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1 Introduction

Over most of the past century, electric-magnetic duality has been one of the main research
topics in Theoretical Physics. While it arises as a symmetry of the source-free equations
of motion of electromagnetism in 4 dimensions, it has been extended and generalized in
many directions. Of particular interest for us is the generalization to higher-rank fields in
higher dimensions and the inclusion of localized sources. The former is quite natural in
the context of brane physics and the second, which goes back to Dirac’s discovery of the
magnetic monopole [1], arises naturally when one considers classical point-like or brane-
like sources: the rotations between electric and magnetic fields must be in one-to-one
correspondence with rotations of electric and magnetic sources and their charges.1

In d dimensions, black holes and black branes can carry some of the electric and
magnetic charges associated to (p+ 1)-form fields: as a general rule, black p-branes (where
p = 0 corresponds to black holes) can carry the electric charges of (p+ 1)-form potentials
and the magnetic charges of (p̃+ 1)-form potentials, with p̃ = d− p− 4 and ˜̃p = p. When
p̃ = p, they can carry electric and magnetic charges of the same (p+ 1)-form field.

The dynamics of black p-branes should exhibit the same electric-magnetic duality
properties as the theory whose equations of motion they solve. In particular, the laws of
thermodynamics [4] should exhibit those properties. Thus, in d = 4, where black holes can

1See, for instance, refs. [2, 3] and references therein.
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carry electric and magnetic charges of the same electromagnetic field, the first law of black-
hole mechanics must include work terms for the variations of both kinds of charges. The
conjugate thermodynamical potentials are the electrostatic and magnetostatic potentials
evaluated on the black-hole horizon. If the theory has electric-magnetic duality, then we
expect the first law of black-hole mechanics in 4 dimensions and the Smarr formulae [5]
to be invariant under the simultaneous rotations of the (variations of the) electric and
magnetic charges and of the conjugate thermodynamical potentials. The invariance of the
Smarr formula for axion-dilaton black holes was recently proven in ref. [6] using Wald’s
formalism [7–9] and the generalized Komar formula [10] constructed in refs. [11, 12]. The
proof can be easily generalized to other theories with scalars and vectors minimally coupled
to gravity with electric-magnetic dualities [13] like most ungauged supergravity theories.
However, a similar proof for the first law using Wald’s formalism is not yet available.

Actually, the presence of magnetic work terms and scalar work terms in the first law
of 4-dimensional black hole mechanics was found by other methods and is well known [14].
In the notation of that reference, it takes this form:

δM = κδA

8πG(4)
N

+ ΩδJ + ψΛδqΛ + χΛδp
Λ −Gab(φ∞)Σaδφb∞ , (1.1)

where the qΛs and pΛs are, respectively, electric and magnetic charges with respect to the
vector field AΛ and ψΛ and χΛ are the electrostatic and magnetostatic potentials evaluated
on the horizon, Gab(φ∞) is the metric of the scalar manifold evaluated at infinity, Σa the
scalar charges and φa∞ the vales of the scalars at infinity (moduli).

The invariance of this formula under electric-magnetic duality transformations presents
several problems because, on general grounds [13], the terms involving electric and magnetic
charges should be combined in a manifestly symplectic-invariant expression, which is not
the case. The term involving the scalar charges is manifestly invariant. However, there
is no good definition of the scalar charge as a conserved charge and, while this does not
invalidate the result, it obscures its meaning.

In this paper we want to study the electric-magnetic duality properties of the first law
of black hole mechanics for asymptotically-flat black p-branes coupled to higher-rank form
potentials in d dimensions2 using Wald’s formalism, leaving the problem of understanding
the term with scalar charges for later work. In previous work [16–18] we showed how
to prove the first law in presence of matter fields by correctly taking into account the
interplay between diffeomorphisms and gauge transformations. However, since there is
only one gauge transformation per gauge field, we were unable to recover the work terms
proportional to the variations of the magnetic charges or the moduli, even though the same
methods correctly give the terms proportional to magnetic charges in the Smarr formula
refs. [6, 11, 12]. In this paper we are going to show how those terms arise in a more careful

2For p = 0 these are black holes, for p = 1 black rings etc. Standard black p-branes are generically not
asymptotically flat because they either extend to infinity or they are wrapped around compact dimensions
and, in both cases, they would only be asymptotically flat in the transverse, non-compact dimensions. They
have to be studied separately. Work in this direction is already in progress [15].
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calculation and how they do it with the appropriate sign to have electric-magnetic duality
invariance.

