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1 Introduction

The Skyrme model [1, 2] is a field-theoretic approach to nuclear physics based on the sym-
metries of the strong interactions and the topology of chiral symmetry breaking, providing
the stability of the baryon as a topological soliton. The topological soliton, also known
as the Skyrmion, is exactly the baryon of large-Nc QCD [3, 4]. A similar correspondence
between the baryon and the instanton is realized in holographic QCD models, such as the
Witten-Sakai-Sugimoto model [5, 6]. In most varieties of the Skyrme model, the bind-
ing energies come out too large by roughly an order of magnitude with respect to the
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phenomenological ones. This not only has the effect that the ground state energies are
imprecise, but also leads to the illusion that the Skyrmions in each topological sector are
well separated in field space by an energy barrier, which in turn validates the rigid-body
quantization [7] and harmonic vibrational quantization [8, 9] approaches to the quantum
problem of nuclei — although this turns out not even to be true for the standard Skyrme
model with a massive pion for large baryon numbers [10].

The main approach to lowering binding energies in the Skyrme model is to find a
suitable BPS1 limit of the model, since in such a limit the energy or mass is directly
proportional to the topological degree or baryon number, thus yielding vanishing binding
energies at the classical level. The idea is then that a suitable small perturbation around
the BPS limit would be the right place to look for a phenomenologically viable model.
There are several known BPS versions of the Skyrme model: 1) The mode expansion of
5D Yang-Mills theory in flat space as the Skyrme model coupled to an infinite tower of
vector mesons — this model is called the Sutcliffe model [24]. 2) The replacement of
the standard Skyrme model with a sextic derivative term, which is the topological charge
density squared, and a suitable potential — this model is often called the BPS-Skyrme
model [25, 26]. 3) The exclusion of the kinetic term and the altercation of the pion mass
term from the first to the fourth power — this model is called the lightly-bound Skyrme
model [27]. 4) The promotion of the coupling constants to being functions of the isospin
conserving part of the chiral Lagrangian field (i.e. the sigma field), which is inspired by
the dielectric deformation of Maxwell theory — this model is called the dielectric Skyrme
model [28]. 1) The near-BPS limit of the Sutcliffe model is made by truncating the infinite
tower of vector mesons; this truncation breaks conformal symmetry and introduces a scale
in the model and numerical computations suggest that two or three vector mesons are
needed to reach phenomenologically viable binding energies [29, 30]. 2) The near-BPS limit
of the BPS-Skyrme model is taken by adding the standard massive Skyrme model to the
BPS-Skyrme sector with a suitably small coefficient, which however complicates numerical
computations because very large field derivatives are naturally occurring in this limit [31]. A
reason of interest in the BPS-Skyrme model is due to the fact that solutions appear as liquid
drops of incompressible baryonic matter sharing, therefore, the same features of real nuclei.
3) The near-BPS limit of the lightly-bound Skyrme model is taken by adding the kinetic
term and the pion mass term to the model; the resulting Skyrmions become point-particle
like [31] and are hence quite different from ordinary Skyrmions with larger symmetries [32].
4) The near-BPS limit of the dielectric Skyrme model is taken by altering the form of the
dielectric coupling constant (function) [28], but the Skyrmions again become point-particle
like in the limit where the binding energies become phenomenologically viable [33].

In this paper, we will study the case 2), i.e. that of the BPS-Skyrme model and its near-
BPS deformation. For the BPS part, we will take a potential providing no contribution to
the pion mass, whereas the perturbation is chosen to be the standard massive Skyrme model
— i.e. with the kinetic, the Skyrme and the pion mass terms — all multiplied by a small

1Note that the BPS limit studied in this paper is drastically different from the gauge theory BPS limit
occurring in supersymmetric field theories, see the discussions in refs. [11–22]; see also the discussion in
ref. [23].
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control parameter, ε. This work is a continuation of the ε-expansion scheme that we have
developed for the case of the baby Skyrme model in the case of compactons (Skyrmions
with compact support in the BPS limit) [23] and in the case of baby Skyrmions with
exponential (or rather Gaussian) tails [34]. In the baby Skyrme model case, we were able
to check the precision and validity of the ε-expansion scheme as a perturbative approach
to near-BPS solitons by performing very large brute force numerical computations — only
possible in the 2-dimensional case. We also found in the previous work, that the precision
of the ε-expansion scheme is better in the case of compactons as compared to the solitons
with tails [34]. Using this result as a guideline, in this paper we search for a viable BPS
model with compactons. Due to the BPS solution for compactons having a discontinuous
derivative at the compacton boundary, as opposed to the true near-BPS solution, we found
in ref. [23] that a certain cusp condition must be imposed at the compacton boundary,
making the total field smooth there. This becomes highly nontrivial if the compacton has
a complicated shape and we thus limit our search to stable B = 1 compactons with spherical
symmetry. These criteria limit our model to a rather specific choice, with essentially only
one parameter to dial — namely ε. Finally, we compute the bound state of two spherically
symmetric B = 1 compactons by performing PDE solutions within the framework of the
semi-analytic ε-expansion scheme and compute the binding energy.

The analysis of the near-BPS Skyrme model has been performed in the literature firstly
in the series of works [31, 35–37]. Various difficulties emerged from these studies, so that
only a partial exploration of the model could be carried out. In refs. [35, 36], a first attempt
of an analytic approximation for the near-BPS model has been made using an axially
symmetric BPS solution. Then, once inserted into the Lagrangian, a first approximation of
the near-BPS energy can be evaluated. Starting from that result and after an appropriate
quantization procedure, the binding energies for the various nuclei have been obtained,
showing a reasonable agreement with experimental data (mostly for large nuclei). Despite
this result, the validity of the entire analysis is questioned in refs. [31, 37]. In fact, as it was
proven in the latter references, not all the BPS solutions can be used as first approximation
to the near-BPS field. The proper BPS solution must, in fact, respect a mathematical
criterion called the restricted harmonic criterion [37]. As that theorem is not respected
by the choices made in refs. [35, 36], the entire work must be revisited. Generically, the
moduli space — present in the BPS limit — is lifted by a shallow effective potential
and as long as the perturbation parameter is sufficiently small, the near-BPS solutions
reside close to the BPS solutions in field space. In the case of the BPS-Skyrme model,
however, the moduli space is that of volume preserving diffeomorphisms and is infinite
dimensional, drastically complicating the problem— both mathematically and numerically.
A rigorous mathematical formulation of the variational approach to the problem with
volume preserving diffeomorphisms has been studied in ref. [37] and the case of adding
the kinetic term to the BPS-Skyrme model is dubbed the restricted harmonic problem.
Restricted refers to being in the infinite moduli space of volume preserving diffeomorphisms
and harmonic is the minimizer of the kinetic term. In the lack of a better term, we will
denote the perturbation by further terms than the kinetic term as generalized restricted
harmonic (GRH).
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Attacking the problem from a different angle, in ref. [31] a full numeric attempt of
solving the near-BPS equations of motion has been performed. In that work, exact near-
BPS solutions have been found, pushing the parameter ε to a small value, around ε ∼
0.2. On the contrary, for smaller values of ε (ε < 0.2), all results are so far numerically
inaccessible. In that range, indeed, the numerical solutions developed unwanted spike-like
singularities. Such limitation was unfortunate for the study of the binding energy of the
system. In fact, a proper estimate yields ε ∼ 0.01 for fitting the physically small binding
energies of nuclei. Again, that analysis is carried out without a full understanding of the
near-BPS system — we will comment more on this in the conclusion.

Since the full numerical approach is extremely difficult, in this work we propose a
semi-analytical method for exploring the near-BPS Skyrme model, building on the work of
refs. [23, 34]. The strategy is based on the expansion of the near-BPS field around a BPS
solution, however, with respect to refs. [35, 36], two more steps are considered. Firstly, we
face the problem of the restricted harmonic map. Secondly, once that problem is resolved,
we explore the system at the next orders of the expansion. As we will see, the results from
the next-to-next-to-leading order (N2LO) are necessary for extracting the binding energy
of a multi-Skyrmion configuration. In light of the previous works in the literature, in
order to implement our analysis, we have anticipated various technical and methodological
difficulties. Moreover, without the possibility to perform numerical checks, it is even more
difficult to establish when, and under what circumstances, a given approximation method
could fail. To this end, instead of considering immediately the complicated 3D analysis, we
previously performed our investigation in the 2D near-BPS baby Skyrme model [23, 34].
For the 2D case, we were able to implement a new semi-analytical method for the near-BPS
analysis and, simultaneously, check it with full numerics. The knowledge acquired from
those studies serves as a guide in the 3D case studied in this paper.

In light of our previous works, we have chosen the model in such a way to possess
the best features of both the previous 2D cases. This means that, for what concerns the
BPS sector, we choose a compacton-type BPS model. In this way, we can easily guess
the restricted harmonic maps we need for both the cases of a single and multi-Skyrmion
configurations. On the other hand, the BPS-deformation is taken to be the original Skyrme
model with the pion mass potential. With this choice, a physical pion mass (not depending
on ε) is included in the system. In this work, we apply the successful techniques developed
in refs. [23, 34]. In particular, applying the perturbative scheme to the case of a single
near-BPS Skyrmion, we find very good agreement with the exact full-numerical solution.
This achievement confirms again the accuracy of our method. Such a result, however, has
been obtained only for the topological sector B = 1 due to the mathematical difficulties in
finding the restricted harmonic solution for B > 1.

The paper is organized as follows. In section 2 we set up the model and notation, find
the BPS solutions and calculate the generic energy bound. In section 3, we calculate the
corrections to the energy of the Skyrmions in the near-BPS limit within the ε-expansion
scheme to leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading
order (N2LO). The latter two orders utilize a linearized perturbation field. We finally
compute the explicit energy corrections to the B = 1 spherically symmetric compacton. In
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section 4, we set up the calculation of the bound state between two spherically symmetric
B = 1 compactons in the attractive channel and perform the numerical calculations of
the perturbation fields, yielding the binding energies of the bound state. In section 5, we
convert the physical quantities to physical units. Finally, we conclude with a discussion in
section 6.

Details of the calculation of the generic energy bound in section 2 are delegated to
appendix A.

2 The model

The model is based on the BPS Skyrme model [25, 26] with small non-BPS deformations
with a coefficient ε � 1. The deformation-part of the Lagrangian is taken, generically, to
be the massive [38, 39] Skyrme model [1, 2]. We thus have

L = LBPS + εLdeform + Lλ
=
(
c6L6 + µ2L0

)
+ ε

(
c2L2 + c4L4 −m2

πV1,1(U)
)

+ Lλ, (2.1)

with the kinetic (Dirichlet) term, the Skyrme term, sextic term and Lagrange multiplier
term2

L2 = 1
4 tr(LµLµ), (2.2)

L4 = 1
32 tr([Lµ, Lν ][Lµ, Lν ]), (2.3)

L6 = 1
144ηµµ

′εµνρσεµ
′ν′ρ′σ′ tr(LνLρLσ) tr(Lν′Lρ′Lσ′), (2.4)

Lλ = λ

2 (detU − 1), (2.5)

where Lµ ≡ U †∂µU is the left-invariant chiral current and U is the Skyrme field, related
to the pions as

U = σ12 + iτaπa, a = 1, 2, 3, (2.6)

and the potential L0, written in the form

−L0 = Vs,p(U) = 1
sp

(
1−

(trU
2

)s)p
, (2.7)

that should not contribute to the pion mass, whereas V1,1(U) = (1− 1
2 trU) is the standard

pion mass term. The metric convention we use in this paper is of the mostly positive
signature, the spacetime indices run as µ, ν, ρ, σ = 0, 1, 2, 3, ηµν is the flat Minkowski
metric and we take ε0123 = 1. The BPS sector consists of a sixth-order derivative term,
which is the topological current squared, as well as a potential term which we take not to

2The Lagrange multiplier term vanishes exactly since U is an SU(2) field, but we include it here so that the
vector formulation of the Skyrme model restricts the four-vector Φ to the 3-sphere, where U = Φ012+iτaΦa,
a = 1, 2, 3.
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be the pion mass term. The deformation sector, on the other hand, consists of the normal
Skyrme model with a pion mass term.

The potentials are consistent with the boundary condition

lim
|x|→∞

U = 12, (2.8)

which effectively point compactifies 3-space to a 3-sphere: R3 ∪ {∞} ' S3. The nonlinear
sigma model constraint detU = 1 makes the target space SU(2) which as a manifold is also
a 3-sphere; this is imposed in the model via the Lagrangian multiplier term Lλ. A static
configuration, U : S3 → S3, is thus characterized by the topological charge B ∈ π3(S3) = Z,
where B is called the baryon number and can be calculated as

B = − 1
24π2

∫
εijk tr[LiLjLk] d3x. (2.9)

Using the parametrization

U = cos f12 + iτan̂a sin f, n̂ = 1
1 + |u|2

(
u+ ū,−i(u− ū), 1− |u|2

)
, (2.10)

with f a real function and u a complex function of spacetime, the Lagrangian components
read

L2 = −1
2∂µf∂

µf − 2 sin2 f

(1 + |u|2)2∂µu∂
µū, (2.11)

L4 = − 2 sin2 f

(1 + |u|2)2 (∂µf∂µf∂νu∂ν ū− ∂µf∂νf∂µu∂ν ū)

− 2 sin4 f

(1 + |u|2)4

(
(∂µu∂µū)2 − ∂µu∂ν ū∂µu∂ν ū

)
, (2.12)

L6 = − 4 sin4 f

(1 + |u|2)4 ηµµ′εµνρσεµ
′ν′ρ′σ′

∂νf∂ρu∂σū∂ν′f∂ρ′u∂σ′ ū. (2.13)

The static energy reads

E = EBPS + εEdeform

=
(
c6E6 − µ2

∫
R3
L0 d3x

)
+ ε

(
c2E2 + c4E4 +m2

π

∫
R3
V1,1 d3x

)
, (2.14)

with the components

E6 =
∫
R3

4 sin4 f

(1 + |u|2)4 (iεijk∂if∂ju∂kū)2 d3x, (2.15)

E2 =
∫
R3

[1
2(∂if)2 + 2 sin2 f

(1 + |u|2)2 |∂iu|
2
]
d3x, (2.16)

E4 =
∫
R3

[ 2 sin2 f

(1 + |u|2)2

(
(∂if)2|∂ju|2 − ∂if∂jf∂iu∂j ū

)
+ 2 sin4 f

(1 + |u|2)4

(
|∂iu|4 − (∂iu∂j ū)2

) ]
d3x. (2.17)
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In this paper, we consider BPS potential leading to compacton-type solutions of the type

−L0 = Vs,p(U) = 1
sp

(
1−

(trU
2

)s)p
= 1
sp

(1− coss f)p, (2.18)

with (s, p) = (1, 2), (2, 1) and (2, 2) (see the next subsection). Obviously, also the pion
mass term, given by (s, p) = (1, 1), generates a compacton-type soliton but such a potential
is already included in the BPS perturbation.

