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1 Introduction

The highly-energetic, collimated partons that seed a jet undergo transverse momentum
broadening as they propagate through the hot QCD medium that is understood to be
formed in heavy-ion collisions. This broadening is described by the broadening rate, or the
associated probability and the transverse momentum broadening coefficient q̂ ≡ 〈k2

⊥〉/L,
which describes how much transverse momentum k⊥ is picked up per length L by a highly
energetic parton propagating through a plasma. The precise characterization of these
quantities is thus at the forefront of theoretical and experimental investigation of this
medium. We refer to [1–4] for recent reviews and to [5–11] for extractions of q̂ from data.

In a weakly-coupled quark-gluon plasma (QGP), q̂ is dominated by Coulomb elastic
scatterings with light partonic medium constituents, q̂ =

∫
d2k⊥ k

2
⊥ dΓel/d

2k⊥. For k⊥ ∼
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T the elastic, differential scattering rate dΓel/d
2k⊥ is of order g4T 3/k4

⊥, with T 3 the
(parametric) light parton density multiplying the Coulomb cross section. The resulting
logarithmic integral is cut off in the infrared (IR) by dynamical screening, encoded in Hard
Thermal Loop (HTL) resummation [12] at the soft scale gT . Ultraviolet (UV) regularization
is also needed, as we shall explain later. The soft (k⊥ ∼ gT ) and thermal (k⊥ ∼ T )
contributions were obtained in [13] and [14] respectively, and they combine to give q̂ ∼ g4T 3

(up to logarithms).
This leading-order (LO) contribution from the soft scale is the first signal of potentially

large corrections arising from this region. Soft gluons with frequency ω � T are distributed
on the infrared tail of the Bose-Einstein distribution, nB(ω � T ) ≈ T/ω � 1. This
has two consequences: for soft, ω ∼ gT modes, T/ω ∼ 1/g changes the standard g2

loop expansion into a g expansion. For ultrasoft (US) modes, ω ∼ g2T , the perturbative
expansion breaks down [15], but their contribution only enters q̂ at relative order g2 [16].
The second consequence is that this large occupation number implies the classical nature of
these contributions.

In a pioneering study, Caron-Huot showed in [17] that these classical plasma effects can
be mapped, for the observable at hand, to three-dimensional, Euclidean physics described
by Electrostatic QCD (EQCD) [18–22]. This paved the way first to the perturbative
determination of the O(g) next-to-leading order (NLO) correction to q̂, presented in [17]
itself, without recurring to brute-force numerical computations in the HTL theory. Second,
it was used for non-perturbative determinations of the transverse scattering rate using lattice
EQCD [23, 24] — see also [25] — thus incorporating to all orders the contribution of classical
soft and ultrasoft modes. The impact of this non-perturbative rate on medium-induced
emission was examined in [26, 27] and found to be very relevant.

Over the past decade, another source of potentially large higher-order corrections
to q̂ has been discovered [28–30] — see [31] for a review. These are quantum, radiative
corrections, arising from keeping track of the recoil during the medium-induced emission of
a gluon. These corrections, while suppressed by a factor of g2, feature a double-logarithmic
enhancement, whose argument was found to be Lmed/τmin, with Lmed the length of the
medium and τmin ∼ 1/T for a thermal medium. This potentially large double logarithm
can then be resummed, effectively renormalizing the leading-order value of q̂. The evolution
equations for the logarithmic resummation were analyzed in [32, 33] and recently solved
numerically in [34, 35], whereas the change in the argument of the double logarithm from a
dense to a dilute medium was studied in [36]. [32, 37, 38] showed that when two collinear
gluons are emitted with overlapping formation times the same physics is responsible for
double-logarithmic corrections, which are thus universal. This same problem is being
analyzed in full detail, beyond the double-logarithmic terms, in [39–47]. [48] found that the
single-logarithmic corrections too are related by the same universality to those determined
for q̂ in [29].

The presence of two such large corrections, the classical ones at order g and beyond, and
the quantum radiative ones at order g2 ln2(LmedT ), together with the recent developments
on both sides, such as the present availability of high-quality non-perturbative data for the
classical corrections, naturally begs the question of which of the two corrections, if any, can
be considered parametrically larger than the other.

– 2 –
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Motivated by this question, in this paper we address the connection of the two corrections
in the case of a weakly-coupled quark-gluon plasma. We will revisit the calculation of
radiative corrections with full accounting of the thermal length and momentum scales.
We shall show how the effect of Bose enhancement for the radiated gluon, as well as the
possibility of absorption of thermal gluons — neither was included in previous analyses —
modifies the shape of the double-log-enhanced region in the frequency-formation time plane,
thus changing the argument of the double logarithm. On a more technical standpoint, we
also show how the regions giving rise to classical and quantum corrections meet at their
shared boundary, and how this can be rephrased in terms of the mapping to the Euclidean
3D theory introduced by Caron-Huot.

Our analysis will be mostly limited to the largest double-logarithmic corrections only
and it will adopt the so-called harmonic-oscillator approximation: we shall discuss some
smaller corrections and provide a pathway to the determinations of missing ones.

The paper is organized as follows: in section 2 we review the determination of double-
log-enhanced radiative corrections. In section 3 we show how this derivation needs to be
modified to account for the presence of a weakly-coupled dynamical medium and we present
there our main results. In section 4 we provide, for the interested readers, more details
on our derivations and on the connection to the classical regime of Caron-Huot, while in
section 5 we provide a pathway towards the investigation of radiative corrections beyond
the harmonic-oscillator and double-logarithmic approximations. Finally, in section 6 we
draw our conclusions. Our conventions, as well as more technical detail on the calculations,
are collected in the appendices.

2 The double-logarithmic phase space in the literature

As our starting point, let us call C(k⊥) the differential-in-transverse-momentum scattering
rate, also known as scattering kernel, i.e.

C(k⊥) ≡ (2π)2 dΓ
d2k⊥

, q̂(µ) =
∫ µ d2k⊥

(2π)2k
2
⊥ C(k⊥) , (2.1)

where dΓ
d2k⊥

is the rate for the hard jet parton of energy E � T and momentum along z to
acquire k⊥ transverse momentum — see appendix A for our conventions.

µ is some process-dependent UV regularisation for the Coulomb logarithm in the
leading-order scattering kernel, C(k⊥) ∝ k−4

⊥ for k⊥ � gT . We shall treat µ as a parameter,
without necessarily identifying it with the saturation scale Q2

s = q̂Lmed as done in [29]. In
the case of QCD, asymptotic freedom would in principle make the integration UV-finite,
but it would include in q̂ Molière scattering [49, 50], i.e. very large momentum transfers,
which necessarily give rise to two hard jet partons in the final state, in what is no longer a
diffusive process — see e.g. [51, 52]. This µ factorisation also allows the incorporation in
the effective kinetic description of [53, 54], where q̂(µ) is (one of) the transport coefficients
describing diffusive momentum exchanges at scales below µ. There it is complemented by
the full kinetic description above that cutoff.

– 3 –
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Figure 1. Diagrams contributing to radiative momentum broadening in the single-scattering regime.
The double solid line represents the hard jet parton (quark or gluon), curly lines are gluons and the
cross is a quark or gluon scattering center in the medium.

We now consider the radiative correction to the transverse scattering rate in the single-
scattering regime, which emerges naturally in the standard dipole picture [29]. It comes
from the diagrams in figure 1 and it reads

δC(k⊥)N=1
rad = 4αsCR

∫
dk+

k+

∫
d2l⊥
(2π)2C0(l⊥) l2⊥

k2
⊥(l⊥ + k⊥)2 , (2.2)

where CR is the Casimir factor of the hard jet parton, CR = CF = (N2
c −1)/2Nc for a quark,

CR = CA = Nc for a gluon. As shown in figure 1, P is the four-momentum of the hard jet
parton, with p0 = pz = E � T . L denotes the four-momentum acquired from the medium,
and K is chosen in such a way that the hard jet parton acquires a final transverse momentum
of modulus k⊥. k+ ≡ (k0 + kz)/2 ≈ k0 is the light-cone frequency — see appendix A for
our conventions. l2⊥/(k2

⊥(l⊥ + k⊥)2) is then the standard dipole factor and 2CR/k+ the soft
limit of the g ← R DGLAP splitting function. Finally, C0(l⊥) ∼ g4CAT

3/l4⊥ is the leading
order scattering rate from a gluon source. In appendix B we list the known LO results for
mD . l⊥ � T and for l⊥ & T , as well as a smooth interpolating scheme [13, 14]. For the
present discussion the precise form is irrelevant, as we shall soon see.

Eq. (2.2) is in principle just the first, N = 1 term in the opacity series of multiple
scattering. As observed in [29], the requirement that the transverse momentum carried
away by the gluon is larger than that picked up in a typical collision with the medium,
|k⊥ + l⊥| � l⊥, puts us in the single-scattering regime, where the N = 1 term dominates.
This yields

δC(k⊥)single
rad = 4αsCR q̂0

∫
dk+

k+
1
k4
⊥
, with q̂0 ≡

∫ ρ d2l⊥
(2π)2 l

2
⊥ C0(l⊥) , (2.3)

where we have also taken the harmonic-oscillator (HO) approximation: we neglect the ρ
scale dependence of the LO transverse momentum broadening coefficient q̂0, which is treated
as a constant at the HO level. This furthermore makes the dependence on the detailed
form of C0(l⊥) irrelevant. We shall discuss a pathway to go beyond this approximation in
section 5.