The theory we are going to consider is the straightforward generalization of Einstein-
Maxwell to higher dimensions and higher-rank form potentials. Thus, it differs from the
one considered in ref. [19]3 by the absence of scalar fields, which we plan to study in future
work. In ref. [19] only electric charges and electrically-charged black branes were considered
and, in this work, we are going to show how to include the magnetic ones. We will not
constrain the dimension of the horizon and, therefore, we consider, simultaneously, black
p-branes which are electrically charged with respect to the (p + 1)-form field and black
p̃-branes which are magnetically charged with respect to it or electrically with respect to
the dual (p̃ + 1)-form field, although we are always going to use the formulation in which
the (p+ 1)-form potential appears.4

This paper is organized as follows: in section 2 we introduce the theories we are going
to consider and we are going to explain how electric-magnetic duality is realized in them.
In section 3 we are going to define the conserved charges of the theory: those associated
to the gauge symmetries and the magnetic ones, whose nature is topological. In section 4
we are going to prove the restricted form of the generalized zeroth laws which we will use
in section 5 to find the Smarr formulae and in section 6 to prove the first law. We end by
discussing the results obtained and proposing new directions of research in section 7.

2 Electric-magnetic duality and (p + 1)-forms

We are going to consider the generalization of the d-dimensional Einstein-Maxwell theory
in which the Maxwell 1-form field is replaced by a (p+ 1)-form A5

A = 1
(p+ 1)!Aµ1···µp+1dx

µ1 ∧ · · · ∧ dxµp+1 , (2.1)

whose (p+ 2)-form field strength F 6

F ≡ dA = 1
(p+ 1)!∂µ1Aµ2···µp+2dx

µ1 ∧ · · · ∧ dxµp+2 , (2.4)

3See also ref. [20].
4In ref. [21] we have considered an example in which both the fundamental and the dual potential occur

in the action. There are two gauge symmetries and the inclusion of magnetic charges is straightforward.
These democratic formulations are often very complicated and here we are not going to use them even
though in this case they would be much simpler to find.

5In our notation p is the dimension of the objects that couple to these potentials, namely p-branes with
(p + 1)-dimensional worldvolumes. This notation differs from the one used in ref. [19], but it is the most
natural one in brane physics.

6With our normalization, the components of F are defined by

F = 1
(p+ 2)!Fµ1···µp+2dx

µ1 ∧ · · · ∧ dxµp+2 , (2.2)

so
Fµ1···µp+2 = (p+ 2)∂[µ1Aµ2···µp+2] . (2.3)
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is invariant under gauge transformations

δχA = dχ , (2.5)

where χ is an arbitrary p-form.
The components of the dual (p̃+ 2)-form ?F (p̃ ≡ d− p− 4) are given by

(?F )µ1···µp̃+2 ≡
1

(p+ 2)!
√
|g|
εµ1···µp̃+2ν1···νp+2F

ν1···νp+2 , (2.6)

and
?2 F = σ2F , with σ2 = (−1)(d+1)(p+1) . (2.7)

We will call the dual form G

G ≡ ?F . (2.8)

G and F are forms of the same rank when p = p̃, which happens when d = 2(p+ 2). Real
(anti-) self-duality requires σ2 = +1 and only (p+ 1)-form fields with p odd can have this
property.

We choose the Vielbein
ea = eaµdx

µ , (2.9)

as the gravitational field. The Levi-Civita spin connection ωab = −ωba is defined through
the first Cartan structure equation

Dea = dea − ωab ∧ eb = 0 , (2.10)

and the curvature 2-form is
Rab = dωab − ωac ∧ ωcb . (2.11)

We will also use the total covariant derivative ∇. It satisfies the Vielbein postulate

∇µeaν − ωµabebν − Γµνρeaρ = 0 , (2.12)

that relates the components of the spin connection ωµ
ab to those of the affine connection

Γµνρ which are given by the Christoffel symbols

Γµνρ = 1
2g
ρσ {∂µgνσ + ∂νgµσ − ∂σgµν} . (2.13)

In terms of these variables and objects, the action we want to consider is

S[ea, A] = 1
16πG(d)

N

∫ {
(−1)d−1 ? (ea ∧ eb) ∧Rab + (−1)d(p−1)

2 F ∧ ?F
}

≡
∫

L .
(2.14)

Since we are mainly interested in the electric-magnetic duality properties of the first law and
Smarr formulae, we are not including the dilaton field that usually couples to these forms
in supergravity/superstring theories. A more general study including general couplings to
scalars will be made elsewhere.
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Under a general variation of the fields

δS =
∫
{Ea ∧ δea + E ∧ δA+ dΘ(ea, A, δea, δA)} , (2.15)

where the equations of motion Ea (Einstein) and E (Maxwell) and the symplectic potential
(d− 1)-form Θ(ea, A, δea, δA) are given by7

Ea = ıa ? (ec ∧ ed) ∧Rcd + (−1)dp
2

(
ıaF ∧G+ (−1)p+1F ∧ ıaG

)
, (2.16a)

E = −dG , (2.16b)
Θ(ea, A, δea, δA) = − ? (ea ∧ eb) ∧ δωab +G ∧ δA , (2.16c)

where ıc stands for ıec , i.e. the interior product with the vector field ec = ec
µ∂µ.