The topological charge in the parametrization (2.10) reads

B = − 1
2π2

∫ 2 sin2 f

(1 + |u|2)2 iεijk∂if∂ju∂kū d3x. (2.19)

2.1 BPS solution

Taking the limit ε = 0, we can write the static energy as

E =
∫
R3

(
4c6 sin4 f

(1 + |u|2)4 (iεijk∂if∂ju∂kū)2 + µ2Vs,p

)
d3x

=
∫
R3

(
√
c6

2 sin2 f

(1 + |u|2)2 iεijk∂if∂ju∂kū+ µ
√
Vs,p

)2

d3x

− 4µ
√
c6

∫
R3

sin2 f

(1 + |u|2)2 iεijk∂if∂ju∂kū
√
Vs,p d3x, (2.20)

where we have performed a Bogomol’nyi trick in the second equality. The BPS equation is

√
c6

2 sin2 f

(1 + |u|2)2 iεijk∂if∂ju∂kū = −µ
√
Vs,p, (2.21)

and the Bogomol’nyi mass is given by the last line of eq. (2.20).
Using the axially symmetric Ansatz for u:

u = tan
(
θ

2

)
eiNφ, (2.22)

the BPS equation reads

sin2(f)fr = −µ
√
V r2

√
c6N

, (2.23)

and for the potential (s, p) = (1, p), we have

cos2
(
f

2

)
sin2−p

(
f

2

)
fr = −2

p
2−2µr2

N
√
pc6

. (2.24)

Integrating with respect to r yields

22−p tan
(f

4
)1−p

(p− 4)(p− 2)

[
22F1

(1− p
2 , 2− p; 3− p

2 ;− tan2
(
f

4

))

+
(
p− 4− 2(p− 2) cos

(
f

2

)
+ (p− 2) cos f

)
sec2p−4

(
f

4

)]
= −2

p
2−2µr3

3N√pc6
+ κ, (2.25)
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where 2F1 is the standard hypergeometric function and κ is an integration constant. If the
limit f → 0 of the left-hand side of the above equation diverges, then the soliton has a
tail that tends to infinity. If not, the soliton is of compacton type. Taylor expanding the
left-hand side yields

−2p−2f3−p

p− 3 +O(f5−p), (2.26)

which reveals that the soliton is indeed a compacton for p < 3. The constant κ of the
eq. (2.25) must be chosen so as make f respect the boundary conditions

f(0) = π, f(R) = 0, (2.27)

that guarantee that the soliton bears a nontrivial topological charge (2.19).
For p = 1, which corresponds to the standard pion mass term, the left-hand side

of (2.25) is invertible

2
3 cos3

(
f

2

)
= µr3

6N
√

2c6
− κ, (2.28)

yielding the explicit compacton solution

f = 2 arccos
(
r

R

)
, (2.29)

where we have defined the compacton radius

R ≡ 3

√
4N
√

2c6
µ

, (2.30)

and set κ := 0.
For other values of p (with s = 1), the potential does not give an invertible function

that enables us to write explicit solutions for f . It will be useful, however, to consider the
p = 2 solution, for which the BPS solution reduces to

f + sin f = π

(
1− r3

R3

)
, (2.31)

with the compacton radius defined by

R ≡ 3

√
3π
√

2c6N

µ
, (2.32)

and we have set κ := π
2 . The solution is implicit but still simple.

Considering instead the potential (s, p) = (2, 1) in the axially symmetric Ansatz (2.22),
the BPS equation reads

sin(f)fr = − µr2
√

2c6N
. (2.33)

– 8 –
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Integrating with respect to r yields

f = arccos
(

2r3

R3 − 1
)
, (2.34)

where the compacton radius now is

R = 3

√
2N
√

2c6
µ

, (2.35)

where we have set κ := 1.
Finally, let us consider the potential (2.18) with (s, p) = (2, 2) in the axially symmetric

Ansatz (2.22), for which the BPS equation reduces to

fr = − µr2

2√c6N
. (2.36)

Integrating with respect to r gives

f = π

(
1− r3

R3

)
, (2.37)

where the compacton radius is

R = 3

√
6π√c6N

µ
, (2.38)

and we have set κ := π.

2.2 BPS energy

The Bogomol’nyi mass is given by the total derivative

M
(s,p)
BPS = −4µ

√
c6

∫
R3

sin2 f

(1 + |u|2)2 iεijk∂if∂ju∂kū
√
Vs,p d3x, (2.39)

which is the lower bound for the static energy

E ≥M (s,p)
BPS . (2.40)

Considering the potential (2.18) with s = 1 and using the axially symmetric Ansatz (2.22),
the Bogomol’nyi mass reads

M
(1,p)
BPS = −2

p
2 +3µN

√
c6
p

4π
∫ R

0
cos2

(
f

2

)
sin2+p

(
f

2

)
fr dr

= 2
p
2 +4µN

√
c6
p
π

3
2

Γ
(

3+p
2

)
Γ
(
3 + p

2
) , (2.41)

where we again have used the boundary conditions

f(0) = π, f(R) = 0. (2.42)
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Notice that the Bogomol’nyi mass is proportional to the degree N as it must. For p = 1, 2
we have

M
(1,1)
BPS = 128π

15
√

2c6µN, M
(1,2)
BPS = 2π2√2c6µN. (2.43)

Considering instead the potential (2.18) with s = 2, p = 1 and using the axially symmetric
Ansatz (2.22), the Bogomol’nyi mass reads

M
(2,1)
BPS = −µN

√
2c64π

∫ R

0
sin3(f)fr dr

= 16π
3
√

2c6µN, (2.44)

where we have used the boundary conditions (2.42).
Finally, let us consider the potential (2.18) with (s, p) = (2, 2) with the axially sym-

metric Ansatz (2.22), for which the Bogomol’nyi mass reads

M
(2,2)
BPS = −µ

√
c6µ4π

∫ R

0
sin4(f)fr dr

= 3
2π

2√c6µN, (2.45)

where we again have used the boundary conditions (2.42).

2.2.1 Energy bound

The general bound for the total energy as a function of {α0, α2, α4, α6} is:

E ≥ 2π2
[

2µ(α0α6c6)
1
2 〈Ṽ

1
2 〉+ 2√µ(α4εc4)

3
4
(
2(1− α0)

) 1
4 〈Ṽ

1
4 〉

+ 3ε
(
(1− α4)c4α2c2

) 1
2 + 4

(
(1− α6)c6

) 1
4

(1
2(1− α2)εc2

) 3
4
]
|B|, (2.46)

where

Ṽ (U) = Vs,p(U) + εm2
π

µ2 V1,1(U), (2.47)

is the combined potential of the pion mass term (a perturbation to order ε), Vs,p(U) is the
potential of the BPS sector, B is the topological charge or Skyrmion number and 〈· · · 〉 is
defined as the target-space average of a generic quantity X as

〈X〉 ≡ − 1
24π2B

∫
R3
Xεijk tr[LiLjLk] d3x. (2.48)

The bound is obtained by numerical optimization with respect to αi ∈ [0, 1]. For details
on the derivation, see appendix A.

As a consistency check, we can set µ = c6 = α4 = 0, α2 = ε = 1 and c2 = c4 = 2, for
which we obtain E ≥ 12π2|B|, which is the standard topological energy bound in Skyrme
units [1, 32]. Notice that when mπ > 0, the integral 〈Ṽ 〉 depends on ε, see eq. (A.2).
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3 Perturbation in ε

In this section we consider the ε-expansion scheme around the BPS solution. This technique
has been developed and tested in the previous works on the baby-Skyrme model [23, 34],
where comparison was made with full brute-force numerical computations, hence estab-
lishing the accurateness of the framework. Here we adapt it to a more complex model;
the idea remains the same but various modifications have to be made. The solution at
zeroth order is just the BPS solution. The leading-order correction to the mass is given
by the perturbation minimized and evaluated on the BPS solution. This can be done if a
certain finiteness condition applies and for the present paper we restrict to this case. The
minimization problem of the perturbation is the so-called generalized restricted harmonic
problem. We briefly review the conditions and the solutions that are known so far, es-
sentially the B = 1 Skyrmion and non-overlapping multi-compactons solutions. We then
discuss an approximate criterion, using as a test the axially symmetric solutions, to test if
other preferred restricted harmonic solutions could exist. Once we have selected the candi-
date model for which the B = 1+1+ . . . is the most probable restricted harmonic solution,
we consider the expansion to higher order in ε and the modifications to the leading-order
solution.

3.1 Zeroth order

We will now consider perturbing the BPS sector (i.e. the model (2.1) with ε = 0) with a
small perturbation, 0 < ε � 1. The deformation adds interactions among the Skyrmions
leading to bound states with low binding energy (as long as ε � 1). In this so-called
near-BPS limit, the field U can be written as

U(x) = U0(x) + δU(ε, x) with δU(0, x) = 0, (3.1)

where U0(x) is a BPS solution and δU is a perturbation that depends on ε, but not nec-
essarily in an analytic way. Expanding the static energy in ε, the zeroth order is simply
given by the BPS mass

E(0) = M
(s,p)
BPS , (3.2)

where M (s,p)
BPS is given by eq. (2.39).

3.2 Leading-order correction

The leading-order (LO) correction to the energy, is linear in ε and is given by the pertur-
bation part of the Lagrangian, Ldeform, evaluated on the background BPS solution

εMLO = −ε
∫
R3
Ldeform(U∗0 ) d3x, (3.3)

where U∗0 is the BPS configuration that minimizes the above integral. This solution is
required to be generalized-restricted harmonic (GRH), using the definition of refs. [34, 37].

Before analyzing this point, it is necessary to check the finiteness of the LO energy
contribution. For instance, the compacton solution (2.29) gives a divergent contribution
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to the LO energy, since the integral (3.3) diverges if c2 > 0. In this paper, in order to
consistently implement the perturbative method, we consider only the cases (the potentials)
that lead to finite contributions at every order in the expansion. In the following, we provide
a criterion for the LO finiteness, valid for BPS solutions of compacton-type.

3.2.1 Finiteness of LO energy

Using as a test the axially symmetric Ansatz (2.22), the LO energy of a compact solution
with radius R reads

εMLO(N) = −εc2

∫
R3
L2 d3x− εc4

∫
R3
L4 d3x+ εm2

π

∫
R3
V1,1 d3x

= 2πεc2

∫ R

0

(
r2f2

r + (1 +N2) sin2 f
)

dr

+ 2πεc4

∫ R

0

(
(1 +N2) sin2(f)f2

r + N2

r2 sin4 f

)
dr,

+ 4πεm2
π

∫ R

0
r2(1− cos f) dr. (3.4)

For several classes of BPS solutions, we find that the divergence is due to the term r2f2
r

that tends to infinity at the border of the compacton (in the limit r → R). We therefore
reduce the finite LO energy condition to requesting that∫ R

R−δ
r2f2

r dr <∞, with δ � R. (3.5)

Note that in the Lagrangian L4 the quantity f2
r is multiplied by sin2 f , which alleviates

the divergence of the integral since f → 0 for r → R (see eq. (2.27)). Using the BPS
equation (2.23) and the boundary condition (2.27), we can manipulate the condition (3.5) as

∫ R

R−δ
r2f2

r dr =
∫ 0

δ′
r2(f)df

dr df = µ

|N |c6

∫ δ′

0
r4(f)

√
Vs,p

sin4 f
df <∞, (3.6)

with 0 < f(R− δ) = δ′ � 1. Now, it is useful to expand the function r(f) around f = 0 as

r(f) ' R+ dr(f)
df

∣∣∣∣
0
f + 1

2
d2r(f)

df2

∣∣∣∣∣
0
f2 +O(f3). (3.7)

Every positive power of f in this expansion improves the convergence of the integral and
thus if we have

µR4

|N |c6

∫ δ′

0

√
Vs,p

sin4 f
df <∞ (3.8)

then the condition (3.6) consequently holds true. Considering a class of potentials Vs,p of
the type (2.18), for which Vs,p ' f2p near f = 0, then we have

µR4

|N |c6

∫ δ′

0

√
Vs,p

sin4 f
df ∼ µR4sp/2

2p/2|N |c6
√
sp

∫ δ′

0
fp−2 df = µR4sp/2

2p/2|N |c6
√
sp

[
fp−1

p− 1

]δ′

0
<∞.

(3.9)
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In order for this condition to hold true, we deduce that p must be greater than 1, i.e. p > 1.
Once this criterion is defined, it is an easy check to verify that only the combinations

(s, p) = (1, 2) and (s, p) = (2, 2) of the potential (2.18) lead to a finite LO energy. Hence,
we will discard the choice (s, p) = (2, 1) that, analogously to the pion-mass potential
(s, p) = (1, 1), generates a divergent LO energy for c2 > 0.

3.2.2 Generalized-restricted harmonic

The generalized-restricted harmonic (GRH) solution U?0 in eq. (3.3) represents the BPS
configuration that extremizes the LO energy within the whole (BPS) moduli space. In
particular, to implement the perturbative expansion of the field, we need U?0 to be a
minimum (at least locally) of the LO energy. In ref. [37], a criterion for the choice of
these GRH solutions is discussed for a perturbation of the type L2 and L2 + L4. The
validity of that criterion is not spoiled by the presence of the pion-mass potential V1,1,
due to the volume-preserving diffeomorphism invariance of the potential energy. In this
section, we analyze the GRH problem following different steps. Firstly, we use the theorem
developed in ref. [37] to identify the BPS configuration that extremizes (and minimizes)
the perturbation energy due to L2. Then, using again the results of ref. [37], we check
if such a configuration is a minimum even for the combination L2 + L4. In the end, we
comment on the trivial role of the potential V1,1 in this context.

We briefly review the criterion of ref. [37]. Given a smooth map φ from the manifold
M to the manifold N , the Dirichlet energy is generally defined as

E2 = 1
2

∫
M
hab g

ij ∂iφ
a∂jφ

b
√

det gkl ddx, (3.10)

where g = gij dxi ⊗ dxj and h = hab dφa ⊗ dφb are the metrics of the manifoldM and N ,
respectively, and d is the number of (spatial) dimensions (ignoring time here). Using the
map φ, the pull-back φ∗h of the metric h toM is defined as

φ∗h = hab
∂φa

∂xi
∂φb

∂xj
dxi ⊗ dxj . (3.11)

Among all the maps φ with finite Dirichlet energy, connected by volume-preserving diffeo-
morphisms, a map φ̃ is restricted harmonic if and only if the one-form

div φ̃∗h on M is exact. (3.12)

The divergence div of a symmetric (0, 2) tensor η = ηij dxi ⊗ dxj onM acts as

div η = Diηijdxj = gik
(
∂kηij − Γlkiηlj − Γlkjηil

)
dxj , (3.13)

where the connection is Γijk = 1
2g
il (∂kglj + ∂jglk − ∂lgjk).

