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1 Introduction

Half a century ago, David Lovelock proposed and showed a remarkable theorem [1]: the
most general, symmetric and divergence free tensor which is quasi-linear in the second
derivatives of the metric without involving higher derivatives can be obtained from a La-
grangian corresponding to a linear combination of dimensionally continued Euler densities.
An immediate corollary of this theorem is that there is only room for the Einstein-Hilbert
and cosmological terms in four dimensions; in order to write Lovelock Lagrangians involv-
ing polynomials of order k in the curvature, we need to go to spacetime dimensions with
d ≥ 2k + 1.

Allowing the inclusion of higher derivatives in the equations of motion has an old dated
bad reputation. The spectrum is modified: extra degrees of freedom appear and ghosts
tend to be among them on general grounds. In that respect, Lovelock theories provide a
safe playground to explore many interesting aspects of the gravitational interaction, albeit
in higher dimensions. Among these, we can include features of black holes such as their
existence and uniqueness theorems, their thermodynamics, the definition of their mass and
entropy, etc. There are also physically sound problems in higher dimensions in the context
of the AdS/CFT correspondence, and Lovelock theory has something to say about them
(see, for example, [2]).
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If we want to relax the stringent requirements of the Lovelock theorem but stick to
the rule that Lagrangian densities are built from contractions of the Riemann curvature
and the metric, the equations of motion become fourth order. This does not mean that
their study is unworthy. In the late seventies, quadratic terms were scrutinized in view of
renormalizing the linearized version of General Relativity (GR) [3, 4].

More recently, a new avenue to explore higher curvature corrections to GR was opened
after the construction of so-called Einstenian Cubic Gravity (ECG) [5]: a cubic theory
possessing second-order linearized equations around maximally symmetric backgrounds
and admitting Schwarzschild-like solutions characterized by a single function, gttgrr =
−1. This was soon extended to a more ample family of theories dubbed Generalized
Quasitopological Gravities (GQTGs) [6]; interestingly enough, it was recently shown that
all theories involving invariants constructed from contractions of the Riemann tensor and
the metric are equivalent via field redefinitions to these [7], and that GQTGs can be found
at all orders [8], thus generalizing the original result [6] where only cubic contractions were
considered. Both ECG and GQTGs have been shown to lead to a well-posed cosmological
initial-value problem after a suitable choice [9, 10], opening an intriguing scenario for
cosmological inflation [11, 12].

Albeit these bottom-up constructed theories might be afflicted by stability, unitarity
or causality issues, it is interesting to explore them for several reasons ranging from phe-
nomenological to theoretical. Among the former we may include cosmological problems
such as inflation [9–12], dark energy or the so-called Hubble tension. The latter, instead,
have to do with a deeper understanding of General Relativity as an effective field the-
ory and its would be UV completion. It was recently shown, for instance, that quadratic
or cubic (in the Riemann tensor) corrections entail causality violation and an ill-behaved
eikonal graviton scattering, which suggest the necessity of a stringy UV completion [13]
(see also [14–18]).

Higher derivative corrections to GR must also include operators involving explicit
covariant derivatives of the Riemann tensor. For instance, a (∇Riemann)2 term is as valid
— and contributes at the same order in derivatives — as all Riemann3 contractions in
the effective Lagrangian. In the framework of the previous discussion, it is natural to ask
ourselves whether we can build Lagrangian densities involving explicit derivatives of the
Riemann tensor which preserve some of the nice properties displayed by GQTGs (or their
cosmological extensions). This same problem was addressed in the context of Lovelock
theories in flat space by Cnockaert and Henneaux [19], and the answer was negative: there
is no wayout to the Lovelock theorem by means of covariant derivatives of the Riemann
tensor. We certainly expect extra degrees of freedom arising from the higher derivative
equations of motion. However, it is not a priori obvious whether there exists a choice of
the Lagrangian parameters, a family of theories, where the mass of the undesired particles
can be taken to infinity thereby removing them from the low energy spectrum, as it is the
case in the above referred GQTGs [20].

This is precisely the main objective of this work: to study the particle content when
∇Riemann terms are considered and scrutinize the possible existence of well behaved La-
grangians of this form. To this end we will start by generalising a well-known construction
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by Padmanabhan [21], valid for L(gab, Rabcd) theories, to allow for the inclusion of explicit
covariant derivatives acting on the Riemann tensor. We will show that all Lagrangians
with a finite number of terms of this form generically contain ghosts in the spectrum which
cannot be removed. Possible ways to escape this result will also be examined and shown
to lead to other problems.

We start by considering in full detail the most general Lagrangian with (∇Riemann)2

terms. As we mentioned earlier, these are bound to accompany the Riemann3 terms from
the viewpoint of Effective Field Theory; they both scale as E6. The substantial difference
between them relies in the (derivative) order of the Euler-Lagrange equations: the former
leads to sixth order equations of motion while the latter are fourth order. This very fact
implies an extension in the spectrum that must be discussed in detail; ghosts are shown to
be unavoidable.

A way-out to this no-go result seems to exist when we embed these Lagrangians into
a broader class of theories, all leading to sixth order equations of motion. This can be
easily done by writing terms roughly of the form f(Riemann)(∇Riemann)2. If we do
so, it is possible to write down finite order Lagrangians involving covariant derivatives of
the Riemann tensor where the ghosts masses tend to infinity thereby decoupling from the
low energy dynamics. However, these involve operators scaling (at least) as E8 thereby
demanding the inclusion of all possible terms with such scaling. In particular, this demands
the introduction of even higher covariant derivatives of the Riemann tensor and we show
that these reintroduce ghost degrees of freedom in the spectrum. Therefore, we argue that
this kind of truncation, albeit possible, is unnatural from the point of view of Effective
Field Theory.

We finally discuss what are the implications of these results and how they relate to
other papers in the literature. In summary, we add further pieces of evidence suggesting
that the higher-derivative series cannot be truncated and all operators must be included
at once, albeit with special values of the coefficients that come from the ultimate necessity
of a physically sensible UV completion.