The double-logarithmic correction then follows in the form

δq̂(µ) = 4αsCR q̂0

∫ µ d2k⊥
(2π)2k2

⊥

∫
dk+

k+ . (2.4)

– 4 –
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Figure 2. Schematic depiction of the bounds on the integral in eq. (2.5). The (b) side of the triangle
is given by τ =

√
k+/q̂0 whereas the (a) one is given by τ = k+/µ2. The logarithmic axes allow

one to easily read the result of the integral eq. (2.5) straight from the figure, up to the prefactor
αsCRq̂0/π. Our labeling for the three boundaries follows that of [29].

Here we can quite explicitly see how the double log emerges — one coming from the soft
dk+/k+ divergence and the other from the collinear dk2

⊥/k
2
⊥ divergence.

We now specify the integration limits keeping us in the single scattering regime.
Moreover, instead of integrating over k⊥, it will be more convenient to integrate over the
formation time of the radiated gluon, τ ≡ k+/k2

⊥. The limits, which we show in figure 2,
are then [29]

• τ <
√
k+/q̂0, represented by line (b) in figure 2. In the deep Landau-Pomeranchuk-

Migdal (LPM) multiple scattering regime, k2
⊥ ∼ q̂0τ . The former constraint then

emerges upon demanding that τ < k2
⊥/q̂0 and solving for τ . Effectively, this prevents

the formation time from getting sufficiently large to lead us into the multiple scattering
regime, which will cut off the double-logarithmic phase space: the collinear dk2

⊥/k
2
⊥

log can exist as long as the initial and final states can propagate along straight lines
for sufficiently long times before and after the single scattering [55].

• τ > k+/µ2, represented by line (a). This condition on the formation time corresponds
to enforcing the UV cutoff on transverse momentum, i.e. k⊥ < µ. In the original
derivation of [29] this µ cutoff is identified with Q2

s ≡ q̂Lmed. If instead µ > Qs the
boundaries of the double-logarithmic region change, as shown in [36].

• τ > τmin, represented by line (c). This IR cutoff τmin is intended to render the end
result finite. The motivation for this boundary comes from requiring that the duration
of the single scattering does not become comparable to the formation time of the
radiated gluon, as the former is treated as instantaneous within the collinear-radiation
framework. In [29, 30] this duration was assumed to be proportional to the inverse
temperature, leading to τmin ∼ 1/T . We return to this assumption in the next section.

– 5 –
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This leads us to1

δq̂[29, 30](µ) = αsCR
π

q̂0

∫ µ2/q̂0

τmin

dτ

τ

∫ µ2τ

q̂0τ2

dk+

k+ , (2.5)

from which the double-logarithmic correction,

δq̂[29, 30](µ) = αsCR
2π q̂0 ln2 µ2

q̂0τmin
(2.6)

immediately follows. This is the form of [30]; that of [29] arises by choosing µ2 = q̂0Lmed,
so that the argument of the double logarithm becomes the familiar Lmed/τmin. The single-
logarithmic corrections arising from a more sophisticated analysis of the regions neighboring
the three boundaries of the triangle shown in figure 2 have been presented in [29].

3 Thermal scales in the double-logarithmic phase space

The double-logarithmic phase space we just sketched, as per [29, 30], is derived for a
medium described by a random color field with a non-zero two-point function for the A−
component,2 i.e.

〈
A−a(q⊥, x+)A−b(q′⊥, x+′)

〉
= δabδ

(
x+ − x+′

)
n
(
x+
)

(2π)2δ(2)(q⊥ − q′⊥) g
4

q4
⊥

(3.1)

This corresponds for instance to the time-honored parametrisation of a medium of static
scattering centres of density n. However, a weakly-coupled QGP contains more medium
effects than those captured by these instantaneous, space-like interactions; in particular, as
soon as the light-cone frequency (k+) range overlaps with the temperature scale, one needs
to account for the Bose-Einstein stimulated emission of the radiated gluon and, at negative
k+, for the absorption of a gluon from the medium. We could naively account for these
effects by amending eq. (2.5) into

δq̂(µ) = αsCR
π

q̂0

∫ µ2/q̂0

τmin

dτ

τ

∫ µ2τ

q̂0τ2

dk+

k+

(
1 + 2nB(k+)

)
, (3.2)

where nB(k+) ≡ (e k
+
T − 1)−1 is the Bose-Einstein distribution. Its factor of two in eq. (3.2)

accounts for stimulated emission and for absorption, which has been reflected in the
positive-frequency range.

The smallest frequency in eq. (3.2) and in the corresponding original triangle of figure 2
is q̂0τ

2
min. To completely exclude the k+ ∼ T range and thus make the thermal contribution

exponentially small, one should then require τmin �
√
T/q̂0 ∼ 1/(g2T ). Would this be

consistent with a single-scattering picture? To answer this, let us recall a few relevant
1This agrees with eq. (B.8) of [30]. The only difference between eq. (2.5) and their integral is that, while

they cut off the energy of the radiated gluon with the energy E of the parent hard jet parton, we instead
take k+ < µ4/q̂0 < E, which is equivalent to what is done in [29]. In any case, this will not have an impact
on the arguments that follow.

2For a hard jet parton propagating in the x+ light-cone direction.
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timescales in weakly-coupled QGPs. Scattering processes exchanging k2
⊥ happen at a rate —

see e.g. [55, 56]

Γk2
⊥
∼ g4T 3

max(k2
⊥,m

2
D) , for k⊥ & g2T. (3.3)

This arises from the k−4
⊥ form of C(k⊥). We have not shown the Coulomb logarithm of k2

⊥
over m2

D, with mD ∼ gT the Debye (chromoelectric) screening mass — see eq. (A.4).3 This
also means that a k2

⊥ � (gT )2 amount may be accumulated either through a rarer hard
scattering or through multiple softer ones.

We further recall that the duration of a scattering process is O(k−1
⊥ ). Hence, for the

rarer scatterings with k⊥ ∼ T the duration is indeed O(1/T ), as per [29, 30], whereas for
the more frequent soft scatterings the duration is longer by 1/g, so that in principle more
care is needed in drawing and approaching the τ & τmin boundary of the phase space —
line (c) in figure 2 — in a weakly-coupled QGP.

In addition to this latest consideration, 1/g2T is the mean free time between the frequent
soft, k⊥ ∼ gT scatterings with the medium constituents. The dipole factor in eq. (2.2) is
complemented in a thermal QGP by thermal masses of order gT and by the resummation
of these frequent soft scatterings on this 1/g2T timescale [57, 58]. This suppresses the
impact of the non-perturbative ultrasoft scatterings and makes it so that τ & 1/g2T for the
multiple scattering regime, thus answering negatively our previous question. In more detail,
if we look at the LPM estimate τ ∼

√
k+/q̂0, we have that τ ∼ (g2T )−1 for k+ ∼ T and

that it grows for growing k+. In other words, for k+ ∼ T only scatterings with k⊥ ∼ gT

have to be resummed in the multiple scattering regime, whereas for k+ � T multiple soft
scatterings and a single harder scattering can both occur within this parametrically longer
formation time, giving rise in turn to a logarithmic enhancement that justifies the HO
approximation. We recommend the pedagogical discussion in [55] for further clarifications.

We also note that, for frequencies parametrically smaller than the temperature, which
τmin ∼ 1/T allows (q̂/T 2 ∼ g4T ), we then have

√
k+/q̂0 < 1/g2T ; this boundary (b) too

becomes ill-defined there. Furthermore, the factorisation into soft and collinear logarithms
undergirding eq. (2.5) is predicated on a collinear expansion k+ � k⊥, i.e. τk+ � 1 [32].
This ln τ > − ln k+ line in principle excludes parts of figure 2: the (b)− (c) vertex is below
it, since q̂τ3

min ∼ g4 � 1 for τmin ∼ 1/T . The exclusion stretches to the ln τ = − ln k+

line, which crosses lines (c) and (b) if µτmin > 1, i.e. µ > T . If instead µ < T it crosses
lines (a) and (b).

Where and how does the thermal distribution contribute to eq. (3.2)? How should we
address the duration-dependent formation time boundary? How should we make sense of
the deep LPM boundary (b) if k+ � T and of the collinearity boundary τk+ > 1? And
finally, how does the transition to the classical corrections studied in [17] take place? As
the τk+ > 1 discussion suggests, the answer turns out to depend on the magnitude of µ
compared to the temperature. We start by discussing the case µ < T . The discussion of this
section is limited to the double-logarithmic correction in the HO approximation, though
some of our more technical results, as presented in the subsequent sections, pave the way
for a treatment beyond this accuracy.

3Omitting this logarithm is consistent with the adopted harmonic-oscillator approximation.
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3.1 Double logarithms for µ < T

How can we address the issues we just outlined? A naive way out would be to require τmin �
1/(g2T ), as depicted by the upper triangle in figure 3, which we have thus purposefully
colored in the same shade as the original triangle in figure 2: in this region k+ � T and
the nB-proportional thermal contribution to eq. (3.2) is exponentially small. However, as
was previously noted, this large τmin would amount to only considering radiative processes
with a long formation time, at odds with the τ � 1/(g2T ) requirement for a strict single
soft scattering regime.4 Furthermore, as we shall explain, our detailed evaluation of the
strict single scattering regime with τ � 1/(g2T ), k+ ∼ T finds a double-log-enhanced
contribution there. We thus conclude that τmin cannot be larger than 1/g2T ; for strict
single scatterings to be included, we must have τmin � 1/(g2T ). If line (b) were to be
taken seriously at k+ < T , we would thus be including parts of the thermal and subthermal
frequency range.