In order to more easily use this criterion, we rewrite the Dirichlet energy for the
Skyrmions in the form (3.10). To this end, the field U ∈ SU(2) can be decomposed in
terms of four scalar fields σ, π1, π2 and π3 as given in eq. (2.6). This relation allows us to
define an O(4) vector field Φa as

Φa = (σ, π1, π2, π3) with ΦaΦa = 1, a = 0, 1, 2, 3. (3.14)
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With this notation, the Dirichlet energy E2 reads

E2 = −
∫
M
L2 d3x = −1

4

∫
M

Tr[LiLi] d3x = 1
2

∫
M
hab g

ij ∂iΦa∂jΦa
√

det gkl d3x, (3.15)

where hab = δab and gij = δij .
We now apply this theorem to the case of spherically symmetric Skyrmions. In the

following, we use spherical coordinates (r, θ, ϕ) onM = R3 and the vector notation Φa for
the Skyrme field with the constraint ΦaΦa = 1. Then, we rewrite the spherically symmetric
Ansatz (2.22) for a generic B = N compacton in the form

Φa =


cos f(r)

sin f(r) sin(θ) cos(Nϕ)
sin f(r) sin(θ) sin(Nϕ)

sin f(r) cos(θ)

 , (3.16)

where the function f depends only on the radial coordinate, r. The metric h is the standard
Euclidean metric and the pull-back Φ∗h of h can be written as

Φ∗h = ∂Φa

∂x̃i
∂Φa

∂x̃j
dx̃i ⊗ dx̃j = f ′2dr2 + sin2(f)

(
dθ2 +N2 sin2(θ) dϕ2), (3.17)

with dx̃i = (dr, dθ, dϕ).
Taking the divergence of the tensor (3.17), we obtain the one-form

div Φ∗h = Di (∂iΦa∂jΦa) dx̃j

=
(

2f ′f ′′ + 2
r
f ′2 − (1 +N2)sin2 f

r3

)
dr + (1−N2)sin2 f

r2 cot θ dθ.
(3.18)

According to Poincaré’s lemma, if the one-form (3.18) is closed then it is exact. There-
fore, the solution (3.16) is restricted harmonic if d(div Φ∗h) = 0, where d is the exterior
derivative. Explicitly,

d(div Φ∗h) = 1
2(∂iωj − ∂jωi) dxi ∧ dxj

= (1−N2) d
dr

(
sin2 f

r2

)
cot θ dr ∧ dθ.

(3.19)

The ratio sin2 f
r2 cannot be a constant since that would be incompatible with the boundary

conditions (2.27). The only possibility for eq. (3.19) to vanish is therefore N = ±1. We
conclude that a spherically symmetric compacton with arbitrary orientation and topological
charge N = ±1 is a restricted harmonic map. The same proof can be trivially extended to
the case of a composition of B = 1 + 1 + 1 + · · · spherically symmetric compactons placed
in R3 without overlapping one another.

Despite several attempts, we have not been able to analytically find any restricted-
harmonic maps different from the spherical B = N = 1 BPS configuration. Therefore, in
the aim of correctly implementing the perturbative method, in this paper, we will use only
that background solution and a multiple non-overlapping composition of it.
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The use of the spherical N = 1 compacton has an important convenience due to a
relevant result obtained in ref. [37]. In particular, it has been proved that every hedgehog
field is both L2-restricted harmonic and restricted L4-critical, and thus restricted (L2+L4)-
critical. This result allows us to say that the spherically symmetric N = 1 BPS solution is a
stationary point of the LO energy E2+E4. Moreover, again in ref. [37], such a configuration
has been verified to be stable restricted (L2 +L4)-critical, as we need for our purpose. Once
the spherical compacton B = N = 1 is identified as a GRH solution, we can easily verify
that the presence of the pion-mass potential energy

Eπ = m2
π

∫ (
1− cos f

)√
det gij d3x, (3.20)

does not influence that result. The LO energy Eπ is diff-invariant and thus it does not play
any role in the choice of the GRH map.

To summarize, both the single spherical B = 1 BPS compacton and the composition of
non-overlapping B = 1 + 1 + 1 + · · · spherical compactons correctly respect the generalized
restricted harmonicity criterion and represent local minima of the LO energy. However,
being able to consider only this possibility, we will have no indication about the stability
or the meta-stability of such a solution within each topological sector. Due to this fact, in
the aim of building stable nuclei, we want to focus our analysis only on those near-BPS
systems that lead to energetically preferred configurations made by B = 1 + 1 + 1 + · · ·
Skyrmions. That information can be extracted from the evaluation of N? that is, in the
same way of refs. [23, 34], the charge of the spherical configuration that minimizes the
energy per nucleon (E/N). The value of N? is specific for every type of near-BPS system
and thus will help us to choose a suitable potential.

In the next section, we will prove that, if N? > 1, we certainly know that a GRH
map of charge N > 1 minimizes the energy per nucleon better than the spherical N = 1
solution. Therefore, considering such near-BPS model, a nucleus made of B = 1+1+1+· · ·
Skyrmions can be at best meta-stable. On the contrary, if N? ∼ 1 it is possible to have a
stable B = 1 + 1 + 1 + · · · nucleus.

3.2.3 Explicit LO corrections

The leading-order-in-ε correction to the energy comes from plugging the BPS solution into
the energy functional

εM
(s,p)
LO (N) = −εc2

∫
R3
L2 d3x− εc4

∫
R3
L4 d3x+ εm2

π

∫
R3
V1,1 d3x

= 2πεc2

∫ R

0

(
r2f2

r + (1 +N2) sin2 f
)

dr

+ 2πεc4

∫ R

0

(
(1 +N2) sin2(f)f2

r + N2

r2 sin4 f

)
dr

+ 4πεm2
π

∫ R

0
r2(1− cos f) dr, (3.21)

where we have used the axially symmetric Ansatz (2.22).
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Besides the LO energy, analogously to the method of refs. [23, 34], we calculate the
value of N? in this section, i.e. the charge of the configuration that minimizes the energy
per nucleon (E/N). To find such configuration, given the energy of a B = N spherically
symmetric BPS solution U sph

0

E(ε,N) = EBPS(N) + εMLO(N,U sph
0 ), (3.22)

we must solve
d

dN

(
E(ε,N)
N

)
= d

dN

(
MLO(N,U sph

0 )
N

)
= 0, (3.23)

and find N? by solving for N . Note that, in this calculation, the dependence of ε vanishes.
Before dealing with the explicit calculation of N?, we must point out an important

difference about the meaning of N? between the 2D cases in refs. [23, 34] and here. In
refs. [23, 34], once the near-BPS baby Skyrme model is chosen, the value of N? identifies
which Q = N solution represents the most stable candidate to be the building block of
a nucleus (at least at the leading-order approximation). In the baby Skyrme model case,
all the axially symmetric solutions of any topological charge are restricted-harmonic and
thus, in the calculation of N?, the LO energies of the different topological sectors are
correctly compared. Here, on the contrary, the situation is different. In fact, as shown
in the previous section, only the N = 1 spherically symmetric compacton is (generalized)
restricted harmonic. Thus, for any N > 1, the expression (3.22) evaluated on a spherical
BPS compacton does not represent the correct LO energy of a B = N near-BPS Skyrmion.

From the above considerations, the calculation of N? seems meaningless in the 3D case.
The reason for carrying out this calculation is that, with such a result, we can indirectly
prove if an unknown GRH configuration (of charge N > 1) minimizes E/N better than
N = 1. We will verify this statement in the following.

Let us consider to have found a spherical BPS solution U sph
0 of charge B = Ñ , whose

value of the ratio E/Ñ is smaller than the one calculated for the GRH solution U sph
0 of

charge B = 1, i.e.,
MLO(B = Ñ , U sph

0 )
Ñ

<
MLO(B = 1, U sph

0 )
1 . (3.24)

Then, we have

MLO(B = Ñ , U?0 )
Ñ

<
MLO(B = Ñ , U sph

0 )
Ñ

<
MLO(B = 1, U sph

0 )
1 , (3.25)

where U?0 is the unknown GRH solution of topological charge B = Ñ . In eq. (3.25), we
used the fact that a GRH map minimizes the LO energy better than any other BPS maps.

Finding a result of the type (3.24) (that is equivalent of finding N? > 1), means that
surely a GRH solution of charge B > 1, more energetically favored than the spherical
B = N = 1, exists. As a consequence, in that case a near-BPS solution made of B =
1 + 1 + 1 + · · · Skyrmions would be at best meta-stable.

On the other hand, if we obtain N? ∼ 1, we cannot definitively prove that the configu-
ration B = 1+1+1+ · · · is the one energetically favored, but surely we avoid the previous
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counter argument. Therefore, in the following we will select the proper constraints to have
N? ∼ 1.

We will now calculate the LO energy and the value of N? for the different near-BPS
systems built with the BPS potential Vs,p and (s, p) = (1, 1), (1, 2), (2, 1), (2, 2).

For this calculation, it is convenient to have an explicit BPS solution, so we will first
consider the case of the potential (2.18) with s = 1 and p = 1, for which we have the
Bogomol’nyi mass (2.43) and BPS solution (2.29). This potential is the pion mass and
hence is not a potential that we eventually would want to use, since we want the pion mass
to be in the deformation sector. For this exercise, we set mπ := 0, since V1,1 is included
instead in the BPS sector. In particular, we get

f2
r = 4

R2 − r2 , sin2 f = 4
(

1− r2

R2

)
r2

R2 , (3.26)

which means that the leading-order energy does not converge if c2 > 0 is turned on (due
to the singularity in the integral over (rfr)2. Setting c2 := 0, we obtain

εM
(1,1)
LO = 2πεc4

[
(1 +N2) 16

3R +N2 128
105R

]
, (3.27)

where

R = 3√
NR̃, R̃ = 3

√
4
√

2c6
µ

. (3.28)

The leading-order mass per N has a minimum at

N
(1,1)
? =

√
70
43 ' 1.276, (3.29)

and indeed the N = 1 leading-order energy correction per N is smaller than that of the
N = 2.

Considering instead the potential (2.18) with s = 2 and p = 1, for which we have the
Bogomol’nyi mass (2.44) and BPS solution (2.34), we have

f2
r = 9r

R3 − r3 , sin2 f = 4
(

1− r3

R3

)
r3

R3 , (3.30)

which again means that the leading-order energy does not converge if c2 > 0 is turned on
(due to the singularity in the integral over (rfr)2). We have again set mπ := 0 since the
BPS solution is massive (as p = 1). Setting c2 := 0, we obtain

εM
(2,1)
LO = 2πεc4

[
(1 +N2) 36

5R +N2 36
55R

]
, (3.31)

where

R = 3√
NR̃, R̃ = 3

√
2
√

2c6
µ

. (3.32)
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The leading-order mass per N has a minimum at

N
(2,1)
? =

√
11
6 ' 1.354, (3.33)

and indeed the N = 1 leading-order energy correction per N is smaller than that of the
N = 2.

Although the two solutions we have considered now, conveniently have explicit BPS
solutions in terms of f , they both yield infinite leading-order corrections to the kinetic
term (i.e. −

∫
L2 d3x). Moreover, they have a contribution to the pion mass from the BPS

sector, which we want to avoid as we want the pion mass to scale with ε in the near-BPS
limit. We will therefore consider the case of the potential (2.18) with (s, p) = (1, 2), for
which the BPS solution is given by eq. (2.31) and the Bogomol’nyi mass by (2.43). Since
the BPS solution (2.31) is not explicit, we have to rewrite the integrals for the leading-order
correction to the energy as

εM
(1,2)
LO (N) = 2πεc2

∫ 0

π

(
r2∂f

∂r
+ (1 +N2) sin2 f

∂r

∂f

)
df

+ 2πεc4

∫ 0

π

(
(1 +N2) sin2 f

∂f

∂r
+ N2

r2 sin4(f) ∂r
∂f

)
df

+ 4πεm2
π

3

∫ 0

π
(1− cos f)∂r

3

∂f
df. (3.34)

Using now that

r3 = NR̃3
(

1− f + sin f
π

)
, (3.35)

we have

∂r

∂f
= −R̃N

1/3

3π
1 + cos f(

1− f+sin f
π

) 2
3
,

r2∂f

∂r
= −3πN1/3R̃

(
1− f+sin f

π

) 4
3

1 + cos f ,

∂r3

∂f
= −NR̃

3

π
(1 + cos f), (3.36)

and can write the leading-order correction to the energy divided by 2πε as

M
(1,2)
LO (N)

2π = 3πc2R̃N
1/3a1 + c2R̃(1 +N2)N1/3

3π a2 + 3πc4(1 +N2)
R̃N1/3 a3 + c4N

5/3

3πR̃
a4

+ m2
πNR̃

3

3 , (3.37)
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where we have defined the integrals

a1 ≡
∫ π

0

(
1− f+sin f

π

) 4
3

1 + cos f df ' 0.4699,

a2 ≡
∫ π

0

sin2 f(1 + cos f)(
1− f+sin f

π

) 2
3

df ' 4.824,

a3 ≡
∫ π

0

sin2 f
(
1− f+sin f

π

) 2
3

1 + cos f df ' 0.5167,

a4 ≡
∫ π

0

sin4 f(1 + cos f)(
1− f+sin f

π

) 4
3

df ' 16.327, (3.38)

and

R = 3√
NR̃, R̃ = 3

√
3π
√

2c6
µ

. (3.39)

Notice that the pion mass term is linearly proportional to N and does not affect N?. Setting
c4 := 0, we find the minimum of the leading-order correction per N as

N
(1,2)
? =

√
1
2 + 9π2a1

2a2
' 2.197. (3.40)

Explicit checks find that MLO(2)/2 < MLO(3)/3 < MLO(4)/4 < MLO(1) < MLO(5)/5. We
also explicitly find that MLO(3) < 2MLO(2) +MLO(1). Setting instead c2 := 0, we find the
minimum of the leading-order correction per N as

N
(1,2)
? =

√
2

1 + a4
9π2a3

' 1.215. (3.41)

Explicit checks find that MLO(1) < MLO(N)/N , for any N > 1. In general, N (1,2)
? is a

function of the ratio c4/(c2R̃
2) and the equation for N? reads

−3πa1
N4/3 + a2(2N2 − 1)

3πN4/3 + 3πa3x

(
1− 2

N2

)
+ xa4

3π = 0, x := c4

c2R̃2 . (3.42)

The solution to the equation, namely N (1,2)
? , is shown in figure 1 as a function of x.