2 Derivation of the equations of motion

In this section we would like to generalize Padmanabhan’s classic construction [21], which
was derived in the context of L(gab, Rabcd) theories, to a more general family where explicit
derivatives acting on curvature tensors appear in the Lagrangian,

S =
∫
ddx

√
|g| L(gab, Rabcd,∇eRabcd) . (2.1)

We will later discuss the more general case involving ∇2nRiemann terms but, for the
moment, we stick to single covariant derivatives acting on the curvature; i.e., theories
whose equations of motion are sixth order. We treat gab, Rabcd and ∇eRabcd as primary
independent fields in order to perform the variation

δS =
∫
ddx

√
|g|
[(
P ab − L2 g

ab
)
δgab + P bcd

a δRabcd +Qe bcd
a δ∇eRabcd

]
, (2.2)
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where we have defined the tensors

P ab := ∂L
∂gab

, P abcd := ∂L
∂Rabcd

, Qe bcd
a := ∂L

∂∇eRabcd
, (2.3)

and in each variation it is (unless otherwise stated) always assumed that the other primary
fields are held constant. The kind of theories we are interested in are those where Qe bcd

a 6=
0. The derivatives with respect to the metric and both the Riemann curvature and its
covariant derivative are certainly not independent. This can be seen by working out the
Lie derivative of L corresponding to an infinitesimal diffeomorphism, xa → xa + ξa(x),
which can be alternatively written in two different forms

δL = ξm∇mL = PabLξgab + P bcd
a LξRabcd +Qe bcd

a Lξ∇eRabcd; (2.4)

the former reads

δL = ξm
(
Pab∇mgab + P bcd

a ∇mRabcd +Qe bcd
a ∇m∇eRabcd

)
, (2.5)

while the latter is given by

δL = −2Pab∇aξb + P bcd
a ξm∇mRabcd + 2P cde

(a| R|b)cde∇bξa +Qe bcd
a ξm∇m∇bRabcd

+Q def
(a|c ∇|b)Rcdef∇bξa + 2Q def

c(a| ∇cR|b)def∇
bξa . (2.6)

Comparing both expressions leads to

P ab = ∂L
∂gab

= Rab + 1
2Q

(a|ijkl∇|b)Rijkl +Ql(a|ijk∇lR
|b)
ijk , (2.7)

whereRab := P aijkRbijk, which generalizes Padmanabhan’s expression [21] by the inclusion
of the novel Q-terms. We will see below that these new terms have no effect in the spectrum
around a maximally symmetric spacetime (MSS). The last term in (2.2) can be written as

Q bcd
ea δ∇eRabcd = Q bcd

ea [δ,∇e]Rabcd +Q bcd
ea ∇eδRabcd

= Q bcd
ea [δ,∇e]Rabcd −∇e

(
Q bcd
ea

)
δRabcd +∇e

(
Q bcd
ea δRabcd

)
,

(2.8)

after integrating by parts. Now, the commutator between the variation and the covariant
derivative acting on the Riemann tensor reads

[δ,∇e]Rabcd = δΓaefR
f
bcd − δΓ

f
ebR

a
fcd − δΓfecRabfd − δΓ

f
edR

a
bcf , (2.9)

where
δΓabc = 1

2g
ad(−δgbc;d + δgcd;b + δgbd;c) . (2.10)

Introducing (2.9) and the Palatini identity

δRabcd = ∇cδΓabd − (c↔ d) (2.11)

in the second line of (2.8), we have the whole expression written in terms of δΓabc. Plugging
these expressions into (2.2) and using the relation between δΓabc and δgab with a proper
integration by parts, we can finally obtain the equations of motion,

Eab = E0
ab + E∇ab = 1

2Tab , (2.12)
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where E0
ab contains the well-known terms involving no covariant derivatives of the Riemann

tensor [5, 20, 21],
Eab0 = Rab − 1

2g
abL − 2∇d∇cP acdb , (2.13)

while E∇ab is the new contribution precisely coming from those covariant derivatives and the
extension on P ab proportional to Q bcd

ea (2.7),

Eab∇ = 2∇d∇c∇eQeacdb −∇c
(
2QabijkRicjk + 2QacijkRbijk +QcaijkRbijk

)
+ 1

2Q
aijkl∇bRijkl +Qlaijk∇lRbijk .

(2.14)

Tab is the energy-momentum tensor of the matter fields that could be added to the gravi-
tational action (2.1). Notice that in GR, Pabcd = 1

2κ (gacgbd − gadgbc) and Qeabcd is zero, so
Rab is simply the Ricci tensor and we recover Einstein’s equations.

Now, in order to study the spectrum of the theory, we can generalize the method devel-
oped in [5, 20] to account for the inclusion of ∇Riemann terms. Varying the action (2.1)
and keeping track of the boundary terms we find

δS =
∫
M
ddx
√
−g Eabδgab +

∫
M
dd−1x

√
−g∇aδva , (2.15)

where

δvc = δvc0 + 2Q cdef
a Rbdefδg

ab +Qc defa Rbdefδg
ab − 2Q def

ab Rcdef δg
ab

− 2Qcfbed∇e∇bδgfd − 2∇eQ abcd
e ∇aδgbd + 2∇a∇eQ cbad

e δgbd ,
(2.16)

and δvc0 = 2P abcd∇bδgda − 2δgda∇bP acbd is the L(Riemann)’s boundary contribution al-
ready studied in [21]. Since we will consider linearized perturbations in (A)dS spacetime,
we fix the transverse gauge,1

∇ahab = ∇bh , (2.17)

where we adopted the notation hab = δgab (and, of course, h = haa). Let us now discuss
how the linearization procedure applies both to L(Riemann) and L(Riemann,∇Riemann)
contributions.

2.1 Linearization of the L(Riemann) contribution

In this subsection we review the method introduced in [5, 20] to linearize the L(Riemann)
part; i.e., all contributions not involving ∇Riemann terms. We introduce the Riemann-like
tensor rabcd,

rabcd = R̄abcd + 2αka[c|k|d]b , (2.18)

where
R̄abcd = 2Λ ga[c|g|d]b (2.19)

1Even though our results were derived considering an (A)dS background, the procedure to find the
spectrum can be extended to flat space — and the graviton masses (3.6) turn out to be the same —, the
only subtlety being the necessity of using the de Donder gauge, ∂ahab = 1

2∂
bh, instead of the transverse

gauge in order to be consistent; see, for example, [20].

– 5 –



J
H
E
P
1
1
(
2
0
2
2
)
0
7
7

is the Riemann tensor of the MSS background with cosmological constant Λ, and we defined
the (symmetric) projector kab, verifying kackcb = k b

a , and χ := kaa is an arbitrary integer
constant smaller than d. We then evaluate the Lagrangian replacing the Riemann tensor
by rabcd, such that L(rabcd) = L(α, χ,Λ). The linearized equations of motion read

E0,L
ab = 2

[
e− 2Λ((d− 1)a+ c) + (2a+ c)�̄

]
GL〈ab〉 + 2(a+ 2b+ c)

[
ḡab �̄− ∇̄a∇̄b

]
RL

−2Λ [(d− 3)a− 2(d− 1)b− c] gabRL = 1
2T

L
ab , (2.20)

where we used the expressions for the Einstein/Ricci tensors and the scalar curvature at
the linearized level

GLab = RLab −
1
2 ḡabR

L − (d− 1)Λhab , (2.21)

RLab = ∇̄(a|∇̄chc|b) −
1
2�̄hab −

1
2∇̄a∇̄bh+ dΛhab − Λḡabh , (2.22)

RL = ∇̄a∇̄bhab − �̄h− (d− 1)Λh . (2.23)

The parameters a, b, c and e can be computed for any theory as

a =
[

1
4χ(χ− 1)

∂2L
∂α2

∣∣∣
α=0

]
χ=1

, c =
[

1
χ− 1

(
1

4χ(χ− 1)
∂2L
∂α2

∣∣∣
α=0
− a

)]
χ=0

,

b = 1
χ(χ− 1)

[
1

4χ(χ− 1)
∂2L
∂α2

∣∣∣
α=0
− a− c(χ− 1)

]
, e = 1

2χ(χ− 1)
∂L
∂α

∣∣∣
α=0

.