Moreover, our position is that the “single-scattering” definition employed in the literature
on double logs is not exclusively that of a strict single scattering: the collinear divergence
gets cut off when k⊥ becomes small enough (τ large enough) that multiple scatterings start
to contribute within a formation time, and that this happens before entering the so-called
“deep LPM” regime k2

⊥ ∼ q̂0τ . However, at double-logarithmic accuracy we do not (in
fact, we cannot) distinguish between a k2

⊥ � q̂0τ and a k2
⊥ ∼ q̂0τ boundary, and in the

HO approximation — see the discussion above and footnote 3 — we cannot disentangle
multiple soft scatterings from a single harder one. As mentioned, the analysis of [29]
deals with single-logarithmic corrections to this boundary within the HO approximation;
in section 5, we shall show how that boundary can be investigated in the future beyond
that approximation.

Our strategy is thus the following: we introduce an intermediate regulator τint, with
1/gT � τint � 1/g2T . The lower boundary will be discussed soon, whereas the upper
boundary makes it so that for τ > τint we thus include parts of the strict single scattering
regime, as well as the “few scatterings” regime just mentioned. This region is then given by

δq̂(µ)few = αsCR
π

q̂0

∫ µ2/q̂0

τint

dτ

τ

∫ µ2τ

q̂0τ2

dk+

k+

(
1 + 2nB(k+)

)
. (3.4)

Graphically, it is represented in figure 3 by the triangle above τ = τint, which corresponds
to the 1 and 2 subregions. We have filled the 1 region in blue for τ & 1/g2T , where the
effect of the thermal distributions is irrelevant, and in ochre for τint < τ < 1/g2T , where
they start to contribute. For reasons that will become clear shortly, the smaller 2 triangle
has not been shaded. Indeed, as we shall show in appendix C.1, the double-logarithmic
terms from the integration of eq. (3.4) are

δq̂(µ)few
dlog = αsCR

2π q̂0

{
ln2 µ2

q̂0τint
− 1

2 ln2 ωT
q̂0τ2

int

}
with ωT = 2πT

eγE
for ωT

µ2 � τint�
√
ωT
q̂0
.

(3.5)
4Multiple ultrasoft interactions, with l⊥ . g2T , can occur over this timescale, but these non-perturbative

phenomena are suppressed by the dipole factor.
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1
2

3
4

5

Figure 3. A pictorial representation of how the phase space of the radiated gluon is partitioned
once thermal effects are taken into account. See the main text for the explanation of the differ-
ent subregions.

Here γE is the Euler-Mascheroni constant and ωT is the O(T ) scale which naturally appears
once thermal are effects into account. While its precise value can only be determined
from the integration, its scaling could be expected and is related to the vacuum-thermal
cancellation we shall discuss soon. Graphically, if we take k+ = ωT as a vertical line in
figure 3, the first term in eq. (3.5) comes from integrating over the entire “1+2” triangle,
whereas the second term comes from subtracting the smaller 2 triangle, which therefore does
not contribute to double-logarithmic accuracy. Furthermore, this k+ = ωT line intersects
line (b) at

√
ωT /q̂0 ∼ 1/g2T , thus excluding the range where the formation time estimate

becomes unreliable.
We also remark that, for τint > τmin, the horizontal τ = τint line intersects the

diagonal sides of the triangle at k+ = q̂0τ
2
int (line (b)) and k+ = µ2τint (line (a)). The

form (3.5) arises when the temperature scale ωT falls in between these two values, so that
q̂0τ

2
int � ωT � µ2τint, resulting in the range of validity expressed there. This is where

the size of µ with respect to the medium scales enters. At leading order, i.e. without
considering these radiative corrections, choosing gT � µ � T ensures that only the
contributions of the soft modes [13] are included, whereas T � µ also includes the thermal-
mode contribution [14]. If we allow for radiative corrections and further require a strict
single-scattering contribution, we shall show that µ� √gT is necessary, so as to include the
so-called semi-collinear processes of [54, 59].5 Finally, ωT

µ2 � τint should be complemented by
the duration bound τint � τmin: for µ� T this is automatically satisfied, whereas for µ & T

5A good way of understanding why k⊥ ∼ gT is not large enough, thus moving us to the first available
scaling k⊥ ∼

√
gT , µ > √gT , is that for gT < µ <

√
gT the lines (a) and (b) intersect at frequencies that

are not parametrically larger than the temperature. The entire double-log triangle would then find itself at
thermal or subthermal frequencies, effectively removing double-logarithmic enhancements.
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it will then be a further constraint to be imposed. In other words, for µ <
√
ωT /τmin ∼ T

the vertical k+ = ωT line intersects boundaries (b) and (a), whereas for µ >
√
ωT /τmin ∼ T

it would intersect (b) and (c).
For formation times below τint, the process happens in the strict single scattering regime.

It also becomes sensitive to the fact that, over parts of that range, the duration of the
strict single scattering, as per our previous discussion, is parametrically of the same order
of the formation time. This happens because the region includes soft l⊥ ∼ gT scatterings
whose duration overlaps with formation times of order 1/gT , which are part of this region —
hence our τint � 1/gT requirement. As we shall show in section 4, our evaluation, based on
these semi-collinear processes, naturally accounts for these finite-duration effects, removing
the need for a hard cutoff τ > τmin. This corresponds to the regions 3 and 4 in figure 3. As
we mentioned, it also gives rise to a double-logarithmic correction. It turns out that, to
double-logarithmic accuracy in the HO approximation, our result corresponds to the area
of the magenta 3 region — we return to this fact soon. It can thus be directly read off from
figure 3 as

δq̂(µ)single
dlog = δq̂(µ)(3)

dlog = αsCR
2π q̂0 ln2 µ

2τint
ωT

. (3.6)

Upon summing eqs. (3.5) and (3.6) we then find

δq̂(µ)dlog = δq̂(µ)few
dlog + δq̂(µ)single

dlog = αsCR
4π q̂0(ρ� µ) ln2 µ4

q̂0ωT
. (3.7)

We thus see that in this formula, which is one of our main results, τmin has disappeared: it
has been replaced with the scale ωT . The dependence on the intermediate cutoff τint has
also vanished. We have further specified that the scale ρ of q̂0 needs to be smaller than
that of δq̂, in keeping with the l⊥ � k⊥ expansion undergirding eq. (2.4). Since µ � T

here, the expression to be used is then eq. (B.5). Eq. (3.7) also justifies a posteriori — see
footnote 5 — that the first range of k⊥ giving rise to a double-logarithmic enhancement is
k⊥ ∼

√
gT , µ > √gT : had we chosen k⊥ ∼ gT the argument of the double log in eq. (3.7)

would have been of order one.
Upon imposing µ2 = q̂0Lmed, as in [29], eq. (3.7) becomes

δq̂
(√

q̂0Lmed
)

dlog
= αsCR

4π q̂0 ln2 ωc
ωT

, (3.8)

where ωc = q̂0L
2 is the maximal frequency for medium-induced radiation [60]. This formula

is however only valid for 1/g3T � Lmed � 1/g4T , that is for media thicker than a soft
mean free path but thinner that a large-angle scattering mean free path.

We further remark that the effect of a populated medium can be understood, to double-
logarithmic accuracy, as replacing the horizontal τ > τmin line with a vertical k+ > ωT ∼ T
line: up to our usual prefactor of αsCRq̂0/π, 1/4 ln2(µ4/q̂0ωT ) is precisely the area of the
“1+3” shaded triangle in figure 3. Since lines k+ = ωT and (a) intersect at τ = ωT /µ

2, this
shaded triangle is entirely above the collinearity bound τk+ > 1.

The physical picture behind the emergence of the ωT scale is that for k+ � T the
thermal part nB(k+) of the phase space factor 1/2 +nB(k+) is exponentially small, whereas
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for k+ < T , the vacuum part — 1/2 — cancels against the first quantum correction coming
from the expanded nB(k+), i.e.

nB(k+ � T ) = T

k+ −
1
2 +O

(
k+

T

)
. (3.9)

Hence, the logarithmic part of the integral is unaffected in the UV, but it is no longer cut
off in the IR by the boundary of the integration — q̂0τ

2
min — but rather by a quantity of

order T , whose precise value ωT emerges as a property of the integral in eq. (3.2). This can
be better seen from the following simpler single-logarithmic integral, with νIR � T � νUV∫ νUV

νIR

dk+

k+

(
1︸︷︷︸

vacuum
+ 2nB(k+)︸ ︷︷ ︸

thermal

)
= ln νUV

νIR︸ ︷︷ ︸
vacuum

+ 2T
νIR
− ln 2πT

νIReγE
+O

(
νIR

T
, exp(−νUV/T )

)
︸ ︷︷ ︸

thermal

= 2T
νIR

+ ln νUVe
γE

2πT +O
(
νIR

T
, exp(−νUV/T )

)
. (3.10)

More details on the evaluation are provided in appendix C.1.6
The attentive reader will have noticed that this cancellation does not affect the classical

T/k+ term, which is the largest in the IR, though it is not logarithmically divergent. Instead
this term will yield a contribution that is proportional to power laws of µ and τmin; in
the example just shown, this would be the T/νIR term. Power-law terms are in general
not physical: they just represent a non-logarithmic sensitivity to a neighboring region and
must, for IR-safe quantities like q̂, cancel with opposite power laws from said region. In our
case, this neighboring region is the one where both L and K are soft. In that region, the
diagrams in figure 1 are part of the calculation of Caron-Huot [17]. In terms of figure 3,
this region has overlap with the “4” and “5” trapezoids. As we shall show in detail in
section 4 and appendix C.3, these classical power law terms cancel against those coming
from power-law corrections to the calculation of [17] that we shall derive. This undoubtedly
shows in a non-trivial way how the classical and quantum regions are connected.