This set of equations can be enlarged with the Bianchi identity

B ≡ −dF . (2.17)

In order to explore the invariance of the enlarged set of equations of motion under electric-
magnetic duality transformations, it is convenient to define the vector of field strengths

F ≡
(
F

G

)
, (2.18)

in terms of which the equations take the form

Ea = ıa ? (ec ∧ ed) ∧Rcd − (−1)p(d+1)

2 FTΩ ıaF , (2.19a)(
B
E

)
= −dF , (2.19b)

where we have defined the 2× 2 matrix

Ω ≡

 0 1

σ2 0

 . (2.20)

For σ2 = +1, this matrix is the non-diagonal metric of O(1, 1) and for σ2 = −1 it is the
“metric” of Sp(2,R). It is, then, evident, that the above system of equations is invariant
under linear transformations of F and that the groups of invariance are O(1, 1) and Sp(2,R).
Of course, these linear transformations only make sense for p = p̃. However, when this
is not the case, the equations are still formally invariant under the discrete subgroups of
O(1, 1) and Sp(2,R) ∼SL(2,R) that simply interchange F and G (up to signs).

However, these are not the duality groups of the theory because the transformations
must respect the self-duality constraint

? F = ΩF . (2.21)

7In order to simplify the expressions, we suppress the global factors of
(

16πG(d)
N

)−1
. We will restore

them in the final results.
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For σ2 = +1, only the interchange of F and G (up to a global sign) survives, while, for
σ2 = −1, it is the whole continuous subgroup SO(2) ⊂ SL(2,R) that survives.

Observe that the symplectic potential Θ(ea, A, δea, δA) is not invariant under any
electric-magnetic duality transformations. This is not surprising because the action is not
invariant, either.

3 Conserved charges

3.1 Lorentz charge

The action eq. (2.14) is exactly invariant under local Lorentz transformations of the Vielbein

δσe
a = σabe

b , (3.1)

which induce the following transformation of the spin connection and curvature

δσω
ab = Dσab ,

δσR
ab = 2σ[a|

cR
c|b] .

(3.2)

For these particular transformations and upon use of the Noether identity (the sym-
metry of the Einstein equations)

E[a ∧ eb] = 0 , (3.3)

we find
δσS =

∫
dJ[σ] , J[σ] = − ? (ea ∧ eb) ∧ Dσab . (3.4)

The off-shell invariance of the action for arbitrary parameters σab and arbitrary inte-
gration region imply the closedness of J[σ] and its local exactness

J[σ] = dQ[σ] , Q[σ] = (−1)d−1

16πG(d)
N

? (ea ∧ eb) ∧ σab . (3.5)

Using this (d− 2)-form one can construct for on-shell field configurations a conserved
charge for each independent parameter σab that leaves that field configuration invariant [22].
However, there are no non-trivial parameters σab that leave invariant a regular Vielbein
σabe

b = 0 and, therefore, there seems to be no conserved charges associated to this symme-
try. In spite of this, this (d−2)-form plays an important role in black-hole thermodynamics
for a particular σab, as we are going to see and we have already pointed out in refs. [17, 18].

3.2 Electric charge

The action eq. (2.14) is exactly invariant under the gauge transformations of the (p+1)-form
field A eq. (2.5). For those particular transformations, and using the Noether identity

dE = 0 , (3.6)

the general variation of the action eq. (2.15) can be written in the form

δχS =
∫
dJ[χ] , J[χ] = (−1)d−p+1E ∧ χ+G ∧ dχ . (3.7)

– 6 –
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The off-shell invariance of the action for arbitrary p-forms χ and integration region imply
the closedness of J[χ] and its local exactness

J[χ] = dQ[χ] , Q[χ] = (−1)d(p−1)

16πG(d)
N

χ ∧G . (3.8)

The (d−2)-form Q[χ] can be used to define a charge which is conserved on-shell (dG =
0) for each independent gauge parameter χ leaving invariant the field configuration [22, 23].
The p-form gauge parameters that leave invariant the potential A are the closed ones
dχ = 0. In a compact manifold with no boundary, these can be decomposed in a linear
combination of harmonic p-forms hi plus an exact p-form de. Only the harmonic ones give
non-trivial conserved charges when integrated over closed codimension-2 surfaces Σd−2

Qi ≡
(−1)d(p+1)

16πG(d)
N

∫
Σd−2

hi ∧G , (3.9)

and the addition of exact p-forms to hi does not change their values [19, 20]. Observe that
the sign we have chosen in this definition is purely conventional.

3.3 Magnetic charge

Even though there are no more gauge symmetries in our theory, we can define magnetic
charges which are conserved in exactly the same sense as the electric ones:

Pm ≡ (−1)d(p+1)

16πG(d)
N

∫
Σd−2

h̃m ∧ F , (3.10)

where h̃m is a harmonic p̃-form. We are using a different set of indices for the magnetic
charges since, in general, the number of harmonic p- and p̃-forms need not be the same. It
is unclear how duality rotations or Dirac-like quantization conditions for these charges can
be defined, except for the special case in which p = p̃ and h̃i = hi. In this case, the charges
can also be arranged in vectors

Qi ≡
(
Pi
Qi

)
= 1

16πG(d)
N

∫
Σd−2

hi ∧ F , (3.11)

transforming in the same way as F .
Observe that the definition of magnetic charge eq. (3.10) becomes trivial and gives

zero whenever F = dA globally. Thus, as expected, non-vanishing magnetic charges are an
exclusive property of certain non-trivial gauge field configurations.