Considering perturbations over a background metric ḡab, gab = ḡab+hab, we can decompose
the field equations into their traceless and trace parts,

E0,L
〈ab〉 = 1

4m2
gκeff

{[
�̄− 2Λ

] [
�̄− 2Λ−m2

g

]
h〈ab〉 − ∇̄〈a∇̄b〉�̄h (2.24)

+
[
m2
g(m2

s + 2(d− 1)Λ) + Λ((4− 3d)m2
s − 4(d− 1)2Λ)

(m2
s + dΛ)

]
∇̄〈a∇̄b〉h

}
,

E0,L = −
[

(d− 1)(d− 2)Λ(m2
g − (d− 2)Λ)

4κeffm2
g(m2

s + dΛ)

] [
�̄−m2

s

]
h , (2.25)

where we have chosen a different set of (physically more meaningful) parameters, κeff,
m2
g and m2

s, which represent respectively the effective Newton constant (modified due to
the higher curvature terms) and the masses of the ghost graviton and the scalar field
customarily appearing as extra degrees of freedom in a general higher curvature theory of
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the type L(Riemann) [20]. The relations between both sets are:

a = 1
4Λ(d− 3)κeff

(
2eκeff −

1
2

)
,

b = 1
4Λ(d− 3)κeff

[
(4eκeff − 1)(d− 1)m2

s + 2(3− 2d+ 2(d− 1)deκeff)Λ
4(d− 1)(m2

s + dΛ)

+(d− 3)Λ(dm2
s + 4(d− 1)Λ)

4m2
g(d− 1)(m2

s + dΛ)

]
,

c = 1
4Λ(d− 3)κeff

(
1− 4eκeff −

(d− 3)Λ
m2
g

)
,

e = 4(d− 1)Λ
L̄

,

where L̄ is the Lagrangian evaluated on the MSS background (2.19). Having reviewed the
procedure along the lines developed in [5, 20], we are now ready to explore the general case
involving covariant derivatives of the Riemann tensor.

2.2 Linearization of the L(Riemann, ∇Riemann) contribution

First of all, let us discuss the kind of terms that can appear in a general Lagrangian of
the form L(Riemann,∇Riemann). Notice that the Riemann/Ricci tensors and the scalar
curvature are all objects with an even number of indices. This implies that we will need to
have always an even number of explicit covariant derivatives contracted with these objects
in order to obtain scalar quantities. That is to say, and in a symbolic manner, all possible
contractions have to be of the form (Riemann)k(∇Riemann)2j , with integers k, j ≥ 0.
The discussion carried out in this subsection takes this into account.

Let us first discuss why terms involving∇Riemann in the Lagrangian do not contribute
to the linearization of E0

ab. Recall that its general expression (2.13) contains the objects
L and P abcd, whose variation yielded the terms obtained above. Now, for a Lagrangian of
the form L(Riemann,∇Riemann), some new contributions arise since

δL = P̄ab δg
ab + P̄ bcd

a δRabcd + Q̄e bcd
a δ∇eRabcd , (2.26)

and
δP abcd = ∂P̄ abcd

∂gef
δgef + ∂P̄ abcd

∂Refgh
δRefgh + ∂P̄ abcd

∂∇eRfghi
δ∇eRfghi , (2.27)

where all terms of the form ∂P̄ abcd/∂Ψ must be understood as the variation with respect
to Ψ followed by the evaluation in the background MSS whose Riemann tensor is given
by (2.19). Recall that even the tensor P ab is affected by the existence of ∇Riemann
terms in the Lagrangian, its full expression written in (2.7). These terms are restricted,
as explained above, to be of the form (Riemann)k(∇Riemann)2j , which implies that
Q a
e bcd ∼ (Riem)k(∇Riem)2j−1, and thereby Q̄ a

e bcd vanishes on a MSS. The last term
in (2.27) is proportional to (Riemann)k−1(∇Riemann)2j−1, so it also vanishes when eval-
uated on this background. The additional terms in P ab (2.7) contain contractions of the

– 7 –



J
H
E
P
1
1
(
2
0
2
2
)
0
7
7

form Q∇Riemann, which do not contribute when evaluated on the background, since
∇Riemann = 0 in this case. Finally, notice that

∂P abcd

∂gef
= ∂P abcd

∂gef

∣∣∣∣∣
∇Riemann=0

+O
(
(∇Riemann)2j

)
,

the first term corresponding to the value of this quantity computed only from the part of
the Lagrangian without explicit covariant derivatives of the Riemann tensor, and the last
term vanishing in the background. In summary, the linearized equations obtained from
Eab0 do not receive new contributions coming from terms in the Lagrangian that involve
contractions of ∇Riemann.

We shall now consider the linearization of Eab∇ , given in (2.14), in order to understand
the implications in the general spectrum of the terms containing explicit derivatives of the
Riemann tensor in the Lagrangian. We will need the variation

δQabcde = ∂Q̄abcde

∂gij
δgij + ∂Q̄abcde

∂Rijkl
δRijkl + W̄ abcde

hijkl δ∇hRijkl , (2.28)

where, again, all terms of the form ∂Q̄abcde/∂Ψ must be understood as variations followed
by evaluation in the background (2.19), and we have defined

W abcde
hijkl := ∂Qabcde

∂∇hRijkl
.