In summary, for √gT < µ < T — at double-logarithmic accuracy we can use the
� and < delimiters interchangeably — our main result is that the shape of the double-
logarithmic phase space changes from that of figure 2 to the shaded “1+3” one of figure 3:
the horizontal line (c), τ > τmin ∼ 1/T , gets replaced by a vertical line k+ > ωT ∼ T . The
fact that the more sophisticated evaluation of the semi-collinear region, to be presented

6Analogous cancellations between quantum vacuum and thermal corrections in the soft regime, precisely
related to the ±1/2 term in the expansion of the thermal distributions — the plus sign applies to fermions
— are known in the literature: they are discussed briefly and in general terms in [61]. They shift the
Bethe logarithm in the spectrum of heavy quarkonium from its mα5

s ln
(
mαs/(mα2

s)
)
form in vacuum to

a mα5
s ln(mαs/ωT ) form in a thermal medium obeying mαs � T � mα2

s � mD, as shown in [62] — see
also [63] for the analogous case of muonic hydrogen. mαs is the typical transferred momentum or inverse
Bohr radius in this Coulombic, non-relativistic bound state and mα2

s the typical binding energy. This is, in
single-logarithmic form, precisely the same cancellation we observe: as soon as the temperature becomes
larger than the IR scale mα2

s in the vacuum log, mα2
s gets replaced by ωT . Similar cancellations also appear

in the power corrections to Hard Thermal Loops, which receive both vacuum and thermal contributions
which are separately IR-divergent but whose sum is IR-finite [64, 65].
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1
2

5 3
6

Figure 4. Structure of phase space once the cutoff on µ is allowed to increase to values much larger
than the temperature. Notably, region “6” in dark green emerges. It cannot be well described by
our setup due to the associated small formation time.

in section 4, together with the regulated evaluation above the intermediate cutoff τint,
reproduces this simple form signals that effects analyzed in the semi-collinear evaluation,
such as the necessary relaxation of the instantaneous approximation, are not relevant at
double-logarithmic accuracy in the HO approximation, as we shall show there.

3.2 Extension to µ > T

Up until this point, we have taken T � µ� √gT , the first range where double-logarithm
corrections appear. We now move on to consider what happens if µ� T in terms of the
structure of the relevant portion of phase space. If we start from figure 3 and proceed to
increase µ, line (a) gets shifted to the right, making the original (a)−(b)−(c) triangle larger.
As we argued previously, once µ >

√
ωT /τmin ∼ T the vertical k+ = ωT line intersects

lines (b) and (c) rather than (b) and (a). Hence, nothing would change for the part of the
evaluation for τ > τint, as given by eq. (3.5). On the other hand, the evaluation of the strict
single scattering regime, for τ < τint, needs to be amended to account for this. It must also
account for the fact that for µ & T we are thus including strict single scatterings where
l⊥ is approaching or possibly exceeding the T scale. In principle one would thus need to
account for the fact that the coefficient of the leading-log (harmonic-oscillator) q̂0 is not
constant. As shown in [14] and summarized in appendix B, q̂0(ρ� T ) and q̂0(ρ� T ) differ
at leading-log by 15% for Nf = 3 and Nc = 3, so in a first approximation we may neglect
this effect. We leave a more precise evaluation of semi-collinear processes in this region to
future work.

Under this approximation, we can simply extend eq. (3.6) to the present case. This
would however include the dark green triangle “6” in figure 4, which lies under the τ = τmin
line. It is not clear whether this sharp line needs to be included, and only an evaluation
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like the one we show in detail in the next section, but extended to larger µ can address the
effect of the relaxation of the instantaneous approximation in this setting. The expectation
from the previous µ < T results is that this effect should be subleading. We however
choose to proceed conservatively here and subtract that slice from our result. Moreover,
parts of this triangle lie below the τk+ = 1 line, further motivating its subtraction. In our
double-logarithmic approximation this corresponds again, for the reasons just explained in
the previous subsection, to subtracting off the area of that triangle. This leads to

δq̂(µ� T )dlog = αsCR
2π q̂0(ρ� µ)

[
1
2 ln2

(
µ4

q̂0ωT

)
− ln2

(
µ2τmin
ωT

)]

= αsCR
2π q̂0(ρ� µ)

[
ln2
(

µ2

q̂0τmin

)
− 1

2 ln2
(

ωT
q̂0τ2

min

)]
. (3.11)

Unsurprisingly, the subtraction of the “6” triangle from the “1+3+6” triangle on the first
line is equal to that of the unshaded “2+5” triangle from the original (a)− (b)− (c) triangle
on the second line. This implies that, for µ > T , our result is closer to the original one
of [29]. This can be better appreciated by noting that the vertical line at k+ = µ2τmin cuts
the (a) − (b) − (c) triangle into two triangles of equal area. Hence, for ωT > µ2τmin, i.e.
µ . T our result (3.7) is less than half of the original double logarithm (2.6), whereas for
µ >

√
ωT /τmin our result (3.11) is more than half of it.

4 Single scattering for τ < 1/g2T , k+ & T

Our previous section presented all our main results to double-logarithmic accuracy forgoing
detail for the sake of a concise and self-contained explanation. In particular, we left out the
detailed evaluation of our main computational result of this paper: the determination of
the strict single scattering contribution for τ < τint and the connection to the soft, classical
contribution. We now provide both. In section 4.1 we describe the general computational
setup, in 4.2 we introduce semi-collinear processes and derive the double-log contribution.
In section 4.3 we discuss the interplay with the classical region and in section 4.4 we analyze
subleading contributions.

4.1 Computational setup

The natural computational setup for a calculation of transverse momentum broadening —
not dissimilar from that of [29] — is to consider a Wilson loop in the (x+, x⊥) plane — see
appendix A for our conventions — through which we can define the scattering rate and
q̂ [17, 66–68]. The Wilson loop reads, taking a quark source for illustration

〈W (x⊥)〉 = 1
Nc

Tr〈[0, x⊥]−W†(x⊥)[x⊥, 0]+W(0)〉, (4.1)

where the Wilson lines read

W (x⊥) = P exp

ig ∫ Lmed
2

−Lmed
2

dx+A−
(
x+, x⊥

) , (4.2)
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and

[x⊥, y⊥]± = P exp
(
−ig

∫ 0

1
ds (y⊥ − x⊥) ·A⊥

(
±Lmed

2 , x⊥ + (y⊥ − x⊥) s
))

. (4.3)

The fields in this Wilson loop are to be understood as transforming in the representation of
the parton and as path-ordered, so that one can think (in non-singular gauges) of W as the
eikonalized jet quark in the amplitude and W† as its conjugate-amplitude counterpart.

Exponentiation dictates that

lim
Lmed→∞

〈W (x⊥)〉 = exp(−C(x⊥)Lmed), (4.4)

which we can use, together with

C(x⊥) =
∫
d2k⊥
(2π)2

(
1− eix⊥·k⊥

)
C(k⊥), (4.5)

to recover C(k⊥). In a non-singular gauge — we shall adopt later on in appendix D the
strict Coulomb gauge — the [. . . , . . .]± Wilson lines do not contribute to C(x⊥). Eq. (4.5)
further shows how x⊥-independent diagrams — those with no gluon exchange between the
two W — will not contribute to C(x⊥) and thus to q̂; they only contribute to probability
conservation by reducing the probability of acquiring no transverse momentum.

4.2 Semi-collinear processes

Let P = (p+, p−, p⊥) = E(1, 0, 0), with E � T , be the momentum of the hard jet
parton. Then a mode Q ∼ E(1, λ2, λ), with λ� 1 an expansion parameter, is a collinear
mode. [67, 68] argued that such modes are not included in this Wilson loop setup. Radiative
corrections like those we are after are on the other hand included in this Wilson loop
framework: the emitted gluon is collinear, but it carries a momentum fraction k+ + l+ ≈
k+ � E. Borrowing the terminology of [69], we call these modes coft, with Q ∼ λ′E(1, λ2, λ),
λ, λ′ � 1. The single-scattering processes then arise, in the region we are interested in, from
the interaction of these modes with HTL-resummed soft modes. We portray the relevant
diagrams in figure 5.

As the two W lines represent the hard jet parton in the amplitude and conjugate
amplitude, a cut is understood to go horizontally through the middle of each diagram. It
then follows that the first two diagrams in figure 5 corresponds to the square of the first
two in figure 1 and their interference. The third diagram here corresponds to the square of
the third there. Finally the fourth here corresponds to the interference of the first two with
the third there.