3.4 Noether-Wald charge

The action eq. (2.14) is exactly invariant under infinitesimal diffeomorphisms

δxµ = ξµ(x) . (3.12)

– 7 –
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Then, if we consider only the infinitesimal transformations of the fields δϕ ≡ ϕ′(x)− ϕ(x)
the action is invariant up to a total derivative

δξS = −
∫
dıξL . (3.13)

The associated (d− 2)-form Q[ξ] is called the Noether-Wald charge [8].
As discussed in refs. [6, 16–18, 21],8 the transformation of fields with some gauge

freedom under infinitesimal diffeomorphisms is, generically, of the form

δξ = −£ξ + δΛξ , (3.14)

where £ξ is the standard Lie derivative with respect to the vector field ξ and δΛξ is a
(“compensating” or “induced”) gauge transformation whose parameter Λξ depends on ξ

and on the fields on which the transformation acts.9 We should write, then, Λ(ξ, ea, A), but
we will use Λξ for simplicity, keeping in mind the dependence on the fields. In general the
value of this parameter is only fully determined when the diffeomorphism is a symmetry
of the whole field configuration. In that case we will denote the vector field that generates
it by k since, in particular, it must be a Killing vector and one can define

δk = −£k + δΛk ≡ −Lk , (3.15)

where Lk transforms covariantly under gauge transformations, hence the name covariant
Lie derivative. This property (which is not shared by the standard Lie derivative) has to be
checked case by case. It ensures that the annihilation of all the fields by the transformation
δk (or by the operator Lk) is a gauge-independent condition.

In the case of the (p + 1)-form field A, the compensating p-form gauge parameter is
given by [16–18]

χξ = ıξA− Pξ , (3.16)

where the momentum map p-form Pξ satisfies, for ξ = k, the momentum map equation

dPk + ıkF = 0 . (3.17)

Then
δξA = −£ξA+ δχξA = −(dıξ + ıξd)A+ dχξ = −(dPξ + ıξF ) , (3.18)

which is guaranteed to vanish when ξ = k by virtue of the momentum map equation (3.17).
The (p + 2)-form field strength F is gauge invariant and, upon use of the Bianchi

identity
δkF = −£kF = −(dık + ıkd)F = −dıkF , (3.19)

which, yet again, vanishes identically by virtue of the momentum map equation (3.17).
8A different, more mathematically rigorous approach based on the theory of principal bundles was

followed in ref. [24], but it cannot be applied to the p > 0 gauge transformations considered here or in
refs. [17, 18, 21].

9A slightly different point of view is that of “invariance up to gauge transformations”, taken in
refs. [25–30].
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In the case of the Vielbein field, the compensating gauge (Lorentz) parameter is given
by [16–18, 31, 32]10

σξ
ab = ıξω

ab − Pξab , (3.20)

where Pξab is the Lorentz momentum map which, for ξ = k, is defined to satisfy the Lorentz
momentum map equation

DPkab + ıkR
ab = 0 . (3.21)

This equation is solved by the Killing bivector

Pk
ab = ∇akb = ∇[akb] . (3.22)

As a matter of fact, for this value of the momentum map, the Lorentz momentum map
equation (3.21) becomes the integrability condition of the Killing vector equation. Then,
on the Vielbein

δξe
a = −(dıξ + ıξd)ea + σξ

a
be
b = Dξa + Pξ

a
be
b = −1

2 (∇µξa +∇aξµ) dxµ , (3.23)

which vanishes when ξ = k by virtue of the Killing vector equation.
For the spin connection we have

δξω
ab = −(dıξ + ıξd)ωab +Dσξab = −

(
DPξab + ıξR

ab
)
, (3.24)

that vanishes when ξ = k by virtue of the Lorentz momentum map equation (3.21).
Finally, as a simple exercise, we can consider the transformation of the curvature.

According to the general rule and using the explicit form of the compensating Lorentz
parameter, we get

δξR
ab = −£ξR

ab + 2σξ [a|
cR

c|b]

= −ıξ
(
DRab + 2ω[a|

cR
c|b]
)
−
(
DıξRab + 2ω[a|

cıξR
c|b]
)

+ 2ıkω[a|
cR

c|b] − 2Pξ [a|
cR

c|b]

= −DıξRab − 2Pξ [a|
cR

c|b] .