Taking into account the arguments presented at the beginning of this section about the
form of the contractions that can appear in the Lagrangian, we can make a couple of
comments about the general form of Qabcde. First of all, recall that Qabcde itself must
vanish on a MSS vacuum. In the case of δQabcde, much for the same reason, there are
neither contributions proportional to δgij nor to δRijkl, since both ∂Q̄abcde

∂gij
and ∂Q̄abcde

∂Rijkl
are

zero.
We conclude that the only possible contribution to δQabcde at linear level comes from

terms proportional to the second derivative of the Lagrangian with respect to ∇Riemann,

δQabcde = W̄ abcde
hijkl δ∇hRijkl . (2.29)

Therefore, any term of the form (∇Riemann)2j(Riemann)k with j ∈ Z+, j > 1 does not
modify the linearized spectrum. Any such term would leave a remnant proportional to
∇Riemann in W̄ abcde

hijkl , which vanishes when evaluated on a MSS.2 For this reason, in
the next section we will stick to the case j = 1,

L = L(Riemann) + L∇(Riemann, (∇Riemann)2) ,

whose linearized equations of motion are EabL = Eab0,L + Eab∇,L, where the first part is due
entirely to L(Riemann) as was argued before — and studied in section 2.1 —, while Eab∇,L

2This provides an infinite set of terms with an Einstein-spectrum on a MSS background, something that
might have interesting applications in the realm of the AdS/CFT correspondence, given that we are led
to a plethora of gravity actions and black holes whose asymptotic behavior is free from ghosts and extra
degrees of freedom living at the boundary.
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is the novel contribution produced by the terms with contractions of ∇Riemann, which in
this case is found to be

Eab∇,L = 4
[
Λ2W̄ agb h

f gec dh ∇̄
f ∇̄e + Λ

(
W̄ aib
h igcedf + W̄ a b i

f g hec di

)
∇̄h∇̄g∇̄f ∇̄e

+W̄ a b
h i jgcedf ∇̄j∇̄i∇̄h∇̄g∇̄f ∇̄e

]
hcd . (2.30)

In order to study a particular theory we just need to compute the form of the tensor
W abcde

hijkl , evaluate it on a MSS, and read the spectrum using (2.30).

3 Spectrum of the (∇Riemann)2 theory

Considering all possible contractions of the form (∇Riemann)2, the most general La-
grangian (to lowest order in the higher derivative expansion) would be:

L∇ = α∇bRac∇cRab + β∇eRabcd∇eRabcd + µ∇aR∇aR+ ν∇aRbc∇aRbc , (3.1)

where α, β, µ, ν are coupling constants with energy dimension Ed−6. However, if we use
Bianchi identities and integrations by parts, we can readily see that

Lα := α∇bRac∇cRab = α

4∇aR∇
aR+O(Riemann3) + total derivative .

This means that Lα is redundant in our analysis, and can be taken away by suitably mod-
ifying the parameter µ, as well as those corresponding to the cubic terms in L(Riemann)
(a, b, c and e, defined above). Something similar happens with Lβ := β∇eRabcd∇eRabcd,
which can be reshuffled as

Lβ = −β∇aR∇aR+ 4β∇aRbc∇aRbc +O(Riemann3) + total derivative ,

after integrating by parts and using the Bianchi identities. Again, Lβ is shown to be
redundant in our analysis, and can be removed at the expense of modifying the parameters
µ, ν, a, b, c and e. To sum up, we could (and will) use (3.1) with α = β = 0,

L∇ = µ∇aR∇aR+ ν∇aRbc∇aRbc , (3.2)

together with the L(Riemann) contribution, where µ and ν (as well as those parameters
related to the terms with no explicit covariant derivatives of the Riemann tensor) have
been redefined in order to conveniently reabsorb α and β. This is relevant when comparing
our results with other works in the literature where an explicit dependence on α and β is
considered.

3.1 Linearization of the field equations

There is another observation to make before moving on to the general discussion of the
spectrum. Notice that the insertion of (3.2) does not modify the cosmological constant
Λ on MSS solutions. This can be easily seen, since both L̄∇ and δ̄L∇ vanish. Therefore,
Ēab∇ = 0; these terms do not contribute to the vacuum equations of motion.

– 9 –



J
H
E
P
1
1
(
2
0
2
2
)
0
7
7

Considering the transverse gauge (2.17), the (traceless and trace) linearized equations
of motion, EabL := Eab0,L + Eab∇,L, read:

E〈ab〉L = κ̂−1
[
(�̄− 2Λ)(�̄− 2Λ−m2

ξ+)(�̄− 2Λ−m2
ξ−)h〈ab〉

−(�̄− c1)(�̄− c2)∇̄〈a ∇̄ b〉 h
]

= 1
2T
〈ab〉
L , (3.3)

EL = κ∗−1(�̄−m2
φ+)(�̄−m2

φ−)h = 1
2TL , (3.4)

where we have defined the quantities

κ̂−1 = ν

2 , and κ∗−1 = 1
2(d− 1)

[
4(d− 1)µ+ dν

]
Λ , (3.5)

and the (squared) masses

m2
ξ± = m2

ξ

(
1±

√
1−∆ξ

)
, (3.6)

m2
φ± = m2

φ

(
1±

√
1−∆φ

)
, (3.7)

where m2
ξ and m2

φ,

m2
ξ = 2a + c − νΛ

ν
, (3.8)

m2
φ = 2a + dc − (d− 1)(−4b + 2dΛµ)− (d(d− 2) + 2)Λν

4(d− 1)µ+ dν
, (3.9)

are the values of the graviton and scalar masses in theories with vanishing discriminants,
∆ξ = ∆φ = 1,

∆ξ = 2ν(2a(d− 3)Λ− e)
(2a + c − νΛ)2 , (3.10)

∆φ = −2(4(d− 1)µ+ dν)(4Λ(a + (d− 1)(c + bd)) + (2− d)e)
(2a + dc − (d− 1)(−4b + 2dΛµ)− (d(d− 2) + 2)Λν)2 . (3.11)

c1 and c2 in (3.3) are combinations of the coupling constants, Λ and d, whose exact form is
irrelevant since that part of the equation of motion will be decoupled with a field redefinition
in the next section.

A few comments are in order. First of all, notice that the limit µ, ν → 0 is tricky:
several of the above quantities seem to diverge in such limit, but this simply reflects the
fact that it has to be taken at the level of the equations of motion (3.3) and (3.4). In
fact, it is easy to see that κ̂−1, κ∗−1 → 0 in that limit, and the masses diverge accordingly,
in such a way that the terms with maximum number of boxes, �̄, vanish; the spectrum
reducing to that studied in [20].