So in principle we are presented with the evaluation of these diagrams in the specific
scaling k⊥ ∼

√
gT � l⊥ ∼ gT , k+ ∼ T that is responsible for the double log in the strict

scattering regime for µ < T .7 This detailed calculation will be presented in appendix D,
together with the discussion of the virtual counterpart to the processes shown in figure 1,
confirming that they do not represent a double-logarithmic effect, as per [29]. This Wilson-
loop based determination will thus confirm how these radiative corrections are also encoded

7This corresponds to the coft mode K + L ∼ T (1, g,√g), i.e. λ′ = T/E, λ = √g.
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K + L −L

K + L −L

K

K + L −L

K

K + L −L

Figure 5. Diagrams giving rise to the single-scattering regime. The two horizontal solid lines are
the Wilson lines W. Red gluons are coft, blue ones are HTL-resummed and soft, see main text.
Momenta flow bottom to top.

in that object, thus paving the way for our later contact with the UV boundaries of the
soft NLO calculation of Caron-Huot [17], which also used the Wilson loop setup.

Here we instead present a more intuitive derivation, drawing from the literature. Namely,
k⊥ ∼

√
gT � l⊥ ∼ gT , k+ ∼ T is the semi-collinear region identified in [54, 59]. There it

was found that it is precisely this semi-collinear process that happens on a shorter formation
time τsemi ∼ 1/(gT ) than the strictly collinear one τcoll & 1/(g2T ) through a single scattering
with the medium. The one single scattering exchanges l⊥ ∼ gT ; its duration is thus of
the same order of τsemi, causing the breakdown of the instantaneous approximation. Thus,
addressing this corresponds to “crossing” boundary (c), in the language of [29].

The evaluation of [54, 59] addressed this non-instantaneous nature. In more detail,
the strict collinear regime corresponds, in the momentum labeling of figure 1, to l− ≈
(k⊥ + l⊥)2/(2k+) ∼ g2T � l+, l⊥ ∼ gT ,8 as arising from the on-shell conditions for the
outgoing K + L and P −K legs. Thus, when Fourier-transforming the L propagator to
position space one can neglect its l− dependence, leading to instantaneous propagation
in the x+ direction. Conversely, in the semi-collinear regime k⊥ ∼

√
gT, k+ ∼ T , so

that l− ≈ k2
⊥/(2k+) ∼ gT ∼ l+, l⊥ ∼ gT . Hence the outgoing gluon has the scaling

(K + L) ∼ T (1, gT,√gT ), which is what was identified in [54, 59] as semi-collinear. In
our language it represents a specific coft scaling, as per Footnote 7. In this scaling l− is
no longer negligible with respect to l+ and l⊥, so that the L gluon exchange is no longer
instantaneous in x+. In momentum space, this no longer restricts L to space-like values,

8We are taking the energy of the hard jet parton to be infinite, in accordance with our general setup.
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P

P −K

K + L

P + L

Figure 6. One of the extra diagrams that appear once the duration of the jet-medium interaction
is comparable to the gluon formation time. The blob represents a resummed Hard Thermal Loop:
the L gluon is thus a time-like plasmon. Diagrams corresponding to the other processes of figure 1,
as well as the plasmon emission/gluon absorption crossings are not shown.

thus opening the phase space for the absorption and emission of soft, time-like plasmons, as
shown in the example in figure 6.

We can then directly take the results of [54], which computed these semi-collinear
processes in the non-abelian case. By inspecting figure 10 of [54] one arrives at the
dictionary K[54] → L, Q[54] → K. The derivation of [54, 59] lead to an integrated-in-
transverse momentum rate; however, in intermediate steps a consistent labeling of momenta
was maintained in all diagrams, so that this integration can be undone naturally. We can
then take eq. (8.8) of [54], undo the transverse integration, apply the dictionary and take
the soft-gluon limit x→ 0 in the q → qg and g → gg processes, together with a p→∞ one
for consistency. This leads to

(2π)2 dΓsemi
dk+d2k⊥

= g2CR
πk+k4

⊥

(
1 + nB(k+)

)
q̂

(
ρ; k

2
⊥

2k+

)
, (4.6)

whence — see eq. (2.1)

δC (k⊥)semi = g2CR
πk4
⊥

∫
dk+

k+

(
1 + nB(k+)

)
q̂

(
ρ; k

2
⊥

2k+

)
. (4.7)

q̂(ρ; k2
⊥/2k+) is a modified (adjoint) q̂ that also accounts for the l−-dependence, i.e.

q̂(ρ; l−) = g2CAT

∫ ρ d2l⊥
(2π)2

[
m2
Dl

2
⊥(

l2⊥ + l−2) (l2⊥ + l−2 +m2
D

) + 2 l−2

l2⊥ + l−2

]
. (4.8)

In the l− � gT limit it reduces to the soft contribution to q̂0(ρ) [13] in eq. (B.5), and thus
eq. (4.7) reduces, up to the statistical factor, to eq. (2.3). With respect to eq. (8.8) of [54] we
have also undone the subtractions performed there, which were meant to isolate the strictly
semi-collinear process from its collinear and harder limits, so as to avoid double countings.
Something similar needs to happen here: elastic 2↔ 2 scatterings exchanging k⊥ � gT are
the hard contribution to q̂, as in [14]. As we show in detail in appendix C.2, the integration
over the leading-order phase space does include the region where √gT . k⊥ . T and
either the incoming or outgoing gluon from the medium (L here) becomes soft, L ∼ gT .
As that calculation treats this gluon with bare propagators, it does not properly account
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for its soft dynamics, as encoded by HTL resummation. Hence, the semi-collinear limit
of the calculation of [14] must be subtracted from eq. (4.8), to avoid double counting it.
This yields

q̂(ρ; l−)subtr ≡ q̂(ρ; l−)− q̂(ρ; l−)[14] = g2CAT

∫ ρ d2l⊥
(2π)2

m2
Dl

2
⊥

(l2⊥ + l−2)(l2⊥ + l−2 +m2
D) , (4.9)

i.e. it removes the second term of eq. (4.8), precisely as found in [54, 59].
Eq. (4.9), when plugged in eq. (4.7), is UV log-divergent for ρ� l−,mD. This is not

unexpected, as eq. (4.7) is obtained under the assumption that l⊥ � k⊥. We can thus set
ρ� k⊥ � µ, leading to

q̂(ρ; l−)subtr = αsCAT

{
m2
D ln

(
ρ2

m2
D

)
︸ ︷︷ ︸

HO

−l−2 ln
(

1 + m2
D

l−2

)
−m2

D ln
(

1 + l−2

m2
D

)
︸ ︷︷ ︸

l−−dependent

}
. (4.10)

Our labeling in the underbraces emphasizes that the first, l−-independent term is precisely
eq. (B.5), the harmonic-oscillator approximation to q̂0(ρ) for gT � ρ� T . In our adoption
of the HO approximation, we may for the moment treat ρ as a parameter. If we were
to go beyond it, we would have to complement the evaluation here with the neighboring
region, where k⊥ ∼ l⊥ � gT . That scaling includes both a single harder scattering and a
multiple scattering contribution, which arises when |k⊥ + l⊥| becomes small, causing the
formation time to become long. Addressing these processes properly requires dealing with
LPM resummation beyond the HO approximation: we discuss this outlook in section 5.

Hence, the effect of our more sophisticated approach, which relaxes the instantaneous
approximation, is only contained in the l−-dependent terms in eq. (4.10). The HO term is
instead identical to what would have arisen directly from the simpler evaluation of section 3.
Its contribution to q̂ is thus

δq̂HO
semi = 4αsCRq̂0(ρ)

∫
d2k⊥
(2π)2

1
k2
⊥

∫
dk+

k+ (1 + nB(k+)). (4.11)

We can evaluate this expression by once again keeping only the even part of the frequency
integrand and adding a factor of 2 to account for the negative frequency range. We can
change variables to τ = k+/k2

⊥ = 1/(2l−) and enforce the boundaries τint > τ > k+/µ2,
which are respectively the intermediate regulator and line (a) of section 3. We further
introduce an IR regulator for the frequency, k+ > k+

IR, with T � k+
IR � gT , so as to avoid

the soft frequency regime of [17].9 This then implies k+ < µ2τint, i.e.

δq̂HO
semi = αsCR

π
q̂0(ρ)

∫ µ2τint

k+
IR

dk+

k+

(
1 + 2nB(k+)

) ∫ τint

k+/µ2

dτ

τ
. (4.12)

As we shall see, the k+
IR regulator only affects power law terms, but not double-logarithmic

ones, because of the vacuum-thermal cancellation discussed in section 3. As we show in
9We keep k+

IR as a generic cutoff satisfying T � k+
IR � gT . The specific choice k+

IR = µ2τmin would then
precisely equate our integration region with subregions 3 and 4 of figure 3.
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k+

X

X  modesn ≥ 1

TgT−gT−T k+IR−k+IR

𝒜R

 moden = 0

Figure 7. The contour discussed in the main text for the evaluation of the retarded part of the soft
contribution to eq. (4.14). The corresponding advanced part is not shown. The cross at the origin is
Matsubara zero mode, hence the deformation of the (red) integration contour there, which gives rise
to the Euclidean contribution.

more detail in appendix C.1, the integrations yield

δq̂HO
semi = αsCR

2π q̂0 (ρ)

4T ln
(
µ2τint
k+

IRe

)
k+

IR
+
(

ln2
(
µ2τint
ωT

)
−2γ1+π2

4 −γ
2
E

)+O
(
k+

IR,e
−µτ2

int/T
)
,

(4.13)
where γn is the nth Stieltjes constant and ωT = 2πTe−γE . The double-logarithmic term is
precisely the one anticipated in eq. (3.6). Here we show the accompanying constant and
the T/k+

IR power-law divergence, which signals the overlap with the soft, classical region.