(3.25)

When ξ = k we can use the Lorentz momentum map equation and

δkR
ab = DDPkab − 2Pk [a|

cR
c|b] , (3.26)

which vanishes identically (Ricci identity).
In order to find the Noether-Wald charge we just have to plug the above transforma-

tions into the general variation of the action eq. (2.15)

δξS =
∫ {
−Ea ∧

(
Dξa + Pξ

a
be
b
)
−E ∧ (dPξ + ıξF ) + dΘ(ea, A, δξea, δξA)

}
, (3.27)

with

Θ(ea, A, δξea, δξA) = ?(ea ∧ eb) ∧
(
DPξab + ıξR

ab
)

+G ∧ (dPξ + ıξF ) . (3.28)

10The resulting covariant derivative, known as Lie-Lorentz covariant derivative is a generalization of the
spinorial derivative of refs. [31, 33–36].
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The term involving Pξab in eq. (3.27) vanishes by virtue of the Noether identity associ-
ated to local Lorentz invariance eq. (3.3). Integrating by parts the two terms of eq. (3.27)
that involve derivatives, we get

δξS =
∫ {

(−1)d−1DEaξ
a −E ∧ ıξF + (−1)d−p−1dE ∧ Pξ + dΘ′(ea, A, δξea, δξA)

}
,

(3.29)
with

Θ′(ea, A, δξea, δξA) = Θ(ea, A, δξea, δξA) + (−1)dEaξ
a + (−1)d−pE ∧ Pξ . (3.30)

Using the Noether identities associated to gauge transformations eq. (3.6) and diffeomor-
phisms11

DEaξ
a + (−1)dE ∧ ıξF = 0 , (3.31)

we arrive at
δξS =

∫
dΘ′(ea, A, δξea, δξA) , (3.32)

which, combined with eq. (3.13), leads to

dJ[ξ] = 0 , J[ξ] ≡ Θ′(ea, A, δξea, δξA) + ıξL . (3.33)

As usual, this implies the local existence of the (d− 2)-form Q[ξ]

J[ξ] = dQ[ξ] , Q[ξ] = 1
16πG(d)

N

{
(−1)d ? (ea ∧ eb)Pξ ab − (−1)d(p−1)Pξ ∧G

}
, (3.34)

which is a straightforward generalization of the Noether-Wald (d− 2)-form obtained in the
Einstein-Maxwell case in ref. [16]. It is manifestly not invariant under any electric-magnetic
duality transformations.

4 Restricted, generalized, zeroth laws

Before we derive the Smarr formula and the first law of black hole thermodynamics we
must derive the generalized zeroth laws: the constancy of the potentials associated to the
charges over the event horizon. Our techniques only allow us to prove them restricted
to the bifurcation surface (hence the name restricted, generalized zeroth laws), but this is
sufficient for our purposes. The statements may, in some cases, be extended to the rest of
the horizon using the ideas proposed in ref. [37]

These laws apply to the bifurcation surfaces (BH) of Killing horizons (H) associated
to the Killing vector k, which is also assumed to generate a diffeomorphism that leaves
invariant all the fields of the theory. Thus, k2 H= 0, k BH= 0. In stationary black-hole
spacetimes, the Killing vector whose Killing horizon coincides with the black-hole event
horizon, k is an asymptotically timelike linear combination of the one generating time
translations t = tµ∂µ and those generating rotations in orthogonal planes φn = φµn∂µ,

k = t+ Ωnφn , (4.1)

where the constants Ωn are the associated angular velocities of the horizon.
11The proof of this identity is a trivial generalization of the proof given in ref. [16] for the case p = 0.
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If the (p+ 2)-form field F is invariant under the diffeomorphism generated by k, then
we can define the momentum map p-form Pk satisfying the momentum map equation (3.17)
and, assuming that F is regular on the horizon,

dPk = −ıkF
BH= 0 . (4.2)

Then, using the Hodge decomposition theorem

Pk
BH= Φihi + de , (4.3)

where the hi are harmonic p-forms on the bifurcation surface and the constants Φi are
going to play the role of potentials associated to the charges Qi defined in eq. (3.9) now
computed by integration over the bifurcation surface.12

We can also define potentials associated to the magnetic charges. The invariance of
the metric and gauge field under the diffeomorphism generated by k, plus the equations of
motion dG = 0, lead to the existence of a magnetic momentum map P̃k13

δkG
.= −dıkG = 0 , ⇒ ∃ P̃k | dP̃k + ıkG

.= 0 . (4.4)

In an analogous fashion, the regularity of G over the horizon leads to

P̃k
BH= Φmh̃

m + de , (4.5)

where the h̃m are harmonic p̃-forms on the bifurcation surface and the constants Φm are
going to play the role of potentials associated to the magnetic charges Pm defined in
eq. (3.10), now computed by integration over the bifurcation surface.

Observe that the same reasoning can be applied to the Lorentz momentum map equa-
tion, obtaining

DPkab
BH= 0 , (4.6)

which implies that Pkab can be expanded as a linear combination with constant coefficients
of covariantly constant antisymmetric Lorentz tensors. It is a well-known result that

Pk
ab BH= κnab , (4.7)

where κ is the surface gravity (constant over the whole event horizon, according to the
standard zeroth law) and nab is the binormal to the horizon with the normalization nabnab =
−2. Clearly, nab is covariantly constant over the bifurcation surface and κ can be interpreted
as the “potential” associated to the Lorentz charge, which is, essentially, the area of the
(spatial sections of the) horizon.

12The fact that the charges and conjugate potentials that occur in the first law of black-hole mechanics
and in the Smarr formulae are defined and computed over the horizon cannot be overemphasized. Its
implications in situations in which the topology of the horizon and the topology of spatial infinity are
different are dramatic [15].