Finally, we will consider the case of the potential (2.18) with (s, p) = (2, 2), for which
we have the Bogomol’nyi mass (2.45) and BPS solution (2.37), and we further have

f2
r = 9π2 r

4

R6 , sin2 f = sin2
(
πr3

R3

)
, (3.43)

so now the LO energy is convergent and we can write the LO energy divided by 2πε as

M
(2,2)
LO
2π = 9π2c2R̃N

1/3

7 + c2(1 +N2)Υ1R̃N
1/3 + c4(1 +N2) 9π2Υ2

R̃N1/3 + c4N
5/3Υ3

R̃

+ 2m2
πNR̃

3

3 , (3.44)
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Figure 1. N (1,2)
? and N (2,2)

? as functions of x = c4
c2R̃2 .

where

R = 3√
NR̃, R̃ = 3

√
6π√c6
µ

, (3.45)

Υ1 =
∫ 1

0
sin2(πx3) dx ' 0.29303, (3.46)

Υ2 =
∫ 1

0
sin2(πx3)x4 dx ' 0.103303, (3.47)

Υ3 =
∫ 1

0

sin4(πx3)
x2 dx ' 0.370701. (3.48)

Notice again that the contribution from the pion mass term is linear in N and hence will
not affect N?. If we set c4 := 0, the LO mass per N has a minimum at

N
(2,2)
? =

√
1
2 + 9π2

14Υ1
' 4.707. (3.49)

Explicit checks find that MLO(5)/5 < MLO(4)/4 < MLO(6)/6 < MLO(7)/7 < MLO(3)/3 <
MLO(8)/8 < MLO(9)/9 < MLO(2)/2 < MLO(10)/10 < MLO(11)/11 < MLO(12)/12 <

MLO(13)/13 < MLO(14)/14 < MLO(15)/15 < MLO(1) < MLO(16)/16. This means that
there are many generalized-restricted harmonic solutions that have less energy per baryon
number than the spherically symmetric 1-Skyrmions. This is quite surprising.

On the other hand, if we set c2 := 0, the LO mass per N has a minimum given by

N
(2,2)
? =

√√√√ 2
1 + Υ3

9π2Υ2

' 1.386, (3.50)

and explicit checks verify that MLO(N)
N < MLO(N+1)

N+1 for all N = 1, 2, . . . In general, N (2,2)
?

is a function of the ratio c4/(c2R̃
2) and the equation for N? reads

−3π
7 + Υ1(2N2 − 1)

3π + 3πxΥ2(N2 − 2)
N2/3 + N4/3xΥ3

3π = 0, x := c4

c2R̃2 . (3.51)

The solution to this equation, i.e. N (2,2)
? , is shown in figure 1 as a function of x.
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To summarize, we have found that for the potentials (2.18) with (s, p) = (2, 1) and
(s, p) = (2, 2), setting c4 := 0, we have solutions with lower energy per N to leading
order in ε for N > 1, which means that the spherically symmetric 1-Skyrmion is at best
metastable in the near-BPS limit (for those potentials). On the other hand, for c2 := 0 and
(s, p) = (2, 1), (2, 2), (1, 1), (1, 2), we have found that the 1-Skyrmion is the energetically
preferred solution.

In the situation with both c2 > 0 and c4 > 0, for the cases (s, p) = (1, 2) and (s, p) =
(2, 2), the value of N? rapidly reaches ∼ 1 for c4 � c2R

2 (see figure 1). As a consequence,
in the following of the paper, we impose the constraint c4 � c2R

2 in order to build stable
nuclei made of B = 1 + 1 + 1 + · · · Skyrmions. Note that the addition of mπ > 0 does not
change N?.

3.3 NLO and N2LO corrections

We now consider the next-to-leading order (NLO) and next-to-next-to-leading order (N2LO)
corrections to the energy, meaning that we have to take into account the corrections of or-
der O(ε2) and O(ε3). The reason for having to consider the perturbed Lagrangian up to
O(ε3) has been discussed in ref. [23] for the 2-dimensional case and it is strictly related
with the choice of the compacton-type solution as the background field. Indeed, since the
compacton field is constant outside its finite domain, all the terms that contain derivatives
of the background field vanish outside said region. As a result, the first order of the field
expansion vanishes outside the compacton domain and then, iterating the perturbative
scheme, all orders of the expansion vanish too. In other words, using the compacton solu-
tion as the zeroth order of the field expansion, the ordinary perturbation scheme fails. To
avoid this problem, in ref. [23], both the quadratic order and the third order in ε have been
considered together. In this way, at the price of harder analytical computations, the solu-
tion of the perturbed field exists even outside the compacton region and the perturbative
method works. We adopt here the same strategy for the 3-dimensional case.

For the perturbative ε-expansion, we will again utilize the O(4) vector field Φ =
(Φ0,Φ1,Φ2,Φ3) that is related to the SU(2) matrix, U as defined in eqs. (2.6) and (3.14).
In this way, the computations are similar to the 2-dimensional case (in which the field is
parameterized by an O(3) vector field). We will thus perform the perturbative expansion
directly in the Φ field

Φ = Φ+ δΦ, (3.52)

where Φ denotes here the BPS background solution and δΦ is a small perturbation. In this
notation, the Lagrangian (2.1) with L0 given by eq. (2.18) now reads [40, 41]

L6 = 1
36ηµµ

′εµνρσεabcd Φa∂νΦb∂ρΦc∂σΦd εµ
′ν′ρ′σ′

εefghΦe∂ν′Φf∂ρ′Φg∂σ′Φh (3.53)

= −1
3(∂µΦ · ∂νΦ)(∂νΦ · ∂ρΦ)(∂ρΦ · ∂µΦ) + 1

2(∂µΦ · ∂νΦ)(∂νΦ · ∂µΦ)(∂ρΦ · ∂ρΦ)

− 1
6(∂µΦ · ∂µΦ)3, (3.54)

L0 = −Vs,p = − 1
sp

(1− (Φana)s)p, (3.55)
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L2 = −1
2(∂µΦ · ∂µΦ) (3.56)

L4 = 1
4(∂µΦ · ∂νΦ)(∂νΦ · ∂µΦ)− 1

4(∂µΦ · ∂µΦ)2, (3.57)

−V1,1 = −(1− Φana), (3.58)

Lλ = λ

2 (Φ · Φ− 1), (3.59)

where na = δa0 is the vacuum of the theory and we use the convention ε0123 = 1.
For the NLO and N2LO corrections, we need to calculate the variation up to third

order (in the fields) of the Lagrangian (2.1) (assuming that δΦ = O(ε))

Lperturb[Φ, δΦ] = ∂L
∂λ∂Φa

∣∣∣∣ δλ δΦa + 1
2

∂L
∂λ∂Φa∂Φb

∣∣∣∣ δλ δΦa δΦb + ∂L
∂Φa

∣∣∣∣ δΦa

+ 1
2

∂2L
∂Φa∂Φb

∣∣∣∣∣ δΦaδΦb + 1
6

∂3L
∂Φa∂Φb∂Φc

∣∣∣∣∣ δΦaδΦbδΦc + ∂L
∂∂µΦa

∣∣∣∣∣ ∂µδΦa

+ 1
2

∂2L
∂∂µΦa∂∂νΦb

∣∣∣∣∣ ∂µδΦa∂νδΦb

+ 1
6

∂3L
∂∂µΦa∂∂νΦb∂∂ρΦc

∣∣∣∣∣ ∂µδΦa∂νδΦb∂ρδΦc

= δλ

(1
2δΦ · δΦ + Φ · δΦ

)
+ µ2Ξ + εm2

πδΦ0 + λ0
2 δΦ · δΦ− εJ

µ
a ∂µδΦa

− 1
2V

µν
ab ∂µδΦ

a∂νδΦb − 1
6Γµνρabc ∂µδΦ

a∂νδΦb∂ρδΦc, (3.60)

where the symbol | means that the expression to the left is evaluated on the background
field Φ, and we have defined the symbols

Ξ = − s

2(p− 1)
(
1− (Φ0)s

)p−2(Φ0)2s−2(δΦ0)2 + 1
2(s− 1)

(
1− (Φ0)s

)p−1(Φ0)s−2(δΦ0)2

+ 1
6s

2(p− 1)(p− 2)
(
1− (Φ0)s

)p−3(Φ0)3s−3(δΦ0)3

− 1
2s(s− 1)(p− 1)

(
1− (Φ0)s

)p−2(Φ0)2s−3(δΦ0)3

1
6(s− 1)(s− 2)

(
1− (Φ0)s

)p−1(Φ0)s−3(δΦ0)3, (3.61)

Jµa = c2∂
µΦa − c4(∂µΦ · ∂νΦ)∂νΦa + c4(∂νΦ · ∂νΦ)∂µΦa, (3.62)

V µν
ab = V µν

0ab + εV µν
1ab, (3.63)

V µν
0ab = 2c6(∂ρΦ · ∂σΦ)∂ρΦa∂σΦbηµν + 2c6(∂νΦ · ∂ρΦ)∂ρΦa∂µΦb + 2c6(∂µΦ · ∂νΦ)∂ρΦa∂ρΦb

+ 2c6(∂µΦ · ∂ρΦ)∂νΦa∂ρΦb + 2c6(∂µΦ · ∂ρΦ)(∂νΦ · ∂ρΦ)δab

− 2c6(∂ρΦ · ∂ρΦ)∂σΦa∂σΦbηµν − 2c6(∂ρΦ · ∂ρΦ)∂νΦa∂µΦb

− 2c6(∂µΦ · ∂νΦ)(∂ρΦ · ∂ρΦ)δab − 4c6(∂µΦ · ∂ρΦ)∂ρΦa∂νΦb

− 4c6(∂νΦ · ∂ρΦ)∂µΦa∂ρΦb − c6(∂ρΦ · ∂σΦ)(∂ρΦ · ∂σΦ)ηµνδab

+ 4c6(∂ρΦ · ∂ρΦ)∂µΦa∂νΦb + c6(∂ρΦ · ∂ρΦ)(∂σΦ · ∂σΦ)ηµνδab, (3.64)
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V µν
1ab = c2η

µνδab + c4(∂ρΦ · ∂ρΦ)ηµνδab + 2c4∂
µΦa∂νΦb − c4(∂µΦ · ∂νΦ)δab − c4∂

µΦb∂νΦa

− c4∂ρΦ
a∂ρΦbηµν , (3.65)

Γµνρabc = 8c6∂
µΦa∂νΦb∂ρΦc + 2c6∂

ρΦa∂µΦb∂νΦc + 2c6∂
νΦa∂ρΦb∂µΦc − 4c6∂

νΦa∂µΦb∂ρΦc

− 4c6∂
ρΦa∂νΦb∂µΦc − 4c6∂

µΦa∂ρΦb∂νΦc

+ c6η
µν(2∂ρΦa∂σΦb∂σΦc + 2∂σΦa∂ρΦb∂σΦc − 4∂σΦa∂σΦb∂ρΦc

)
+ c6η

µρ(2∂νΦa∂σΦb∂σΦc + 2∂σΦa∂σΦb∂νΦc − 4∂σΦa∂νΦb∂σΦc
)

+ c6η
νρ(2∂σΦa∂µΦb∂σΦc + 2∂σΦa∂σΦb∂µΦc − 4∂µΦa∂σΦb∂σΦc

)
+ c6δ

ab(2(∂νΦ · ∂ρΦ)∂µΦc + 2(∂µΦ · ∂ρΦ)∂νΦc − 4(∂µΦ · ∂νΦ)∂ρΦc
)

+ c6δ
ac(2(∂µΦ · ∂νΦ)∂ρΦb + 2(∂νΦ · ∂ρΦ)∂µΦb − 4(∂µΦ · ∂ρΦ)∂νΦb

)
+ c6δ

bc(2(∂µΦ · ∂νΦ)∂ρΦa + 2(∂µΦ · ∂ρΦ)∂νΦa − 4(∂νΦ · ∂ρΦ)∂µΦa
)

+ 4c6δ
abηµν

(
(∂σΦ · ∂σΦ)∂ρΦc − (∂ρΦ · ∂σΦ)∂σΦc

)
+ 2c6δ

abηµρ
(
(∂νΦ · ∂σΦ)∂σΦc − (∂σΦ · ∂σΦ)∂νΦc

)
+ 2c6δ

abηνρ
(
(∂µΦ · ∂σΦ)∂σΦc − (∂σΦ · ∂σΦ)∂µΦc

)
+ 2c6δ

acηµν
(
(∂ρΦ · ∂σΦ)∂σΦb − (∂σΦ · ∂σΦ)∂ρΦb

)
+ 4c6δ

acηµρ
(
(∂σΦ · ∂σΦ)∂νΦb − (∂νΦ · ∂σΦ)∂σΦb

)
+ 2c6δ

acηνρ
(
(∂µΦ · ∂σΦ)∂σΦb − (∂σΦ · ∂σΦ)∂µΦb

)
+ 2c6δ

bcηµν
(
(∂ρΦ · ∂σΦ)∂σΦa − (∂σΦ · ∂σΦ)∂ρΦa

)
+ 2c6δ

bcηµρ
(
(∂νΦ · ∂σΦ)∂σΦa − (∂σΦ · ∂σΦ)∂νΦa

)
+ 4c6δ

bcηνρ
(
(∂σΦ · ∂σΦ)∂µΦa − (∂µΦ · ∂σΦ)∂σΦa

)
. (3.66)

In the perturbed Lagrangian we have consistently expanded the Lagrange multiplier λ as
λ→ λ0 + δλ, where λ0 is the Lagrange multiplier solution of the background BPS model

λ0 = − 2c6(∂νΦ · ∂ρΦ)(∂ρΦ · ∂µΦ)(∂µ∂νΦ · Φ) + c6(∂νΦ · ∂ρΦ)(∂ρΦ · ∂νΦ)(∂2Φ · Φ)
+ 2c6(∂ρΦ · ∂ρΦ)(∂µΦ · ∂νΦ)(∂µ∂νΦ · Φ)− c6(∂µΦ · ∂µΦ)2(∂2Φ · Φ)

− µ2(1− (Φ0)s
)p−1(Φ0)s. (3.67)

The role of δλ is to ensure that the norm of the unit four-vector Φ does not change up to
the accuracy of the perturbation order. Indeed, the equation of motion for the perturbed
Lagrangian with respect to δλ gives

(1
2δΦ

2 + Φ · δΦ
)

= 0. (3.68)

In order to solve the above constraint equation, it will prove convenient to use differential
forms with δΦ = δΦadya a 1-form on a 4-dimensional space in which the target space is
embedded, and a natural Ansatz is to take δΦ = ∗(∆ ∧ Φ) + ω with ω a 1-form (to be
determined), since the first term is transverse to Φ by construction. ∆ is a 2-form, which
will parametrize the tangent directions to the target space, as we will see later. Computing
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the terms in eq. (3.68), we have
1
2(δΦ, δΦ) = 1

2 |∆ ∧ Φ|2 + 1
2 |ω|

2, (3.69)

(Φ, δΦ) = (Φ, ω), (3.70)

with ( , ) the inner product. The cross terms in eq. (3.69) vanish due to antisymmetry:
1
2

∫
∗(∆ ∧ Φ) ∧ ∗ω + 1

2

∫
ω ∧∆ ∧ Φ = −1

2

∫
ω ∧∆ ∧ Φ + 1

2

∫
ω ∧∆ ∧ Φ = 0, (3.71)

since ∗2 = −1 for a 1-form in 4 dimensions. Writing out eq. (3.68), we have
1
2

∫
∆ ∧ Φ ∧ ∗(∆ ∧ Φ) +

∫
Φ ∧ ∗ω + 1

2

∫
ω ∧ ∗ω

=
∫

Φ ∧
(1

2∆ ∧ ∗(∆ ∧ Φ) + ∗ω
)

+ 1
2

∫
ω ∧ ∗ω = 0. (3.72)

Setting the parenthesis to zero yields the 1-form solution

δΦ = ∗(∆ ∧ Φ) + 1
2 ∗∆ ∧ ∗(∆ ∧ Φ). (3.73)

which is consistent, because |ω|2 is of order ∆4 and hence ε4. Writing out the components
of δΦ, we get

δΦa = εabcd∆bcΦ
d + 1

2ε
abcd∆bcε

defg∆efΦ
g. (3.74)

The solution can also be viewed as due to the standard Gram-Schmidt orthonormal-
ization algorithm to second order. The norm of the vector field Φ is therefore

ΦaΦa = 1 +O(ε4), (3.75)

as we request. Moreover, by using the Ansatz (3.74), it is clear that the contribution to
the energy of the terms multiplied by δλ will be of order O(ε5) and then we can neglect
them in the final calculation of the total energy. The job of δλ was indeed just to cast the
form of the perturbation as found in eq. (3.74).