On general grounds, we will show that the spectrum possesses two massive graviton
modes, ξ±, and two massive scalar modes, φ±, besides the massless graviton. At this
stage, though, we can already see that the massive graviton sector is insensitive to the
gravitational coupling µ. In order to discuss the spectrum of the theory we have to decouple
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the trace degree of freedom, h, from the traceless part, h〈ab〉, in (3.3). We can do that by
a suitable field redefinition,

tab := h〈ab〉 + ∇̄〈a∇̄b〉(λ1 + λ2 �̄)h , (3.12)

where λ1 and λ2 are (soon to be fixed) free constants and tab is traceless by construction.
Plugging (3.12) into (3.3), we will have a ‘remnant’ h-dependent part involving terms of
the form3 ∇̄〈a∇̄b〉 �̄kh, with k = 0, . . . , 4. Now we can use the trace equation (3.4) in order
to replace every �̄2h in terms of �̄h, h and TL,

�̄2h = κ∗

2 T
L + (m2

φ+ +m2
φ−)�̄h+m2

φ+m
2
φ−h ,

and iterate as many times as we need to rewrite (3.3) as follows:

(�̄− 2Λ)(�̄− 2Λ−m2
ξ+)(�̄− 2Λ−m2

ξ−)tab + f1∇̄〈a∇̄b〉h+ f2∇̄〈a∇̄b〉�̄h = κ̂

2T
L,eff
〈ab〉 ,

where f1 and f2 are algebraic equations involving linearly λ1, λ2, and complicated expres-
sions of Λ, m2

ξ±
, d, µ and ν. It is always possible by construction to (uniquely) choose λ1

and λ2 such that f1 = f2 = 0. We are left with a decoupled equation of motion for the
(redefined) traceless degrees of freedom,

κ̂−1(�̄− 2Λ)(�̄− 2Λ−m2
ξ+)(�̄− 2Λ−m2

ξ−)tab = 1
2T

L,eff
〈ab〉 . (3.13)

The price to pay when writing the dynamics in this way is a more involved matter cou-
pling, which we capture writing TL,eff〈ab〉 ; something similar happens in purely L(Riemann)
theories [20]. Now, with the relevant degrees of freedom of the traceless and trace part
totally decoupled, we are ready to study the spectrum.

3.1.1 Traceless modes

To scrutinize the graviton spectrum we should decompose the tab tensor in three different
modes: the three propagating graviton degrees of freedom of our theory. This decomposi-
tion has some ambiguities and pitfalls whose analysis is left to an appendix. We decompose
the traceless equation of motion (3.13) by defining the following three tensors:

ζab := α1(�̄− 2Λ−m2
ξ+)(�̄− 2Λ−m2

ξ−) tab , (3.14)
ξ±ab := α±(�̄− 2Λ)(�̄− 2Λ−m2

ξ∓) tab , (3.15)

where α1 and α± are free parameters to be fixed by imposing the condition:4

tab := ζab + ξ+
ab + ξ−ab . (3.16)

Indeed, plugging (3.14) and (3.15) into (3.16), we obtain

α−1
1 = m2

ξ+m
2
ξ− , and α−1

± = m2
ξ±

(
m2
ξ∓ −m

2
ξ±

)
. (3.17)

3We commuted covariant derivatives using the fact that h is a linearized mode on a MSS.
4As discussed in appendix A, this expression must be understood as a direct sum with no prefactors.
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The above defined tensor modes, ζab and ξ±ab, obey the following equations:

− 1
2κeff

(�̄− 2Λ)ζab = TL,eff〈ab〉 , (3.18)

1
2κξ±

(�̄− 2Λ−m2
ξ±)ξ±ab = 1

2T
L,eff
〈ab〉 , (3.19)

where κeff = −1
4α1κ̂ and κξ± = 1

2α±κ̂. In particular, the effective Newton constants κξ±

can be written as

1
2κξ±

= − 1
4κeff

(1 + x)2

x

Λ
m2
g

√
1 + 2x

(x+ 1)2
m2
g

Λ

∓1−
√

1 + 2x
(x+ 1)2

m2
g

Λ

 , (3.20)

where we introduced the dimensionless number x := 4Λνκeffm2
g, which weights the relative

importance of the ∇Riemann terms.
Let us briefly end by showing how to recover the (already known) results of L(Riemann)

theories [20]. First, notice that the coupling µ is absent from all our expressions; this is
due to the fact that the term ∇aR∇aR only affects the scalar (trace) degrees of free-
dom. The limit ν → 0 (x → 0) is tricky, as stated above, since some quantities diverge:
1/κξ+ ,

5m2
ξ+
→∞. This not only entails the full decoupling of the mode ξ+ but its complete

disappearance from the spectrum of the theory. Meanwhile,

− 1
2κeff

(�̄− 2Λ)ζab = TL,eff〈ab〉 , ζab −→ Einstein graviton, (3.21)

+ 1
2κeff

(�̄− 2Λ−m2
g)ξ−ab = TL,eff〈ab〉 , ξ−ab −→ ghost graviton, (3.22)

we are left with the Einstein graviton mode and a ghost massive graviton — unless we tune
the couplings of the Lagrangian such that m2

g →∞ [20].

3.1.2 Trace modes

Since the trace equation (3.4) is already decoupled from the traceless (graviton) part, it
is not difficult to undertake its mode decomposition. The only consideration is to take an
analogue direct sum prescription for the trace as we did in the traceless part:

h := φ+ + φ− . (3.23)

For this we define

φ± := β±(�̄−m2
φ∓)h , β± = − 1

m2
φ±
−m2

φ∓

. (3.24)

Therefore, the linearized equations of motion for the trace (3.4) become

± 1
κtraceeff

(�̄−m2
φ±)φ± = TL

2 , (3.25)

5In the case where we consider L(Riemann) theories with an Einsteinian spectrum, i.e. m2
g → ∞, this

quantity is not divergent and tends to the usual value 1/κeff. However, the mass still diverges, m2
ξ+ →∞,

so the mode ξ+ disappears regardless of this.
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where the effective Newton constant has an ugly expression,

1
κtraceeff

= (d− 1)Λ
4

(d− 2)
(
(d− 2)Λ−m2

g

)
κeffm2

g (dΛ +m2
s)

+ 8(d− 1)dΛµ+ 4((d− 2)d+ 2)Λν

×
√√√√√1−

8(d− 2)κeffm2
gm

2
s(4(d− 1)µ+ dν)

(
(2− d)Λ +m2

g

)
(dΛ +m2

s)(
m2
g (4Λκeff(2(d− 1)dµ+ ((d− 2)d+ 2)ν) (dΛ +m2

s)− d+ 2) + (d− 2)2Λ
)

2
,

depending on both µ and ν. The alternate sign in (3.25) makes manifest the opposite
behavior of φ+ and φ−; one of them is a ghost scalar field. If we take the limit µ, ν → 0,
then m2

φ−
→ m2

s, while m2
φ+
→ ∞ and φ+ disappears from the spectrum (notice that

κ∗ →∞ in (3.5)). The effective Newton constant simplifies to

1
κtraceeff

→
(d− 2)(d− 1)Λ((d− 2)Λ−m2

g)
4κeffm2

g(dΛ +m2
s)

,

in full agreement with the results of L(Riemann) theories [20].
The detailed study of the propagating modes tell us that, contrary to the L(Riemann)

case, there is no range of (non-vanishing) values of µ and/or ν leading to theories with a
well-behaved spectrum. Ghosts are unavoidable and it is not possible to decouple them.
There is no way to simultaneously have a positive effective Newton constant for all modes,
κξ± , κφ± > 0 (this is particularly obvious for the latter, since κφ+ = −κφ−), while avoiding
tachyons in the spectrum, m2

ξ±
,m2

φ±
> 0. The subset of theories with ν = 0 admits a

healthy graviton sector but we must further impose µ = 0 if we want to avoid scalar
ghosts. Therefore, (∇Riemann)2 terms are unphysical for all possible couplings, contrary
to what happens in L(Riemann) theories [20].

