The former depends on β1 and both of the s, t-channels
are shifted, while the latter depends on β′1 and only the s-channel is shifted.
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