4.3 Connection to the classical contribution

How does this T/k+
IR dependence cancel with the soft, classical region? Diagrams such as

those in figure 5 are precisely those evaluated in [17] with K ∼ L ∼ gT . Hence, on that side
the calculation must present a 1/k+

IR term, where now k+
IR is a UV cutoff that can thus be

safely sent to infinity. Indeed, no such term appears in the expression of [17]. Furthermore,
no k+ integration appears either: as we mentioned, the classical-mode contribution can be
mapped to the 3D Euclidean theory — see [17] for the original derivation and [70] for a
more pedagogical review. Let us look for illustration at the tree-level one-gluon exchange

C (x⊥) = g2CR

∫
d4K

(2π)4

(
1− eik⊥·x⊥

)(1
2 + nB

(
k0
))(

G−−R (K)−G−−A (K)
)

2πδ(k−),

(4.14)
where the δ(k−) comes from the Wilson-line integrations at large Lmed and GR (GA) is
the retarded (advanced) gluon propagator. The key observation is that causality dictates
that GR (GA) is analytical in the upper (lower) half k+ plane, so that the only poles are
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those in the statistical function, at k0 = k+ = in2πT , n ∈ Z. In principle we can then
close the contour at infinite k+ and pick up the residues of all these poles. However, for
x⊥ � 1/T the zero mode dominates, yielding the mapping to EQCD. This corresponds to
having replaced 1/2 + nB(k+) with T/k+ and closed the contour on an arc AR between the
zeroth and first Matsubara modes, as shown in figure 7. If we identify the radius of this
arc with k+

IR (indeed gT � k+
IR � T ), we may take it as large, if we look at things from the

soft side of the calculation. Hence, any function that falls to zero faster than 1/k+ on this
arc will only give rise to inverse powers of k+

IR, which could then safely be neglected in the
derivation of [17]. This is indeed the case both for the LO and NLO soft contributions —
the LO case can be checked by plugging in eq. (4.14) the HTL-resummed Coulomb-gauge
propagators given in eqs. (A.2) and (A.3). In appendix C.3 we show that [54] computed
diagrams related to those in figure 5, expanded precisely on that AR arc. Starting from
these results we show how the arc terms precisely cancel the T/k+

IR ones in eq. (4.13).
We have thus shown how the IR slice of the double-logarithmic phase space overlaps

with that of the soft contributions determined in [17]. In fact, [17] already commented on
the possible sensitivity to collinear modes (coft in our language) at relative order g2 and how
they would show up, on the soft side, as a failure of the T/k+ classical approximation to
the Bose-Einstein distribution. Our findings thus confirm in detail this general expectation.

4.4 Subleading contributions

We now turn to the remainder of eq. (4.10). The l−-dependent terms, integrated with the
same boundaries as in eq. (4.11), give rise to — see again appendix C.1

δq̂l
−−dep

semi = −α
2
sCRCATm

2
D

3π

[
ln3 e1/2µ2

2ωTmD
+O

(
T

k+
IR
, ln, const

)]
. (4.15)

We are not showing explicitly single-logarithmic terms and constants, which are included in
eq. (C.14). Neither do we show the divergent power-law terms, proportional to T/k+, which
will again cancel against classical contributions. We also do not show other power laws in
the other cutoffs, as they can be similarly argued to cancel against neighboring regions.

We remark that the leading term in eq. (4.15) is a triple logarithm of µ2/(mDωT ).
It is thus independent of τint and could then be directly added to eq. (3.7). We argue
that eq. (4.15) is smaller than eq. (3.7): the latter, reinstating the log of q̂0(ρ), is ∝
ln
(
ρ2/m2

D

)
ln2(µ2/

√
q̂0ωT ). µ2/

√
q̂0ωT is larger by 1/g than µ2/(mDωT ), which is instead

comparable to ρ2/m2
D, since ρ � µ. Hence eq. (4.15) represents a subleading correction;

it is the first to feature a logarithmic dependence on the soft screening scale. This is
somewhat analogous to what was found in [29] when crossing line (c) — and thus relaxing
the instantaneous approximation — for a nuclear medium: it still generated a term with
the highest number of logarithms, but with a smaller argument in some of them.

If we wanted to extend the present calculation to larger values of µ, so as to deal more
precisely with region “6” of figure 4, we would need to understand how q̂(ρ; l−) changes once
ρ starts to include the thermal range: this corresponds to the generalisation to non-zero
l− of the connection between the l⊥ ∼ gT and l⊥ ∼ T regimes discussed in appendix B.
Let us finally point out that the subleading triple-log in eq. (4.15) is negative and that,
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for moderate values of the coupling g, may overtake the leading term in eq. (3.7). And
more generally, the determinations at the highest logarithmic order (LL) are numerically
not precise until the first (NLL) corrections are determined — see for instance [55] for the
splitting rate in the deep LPM regime and [71] for transport coefficients. Eq. (4.15) is only
a part of the subleading corrections to the double-log in eq. (3.7): in the next section we
present a pathway to a more precise determination of boundary (b).

5 Transverse momentum broadening beyond the harmonic oscillator

Up until this point we have, with the exception of section 4.4, only discussed double-
logarithmic corrections, and only done so within the harmonic-oscillator approximation.
Thus, we had to infer the coefficient of the HO q̂0 from other considerations, i.e. the
single-scattering requirement ρ� µ. We also explained in section 3 how, within these two
approximations, we cannot distinguish the region where few scatterings are contributing
from the deep LPM regime where many scatterings are contributing. Hence, the boundary
(b) had to be imposed by hand whenever relevant, giving rise to the q̂0 dependence in
the argument of the double logarithm in eq. (3.7). In this section we now present, as an
outlook, a way to proceed beyond these two approximations and self-consistently determine
boundary (b).

To this end, we will thus derive, starting from the formalism of [29, 32], an LPM
resummation equation that is not restricted to the harmonic-oscillator approximation. By
numerically solving that equation and performing the integrations over the two logarithmic
variables k+ and τ (or equivalently k+ and k⊥) one would then see the emergence of
multiple scatterings cutting off the double-log and thus be able to determine how good
of an approximation line (b) is. Let us then start from eqs. (6), (7), (11) and (12) in [29]
(see also (55)), which construct a framework for resumming multiple interactions in the
HO approximation and in the large-Nc limit. Combining (11) and (12) yields, in the
notation of [29]

S(x⊥) = −αsCRRe
∫
dω

ω3

∫ Lmed

0
dz2

∫ z2

0
dz1∇B2⊥ · ∇B1⊥

×
[
e−q̂px

2
⊥(Lmed−z2+z1)/4GHO(B2⊥, z2;B1⊥, z1)− vac

]∣∣∣∣B2⊥=x⊥

B2⊥=0

∣∣∣∣B1⊥=x⊥

B1⊥=0
, (5.1)

where we have already undone the large-Nc approximation by replacing Nc/2, the original
large-Nc limit of CF , with CR. q̂p, with p = q, g denotes the specific partonic broadening
coefficients for a quark or gluon source. The dω frequency integration is understood over
the positive frequencies of the radiated gluon. The propagator GHO is the Green’s function
of the following Schrödinger equation (see (55) there){

i∂z +
∇2
B⊥

2ω + i

4

[
q̂px

2
⊥ + q̂g

2
(
B2
⊥ + (B⊥ − x⊥)2 − x2

⊥

)]}
GHO (B⊥, z;B1⊥, z1) = 0,

(5.2)
with

GHO(B⊥, z1;B1⊥, z1) = δ(2)(B⊥ −B1⊥). (5.3)
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“vac” denotes the subtraction of the vacuum term G0, i.e. the solution of eq. (5.7) with a
vanishing q̂. The double vertical bars at the end of eq. (5.1) signify that the expression in
brackets should be understood as

e−
q̂px

2
⊥

4 (Lmed−z2+z1)
[
GHO(x⊥, z2;x⊥, z1) +GHO(0, z2; 0, z1)

−GHO(x⊥, z2; 0, z1)−GHO(0, z2;x⊥, z1)
]
− vac. (5.4)

Physically, these four terms can be understood as the two positive, virtual terms, where
the gluon is emitted and reabsorbed within the amplitude (both B⊥ = 0) or conjugate
amplitude (both B⊥ = x⊥) minus the real terms, where the gluon is emitted on one side
and absorbed on the other side of the cut.

As a first step, we can identify their S-matrix element with our 〈W (x⊥)〉.10 Hence we
can equate

S (x⊥) = exp [−Lmed (C (x⊥) + δC (x⊥))] ≈ e−LmedC(x⊥) (1− LmedδC(x⊥)) . (5.5)

Secondly, eq. (5.1) is in the harmonic-oscillator approximation, i.e.