13We are going to use the symbol .= for identities that only hold on-shell.
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5 Smarr formulae

Smarr formulae for stationary black-hole solutions [5] can be systematically obtained using
Komar integrals [10, 38, 39]. Wald’s formalism, in its turn, can be used to construct the
(d − 2)-form integrands of Komar integrals, that we are going to call Komar charges as
explained in refs. [6, 11, 12, 21] (see also [40]).

The main observation is that, on-shell and for a Killing vector k that generates a
symmetry of the whole field configuration, the only non-vanishing contribution to J[k]
is ıkL

J[k] .= ıkL . (5.1)

Furthermore, under the same conditions,

0 = −δkL
.= £kL = dıkL , (5.2)

which implies the local existence of the (d− 2)-form ωk

dωk
.= ıkL . (5.3)

Since we have proven that J[ξ] = dQ[ξ], eq. (5.1) leads to the identity

dK[k] .= 0 , (5.4)

for the Komar charge (d− 2)-form K[k] defined by

K[k] ≡ − (Q[k]− ωk) . (5.5)

Smarr formulae for stationary black holes are obtained by integrating eq. (5.4) on
hypersurfaces Σ with boundaries at a spatial section of the event horizon ∂Σh (usually,
the bifurcation surface BH) and at spatial infinity ∂Σ∞. Applying Stokes’ theorem to that
integral one gets ∫

∂Σ∞
K[k] =

∫
BH

K[k] , (5.6)

and performing the integrals one arrives at the Smarr formula.
In order to apply this algorithm we must first construct the Komar charge K[k] finding

ωk. This can be done for general configurations using the techniques of ref. [6]. The trace
of the Einstein equation (2.16a) can be written in terms of the Lagrangian as follows:

ea ∧Ea = (−1)d−1(d− 2)
{

L− (−1)d(p+1) (p+ 1)
(d− 2)F ∧G

}
, (5.7)

which implies that the on-shell Lagrangian takes the value

L .= (−1)d(p+1) (p+ 1)
(d− 2)F ∧G . (5.8)

Next, using the momentum map equations (3.17) and (4.4)

ıkL
.= −(−1)d(p+1) (p+ 1)

(d− 2)
[
dPk ∧G+ (−1)p(d−1)dP̃k ∧ F

]
. (5.9)
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and integrating by parts and using the equation of motion and Bianchi identity, we arrive at

ωk = −(−1)d(p+1) (p+ 1)
(d− 2)

[
Pk ∧G+ (−1)p(d−1)P̃k ∧ F

]
. (5.10)

The Komar charge (d− 2)-form is, then, given by

K[k] = 1
16πG(d)

N

{
(−1)d−1 ? (ea ∧ eb)Pk ab

+(−1)d(p+1)

d− 2
[
(p̃+ 1)Pk ∧G− (−1)dσ2(p+ 1)P̃k ∧ F

]}
.

(5.11)

When p = p̃ (so d is even), defining the vector of momentum maps

Pk ≡
(
Pk
P̃k

)
, (5.12)

which transforms as F under electric-magnetic duality because it satisfies the equation

dPk + ıkF = 0 , (5.13)

K[k] can be rewritten in the manifestly duality-symmetric form

K[k] = 1
16πG(d)

N

{
(−1)d−1 ? (ea ∧ eb)Pk ab + (p+ 1)

(d− 2)P
T
k ∧ ΩF

}
. (5.14)

We now plug the Komar charge eq. (5.11) in the integrals of eq. (5.6). For asymptoti-
cally-flat black holes, only the gravitational term in the first line contributes to the integral
over spatial infinity since the products of potentials and gauge fields fall off too fast ap-
proaching infinity if we impose adequate boundary conditions. Using also the restricted
generalized zeroth laws for the momentum maps eqs. (4.3) and (4.5), we get

1
16πG(d)

N

∫
∂Σ∞

(−1)d−1 ? (ea ∧ eb)Pk ab = 1
16πG(d)

N

∫
BH

(−1)d−1 ? (ea ∧ eb)Pk ab

+ 1
(d− 2)

[
(p̃+ 1)ΦiQi + (−1)d(p+ 1)σ2Φ̃mP

m
]
.

(5.15)

For the Killing vector eq. (4.1), the integral in the left-hand side of this equation gives

1
16πG(d)

N

∫
∂Σ∞

(−1)d−1 ? (ea ∧ eb)Pk ab = (d− 3)
(d− 2) (M − ΩnJn) , (5.16)

where M is the mass and Jn are the components of the angular momentum. Furthermore,
using eq. (4.7), the integral in the right-hand side gives

1
16πG(d)

N

∫
BH

(−1)d−1 ? (ea ∧ eb)Pk ab = − 1
16πG(d)

N

∫
BH

dAnabPk ab = κA

8πG(d)
N

= TS , (5.17)

where T is the Hawking temperature and S is the Bekenstein-Hawking entropy.
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Thus, we get the Smarr equation

M = (d− 2)
(d− 3)TS + ΩnJn + (p̃+ 1)