3.4 Axially symmetric perturbations

It will prove convenient to define the following basis vectors

Φr =


− sin f(r)

cos f(r) sin(θ) cos(Nϕ)
cos f(r) sin(θ) sin(Nϕ)

cos f(r) cos(θ)

 , Φθ =


0

cos(θ) cos(Nϕ)
cos(θ) sin(Nϕ)
− sin(θ)

 , Φϕ =


0

− sin(Nϕ)
cos(Nϕ)

0

 ,
(3.76)

in terms of the background field solution with axial symmetry

Φ =


cos f(r)

sin f(r) sin(θ) cos(Nϕ)
sin f(r) sin(θ) sin(Nϕ)

sin f(r) cos(θ)

 , (3.77)
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for which the perturbation tensor for axially symmetric perturbations are pointed in the
direction of the tensor product of the θ and ϕ directions, hence we have

∆r
ab = −Φθ

aΦ
ϕ
b δf(r), (3.78)

and therefore the perturbation field for axially symmetric perturbations reads

δΦ =


− sin f − 1

2 cos fδf
sin θ cos(Nϕ)

(
cos f − 1

2 sin fδf
)

sin θ sin(Nϕ)
(
cos f − 1

2 sin fδf
)

cos θ
(
cos f − 1

2 sin fδf
)

 δf. (3.79)

Writing out the total field, we have

Φ = Φ+ δΦ

=


cos f

sin f sin(θ) cos(Nϕ)
sin f sin(θ) sin(Nϕ)

sin f cos(θ)

+


− sin f

cos f sin θ cos(Nϕ)
cos f sin θ sin(Nϕ)

cos f cos θ

 δf −


cos f
sin f sin θ cos(Nϕ)
sin f sin θ sin(Nϕ)

sin f cos θ

 δf2

2

'


cos(f + δf)

sin(f + δf) sin(θ) cos(Nϕ)
sin(f + δf) sin(θ) sin(Nϕ)

sin(f + δf) cos(θ)

+O(δf3). (3.80)

It is hence clear that the perturbation preserves the length of the field Φ, as any change in
the function f does not change the length of the vector field Φ.

Restricting to a radial perturbation in the profile function, δf = δf(r), we can write
the perturbation energy as

Eperturb(f, δf) = Eperturb
2 (f, δf) + Eperturb

3,quad (f, δf) + Eperturb
3,cubic (f, δf), (3.81)

with

Eperturb
2 (f, δf) = µ2

2 coss−2 f
(
1− coss f

)p−2(1− s+ (sp− 1) coss f
)

sin2(f)δf2

+ µ2

2 coss f
(
1− coss f

)p−1
δf2 − 2c6N

2

r4 sin2 f(4 sin2 f − 3)f2
r δf

2

+ εm2
π sin(f)δf + εc2frδfr + εc2(1 +N2)

2r2 sin(2f)δf

+ εc4(1 +N2)
2r2 sin(2f)f2

r δf + εc4N
2

r4 sin2 f sin(2f)δf

+ εc4(1 +N2)
r2 sin2(f)frδfr + c6N

2

r4 sin4(f)δf2
r

+ 4c6N
2

r4 sin2 f sin(2f)frδfδfr, (3.82)
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for the NLO terms,

Eperturb
3,quad (f, δf) = εm2

π

2 cos(f)δf2 + εc2
2 δf2

r + εc2(1 +N2)
2r2 cos(2f)δf2

− εc4N
2

r4 sin2 f(4 sin2 f − 3)δf2 + εc4(1 +N2)
2r2 cos(2f)f2

r δf
2

+ εc4(1 +N2)
2r2 sin2(f)δf2

r + εc4(1 +N2)
r2 sin(2f)frδfδfr, (3.83)

for the NNLO terms quadratic in δf and

Eperturb
3,cubic (f, δf) = µ2

2 coss−1 f
(
1− coss f

)p−2(1− s+ (sp− 1) coss f
)

sin(f)δf3

+ µ2

6 coss−3 f
(
1− coss f

)p−3(2− 3s+ s2 + (s− 1)(4 + (1− 3p)s) coss f

+ (sp− 2)(sp− 1) cos2s f
)

sin3(f)δf3

− c6N
2

r4 (5 sin2 f − 2) sin(2f)f2
r δf

3 − 3c6N
2

r4 sin2(f)(5 sin2 f − 4)frδf2δfr

+ 2c6N
2

r4 sin2 f sin(2f)δfδf2
r , (3.84)

for the NNLO terms cubic in δf .
Outside the support of the compacton, f = fr = 0 and hence the perturbation energy

reduces to

Eperturb, outside(f, δf) = εc2

(
1
2δf

2
r + 1 +N2

2
δf2

r2 + m2
π

2c2
δf2
)
. (3.85)

The problem simplifies for spherical symmetry for which N = 1, since the boundary of
the compacton becomes a sphere of radius R, hence simplifying drastically the boundary
conditions for the outside perturbations. The corresponding equation of motion is the
modified spherical Bessel equation

r2δfrr + 2rδfr − 2δf − m2
πr

2

c2
δf = 0, (3.86)

which in turn has the analytic solution being the first modified spherical Bessel function
of the second kind

δf = αk1

(
mπr√
c2

)
= αe

−mπr√
c2

(√
c2

mπr
+ c2
m2
πr

2

)
, α > 0. (3.87)

The perturbation outside of the compacton is thus a free massive boson with the mass of
the pion, as is expected on physical grounds.

In order to perform numerical calculations with the axially symmetric Ansatz and
δf = δf(r), we actually need to pick a BPS background for which the leading order energy
correction is minimized for N = 1, and it is furthermore needed that the derivative of the
BPS solution is finite at the compacton radius; these constraints leave us only with the two
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cases (s, p) = (1, 2) and (s, p) = (2, 2), both with c4 � c2R
2 (since we need N? ≈ 1 for the

spherically symmetric solution to be a minimizer of the energy functional, see figure 1). On
the other hand, it is necessary that c2 6= 0, in order for the tail of the perturbation to exist
outside of the compacton. The reason that it is necessary to have a finite derivative of the
BPS profile function at the compacton radius (fr(R)) is that we will have to impose a cusp
condition on the perturbative computation, which becomes nontrivial if the condition has
to cancel an infinite negative derivative. In this paper, we will consider only the case of the
BPS potential (s, p) = (1, 2), whereas we leave the case (s, p) = (2, 2) for a future work.

3.4.1 (s, p) = (1, 2)

Considering the potential (2.18) with (s, p) = (1, 2), which has Bogomol’nyi mass (2.43)
and BPS solution (2.31), we can analytically determine the derivative of the BPS solution
at the compacton radius R:

fr(R) = − 3π
2R, (3.88)

and hence we need to impose the following condition on the perturbation field

δfr(R−)− δfr(R+) = 3π
2R, (3.89)

with R given in eq. (2.32). Using the analytic solution (3.87), we have

δfr(R−) = 3π
2R −

αe
−mπR√

c2

R

(
1 +

2√c2
mπR

+ 2c2
m2
πR

2

)

= 3π
2R −

δf(R−)
R

1 + mπR√
c2

+ 1
1 + mπR√

c2

 , (3.90)

which is a Robin-type of boundary condition.
In figure 2 is shown the profile function f(r) for the N = 1 spherically symmetric

Skyrmion with ε = 0.01 for various values of mπ/
√
c2. The perturbative scheme (orange

curves) is compared to the exact numerical results (black curves). The cusp in the perturba-
tive solution is imposed by using the condition (3.90). For c4 = 0 the perturbative scheme
captures well the true solution for mπ/

√
c2 = 2, but not quite yet for large c4 = 8, whereas

it works well for large c4 = 8 with mπ/
√
c2 = 3 being slightly large. We found in the previ-

ous section that c4 � c2R
2 is necessary for the spherically symmetric Skyrmion to be the

true minimizer of the energy functional, which is the reason for choosing c4 = 8� (3π)2/3

for c6 = 1/2 and µ = 1.
From figure 2, we recognize that the perturbative method seems to better approximate

the exact near-BPS solution when increasing the pion mass mπ. A possible explanation
for that behavior is the following. The perturbative expansion of the Skyrme field (3.1)
obviously works in the hypothesis of δU � 1, so that the truncation of the series is justified
by neglecting the smaller and smaller higher orders. Therefore, the smaller the difference
between the BPS background and the exact solution is, the smaller δU is required to be.
In this work, the BPS background is a compacton so a suppressed near-BPS tail (obtained
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(d) mπ√
c2

= 3

Figure 2. The profile function f = fBPS + δf at N2LO using linearized equation of motion in the
BPS-Skyrme model with (s, p) = (1, 2), for c4 = 0, 8 and mπ = 1, 2, 3. The other parameters of the
model has been set as: c2 = 1, c6 = 1

2 , µ = 1 and hence the compacton radius R = (3π) 1
3 ' 2.112.

with large mπ) should increase the accuracy of the perturbative method. Moreover, the
linearization of the equation of motion operated at the NLO+N2LO is better justified for
δU very small, i.e. when the tail is well suppressed by a large mπ.

We are now ready to compare the energies of the exact numerical calculations with
those of the perturbative scheme. The result is shown in figure 3. The NLO correction
to the energy is calculated using eq. (3.82) which contributes with ε2 to the energy and
the N2LO correction is calculated using the sum of eqs. (3.83) and (3.84) contributing of
order ε3.

Fitting the NLO and N2LO corrections to the energy, we can write an approximate
formula for the energy in the perturbative scheme (for N = 1, c2 = 1, mπ = 3, c6 = 1

2 and
µ = 1):

E(ε) = M
(1,2)
BPS + εM

(1,2)
LO + ε2M

(1,2)
NLO + ε3M

(1,2)
N2LO

= 2π2 + ε (39.79 + 5.43c4) + ε2 (−331.39 + 24.91c4) + ε3 (229.87− 20.36c4) . (3.91)
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Figure 3. The mass of the Skyrmion in the perturbative ε-expansion as a function of ε on a
logarithmic scale. The red solid line represents the BPS bound, the orange solid line is the LO
correction to the energy, the black pluses are NLO corrections and finally the red crosses are N2LO
corrections. For comparison, the solid black line shows the exact ODE calculation. We also show
the energy bound (A.8) with a blue-dashed line. The top row shows the case of c4 = 0 and the
bottom row shows c4 = 8. In this figure c2 = 1, c6 = 1

2 , µ = 1, mπ = 3, and (s, p) = (1, 2).

The energy for different values of c6 and µ (with modified values of mπ and c2) can be
recovered by a scaling argument of length and energy scales.

4 Binding energies

In order to calculate the binding energy between two B = 1 Skyrmions, we need to write
down the energy with generic fluctuations turned on

∆ab = ∆r
ab + ∆θ

ab + ∆ϕ
ab

= −Φθ
aΦ

ϕ
b δf(x)− Φϕ

aΦr
bδθ(x)− Φr

aΦθ
bδϕ(x), (4.1)

and with δf not being restricted to being dependent only on the radial coordinate.
Geometrically, there is the direction Φ and only three tangent directions (Φr, Φθ and

Φϕ), since the target space is a 3-sphere. The tensor fluctuation (4.1) is the most general
nonvanishing tensor that can be constructed out of tensor products of these vector direc-
tions (i.e. Φ, Φr, Φθ and Φϕ); that is, any inclusion of Φ gives no contribution to δΦ of
eq. (3.74).
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4.1 General fluctuation energy

The NLO + N2LO energy density is given by

Eperturb(f, δf, δθ, δϕ) = Eperturb
2 (f, δf, δθ, δϕ) + Eperturb

3,quad (f, δf, δθ, δϕ) + Eperturb
3,cubic (f, δf, δθ, δϕ),

(4.2)
with

Eperturb
2 = εXa

0εΩa +
∑
a

εXa
1εx̂ia∂iΩa + ΩaY ab

0 Ωb + ΩaY abi
1 ∂iΩb + ∂iΩaY abij

2 ∂jΩb, (4.3)

Eperturb
3,quad = εΩaY ab

0ε Ωb + εΩaY abi
1ε ∂iΩb + ε∂iΩaY abij

2ε ∂jΩb, (4.4)

Eperturb
3,cubic = Zabc0 ΩaΩbΩc + ∂iΩaZabci1 ΩbΩc + ∂iΩa∂jΩbZabcij2 Ωc

+ ∂iΩa∂jΩbZabcijk3 ∂kΩc, (4.5)

i, j, k = 1, 2, 3 the spatial indices, a, b, c = 1, 2, 3 the 3-vector indices, the definitions

Ωa =

δfδθ
δϕ

 , x̂i1 =

sin θ cosϕ
sin θ sinϕ

cos θ

 , x̂i2 =

cos θ cosϕ
cos θ sinϕ
− sin θ

 , x̂i3 =

− sinϕ
cosϕ

0

 , (4.6)

and the tensors

Xa
0ε =


c2
r2 sin(2f) + c4

r2 sin(2f)f2
r + c4

r4 sin(2f) sin2 f +m2
π sin f

cot θ sin f
(
c2
r2 + c4

r4 sin2 f + c4
r2 f

2
r

)
0

 , (4.7)

Xa
1ε =


(
c2 + 2c4

r2 sin2 f
)
fr

1
r

(
c2 + c4f

2
r + c4

r2 sin2 f
)

sin f
1
r

(
c2 + c4f

2
r + c4

r2 sin2 f
)

sin f

 , (4.8)

for the linear terms

Y ab
0 =

 Y 11
0

3c6
2r4 cot θ sin f sin(2f)f2

r 0
3c6
2r4 cot θ sin f sin(2f)f2

r Y 22
0 0

0 0 Y 33
0

 , (4.9)

Y 11
0 = −µ

2

4 coss−2 f(1− coss f)p−2
(
−2 + 2s sin2 f + coss f(2− 2sp sin2 f)

)
+ 2c6

r4 (3− 4 sin2 f) sin2(f)f2
r , (4.10)

Y 22
0 = µ2

2 coss f(1− coss f)p−1 + c6
r4 (cot2 θ − 2 sin2 f) sin2(f)f2

r , (4.11)

Y 33
0 = µ2

2 coss f(1− coss f)p−1 − 2c6
r4 sin4(f)f2

r , (4.12)