Cp(x⊥) HO= q̂p
4 x

2
⊥. (5.6)

We can then undo this approximation, so that eq. (5.2) becomes{
i∂z +

∇2
B⊥
−m2

∞g

2ω +i
[
Cp (x⊥)+ 1

2 (Cg (B⊥)+Cg (|B⊥−x⊥|)−Cg (x⊥))
]}
G(B⊥,z;B1⊥,z1) = 0,

(5.7)
where we have also introduced the gluon’s asymptotic mass, with m2

∞ g = m2
D/2 at leading

order — see [72] for the NLO determination and [73, 74] for non-perturbative contributions.11

Let us comment that the form of eq. (5.7) decomposes the three-body scattering kernel
(the hard jet parton in the amplitude and conjugate amplitude and the radiated gluon)
into three two-body kernels with different color assignments. Perturbatively this is valid
up to, and including, the O(g) NLO corrections, as discussed in [17]. The long-distance,
non-perturbative behaviour of this three-pole object is at present unknown. For a leading-
order determination of radiative correction from this formalism, it should suffice to use the
smooth kernel provided by the Fourier transform of eq. (B.3) as Cq and Cg in eq. (5.7). We
refer to [26, 75] for details on this numerical transform.

Finally, we can also account for the effect of a populated medium by considering the
effects of stimulated emission and absorption, i.e

∫
dωθ(ω)→

∫
dk+(1/2 + nB(k+)) where

we have replaced ω with k+, in keeping with our notation. In a longitudinally uniform
10To this end, it suffices to note that the broadening probability is given in our framework by the Fourier

transform of 〈W (x⊥)〉 and in theirs by that of S — see their eq. (1).
11This mass term is necessary when ∇2

B⊥ , the transverse momentum of the gluon, becomes of order g2T 2;
it can be neglected in the deep LPM regime, where typical transverse momenta are larger, k2

⊥ ∼
√
q̂0ω,

with ω � T .
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medium G is only a function of τ ≡ z2 − z1,12 so that we can use our identification (5.5) to
obtain, in the large-Lmed limit

δC(x⊥) = αsCRRe
∫
dk+

k+3

(1
2 + nB(k+)

)∫ Lmed

0
dτ ∇B2⊥ · ∇B1⊥

[
eCp(x⊥)τG(B2⊥,B1⊥; τ)

− vac
]∣∣∣∣B2⊥=x⊥

B2⊥=0

∣∣∣∣B1⊥=x⊥

B1⊥=0
.

(5.8)

We observe that the source-specific part of the scattering kernel in the Hamiltonian (5.7)
and the amplification factor eCp(x⊥)τ can be eliminated by noting that if G̃(B⊥,B1⊥; τ) ≡
eCp(x⊥)τG(B⊥,B1⊥; τ) is a Green’s function of the operator{

i∂τ +
∇2
B⊥
−m2

∞ g

2k+ + i

2
(
Cg(B⊥) + Cg(|B⊥ − x⊥|)− Cg(x⊥)

)}
G̃(B⊥,B1⊥; τ) = 0,

(5.9)
then G(B⊥,B1⊥; τ) is a Green’s function of eq. (5.7). Hence

δC(x⊥) = αsCRRe
∫
dk+

k+3

(1
2 + nB(k+)

)∫ Lmed

0
dτ ∇B2⊥ · ∇B1⊥

[
G̃(B2⊥,B1⊥; τ)

− vac
]∣∣∣∣B2⊥=x⊥

B2⊥=0

∣∣∣∣B1⊥=x⊥

B1⊥=0
.

(5.10)

This reformulation makes transparent the fact that the Hamiltonian only contains the
purely non-abelian Cg. That is because, before or after both emission vertices, there are
only the two source lines for the hard jet parton and one-gluon exchanges between them
are resummed into exp

(
− Cp(x⊥)(Lmed − τ)

)
. In the time region between the two emission

vertices, the hard jet parton and conjugate hard jet parton lines are no longer a color singlet,
with corresponding color factor CR, but rather an octet, with color factor CR −CA/2. This
corresponds to the Cp(x⊥) − Cg(x⊥)/2 combination in eq. (5.7). But we should remove
the overall exp

(
− Cp(x⊥)Lmed

)
damping, as per our dictionary (5.5), which, thanks to

our manipulation in eq. (5.9), leads to the outright disappearance of the Cp(x⊥) part,
corresponding to the fact that those exchanges would happen also in the absence of the
radiated gluon. Up to the statistical factors and thermal masses, eqs. (5.9) and (5.10)
agree with [32].

Finally, for a medium that is isotropic in the azimuthal direction we can use the
reflection symmetry B⊥ → x⊥ −B⊥ of eq. (5.9) to simplify eq. (5.10) into

δC(x⊥) = 2αsCRRe
∫
dk+

k+3

(1
2 + nB(k+)

)∫ Lmed

0
dτ ∇B2⊥ · ∇B1⊥

[
G̃(B2⊥,B1⊥; τ)

− vac
]∣∣∣∣B2⊥=x⊥,B1⊥=0

B2⊥=0,B1⊥=0
.

(5.11)
12The generalisation to a longitudinally varying medium is straightforward.
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Eq. (5.9) is, together with eq. (5.11), the main result of this section. As we anticipated,
its solution would allow a much better understanding of how the double logarithm is cut
off by the transition from single to multiple scatterings as a function of the energy k+ of
the radiated gluon. Furthermore, eq. (5.9) goes beyond the HO which we had to introduce
in eq. (4.10); as we remarked there, regions where l⊥ + k⊥ becomes small would become
sensitive to multiple scatterings, which are correctly addressed here. However, eq. (5.9) is
not easy to solve, as it would require generalizing the methods of [27, 76–78] to the extra
dependence on x⊥ of G̃. As a first step, one could consider using the improved opacity
expansion introduced in [79–82] to capture the qualitative aspects of the transition from
the HO approximation to including rarer harder scatterings.

We shall leave the full or approximate solution of eq. (5.9) to future work. We conclude
this section by providing a non-trivial consistency check, namely that the single-scattering
term in eqs. (5.9) and (5.11) agrees with the standard results in the single-scattering regime.
That follows by taking the Fourier transforms of eqs. (5.9) and eq. (5.11), i.e. starting from

G̃(B2⊥,B1⊥; τ) ≡
∫
d2p⊥
(2π)2

∫
d2q⊥
(2π)2 e

iB2⊥·p⊥e−iB1⊥·q⊥G̃(p⊥, q⊥; τ). (5.12)

Upon using the method of [76] it is possible to obtain the N = 1 contribution through a
tedious calculation, yielding, in the large-Lmed limit

δC(x⊥)N=1 = 2αsCR
∫
dk+

k+

(
1+2nB(k+)

)∫ d2p⊥
(2π)2

∫
d2l⊥
(2π)2 Cg(l⊥)(1−eix⊥·p⊥)(1+eix⊥·l⊥)

p2
⊥+m2

∞g

×
[

p2
⊥

p2
⊥+m2

∞g

− p⊥ ·(p⊥+l⊥)
(p⊥+l⊥)2+m2

∞g

]
. (5.13)

At this point we need to extract the real-process contribution, δC(k⊥)real
single. This just

corresponds to Fourier-transforming x⊥ into k⊥ and only keeping terms proportional to
exp(ix⊥ · p⊥) and exp(ix⊥ · (p⊥ + l⊥)), yielding

δC(k⊥)real
single = 4αsCR

∫
dk+

1
2 +nB(k+)

k+

∫
d2l⊥
(2π)2Cg(l⊥)

[
k⊥

k2
⊥+m2

∞g

− k⊥+l⊥
(k⊥+l⊥)2+m2

∞g

]2

.

(5.14)

In the m∞ g → 0 limit and neglecting the thermal distribution (1/2 + nB(k+) → θ(k+))
this agrees with eq. (2.2). The x⊥-independent term in δC(x⊥)N=1 is the usual probability-
conserving contribution, whereas the term proportional to exp(ix⊥ · l⊥) encodes virtual
processes. In appendix D.2 we show its explicit form and prove that it agrees with our
direct diagrammatic evaluation.

6 Conclusions and outlook

In this paper we have analyzed double-log enhanced quantum corrections to transverse
momentum broadening in a weakly-coupled QGP. These corrections arise from the recoil
in transverse momentum after a medium-induced radiation is sourced by a single scattering
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with the medium. The region of phase space for the double logarithm, as represented in
figure 2, was shown in [29, 30] to be triangular in logarithmic units of formation time τ and
frequency k+ of the radiated gluon, resulting in eq. (2.6). We show that the boundary of
said region is only valid in media whose sole effect is to provide transverse-momentum kicks
to the propagating hard jet parton.

In our case, on the other hand, the thermal population of dynamical gluons changes the
shape of the phase space, since the original triangle necessarily overlaps with regions where
k+ is order T or smaller. There one needs to account for Bose-stimulated emission and for
absorption of thermal gluons from the bath. This results in figures 3 and 4, which are the
main results of this paper, together with the associated eqs. (3.7) and (3.11). What these
figures and equations show is that thermal emission and absorption change the infrared
limits of the double-logarithmic integral: no frequencies smaller than O(T ) contribute to
these double logs. This low-frequency region corresponds to the unshaded, white areas
in both figures: only the colored regions to the right of the vertical k+ = ωT = 2πTe−γE
line contribute to the double logs. This is then reflected in the two equations: at double-
logarithmic accuracy, the area of the shaded regions corresponds to the radiative correction.