(d− 3)ΦiQi + (−1)dσ2 (p+ 1)
(d− 3)Φ̃mP

m . (5.18)

For p = p̃ this formula takes the manifestly electric-magnetic duality invariant form

M = (d− 2)
(d− 3)TS + ΩnJn + (p+ 1)

(d− 3)Φ̂T i ∧ ΩQi , (5.19)

where Qi is the charge vector defined in eq. (3.11) and Φ̂i is the vector of potentials

Φ̂i ≡
(

Φ̃i

Φi

)
, (5.20)

so that
Φ̂T i ∧ ΩQi = ΦiQi + σ2Φ̃iP

i . (5.21)

6 First law

We are going to review the derivation of the first law in full detail, improving the derivations
made in refs. [6, 16–18, 21] and showing where and how the variation of the magnetic
charges, missed in those works, arise.

Following refs. [7–9], and denoting by ϕ all the fields of the theory, we define the
symplectic (d− 1)-form

ω(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ(ϕ, δ2ϕ)− δ2Θ(ϕ, δ1ϕ) , (6.1)

and we choose δ1ϕ = δϕ, variations which satisfy the linearized equations of motion but
which are, otherwise, arbitrary, and δ2ϕ = δξϕ, the transformations under diffeomorphisms
that we have defined in section 3.4. On-shell Θ = Θ′ and using the definitions of J[ξ]
eq. (3.33) and δξ eq. (3.14)

ω(ϕ, δϕ, δξϕ) .= δΘ′(ϕ, δξϕ)− δξΘ′(ϕ, δϕ)

= δ (J[ξ]− ıξL)−
(
−£ξ + δΛξ

)
Θ′(ϕ, δϕ)

= δJ[ξ]− ıξδL +
(
ıξd+ dıξ − δΛξ

)
Θ′(ϕ, δϕ)

= δdQ[ξ]− ıξ (Eϕ ∧ δϕ+ dΘ(ϕ, δϕ)) +
(
ıξd+ dıξ − δΛξ

)
Θ′(ϕ, δϕ)

.= d
[
δQ[ξ] + ıξΘ′(ϕ, δϕ)

]
− δΛξΘ

′(ϕ, δϕ) .

(6.2)

This result differs from the standard one by the last term, which does not look like a
total derivative. Let us study it in more detail in the theory at hand:

δΛξΘ
′(ϕ, δϕ) .= δΛξ

{
− ? (ea ∧ eb) ∧ δωab +G ∧ δA

}
= −δσξ

{
?(ea ∧ eb)

}
∧ δωab − ?(ea ∧ eb) ∧ δσξδωab +G ∧ δχξδA ,

(6.3)
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since G is gauge invariant. Now, let us consider the last term. By definition, and taking
into account that the parameter of the compensating gauge transformation depends on the
field on which the transformation acts

δχξδA = δχξ(A
′ −A) = dχ(ξ, A′)− dχ(ξ, A) = dδχξ . (6.4)

By the same token
δσξδωab = Dδσξ − 2δω[a|

cσξ c|b] , (6.5)

while the first term transforms in the standard fashion

δσξ

{
?(ea ∧ eb)

}
= 2σξ [a|

c ? (ec ∧ e|b]) . (6.6)

Combining these results, integrating by parts and using the equation of motion dG = 0
we arrive at another total derivative

δΛξΘ
′(ϕ, δϕ) .= −

{
?(ea ∧ eb)

}
∧ Dδσξ ab +G ∧ dδχξ

.= d
{

(−1)d−1 ? (ea ∧ eb)δσξ ab + (−1)p̃G ∧ δχξ
}
,

(6.7)

which allows us to rewrite the complete symplectic (d− 1)-form as the total derivative of a
(d− 2)-form that we will denote by Ω(ϕ, δϕ, δξϕ), which is defined up to total derivatives

ω(ϕ, δϕ, δξϕ) .= −dΩ(ϕ, δϕ, δξϕ) , (6.8a)
Ω(ϕ, δϕ, δξϕ) ≡ −δQ[ξ]− ıξΘ′(ϕ, δϕ)

+ 1
16πG(d)

N

{
(−1)d−1 ? (ea ∧ eb)δσξ ab + (−1)p̃G ∧ δχξ

}
. (6.8b)

Plugging into Ω(ϕ, δϕ, δξϕ) the expressions we have obtained for Q[ξ] and Θ′(ϕ, δϕ)
and operating, we can put Ω(ϕ, δϕ, δξϕ) in this form:

Ω(ϕ, δϕ, δξϕ) = (−1)d−1δ ? (ea ∧ eb) ∧ Pξ ab + ıξ ? (ea ∧ eb) ∧ δωab
+ (−1)d(p+1)Pξ ∧ δG− ıξG ∧ δA ,

(6.9)

again, up to total derivatives. We are going to profit from this freedom to rewrite this
charge as follows:

Ω(ϕ, δϕ, δξϕ) = δ
[
(−1)d−1 ? (ea ∧ eb) ∧ Pξ ab

]
− (−1)d−1 ? (ea ∧ eb) ∧ δPξ ab

+ ıξ ? (ea ∧ eb) ∧ δωab + (−1)d(p+1)Pξ ∧ δG−
(
ıξG+ dP̃ξ

)
∧ δA

+ (−1)p̃+1P̃ξ ∧ δF .