Y abi
1 = c6

r3 s
2
ffr


4
rs2f x̂i1 6cffrx̂i2 6cffrx̂i3

4
rsf (x̂i2 + s−1

θ δi3) ( s2f
r + 4fr

t2
θ

)x̂i1 −
4fr
sθtθ

δi3 2fr
tθ

x̂i3
0 0 ( s2f

r + 2fr
t2
θ

)x̂i1 −
2fr
sθtθ

δi3

 ,
(4.13)
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Y abij
2 = c6

r2 s
2
f


s2
f

r2 x̂i1x̂j1
sffr
r (x̂i1x̂j2 + εijkx̂k3) sffr

r (x̂i1x̂j3 − εijkx̂k2)
sffr
r (x̂i2x̂j1 − εijkx̂k3) f2

r x̂i2x̂j2 f2
r (x̂i2x̂j3 + εijkx̂k1)

sffr
r (x̂i3x̂j1 + εijkx̂k2) f2

r (x̂i3x̂j2 − εijkx̂k1) f2
r x̂i3x̂j3

 , (4.14)

for the quadratic NLO terms

Y 11
0ε = c2

r2 cos(2f) + c4
r2 cos(2f)f2

r + c4
r4 sin2 f(3− 4 sin2 f) + m2

π

2 cos f, (4.15)

Y 22
0ε = c2

2r2 (cos 2f + cot2 θ)− c2
2 f

2
r + c4

2r4 sin2 f(cos(2f) + cot2 θ)

− c4
2r2 (3 sin2 f − cot2 θ)f2

r + m2
π

2 cos f, (4.16)

Y 33
0ε = c2

2r2 (cos 2f + cot2 θ)− c2
2 f

2
r + c4

2r4 sin2 f cos 2f − c4
2r2 (3 sin2 f − cot2 θ)f2

r

+ m2
π

2 cos f (4.17)

Y ab
0ε =


Y 11

0ε
c2cf
2r2tθ

+ c4cf
2r4tθ

(r2f2
r + 3s2

f ) 0
c2cf
2r2tθ

+ c4cf
2r4tθ

(r2f2
r + 3s2

f ) Y 22
0ε 0

0 0 Y 33
0ε

 , (4.18)

Y abi
1ε = c2

r
cf


0 x̂i2 x̂i3
−x̂i2 0 1

tθcf
x̂i3

−x̂i3 − 1
tθcf

x̂i3 0



+ c4
r2 sf


4cffrx̂i1

(3s2f
2r + rf2

r
tf

)
x̂i2

(3c2f
2r + rf2

r
tf

)
x̂i3(

2fr −
s2f
2r
)

x̂i2 + 2fr
sθ
δi3

(
2sf
rt2
θ

+ cffr

)
x̂i1 −

2cθsf
rs2
θ
δi3 cot θ

(
sf
r + rf2

r
sf

)
x̂i3

− s2f
2r x̂i3 − rf2

r
tθsf

x̂i3
(
sf
rt2
θ

+ cffr

)
x̂i1 −

cθsf
rs2
θ
δi3

 ,
(4.19)

Y abij
2ε = c2

2

δ
ij 0 0
0 δij 0
0 0 δij



+ c4
2


s2
f

r2 (δij + x̂i1x̂j1) sffr
r (x̂i1x̂j2 + εijkx̂k3) sffr

r (x̂i1x̂j3 − εijkx̂k2)
sffr
r (x̂i2x̂j1 − εijkx̂k3) s2

f

r2 x̂i!3x̂j!3 + f2
r x̂i!1x̂j!1

s2
f

r2 (x̂i2x̂j3 + εijkx̂k1)
sffr
r (x̂i3x̂j1 + εijkx̂k2) s2

f

r2 (x̂i3x̂j2 − εijkx̂k1) s2
f

r2 x̂i!2x̂j!2 + f2
r x̂i!1x̂j!1

 , (4.20)

for the quadratic N2LO terms and

Z111
0 = µ2

6 coss−3 f(1− cos2 f)p−3 sin f
(
(s− 1)(−3 + (1 + s) sin2 f)

+ (sp− 1) cos2s f(−3 + (sp+ 1) sin2 f)

+ coss f(3(s(p+ 1)− 2) + (2 + s2(1− 3p)) sin2 f)
)

+ c6
r4 sin(2f)(2− 5 sin2 f)f2

r , (4.21)
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Z222
0 = −3c6

r4 cot θ sin3(f)f2
r , (4.22)

Z112
0 = 3c6

4r4 cot θ(3 sin(3f)− sin f)f2
r , (4.23)

Z221
0 = µ2

2 coss−1 f(1− coss f)p−2(1− s+ (sp− 1) coss f) sin f

+ c6
r4 sin(2f)(cot2 θ − 3 sin2 f)f2

r , (4.24)

Z331
0 = µ2

2 coss−1 f(1− coss f)p−2(1− s+ (sp− 1) coss f) sin f − 3c6
r4 sin2 f sin(2f)f2

r ,

(4.25)

Z332
0 = −3c6

r4 cot θ sin3(f)f2
r , (4.26)

Z1bci
1 = c6

r4 s
2
ffr


3(4− 5s2

f )x̂i1 6cf (x̂i2 + csc θδi3) 0

6cf (x̂i2 + csc θδi3)
(

2
t2
θ
− 3s2

f

)
x̂i1 0

0 0 −3s2
f x̂i1

 , (4.27)

Z2bci
1 = c6

r3 sffr


3(2− 3s2

f )frx̂i2 cf

(
3s2f
2r + 4fr

t2
θ

)
x̂i1 0

cf

(
3s2f
2r + 4fr

t2
θ

)
x̂i1
(

2s2f
r + 2fr

t2
θ
− 3s2

ffr

)
x̂i2 0

0 0 −3s2
ffrx̂i2



+ 2c6
r3

s2ffr
sθ

 0 −fr
tθ

0
−fr
tθ

sf
r 0

0 0 0

 δi3, (4.28)

Z3bci
1 = c6

r3 sffr


3(2− 3s2

f )frx̂i3
2cffr
tθ

x̂i3 cf

(
3s2f
2r + 2fr

t2
θ

)
x̂i1

2cffr
tθ

x̂i3 −3s2
ffrx̂i3

(
s2f
r + fr

t2
θ

)
x̂i2

cf

(
3s2f
2r + 2fr

t2
θ

)
x̂i1
(
s2f
r + fr

t2
θ

)
x̂i2 −3s2

ffrx̂i3



+ c6
r3
s2ffr
sθ

 0 0 −fr
tθ

0 0 sf
r

−fr
tθ

sf
r 0

 δi3, (4.29)

Zab1ij2 = c6
r2 s2f


2s2
f

r2 x̂i1x̂j1
3sffr

2r (x̂i1x̂j2 + εijkx̂k3) 3sffr
2r (x̂i1x̂j3 − εijkx̂k2)

3sffr
2r (x̂i2x̂j1 − εijkx̂k3) f2

r x̂i2x̂j2 f2
r (x̂i2x̂j3 + εijkx̂k1)

3sffr
2r (x̂i3x̂j1 + εijkx̂k2) f2

r (x̂i3x̂j2 − εijkx̂k1) f2
r x̂i3x̂j3

 ,
(4.30)

Zab2ij2 = c6
r2 sf


2s2
f

r2 (x̂i2x̂j1 + s−1
θ δi3x̂j1) Z122ij

2 Z132ij
2

Z212ij
2

s2ffr
r (x̂i2x̂j1 − 1

2ε
ijkx̂k3) + 2f2

r
tθ

x̂i2x̂j2 Z
232ij
2

Z312ij
2 Z322ij

2 0

 , (4.31)

Z122ij
2 = Z212ji

2 = 2sffr
r

x̂i2x̂j2 + sfs2f
2r2 x̂i1x̂j1 + 2sffr

rtθ
εijkx̂k3 + 2sffr

rsθ
δi3x̂j2, (4.32)
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Z132ij
2 = Z312ji

2 = sffr
r

(x̂i2x̂j3 + εijkx̂k1 − s−1
θ x̂i3δj3 + 2s−1

θ δi3x̂j3), (4.33)

Z232ij
2 = Z322ji

2 = f2
r

tθ
(x̂i2x̂j3 + εijkx̂k1) + s2ffr

2r (x̂i1x̂j3 − εijkx̂k2), (4.34)

Zab3ij2 = c6
r2 sf


0 0 Z133ij

2
0 0 Z233ij

2
Z313ij

2 Z323ij
2

2f2
r
tθ

(x̂i2x̂j3 −
tθ
2 ε

ijkx̂k2) + s2ffr
r (x̂i1x̂j3 + 1

2ε
ijkx̂k2)− f2

r
sθ
εij3

 ,
(4.35)

Z133ij
2 = Z313ji

2 = sffr
r

(x̂i2x̂j2 + t−1
θ εijkx̂k3 + s−1

θ δi3x̂j2) + s2fsf
2r2 x̂i1x̂j1, (4.36)

Z233ij
2 = Z323ji

2 = f2
r

tθ
x̂i2x̂j2 + s2ffr

2r (x̂i1x̂j2 + εijkx̂k3), (4.37)

Z112ijk
3 = 4c6

r3 s
3
f

(
x̂i1εjklx̂l3 + 1

2ε
ijlx̂l3x̂k1

)
, (4.38)

Z113ijk
3 = 4c6

r3 s
3
f

(
−x̂i1εjklx̂l2 −

1
2ε

ijlx̂l2x̂k1
)
, (4.39)

Z221ijk
3 = 4c6

r2 s
2
ffr

(
−x̂i2εjklx̂l3 −

1
2ε

ijlx̂l3x̂k2
)
, (4.40)

Z123ijk
3 = 4c6

r2 s
2
ffr

(
x̂i1εjklx̂l1 + 1

2ε
ijlx̂l1x̂k1 + εijlx̂l3x̂k3 + 1

2 x̂i3εjklx̂l3
)
, (4.41)

Z223ijk
3 = 4c6

r
sff

2
r

(
x̂i2εjklx̂l1 + 1

2ε
ijlx̂l1x̂k2

)
, (4.42)

Z332ijk
3 = 4c6

r
sff

2
r

(
−x̂i3εjklx̂l1 −

1
2ε

ijlx̂l1x̂k3
)
, (4.43)

for the cubic N2LO terms.
The equations of motion for the general fluctuations in Cartesian coordinates read

∂i
(
ΩbY bai

1 + εΩbY bai
1ε + 2Y abij

2 ∂jΩb + 2εY abij
2ε ∂jΩb

)
− 2Y ab

0 Ωb − 2εY ab
0ε Ωb − Y abi

1 ∂iΩb − εY abi
1ε ∂iΩb = εXa

0ε − ε∂i(Xa
1εx̂ia), (4.44)

(a not summed over). We have used the short-hand notation for the trigonometric functions

sθ = sin θ, sf = sin f, cθ = cos θ, cf = cos f, tθ = tan θ, (4.45)

and so on, and we have used the following short-hand index summation rule

x̂i!1x̂j!1 :=
∑
a 6=1

x̂iax̂ja = δij − x̂i1x̂j1, (4.46)

and similarly for other excluded directions.

4.2 Spherical symmetry

We will now show that if we restrict to the spherically symmetric B = 1 Skyrmion and
impose δf = δf(r), the fluctuations δθ and δϕ decouple and are solved by their trivial
solution.
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First we notice that there are, seemingly, source terms for the fluctuation field δθ in
eqs. (4.7) and (4.8). However, using the identity

∂iX = x̂i1∂rX + 1
r

x̂i2∂θX + 1
r sin θ x̂i3∂ϕX, (4.47)

the linear terms in the energy density (4.3) for the fluctuations δθ and δϕ read

ε sin f
(
c2
r2 + c4

r4 sin2 f + c4
r2 f

2
r

)
(cot θδθ + ∂θδθ + ∂ϕδϕ) . (4.48)

Now including the integration measure, we have

ε

∫
drdθδϕ sin f

(
c2 + c4

r2 sin2 f + c4f
2
r

)
(cos θδθ + sin θ∂θδθ + sin θ∂ϕδϕ)

= ε

∫
drdθδϕ ∂θ

[
sin f

(
c2 + c4

r2 sin2 f + c4f
2
r

)
sin θδθ

]
+ ε

∫
drdθδϕ ∂ϕ

[
sin θ sin f

(
c2 + c4

r2 sin2 f + c4f
2
r

)
δϕ

]
, (4.49)

which are clearly total derivatives and hence do no contribute to the equations of motion
for the fluctuation fields. In particular, this means that the sources, i.e. the right-hand side
of the equation of motion (4.44) take the form

ε

∗0
0

 , (4.50)

thus are only turning on the fluctuation δf = Ω1.
Next, we will show that only the non-radial derivatives of δf turn on the fluctuations

δθ and δϕ. Starting with the non-derivative terms in the equations of motion (4.44), we
observe that

∂i(Y i
1 )T − 2Y0 =

∗ ∗ 0
0 ∗ 0
0 0 ∗

 , ∂i(Y i
1ε)T − 2Y0ε =

∗ ∗ 0
0 ∗ 0
0 0 ∗

 , (4.51)

where we treat the tensors as matrices in ab: a = 1, 2, 3 being the row and the equation
index and b = 1, 2, 3 being the column and field index. It is thus clear — at this stage —
that a nonvanishing δθ affects the equation of motion for δf , but a nonvanishing δf does
not affect the equations of motion for δθ and δϕ: it does not act as a source for the latter
fluctuation fields.
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Considering now the one-derivative terms of the equations of motion, we find

[
(Y i

1 )T − Y i
1 + 2∂jY ji

2

]
x̂i1 =

∗ ∗ 0
0 ∗ 0
0 0 ∗

 , [
(Y i

1ε)T − Y i
1ε + 2∂jY ji

2ε

]
x̂i1 =

∗ ∗ 0
0 ∗ 0
0 0 ∗

 ,
[
(Y i

1 )T − Y i
1 + 2∂jY ji

2

]
x̂i2 =

0 ∗ 0
∗ ∗ 0
0 0 ∗

 , [
(Y i

1ε)T − Y i
1ε + 2∂jY ji

2ε

]
x̂i2 =

0 ∗ 0
∗ ∗ 0
0 0 ∗

 ,
[
(Y i

1 )T − Y i
1 + 2∂jY ji

2

]
x̂i3 =

0 0 ∗
0 0 0
∗ ∗ 0

 , [
(Y i

1ε)T − Y i
1ε + 2∂jY ji

2ε

]
x̂i3 =

0 0 ∗
0 0 ∗
∗ ∗ 0

 ,
(4.52)

from which we can see that a nonvanishing radial derivative of the fluctuation ∂rδf does
not turn on the fluctuations δθ and δϕ (see the first line), whereas a nonvanishing ∂θδf
acts as a source for δθ (see the second line) and a nonvanishing ∂ϕδf acts as a source for
δϕ, recalling the identity (4.47) (see the third line).