3.2 A possible way-out involving higher-dimensional operators

It is important to remark that our Lagrangian (3.2) is the most general one once we impose
two requirements: i) having explicit derivatives of the curvature tensor, and ii) scaling as
[L∇] ∼ E6. In other words, the claim that it is not possible to decouple the ghost particles
unless we turn off both couplings, µ, ν → 0, is only true once we demand both. We might
want to examine other Lagrangians relaxing the latter condition; for instance:

L∇ = µ∇aR∇aR+ ν∇aRbc∇aRbc + µ′`2R∇aR∇aR+ ν ′`2R∇aRbc∇aRbc , (3.26)

where we introduced a length scale ` such that the couplings µ, ν, µ′ and ν ′ have the same
dimensions. Notice that the new terms have eight derivatives of the metric (equivalently,
they scale as E8), while the first two only have six derivatives. Therefore, condition ii) is not
verified in (3.26) and, in terms of a Wilsonian approach, this theory is mixing two different
orders. However, they will contribute to the equations of motion at the same order. This
is a tricky point in our discussion. There are terms which differ in their Wilsonian scaling
while having the same number of derivatives in the equations of motion. This is actually
well-known in the case of L(Riemann) theories, whose linearized equations of motion are
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fourth order regardless of the power of the contractions of the curvature tensors appearing
in the Lagrangian.

Following the arguments discussed in section 2.2, it is clear that the only contributions
to the linearized equations of motion are those in which we vary twice with respect to
∇Riemann, and evaluate everything else in the MSS background (2.19). Then, for the
sake of studying the Lagrangian (3.26) it is enough to consider

L∇ '
(
µ+ µ′`2R̄

)
∇aR∇aR+

(
ν + ν ′`2R̄

)
∇aRbc∇aRbc

=
(
µ+ d(d− 1)µ′`2Λ

)
∇aR∇aR+

(
ν + d(d− 1)ν ′`2Λ

)
∇aRbc∇aRbc , (3.27)

which is equivalent to (3.2) with the shifted couplings:

µ −→ µ+ d(d− 1)µ′`2Λ , ν −→ ν + d(d− 1)ν ′`2Λ . (3.28)

Therefore, the entire discussion on the spectrum performed in sections 3.1.1 and 3.1.2
carries on in the same way, just by replacing the coupling constants as in (3.28). In the
end, the requirement that the additional modes vanish reduces to imposing

µ+ d(d− 1)µ′`2Λ = ν + d(d− 1)ν ′`2Λ = 0 , (3.29)

which can be set in the Lagrangian (3.26) without it becoming identically zero, thus mak-
ing it possible to decouple the particles in a non-trivial way. This simple example serves to
illustrate that there might exist indeed a higher-derivative gravity with sixth order Euler-
Lagrange equations and an Einstein spectrum. However, it is an unnatural construct that
is beyond the realm of a well-defined Effective Field Theory. It entangles the couplings
of terms in the Lagrangian with different dimensional scaling, a relation that further de-
mands the knowledge of the actual value of the cosmological constant in the MSS that
serves as the vacuum. A honest computation of Λ would require the introduction of all
possible terms with the given scaling (in our previous example, E8). In particular, we
would need to consider altogether not only terms of the form Riemann4 but also, say,
∇2Riemann ∇2Riemann, which we will scrutinize in the next section.

In spite of the fact that this latter construction might deserve further attention — since
it could be useful as a toy-model for higher-curvature gravities involving explicit covariant
derivatives of the Riemann tensor with the nice and non trivial property of having an
Einsteinian spectrum —, we conclude that it is not possible to decouple the ghosts in a
sixth order theory while preserving a well-defined EFT scheme. The very fact that the only
way to achieve the decoupling involves mixing terms scaling differently in the Wilsonian
expansion suggests an iterative procedure demanding going to all orders in the framework
of an UV complete gravity theory.

All in all, two avenues are worth exploring: what happens if higher (covariant) deriva-
tives of the Riemann tensor are introduced? And, in particular, what happens when an
infinite series of these are brought into place?
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4 Spectrum of theories with higher derivatives of the Riemann tensor

In this section we will discuss the propagating modes in theories of gravity whose La-
grangian is made of any combination of the Riemann tensor and its explicit covariant
derivatives up to order N ; i.e., L(Riemann,∇Riemann, · · · ,∇NRiemann). To this end,
we will study the linearized equations of motion. Let us consider perturbations around
a MSS background ḡab with cosmological constant Λ, whose Riemann tensor is again
R̄abcd = 2Λ ga[c|g|d]b. Our aim is to describe the number of modes in the spectrum, which
depends on the order of the derivatives in the Lagrangian. Rather than the Lagrangian
itself, we will expand the integrand in the action, L =

√
|g|L, to second order in the metric

perturbations. It reads

L = L̄+
√
|ḡ| Ēabδgab +

[
∂2L̄

∂gab∂gcd
δgabδgcd + ∂2L̄

∂Rabcd∂Refgh
δRabcdδRefgh

+
N∑
n=1

∂2L̄

∂Rabcd∂∇ni1···inRefgh
δRabcdδ∇ni1···inRefgh (4.1)

+
N∑

m,n=1

∂2L̄

∂∇mi1···imRabcd∂∇
n
j1···jnRefgh

δ∇mi1···imRabcdδ∇
n
j1···jnRefgh

]
+ · · · ,

where6 ∇ni1···in := ∇(i1 · · · ∇in) and the dots refer to higher functional derivatives of the
Lagrangian. The bar over L inside the brackets must be understood as variations followed
by the evaluation on the MSS background. The first order term vanishes since the back-
ground is a solution of the equations of motion. The terms between brackets are of second
order in the perturbation, δgab, thereby these are the ones that contribute to the linearized
equations of motion when varying the action.

From this general expansion we see that the terms in the Lagrangian contributing to
the linearized equations of motion are of the form

(Riemann)l(∇iRiemann)m(∇jRiemann)n , (4.2)

where mi+ nj must be an even number in order to be able to form scalars by contracting
the indices. Also, since in (4.1) we are taking first or second derivatives with respect to
each ∇iRiemann and then evaluating the result on the MSS background, only terms with
m+ n ≤ 2 will effectively contribute to the spectrum.