(6.10)

Now, when ξ = k, since δkϕ = 0 implies ω(ϕ, δϕ, δkϕ) = 0, we have the identity

dΩ(ϕ, δϕ, δkϕ) .= 0 , (6.11)

where, upon use of the definition of the dual momentum map eq. (4.4) Ω(ϕ, δϕ, δkϕ) takes
the final form

Ω(ϕ, δϕ, δkϕ) = δ
[
(−1)d−1 ? (ea ∧ eb) ∧ Pk ab

]
− (−1)d−1 ? (ea ∧ eb) ∧ δPk ab

+ ık ? (ea ∧ eb) ∧ δωab + (−1)d(p+1)
[
Pk ∧ δG+ (−1)dσ2P̃k ∧ δF

]
.

(6.12)

– 15 –



J
H
E
P
1
1
(
2
0
2
2
)
0
8
1

To proceed, we integrate the identity eq. (6.11) over the same hypersurface over which
we integrated the analogous identity involving the Komar charge K[k] in the previous
section. Using Stokes’ theorem∫

∂Σ∞
Ω(ϕ, δϕ, δkϕ) =

∫
BH

Ω(ϕ, δϕ, δkϕ) . (6.13)

For the Killing vector eq. (4.1) the integral at spatial infinity can be shown to
give [9, 41]14 ∫

∂Σ∞
Ω(ϕ, δϕ, δkϕ) = δM − ΩnδJ

n . (6.14)

When evaluating the integral over the bifurcation surface, we can use the reasoning
in ref. [9] to show that the second term in eq. (6.12) does not contribute and that the
first gives, simply κδA/(8πG(d)

N ). The third simply vanishes on the bifurcation surface.
Using these results, the restricted, generalized, zeroth laws eqs. (4.3) and (4.5) and the
definitions of electric and magnetic charges eqs. (3.9) and (3.10), the integral over the
bifurcation surface gives∫

BH
Ω(ϕ, δϕ, δkϕ) = κδA

8πG(d)
N

+ (−1)d(p−1)
[
ΦiδQi + (−1)dσ2Φ̃mδP

m
]
, (6.15)

and we arrive at the first law

δM = κδA

8πG(d)
N

+ ΩnδJ
n + (−1)d(p−1)

[
ΦiδQi + (−1)dσ2Φ̃mδP

m
]
, (6.16)

which, for the p̃ = p case takes the manifestly electric-magnetic duality-invariant form

δM = κδA

8πG(d)
N

+ ΩnδJ
n + ΦiΩδQi . (6.17)

7 Discussion

In this paper we have studied how to deal with magnetic charges in a d-dimensional gener-
alization of the Einstein-Maxwell theory with (p+1)-form potentials. Our main results are

1. The Komar charge eqs. (5.11), which, for p = p̃, takes the manifestly electric-magnetic
duality-invariant form eq. (5.14).

2. The Smarr formula eq. (5.18), which, again, takes the manifestly electric-magnetic
duality-invariant form eq. (5.19) in the p = p̃ case.

3. The first law eq. (6.16) and the manifestly electric-magnetic duality-invariant form
eq. (6.17) that it takes when p = p̃.

14As in the calculation of the Smarr formula, the additional terms that we have found will not contribute
at infinity if we impose suitable boundary conditions to the fields and their variations.
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We have assumed in the derivation of these results the asymptotic flatness of the
solutions. Thus, they are valid for black holes, black rings and their generalizations, but,
in order to apply them to infinite, planar, p-branes, a few, simple, modifications would be
necessary to replace mass by tension and charges by charge densities removing the infinite
volume factors. Wrapping these branes on compact dimensions would introduce additional
effects (KK and winding modes) that need to be studied separately.15

Furthermore, observe that the Smarr formulae and first laws obtained are generic: a
particular solution may not be able to carry the electric, the magnetic or either charge. For
instance, a black hole in 6 dimensions in a theory with a 2-form will not be able to carry
electric nor magnetic charge with respect to the 2-form. In 5 dimensions, a black hole can
carry the electric charge of a 1-form potential but not the magnetic charge (electric with
respect to a 2-form potential), while a black ring can, in principle, carry the opposite.

In the p̃ = p cases, black p-branes can carry electric and magnetic charges of the same
(p + 1) potential and, as it is well known, since electric-magnetic duality leaves invariant
the metric, all their geometric properties including their surface gravity and area are also
duality invariant. Thus, the first law of their dynamics should also be invariant. Our
results show that this is, indeed, the case.

As mentioned in the Introduction, the first law also has a term proportional to the
variation of the moduli where the proportionality constants are the scalar charges, for which
no good definition as conserved charges has ever been given [14]. Here we have avoided
this problem by studying a theory with no scalar fields, but this is a problem that has to
be confronted and understood and we plan to do so in future work.
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