Finally, we need to consider the double-derivatives of the fluctuation fields in the
equations of motion and we find

(Y ij
2 +Y ji

2 )x̂ikx̂
j
l ∝ δ

kaδlb + δkbδla, (Y ij
2ε +Y ji

2ε )x̂ikx̂
j
l ∝ δ

klδab + δkaδlb + δkbδla, (4.53)

(distinguishing only vanishing and nonvanishing elements of the tensor and with ab being
the matrix indices) and hence it is clear again that the only sources for the fluctuations δθ
and δϕ are ∂r∂θδf and ∂r∂ϕδf .

This completes the proof that δf = δf(r) does not turn on the fluctuations δθ or δϕ
and their equations of motion are homogeneous and satisfied by δθ = δϕ = 0, which is com-
patible with their boundary conditions at spatial infinity. Hence, without a nonspherical
fluctuation field δf , the angular fluctuation fields remain turned off.

4.3 Boundary conditions

The equation of motion (4.44) must be accompanied by suitable boundary conditions: the
cusp condition at the boundary of the B = 1 compacton, the fluctuations must vanish at
spatial infinity and finally, we will solve the problem of binding energies by performing a
mirror trick similar to the problem in two dimensions [23], see figure 4.

A problem is that the best coordinates for imposing the cusp condition on the boundary
of the compacton are the spherical coordinates with origin O, whereas the best coordinates
for imposing the gluing conditions at x = 0 are Cartesian coordinates. Here, we will utilize
the fact that we are only solving the linearized equation of motion (4.44) and hence, we
can find the solution using the superposition of two solutions:

δf = δf rad + δfglue, (4.54)

which is the sum of the radial fluctuation of section 3.4, δf rad, that solves the cusp condition
on the boundary of the compacton and a new fluctuation field δfglue that is only subject
to the gluing condition as well as the boundary condition at spatial infinity.
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x

z

}

a

R

O

θ
r

Figure 4. Setup for computation of the binding energy between two B = 1 Skyrmions using the
mirror trick and certain gluing conditions at x = 0 and the B = 1 Skyrmion is placed at x = −R−a.
The figure is shown at y = ϕ = 0.

The solution for the B = 1 Skyrmion that obeys the cusp condition δf rad is exactly the
fluctuation found in section 3.4; the new fluctuation field subject to the gluing conditions
can thus be calculated in Cartesian coordinates, which is why we have written the energy
of section 4.1 in Cartesian coordinates. Notice that the field δfglue experiences a smooth
background, since the cusp condition and the termination of the BPS solution on the
compacton boundary add up to a smooth total field. We will now discuss the gluing
condition in more details next.

4.4 Gluing condition

We will assume that the two B = 1 Skyrmions should be placed in their attractive channel,
which is dictated by viewing the Skyrmions as triplets of dipoles, which by the kinetic term
provides and attractive channel [42]3. The gluing conditions for the attractive channel of
two B = 1 Skyrmions are


∂xΦ0

∂xΦ1

Φ2

∂xΦ2

 = 0, (4.55)

where 3 conditions are Neumann and one is Dirichlet, which is necessary for computing the
gluing with Skyrmions in the attractive channel (e.g. all Neumann condition would lead to
a Skyrmion-anti-Skyrmion pair). In order to impose the correct boundary conditions on

3See also ref. [43] for an explicit numerical computation of the interaction potential.
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the fluctuation fields, we first write out the total field

Φ = Φ+ δΦ

= Φ+ Φrδf + Φθδθ + Φϕδϕ−
1
2Φ(δf2 + δθ2 + δϕ2). (4.56)

Since the gluing condition should be applied outside the domain of the compacton, we need
to set f = 0 of the background solution, for which the total field reads

Φ =


1
0
0
0


(

1− δf2

2 −
δθ2

2 −
δϕ2

2

)
+


0

sin θ cosϕ
sin θ sinϕ

cos θ

 δf +


0

cos θ cosϕ
cos θ sinϕ
− sin θ

 δθ +


0

− sinϕ
cosϕ

0

 δϕ.
(4.57)

Using the identity (4.47), we obtain the following gluing conditions for the fluctuation fields

δfδfx + δθδθx + δϕδϕx = 0, (4.58)
sin θ sinϕδf + cos θ sinϕδθ + cosϕδϕ = 0, (4.59)

1
r

cos θ cosϕ(cos θδf − sin θδθ) + sin θδfx + cos θδθx − tanϕδϕx = 0, (4.60)
1
r

cosϕ(sin θδf + cos θδθ)− δfx + tan θδθx = 0. (4.61)

Since this is a complicated mixture of a nonlinear boundary condition and a Robin-type
boundary condition on the fluctuation fields, we will solve the linear Robin-part of the
boundary condition and verify a posteriori that the quadratic part is approximately sat-
isfied. Using the discrete x-derivative to order h2

x with hx being the lattice spacing, the
solution reads

δfglue
0 = 3r2(cos2 θ + sin2 θ cos2 ϕ)

4h2
x cos2 θ cos4 ϕ+ 9r2 (4δfglue

−1 − δf
glue
−2 )

+ r cos θ(2hx cos3 ϕ− 3r sin θ sin2 ϕ)
4h2

x cos2 θ cos4 ϕ+ 9r2 (4δθ−1 − δθ−2)

− r sin(2ϕ)(2hx cos2 θ cosϕ+ 3r sin θ)
2(4h2

x cos2 θ cos4 ϕ+ 9r2) (4δϕ−1 − δϕ−2)

+ 4h2
x cos2 θ cos4 ϕ+ 9r2 sin2 θ sin2 ϕ

4h2
x cos2 θ cos4 ϕ+ 9r2 δf rad

+ 6hxr2 sin θ cosϕ(cos2 θ + sin2 θ cos2 ϕ)
4h2

x cos2 θ cos4 ϕ+ 9r2 δf rad
r , (4.62)

δθ0 = r(2hx cos3 ϕ+ 3r sin θ sin2 ϕ)
4h2

x cos θ cos4 ϕ+ 9r2 (4δfglue
−1 − δf

glue
−2 )

− 3r2(2hx cos4 θ cos3 ϕ+ 3r sin θ cos2 ϕ+ 2hx cos2 θ sin2 θ cosϕ+ 3r sin3 θ sin2 ϕ)
(4h2

x cos2 θ cos4 ϕ+ 9r2)(2hx cos2 θ + 3r sin θ)
× (4δθ−1 − δθ−2)
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+ r sin(2ϕ)(12hxr cos(2θ) cos θ cosϕ− sin(2θ)(4h2
x cos2 θ cos2 ϕ− 9r2)

4(4h2
x cos2 θ cos4 ϕ+ 9r2)(2hx cos2 θ cosϕ+ 3r sin θ)

× (4δϕ−1 − δϕ−2)

+
3r cos θ(4h2

xc
2
θc

4
ϕ + 6hxrc2

θsθcϕ + 9r2s2
θs

2
ϕ + 6hxrs3

θc
3
ϕ)

(4h2
x cos2 θ cos4 ϕ+ 9r2)(2hx cos2 θ cosϕ+ 3r sin θ) δf rad

− hxr sin(2θ) cosϕ(2hx cos4 ϕ+ 3r sin θ sin2 ϕ)
4h2

x cos2 θ cos4 ϕ+ 9r2 δf rad
r , (4.63)

δϕ0 = −r sin(2ϕ)(2hx cos2 θ cosϕ− 3r sin θ)
2(4h2

x cos2 θ cos4 ϕ+ 9r2) (4δfglue
−1 − δf

glue
−2 )

− 2r cos θ sin(2ϕ)(3r + 2hx sin θ cosϕ)
3(h2

x + 12r2) + h2(3 cos(2θ) + 2 cos2 θ(4 cos(2ϕ) + cos(4ϕ)))(4δθ−1 − δθ−2)

+ 3r2 sin2 ϕ

4h2
x cos2 θ cos4 ϕ+ 9r2 (4δϕ−1 − δϕ−2)

+ 6r sin(2ϕ)(3r sin θ − 2hx cos2 θ cosϕ)
3(h2

X + 12r2) + h2
x(3 cos(2θ) + 2 cos2 θ(4 cos(2ϕ) + cos(4ϕ)))

δf rad

+ 4hxr cosϕ sin(2ϕ) sin θ(2hx cos2 θ cosϕ− 3r sin θ)
3(h2

x + 12r2) + h2
x(3 cos(2θ) + 2 cos2 θ(4 cos(2ϕ) + cos(4ϕ)))δf

rad
r . (4.64)

It is simple to check that the gluing condition is regular for 3r > 2hx, which is always true
for the gluing condition since r > R, where R = 1 � hx in numerical calculations. The
subscripts on the fluctuation fields correspond to lattice indices in the x-direction, i.e. δθ0
corresponds to δθ(x = 0), δθ−1 = δθ(x = −hx) and δθ−2 = δθ(x = −2hx) and similarly for
the other fluctuation fields. The coordinate system for the spherical polar coordinates is

x+R+ a+ iy = r sin θeiϕ, z = r cos θ. (4.65)

With the gluing conditions in hand, we are now ready to perform numerical computations
of the binding energies.

4.5 Numerical results

We will now compute the binding energies numerically within the semianalytic ε-expansion
up to N2LO, i.e. O(ε3). We choose the potential (s, p) = (1, 2) which corresponds to
(1 − cos f)2 because this potential allows for the spherically symmetric Skyrmion being
stable within the axially symmetric Ansatz for c2 = 1 and c4 = 8 (or generically any
c4 � c2R

2). We further fix the parameters of the numerical calculation by setting c6 = 1
2

and µ = 1, which yields a compacton radius, R = (3π)
1
3 . Now, in order for the cusp

condition to be sufficient for the ε-expansion scheme to capture the true Skyrmion solution,
we need mπ � 1 and chose mπ = 3 as in section 3.4.

We will now solve the coupled PDEs (4.44) with the cusp condition taken into account
by means of splitting the field (valid for the linearized equation) (4.54), vanishing boundary
conditions for the fluctuations at infinity and finally the gluing conditions (4.62)–(4.64) at
x = 0 (i.e. midway between the two spherical B = 1 compactons), see figure 4. The results
are shown in figures 5 and 6 for ε = 0.01 and ε = 0.0428, respectively. The top row of each
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(a)

(b)

Figure 5. Numerical solution for the fluctuation fields δfglue, δθ and δϕ for two B = 1 Skyrmions
(showing only the left-hand side of the bound state) for ε = 0.01 and separation distances 2a =
(0, 1, 2, 3, 4, 5, 6)2hx, with hx ' 0.094. (a) shows the field solutions with constant isosurfaces at 1

4
of their respective maximal values, where the column corresponds to the separation distance. (b)
shows the corresponding NLO (red) and N2LO (blue) perturbation energies at 1

4 of their respective
minima (notice that their contributions are negative). The color coding of (a) is that positive δfglue

is shown with red, negative δfglue with green, positive δθ with yellow, negative δθ with magenta,
positive δϕ with blue and negative δϕ with orange isosurfaces. In this figure c2 = 1, c4 = 8, c6 = 1

2 ,
µ = 1, mπ = 3, R = (3π) 1

3 and (s, p) = (1, 2).

(a)

(b)

Figure 6. Numerical solution for the fluctuation fields δfglue, δθ and δϕ for two B = 1 Skyrmions
(showing only the left-hand side of the bound state) for ε = 0.0428 and separation distances 2a =
(0, 1, 2, 3, 4, 5, 6)2hx, with hx ' 0.094. For further details, see the caption of figure 5.

figure shows the isosurfaces of the fluctuation fields δfglue, δθ and δϕ at positive (negative)
quarter-maximum (-minimum) levelsets with red, yellow and blue (green, magenta and
orange), respectively. For large separation distances (right-most panels) the fluctuations
are localized at the gluing boundary (x = 0), whereas for small or vanishing separation
distances (left-most panels) the fluctuation fields are turned on throughout the compacton
volume. In particular, δf makes a shallow but negative shell near the compacton border,
whereas δθ becomes a dipole with a positive and negative blob induced in the compacton
volume for small separation distances (2a . 1). The bottom row of the figures shows the
isosurfaces of negative energy density at a quarter of the minimum value for the NLO and
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Figure 7. Numerical solution for the fluctuation fields δfglue δθ and δϕ for the left half of a bound
state of two B = 1 Skyrmions for ε = 0.01 and vanishing separation distance 2a ' 0 in the (x, y)-
plane at z = 0.

N2LO contributions to the energy from the fluctuation fields δfglue, δθ, and δϕ with red
and blue colors, respectively. The NLO energy contribution is dominant and is responsible
for the binding of the two B = 1 Skyrmions and is seen to be localized near the gluing
boundary (x = 0). Figure 7 shows the fluctuation fields in the (x, y)-plane at z = 0 for the
case of vanishing separation distance 2a ' 0. The nontrivial behavior of the fluctuation
fields is only induced by the gluing conditions at x = 0 (right-most part of each panel),
but spreads a small perturbation throughout the compacton volume.

We are now ready to compute the N2LO energies for the bound state of two B = 1
compactons using the energy (4.3) with the fluctuation fields δfglue, δθ and δϕ defined in
eq. (4.1). We have already placed the two B = 1 Skyrmions in the attractive channel
by means of the Dirichlet boundary condition on Φ2 in eq. (4.55). We furthermore know
that at large separation distances, the attractive force between the two B = 1 Skyrmions
is exponentially suppressed (due to the pion mass term), so the minimum of the energy
must be at a finite separation. In the small ε � 1 or near-BPS limit, we expect that the
minimum of the energy of the bound state of two compactons occurs at zero separation, as
was confirmed both semi-analytically within the ε-expansion scheme as well as numerically
for baby-Skyrmions (compactons) in ref. [23]. In order to confirm that this is also the
case for B = 1 compacton (Skyrmions) in the case of our model choice, we compute the
N2LO energies at different separations 2a. The result is shown in figure 8 and establishes
numerically that the minimum of the N2LO energy occurs at vanishing separation of the
compactons (i.e. 2a = 0) for all presented values of ε, i.e. ε = 0.01, 0.0207, 0.0428, 0.0886.
The figure also shows the geometric binding energy, which is simply computed by cutting
off the tail contribution to the N2LO energy at x = 0 (so as not to over count the two tails
of the two compactons). It is observed that about half of the binding energy is actually
geometric for the presented range of ε.

The N2LO energy is shown in figure 9 as a function of ε for vanishing separation
distance (2a = 0). The N2LO energy is below the LO energy as expected and is above the
energy bound (A.8) as it must be.