Of course, L can contain more terms than those in (4.2); e.g., we can consider correc-
tions withm+n > 2 or contractions of the form (∇iRiemann)(∇jRiemann)(∇kRiemann)
with i 6= j 6= k, which may certainly produce non-trivial contributions to the equations
of motion. However, they will vanish when linearized, since we must perform functional
derivatives of the Lagrangian with respect to covariant derivatives of the Riemann tensor
only twice, prior to evaluating it on the MSS background. Our claim therefore is that only

6Notice the symmetrization in the indices i1 · · · in, since the antisymmetric part could be rewritten in
terms of covariant derivatives’ commutators acting on curvature tensors, but these terms can be expressed
simply as contractions of curvature tensors. Then, these produce contributions to the L(Riemann) part,
so a redefinition of coupling constants can reabsorb them.
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terms that can be written as (4.2) contribute to the linearized equations of motion. Also,
noticing that

δRabcd ∼ ∇2δgab , δ∇i1 · · · ∇ikRabcd ∼ ∇
k+2δgab , (4.3)

it is straightforward to see from (4.1) that a term like (4.2) will produce contributions with
at most mi+nj+4 derivatives of the metric perturbation (again, subject to the constraints
that mi+ nj is even and m+ n ≤ 2).

The kind of corrections that we considered in the previous section correspond to (4.2)
with i = 1, j = 0 and n = 0. For these particular theories we argued that only the
terms with m = 0 and m = 2 (in the notation of the current section) contribute to the
linearized equations of motion, whereas the different values of l only modify the mass and
the effective Newton constant of the various modes. In this section, instead of working out
the actual form of the linearized equations of motion, we will just focus on the simpler task
of determining the order of the equations governing the perturbations (and, thus, on the
number of modes) for more general theories of gravity.

4.1 Linearized equations, field redefinition and ghosts

Let us consider the most general theory with 2n+ 4 derivatives,7

L(Rijkl,∇2Rijkl, · · · ,∇2nRijkl) =
n∑
s=0
L∇2s = (4.4)

= L∇0(Rijkl) + L∇2(Rijkl∇2Rmnpq) + · · ·+ L∇2n(Rijkl∇2nRmnpq) ,

where ∇2n amounts to the symmetric contraction of covariant derivatives and the previous
expression must be understood, schematically, as an expansion in terms leading to fourth,
sixth, . . . , (2n+ 4)th order Euler-Lagrange equations. The (traceless) equations of motion
can be written as

κ−1
g (�− 2Λ)(�− 2Λ−m2

g1)(�− 2Λ−m2
g2) · · · (�− 2Λ−m2

gn+1)tab = 1
2T

L, eff
〈ab〉 , (4.5)

where κg is some constant related with the coupling constants of the highest order terms
in the Lagrangian, and m2

gi are the masses of the n+ 1 massive gravitons that appear once
we perform the appropriate fields’ redefinition. Something similar happens to the trace
part of the equations of motion:

κ−1
φ (�− 2Λ−m2

φ1)(�− 2Λ−m2
φ2) · · · (�− 2Λ−m2

φn+1)h = 1
2T

L, eff , (4.6)

where again m2
φi

would be the scalar field φi’s mass and κφ is an overall constant related
with the coupling constants of the highest order Lagrangian. At this point we can show
that the canonical propagating degrees of freedom contained in (4.6) are such that there

7Notice that all terms of the form (4.2) with m + n = 2 can be rewritten, integrating by parts, as a
combination of two different kinds of contributions: a set of Riemann∇2sRiemann terms, with different
values of the exponent s, and “residual” terms of the form Riemannr, which can be absorbed in the
L(Riemann) part of the Lagrangian by redefining the couplings.
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is always at least one ghost provided m2
φi
6= m2

φj
for all i, j. This generalizes the result of

section 3.1.2, which is nothing but the n = 1 case.
To better see how the general procedure works, let us explore now the n = 2 case, where

we can use the Klein-Gordon operators Φ̂i := (�−m2
φi

) to perform the fields redefinitions:

φ1 := β1Φ̂2Φ̂3h = 1
(m2

φ1
−m2

φ2
)(m2

φ1
−m2

φ3
)
Φ̂2Φ̂3h , (4.7)

φ2 := β2Φ̂1Φ̂3h = 1
(m2

φ2
−m2

φ1
)(m2

φ2
−m2

φ3
)
Φ̂1Φ̂3h , (4.8)

φ3 := β3Φ̂1Φ̂2h = 1
(m2

φ3
−m2

φ1
)(m2

φ3
−m2

φ2
)
Φ̂1Φ̂2h , (4.9)

and, again, the coupling to matter of each scalar field would be given by

κφi = βi κφ . (4.10)

It is straightforward to see that it is impossible to keep all βi’s with the same sign, which
means that there is always (at least) one ghost. Indeed, it is quite easy to write the result
for the general case. The linearized equation of motion for the trace part can be written as

κ−1
φ

n+1∏
i=1

Φ̂i h = 1
2T

L, eff , (4.11)

and the fields’ redefinition

φi := βi

n+1∏
k 6=i

Φ̂k h , with β−1
i :=

n+1∏
k 6=i

(m2
φi −m

2
φk

) , (4.12)

show that each massive scalar fields’ coupling is given by (4.10). Given that m2
φi
6= m2

φj

for all i, j, we can label the degrees of freedom such that m2
φn+1

> · · · > m2
φi
> · · · > m2

φ1
.

Thereby, while βn+1 > 0, the mass gap mφ2
n+1

> mφ2
n
flips the sign,

β−1
n = (m2

φn −m
2
φn+1)(m2

φn −m
2
φn−1) · · · (m2

φn −m
2
φ1) < 0 , (4.13)

and in general sign(βk) = (−1)n+1−k. Taking this into account we conclude that in a
general modified theory of gravity with 2n + 4 derivatives will have n + 1 scalar fields,
of which there will be either bn+1

2 c ghosts if n + 1 is even with indepence of the rest of
free parameters or bn+1

2 c ± 1 ghosts if n+ 1 is odd, where the ±1 depends on the general
couplings, Λ and the spacetime dimension which determine the overall sign of κφ (bxc is
the integer part of x).

Regarding the graviton sector, some similar reasoning can be discussed, the general
field redefinition to classify the different graviton modes of (4.5) is given by:

t
(1)
ab := α1

n+1∏
k=1
T̂k tab =

(
1∏n

k=2m
2
gk

)
n+1∏
j=1
T̂j tab , (4.14)
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where T̂k =
(
�̄− 2Λ−m2

gk

)
and t(1)

ab is the Einstein graviton, which verifies the equation
of motion

1
κg1

(�̄− 2Λ)t(1)
ab = TL, eff〈ab〉 . (4.15)

Focusing on the n+ 1 massive gravitons, the general field redefinition would be:

t
(j)
ab = αj(�̄− 2Λ)

n+1∏
k 6=j
T̂k tab

= 1
m2
gj

∏
i 6=j

(
m2
gi −m

2
gj

)−1
(�̄− 2Λ)

n+1∏
k 6=j
T̂k tab , (4.16)

where j = 2, · · · , n+ 1. Each of these modes verifies the equation

1
κgj

(�̄− 2Λ−m2
gj )t

(j)
ab = TL, eff〈ab〉 , (4.17)

and again, if we assume no tachyonic particles (m2
gi > 0) and no critical values (which

we can express, on general grounds, as m2
gn+1 > · · · > m2

g1), the same reasoning applies
than in the scalar field sector due to the particular form of αj : in a theory with 2n + 4
derivatives we will have n+ 1 massive gravitons of which there will be either n+1

2 ghosts if
n + 1 is even with independence of the rest of free parameters or n

2 ± 1 ghosts if n + 1 is
odd where the ±1 depends on the general couplings, Λ, and the spacetime dimensionality,
which determine the overall sign of κg.

5 Conclusions

To sum up our results, in this letter we have discussed explicitly the equations of motion
with sixth order derivatives (i.e., those corresponding to the (∇Riemann)2 Lagrangian) on
maximally symmetric spacetimes, showing the unavoidable presence of ghosts, in contrast
with what has been found for theories built with general contractions of the curvature
tensors, where it is indeed possible to decouple the pathological particles by suitable choices
of the coupling constants [5, 6, 8]. This is a noteworthy result from the point of view of
Effective Field Theory, since both kinds of corrections appear at the same order but they
have substantially different behaviors in terms of their spectrum. So we conclude that the
inclusion of explicit derivatives of curvature tensors in the Lagrangian, at least in a finite
truncation on symmetric backgrounds, is ill-behaved.

This result is strongly supported by some other related articles [22–27] where it was
shown, computing the propagator in flat spacetime, that ghosts are present in finite trun-
cations of these higher derivative gravities. This work is consistent with those results,
extending them to (A)dS spacetime as well (see, also, [28]).

We presented a counterexample to the previous claim, a higher-derivative gravity with
sixth order Euler-Lagrange equations and an Einstein spectrum, but we argued that it
lies beyond the realm of a well-defined Effective Field Theory. By entangling the coupling
constants of terms scaling differently in the Lagrangian, it calls for the addition of all
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possible terms with that given scaling. This, in turn, prompted us to study the general
case involving terms of the form Riemann∇2nRiemann, which reintroduce the ghosts in
the spectrum. The fact that to achieve the ghosts decoupling we are forced to mix terms in
the Wilsonian expansion suggests, again, that consistence shall demand going to all orders
in the higher curvature expansion involving explicit covariant derivatives of the Riemann
tensor. This tantamount to the necessity of an UV complete gravity theory.

We have also computed the contribution to the boundary term when (∇Riemann)2

terms appear in (2.15). A deeper study of the implications of this new term on the boundary
can be of significance in some related holographic topics, like for instance the universal
renormalization procedure in higher order gravities [29] or the computation of asymptotic
Noether charges.

There are other theoretical tools that could be applied to the type of theories explored
in the present work to provide further support for our conclusions. For instance, reformu-
lating the problem as a BRST cohomological one, it was shown that any theory written
as a finite polynomial in the Riemann curvature tensor and its covariant derivatives, such
that the first non-vanishing term in the expansion of the metric around flat space is a
total derivative, must belong to the Lovelock family [19]. Applying those techniques to
our broader family of theories seems to us an interesting avenue for further independent
confirmation of our results.

More recently, the same conclusion has been obtained in the context of so-called dis-
persive CFT sum rules and bootstrap techniques [30, 31]. The punchline of all these (and
other) works is that we cannot truncate the series and that all operators work together with
the right coefficients; i.e., those admitting a healthy UV completion. This is in line with the
findings of [24], where a seemingly well-behaved (singularity free) higher derivative gravity
involving covariant derivatives of the Riemann tensor is constructed, but it is non-local
in nature, and cannot be written as a finite truncation of the series of higher derivative
terms. It would be interesting to dig further into how stringent are these constraints in the
construction of theories of gravity beyond Einstein’s General Relativity.
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A Decomposition of the traceless modes in L(Riemann) theories

In decomposing our tab tensor field we warned the reader that some subtleties must be taken
into account. Let us first discuss them in the simpler case of L(Riemann) theories (i.e.,
in the absence of ∇Riemann terms; µ = ν = 0), given that we already know the correct
result [20] and we can learn what is the problem with a wrong election. From (2.24)
and (2.25) we can readily decouple the linearized traceless equation,

1
2κeffm2

g

(�̄− 2Λ)(�̄− 2Λ−m2
g) tab = TL,eff〈ab〉 , (A.1)

which coincides with the result found in [20]. We might want to do the field redefinition

ζab := ε

m2
g

(�̄− 2Λ−m2
g) tab , (A.2)

where we introduced a floating (yet undefined) sign, ε = ±1. It trivially fulfills the equation
of motion

(�̄− 2Λ) ζab = 2εκeff TL,eff〈ab〉 , (A.3)

given that ε2 = 1. We already see that the correct sign for the Einstein graviton coupling
occurs only if we take ε = −1. Let us ignore this for the moment and focus on the massive
graviton mode, which could be defined via

ξab := tab + λ ζab = ε

m2
g

[
(ε− λ)m2

g + λ(�̄− 2Λ)
]
tab , (A.4)

where λ is a sign that should be fixed as λ = ε in order to kill the mass remnant in (A.4).
Thereby,

ξab = 1
m2
g

(�̄− 2Λ) tab , (A.5)

so that its equation of motion reads:

(�̄− 2Λ−m2
g) ξab = 2κeff TL,eff〈ab〉 . (A.6)

In summary, the sign of the coupling to the stress-energy tensor tells us that we are left
with a ghost massive graviton and an apparent ambiguity in the Einstein mode. Had we
chosen ε = +1, the wrong sign, the mode decomposition of tab (A.4) would have been
tab = ξab − ζab. Thereby, we might interpret that the wrong sign in the coupling of the
massless graviton to the stress-energy tensor in (A.3) merely comes from the minus sign
of the tensor decomposition. However this is just an apparent issue based on the fact that
we are reading the causal behavior directly from our equations of motion without taking
into account the action normalization encoded in that particular sign choice.

If we, on the other hand, expand the action in modes allowing for relative signs between
them, what we are implicitly assuming is the fact that the prescription to couple matter
fields with gravity is mode dependent. This is manifestly unphysical. Thereby, we must
impose that the whole decomposition is a direct sum of all modes, tab = t

(m)
ab + t

(M)
ab , which

happens for ε = −1.
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