We can now extract the binding energy for the two B = 1 Skyrmions (compactons) as
a function of ε by comparing the N2LO energies with those for infinite separations. The
result is shown in figure 10. A polynomial fit to the classical binding energies in percent
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Figure 8. The N2LO corrections to the energy for two B = 1 Skyrmions with separation distance
2a and ε = 0.01, 0.0207, 0.0428, 0.0886. Asymptotically, i.e. for large values of a, the N2LO cor-
rections to the energy become exactly two times those of section 3.4. When a tends to zero, the
binding energy increases monotonically with a maximum at a = 0, for all values of the perturbation
parameter ε. A geometric effect of the binding energy lies simply in part of the tail energy of the
B = 1 solutions are cut at the mirror surface x = 0 so as not to over count the B = 1 energies.
This reduction of the energy is displayed as geometric with a gray dashed line. The numerical
computations are always slightly below the geometric corrections. In this figure c2 = 1, c4 = 8,
c6 = 1

2 , µ = 1, mπ = 3, R = (3π) 1
3 and (s, p) = (1, 2).

yields

Ebinding, deuteron ' 1.605ε− 29.56ε2 + 200.8ε3. (4.66)

Notice that this fit contains a linear term in ε, which is expected to come from nonanalytic
behavior of the solution to the fluctuation fields. Unfortunately, the model as calibrated
and chosen in order to make the cusp condition work, the spherical compactons being
stable and the tails to be rapidly decaying, does not provide quite the phenomenological
binding energy of the deuteron of 0.118% [44] for the range of ε explored. Clearly this
is a crude comparison, we are not considering here quantum corrections due to the spin,
iso-spin rotation, iso-spin breaking, together with the addition of the electric Coulomb
interaction, which should be included in the phenomenological nuclear energies. It can
furthermore be seen from the figure, that the binding energy tends to a plateau instead
continuing its increase, which we interpret as loss of precision (validity) of the ε-expansion
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Figure 9. The (a) energy and (b) N2LO correction to the energy for two B = 1 Skyrmions with
separation distance 2a = 0 (they touch in one point) as a function of ε. The BPS energy is shown
with a red solid line, the LO correction is shown with an orange solid line and the numerically
computed N2LO corrections are shown with red crosses (linked with black dashed lines for ease of
reading the figure). The energy bound (A.8) is shown with a blue-dashed line. In this figure c2 = 1,
c4 = 8, c6 = 1

2 , µ = 1, mπ = 3, R = (3π) 1
3 and (s, p) = (1, 2).

E
b

in
d

in
g

, 
d

eu
te

ro
n
 [

%
]

ǫ 

fit

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.01  0.1

(a)

Figure 10. The binding energy per nucleon in percent for two B = 1 Skyrmions, i.e. the N2LO
energy at a =∞ minus that at a = 0, as a function of ε. The physical binding energy of deuteron
per nucleon for comparison is 0.118% [44]. In this figure c2 = 1, c4 = 8, c6 = 1

2 , µ = 1, mπ = 3,
R = (3π) 1

3 and (s, p) = (1, 2).

scheme. This is most likely because c4 = 8 and hence ε ' 0.1129 yields a Skyrme term
coefficient of εc4 ∼ 0.9 which is no longer perturbative. Recall that c4 � c2R

2 is needed for
the spherical compacton to be a stable minimum of the energy functional. If this condition
is not satisfied, the two compactons will merge and form a torus, as is well known in the
standard Skyrme model [45–47].
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5 Physical units

It is instructive and straightforward to reinstate physical units in the model. Energies and
lengths are measured in units of [48–50]

[mass] = Fπ
2ε√c2c4e

, [length] = 2
Fπe

√
c2
c4
, (5.1)

respectively and the calibration of the model is readily performed by

Fπ = 2
√
εc2MNR

MRN
, e =

√
MR

εc4MNRN
, (5.2)

whereM and R are the N2LO mass and radius R of the compactons in dimensionless units,
whereas MN and RN are the mass and radius of the nucleon in MeV. e is known as the
Skyrme coupling constant and should not be confused with the charge of the electron. The
physical pion mass in MeV is then given by

m̃π = mπFπe

c2

√
c4
2 , (5.3)

the BPS potential mass in MeV is

µ̃ = µFπe

c2

√
c4
2ε , (5.4)

and finally the coefficient of the sextic term in MeV−2 is

c̃6 = 4c2c6
εc4

4e
4F 2

π

. (5.5)

The calibration and coupling constants are shown in figure 11 and m̃π ' 2.02GeV inde-
pendent of ε.

A comment in store is about the large pion mass in physical units. We recall from
section 3.4 that the dimensionless pion mass parameter, mπ, was chosen to be abnormally
large in order for the perturbative method to capture the correct asymptotic behavior of
the solution, by imposing only the cusp condition at the compacton boundary (r = R).
Choosing the dimensionless pion mass parameter about 3 − 6 times larger than a usual
order-one choice, obviously has an impact on the mass in physical units (linear relation).
The choice of calibrating the model using the original Skyrme model (i.e. L2 + L4), which
in our context is a small perturbation to the BPS sector, gives a large uncertainty in the
physical quantities in physical units and of course many other ways to calibrate the model
could be contemplated. Nevertheless, the perturbative ε-expansion scheme is prone to
require large pion masses to be accurate; something also often seen in lattice QCD [51].

6 Conclusion and discussion

In this paper, we have considered the Skyrme model in the near-BPS limit using the
perturbative ε-expansion scheme developed in refs. [23, 34]. The near-BPS systems we
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Figure 11. The Skyrme model parameters (a) Fπ and (b) e in physical units (MeV) as well as the
BPS sector’s coupling constants (c) c̃− 1

2
6 and (d) µ̃ in GeV. In this figure c2 = 1, c4 = 8, c6 = 1

2 ,
µ = 1, mπ = 3, R = (3π) 1

3 and (s, p) = (1, 2).

considered consist of a BPS sector, containing a sixth-order derivative term plus a potential,
and a BPS-deformation that is the original Skyrme model with massive pions. The BPS
sector was chosen to give compacton-type solutions. To this end, parametrizing the BPS
potential as Vs,p(U) ∝ (1 − (trU/2)s)p, we select the combinations (s, p) = (1, 2), (2, 1),
(2, 2), whereas we discarded the pion mass potential (s, p) = (1, 1) since we include it as a
BPS-deformation.

In the ε-expansion scheme, the mass of the Skyrmion in the near-BPS limit is the BPS
mass with corrections in powers of ε. The leading-order correction comes from inserting
the BPS solution into the perturbation, i.e. the kinetic, the Skyrme and the pion mass
terms. Before explicitly performing the calculation, we checked if all the BPS solutions
lead to a finite LO energy contribution. To test this, we found a general criterion based on
the behavior of the potential around the vacuum value. We have shown that, besides the
pion mass potential, also the potential (s, p) = (2, 1) generates a divergent LO energy and
for this reason we discarded it from our study.

After that preliminary analysis, we explicitly calculated the LO energy. As known from
ref. [37], the BPS configurations that can be correctly used for that purpose must respect
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the (generalized) restricted harmonic condition. As shown in ref. [37], we verified again
that the spherically symmetric solution of topological charge B = 1 respects the GRH
criterion. Moreover, we also checked that the addition of the pion-mass potential to the
BPS-deformation terms does not change the previous result. Apart from the topological
sector B = 1, we have not been able to analytically find any other GRH configuration of
charge B > 1, although we proved that in some cases their existence is necessary. Given
this limitation, the only restricted-harmonic map we could build for a multi-soliton case
was the one made by non-overlapping B = 1 + 1 + 1 + · · · spherical compactons.

The risk of using only the B = 1+1+1+· · · configuration as the background field is the
possibility of obtaining meta-stable nuclear solutions. Other clusterization, in fact, could
be energetically preferred for the nuclei built with the various near-BPS models considered
here. To avoid such possibility, we analyzed the clusterization problem (at the leading-order
in ε) by studying the ratio E/N (energy per nucleon) for the various topological sectors.
Here, we denoted by N? the most energetically favored configuration, analogously to the
analysis in refs. [23, 34]. We found that a proper choice of the coefficients of the kinetic
and Skyrme term (c4 � c2R

2) leading to N? ∼ 1, so that the single B = 1 Skyrmion
represents the energetically favored fundamental unit of nuclei, as desired. In order to
obtain physically stable nuclei given the mathematical results derived by the restricted
harmonic analysis, we worked coherently in that limit.

At the leading-order in the ε-expansion there is no binding energy, since the BPS solu-
tion only enjoys compact support (i.e. it is a compacton). A further step in the perturbative
approximation was therefore needed.

The higher-order-in-ε, i.e. the NLO and N2LO corrections to the mass are computed
in the ε-expansion scheme by using a linearized fluctuation field possessing three compo-
nents, denoted δf , δθ and δϕ. For a single B = 1 Skyrmion, only spherically symmetric
fluctuations are turned on and only the δf field, since it is the only sourced fluctuation. In
order to capture the correct behavior of the fluctuations, a special cusp condition on the
boundary of the compacton must be imposed making the total field smooth at said bound-
ary. For a single B = 1 Skyrmion we were able to test the predictions of the ε-expansion
with the full numerical computation. We finally computed the binding energy of the two
B = 1 Skyrmions bound state, corresponding to the classical version of the deuteron in
the near-BPS limit in our specific model. The binding energy is maximal when the two
compactons are touching each other at one point and nonspherical behavior of δf near the
gluing boundary turns on the fluctuation fields δθ and δϕ. Although we have not been able
to test the accuracy of the binding energy of the bound state by also performing full brute-
force numerical computations, we rely on the fact that the ε-expansion scheme is accurate
for the B = 1 spherically symmetric soliton and that the analogous 2-dimensional analysis
for the baby Skyrme model compares rather successful to full numerical computations [23].

The classical binding energy of the deuteron bound state comes out about a factor of
3 too small, but the model is quite constrained by the necessary conditions making the
ε-expansion reliable. Moreover, the various choices that finally select the specific near-BPS
model are not only made for phenomenological reasons but also for having the possibility
of obtaining a mathematically consistent perturbative expansion in ε. In fact, to that end,
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we have firstly chosen BPS compacton-type solutions to simplify the restricted harmonic
problem. Then, we selected among the remaining near-BPS models the ones that admit
finite-energy contribution at every order in the ε-expansion. In the end, we dealt with the
generalized restricted harmonic problem that pushed us to constrain the BPS-deformation’s
coefficients to obtain stable nuclei. It is therefore clear that there is no reason a priori to
think that those constraints get the model close to the one that nature has chosen. An
important question is, for example, whether the most phenomenologically viable near-BPS
Skyrme model contains compactons or solitons with tails in the BPS limit that nature has
chosen to be close to.

Nevertheless, this work has shown that the near-BPS model is able to reproduce the
small binding energy for the deuteron (and in principle for larger nuclei) of the order of the
experimental values. The near-BPS model can therefore be confirmed to be a reasonable
candidate to fix the binding energy problem of the original Skyrme model and thus to be a
reliable nuclear model. Moreover, the exploration of the near-BPS limit made in this work
clarifies the difficulties, and thus the solutions, for a more extensive analysis of this and
related models.

In light of our new understanding of the near-BPS Skyrme problem, we can reconsider
the study in ref. [31]. In that work, a BPS model with the potential (s, p) = (1, 2) slightly
deformed by just the two-derivative kinetic term was considered. Such a deformation was
coupled to the usual small parameter ε� 1. Using numerical methods, the full equations
of motions of the system were solved for the cases 1 ≤ B ≤ 8 for the range ε ∈ [0.2, 1]. On
the contrary, for smaller values of ε (ε < 0.2), all the results were numerically inaccessible
(except for the B = 2 case, where axial symmetry was assumed by Ansatz). In that range,
indeed, the numerical solutions develop spike-like singularities, indicating that the lattice
cannot resolve the field gradients. Despite these difficulties, the work gave interesting
results. First of all, the numerical simulations showed that the near-BPS solutions for a
small value of ε ∼ 0.2 have different geometric symmetries (see figure 2 of ref. [31]).

This numerical outcome gives therefore (partial) confirmation of the fact that a spher-
ical configuration is far from being a good approximation to a near-BPS solution at small
ε for B > 1. This is not in contradiction with our claim. We worked in fact with specific
values of potentials and couplings such that N? ' 1 so that a B = 1 + 1 + 1 + · · · con-
figuration as a background field is the most reasonable candidate BPS background. For
the specific case considered in ref. [31] N? = 2.197. It so happens that by the parameter
choices made in our work, the values of ε needed are about an order of magnitude larger
than those needed for the simplistic model of ref. [31], which is not inconsistent because
the two models are fundamentally different.

In particular, we underline the crucial role of the generalized-restricted-harmonic study
to extend the perturbative method explored here to a larger set of near-BPS models.
An interesting future direction would be to consider non-spherically symmetric restricted
harmonic solutions as the background BPS solutions for the near-BPS physics. So far none
are known, but our results suggest that there are undiscovered solutions.
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A Bound on the energy

In this appendix, we will review the lower bound on the energy of the generalized Skyrme
model of ref. [52] (see also ref. [27]). The general idea of the calculation utilizes the fact
that the generalized Skyrme model is the sum of different subsectors, each of which has a
known energy bound. Then to find the total energy bound, an optimization between the
different bounds should be carried out.

Given the Lagrangian (2.1), which corresponds to the static energy (2.14), we can write

E = µ2E0 + εc2E2 + εc4E4 + c6E6, (A.1)

where E2, E4, and E6 are defined in eqs. (2.16), (2.17) and (2.15), respectively and where
we have defined

E0 =
∫
R3
Ṽ (U) d3x =

∫
R3

[
Vs,p(U) + εm2

π

µ2 V1,1(U)
]

d3x. (A.2)

Then, given the energy bounds:

βE0 + E6 ≥ 4π2β
1
2 〈Ṽ

1
2 〉 |B|, (A.3)

βE0 + E4 ≥ 4π2(2β)
1
4 〈Ṽ

1
4 〉 |B|, (A.4)

βE2 + E4 ≥ 6π2β
1
2 |B|, (A.5)

βE2 + E6 ≥ 8π2
(
β

2

) 3
4
|B| , (A.6)

in which we have defined 〈· · · 〉 as the target-space average of a generic quantity X as

〈X〉 ≡ − 1
24π2B

∫
R3
Xεijk tr[LiLjLk] d3x, (A.7)

it is possible to rewrite the energy (A.1) as a sum of the above subsectors introducing four
parameters α2i with 0 ≤ α2i ≤ 1 for i = 0, . . . , 3, that determine how each term is split
between the given bounds. The general bound for the total energy as a function of {αi} is
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thus:

E =
(
α0µ

2E0 + α6c6E6
)

+
(
(1− α0)µ2E0 + α4εc4E4

)
+
(
α2εc2E2 + (1− α4)εc4E4

)
+
(
(1− α2)εc2E2 + (1− α6)c6E6

)
≥ 2π2

[
2µ(α0α6c6)

1
2 〈Ṽ

1
2 〉+ 2√µ(α4εc4)

3
4
(
2(1− α0)

) 1
4 〈Ṽ

1
4 〉

+ 3ε
(
(1− α4)c4α2c2

) 1
2 + 4

(
(1− α6)c6

) 1
4

(1
2(1− α2)εc2

) 3
4
]
|B|. (A.8)

Once we have chosen the potential Ṽ (U) and the parameters c0, c2, c4 and c6, the strongest
energy bound for the system is the maximum of the functional (A.8), which is a maximiza-
tion problem in four variables (αi). It is difficult to write down an analytic solution to the
solution of the maximization problem, but it is rather easy to find numerically.
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