How does this happen? We show that the effect of thermal absorption and emission is
described by changing the dk+/k+ logarithmic frequency integral into dk+/k+(1+2nB(k+)),
with nB the thermal distribution. As we explain in section 3.1, as soon as k+ � T , the
IR log divergence in the vacuum part cancels with twice the −1/2 from the IR expansion
of the statistical function, leaving the IR contribution to that integral to be dominated
by the non-logarithmic, classical T/k+ term in that expansion. In section 4.3 we show in
detail how this term smoothly connects radiative quantum corrections to the classical soft
corrections determined by Caron-Huot in [17] using the mapping to the three-dimensional
Euclidean theory he introduced. This is another of our main results: in a weakly-coupled
quark-gluon plasma the IR regions of the original double-logarithmic phase space are
not O(g2 ln2) quantum corrections but rather part of the O(g) classical corrections. The
vacuum-thermal cancellation of the double-logarithmic piece in these regions naturally
separates the two corrections.

It is also worth stressing that our calculation identified two regions that contribute
to double-logarithmic radiative corrections: taking figure 3 as an example, for the case
where the transverse momentum exchange is limited to µ . T , these are regions “1” and
“3”. We have identified “1” as the region where single scatterings start to make way to a
regime of “few” scatterings, before eventually reaching the deep LPM, aka “many scattering”
regime, represented by line (b), which is expected to cut off the double logarithm. Region
“3” is instead restricted to formation times shorter than the mean free time 1/g2T between
frequent soft scatterings in the medium: it is thus a strict single soft scattering regime, where
furthermore the duration of the single scattering overlaps with the formation time. Our
treatment in section 4 is based on semi-collinear processes, introduced in [54, 59] and properly
accounts for these overlapping timescales without resorting to instantaneous approximations.
We however find that the leading contribution from this region corresponds to what would
emerge from a naive treatment which considers the single scattering instantaneous with
respect to the formation time — see section 4.2. The effect arising from the overlapping
timescale, as given by eq. (4.15), though still logarithmically enhanced, is subleading
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compared to the former, and represents part of the subleading log corrections that are
expected beyond double-logarithmic accuracy.

In section 5 we provide an important ingredient for the determination of radiative
corrections beyond this accuracy: we provide a framework — eqs. (5.9) and (5.11) — that
can resum multiple scatterings and their LPM interference pattern beyond the harmonic-
oscillator approximation, which, like previous literature, we have employed for our previously
discussed main results. This is obtained by suitably extending the framework of [29,
32]. Numerical or semi-analytical solutions of these equations will yield two important
advancements: first, they would be able to shed light on how the transition from single
to multiple scatterings closes the double-logarithmic phase space at k+ � T , where in a
weakly-coupled QGP the mean free time 1/g2T between soft scatterings is well separated
from the long formation time τ ∼

√
k+/q̂0 ∼

√
k+/T/g2T . Second, if one wanted to

approximate the solution with a double-logarithmic form, these solutions would clarify the
ρ scale at which q̂0 should be evaluated in the harmonic-oscillator approximation and they
would determine subleading single-log corrections from boundary (b). As these solutions
are not straightforwardly obtained, we leave these developments to future work.

This also implies that we are currently lacking a consistent determination of all sub-
leading single-log corrections. We feel it would be premature and potentially misleading
to assess the quantitative impact of these double-logarithmic corrections: in many cases —
see [71] for transport coefficient and [55] for collinear splitting rates — NLL corrections
are necessary to have a sensible estimate of the size of LL contributions. The situation is
somewhat even more ambiguous in this case, as ρ too is undetermined, as explained.

Our results naturally open other directions for future research: as we discussed in
the Introduction, these double- and single-logarithmic radiative correction affect in the
same fashion transverse momentum broadening and double gluon emission [32, 37, 38, 48].
Addressing how the emergence of the temperature scale affects double gluon emission would
thus be a very interesting natural development.

Finally, resummation equations for the double-log quantum corrections have been
derived in [29, 32, 33] and solved in [34, 35]. These methods are based on the original
triangle of figure 2 for the double-logarithmic phase space and can be understood as evolving
q̂ from some initial timescale τ0 to longer timescales by resumming many long-lived quantum
fluctuations. A way to incorporate our careful evaluation of the thermal-k+ and short-τ
regions could be to use our results below some τtrans ∼ 1/g2T , properly incorporating the
vacuum-thermal cancellation as well as our semi-collinear single-scattering regime and,
potentially, also the classical regime with its non-perturbative determinations [24, 26, 27].
The obtained q̂(τtrans) could then be passed on as an initial condition to the resummation
equations of [34, 35], thus naturally factorizing classical and semi-collinear contributions on
one side from the quantum evolution on the other.13 This too is left to future investigations.
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A Conventions

Our sign for the covariant derivative is

Dµ = ∂µ − igAµ,

which fixes the sign of the three gluon vertex to be positive. Moreover, we work with
the “mostly minus” (+,−,−,−) metric. Uppercase letters denote four-momenta, lowercase
letters the modulus of the three-momenta.

We will often be working in light-cone coordinates, where

p+ ≡ p0 + pz

2 = v̄µp
µ,

p− ≡ p0 − pz = vµp
µ,

p · q = p+q− + p−q+ − p⊥ · q⊥,

where we have defined the two light-like reference vectors as

v̄µ ≡ 1
2(1, 0, 0,−1),

vµ ≡ (1, 0, 0, 1).

This asymmetric convention for the + and − components of the light-cone coordinates has
two advantages: it has unitary Jacobian, i.e. dp0dpz = dp+dp−, and we shall often deal
with scalings where p− � p+, which then implies p0 ≈ pz ≈ p+.

Let us now discuss propagators. For convenience we will mostly work in the Keldysh,
or r, a, basis of the real-time formalism for the computation of thermal expectation values
— see [83] for a review. The two elements of this basis are defined as φr ≡ (φ1 + φ2)/2,
φa ≡ φ1−φ2, φ being a generic field and the subscripts 1 and 2 labeling the time-ordered and
anti-time-ordered branches of the Schwinger-Keldysh contour respectively. The propagator
is a 2× 2 matrix, where one entry is always zero and only one entry depends on the thermal
distribution, i.e.,

D =
(
Drr Dra

Dar Daa

)
=
((

1
2 ± n(p0)

)
(DR −DA) DR

DA 0

)
, (A.1)

where DR and DA are the retarded and advanced propagators, the plus (minus) sign refers
to bosons (fermions). n(p0) is the corresponding thermal distribution, either nB(p0) =
(exp

(
p0/T

)
−1)−1 for bosons or nF(p0) = (exp

(
p0/T

)
+1)−1 for fermions. We also define the

spectral function as the difference of the retarded and advanced propagators, ρ ≡ DR −DA.
We will denote the gluon propagator by G.

We will adopt strict Coulomb gauge throughout. The treatment of soft momenta in
propagators and vertices requires the use of Hard Thermal Loop (HTL) resummation [12].
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Coulomb-gauge HTL-resummed gluons are described by

G00
R (Q) = i

q2 +m2
D

(
1− q0

2q ln q
0 + q + iε

q0 − q + iε

) , (A.2)

GijR(Q) ≡ (δij − q̂iq̂j)GTR(Q) = i(δij − q̂iq̂j)

q2
0 − q2 −m2

∞

(
q2

0
q2 −

(
q2

0
q2 − 1

)
q0

2q ln q
0+q
q0−q

)
∣∣∣∣∣∣∣∣∣∣
q0=q0+iε

.

(A.3)

Here
m2
D = g2T 2

(
Nc

3 + Nf

6

)
(A.4)

is the LO Debye mass and m2
∞ = m2

D/2 is the LO gluon asymptotic mass. The other
components of the propagators in the r, a basis can be obtained through eq. (A.1).

B Transverse-momentum broadening kernels

The leading-order transverse momentum broadening kernel comes from elastic 2 ↔ 2
scatterings with medium constituents. In the soft sector, i.e. mD . l⊥ � T , these get
Landau-damped, leading to [13]

C(l⊥)LO
soft = g2CRTm

2
D

l2⊥(l2⊥ +m2
D) . (B.1)

For
√
ET � l⊥ & T one finds [14]

C(l⊥)LO
hard = g4CR

l4⊥

∫
d3q

(2π)3
q − qz
q

[
2CA nB(q)(1 + nB(q′)) + 4NfTF nF(q)(1− nF(q′))

]
,

(B.2)
where q′ = q+ l2⊥+2l⊥·q

2(q−qz) and TF = 1/2 for the quark scattering contribution. We refer to [14]
for details on the accurate numerical evaluation of this expression. [14] also provided a handy
expression that interpolates smoothly between the two regimes by partially resumming
higher-order contributions, i.e.

C(l⊥)LO
smooth = 2g4CR

l2⊥(l2⊥+m2
D)

∫
d3q

(2π)3
q−qz
q

[
CAnB(q)(1+nB(q′))+2NfTF nF(q)(1−nF(q′))

]
.

(B.3)
It is straightforward to show that this form reduces to eq. (B.1) for l⊥ � T , whereas for
l⊥ � T it goes into

C(l⊥�T )LO
smooth = 2g4CR

l4⊥

∫
d3q

(2π)3

[
CAnB(q)+2NfTF nF(q)

]
= g4CRζ(3)T 3

π2l4⊥

[
2CA+3NfTF

]
.

(B.4)
In between these two limits C(l⊥)LO

smooth is a monotonic function.
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The leading-log coefficients of q̂, which correspond to the expressions in the harmonic-
oscillator approximation, can easily be obtained by the second moment of eq. (B.3) up to a
UV regulator µ. In the two limiting cases they are thus

q̂0(mD � µ� T ) = αsCRTm
2
D ln µ2

m2
D

, (B.5)

q̂0(µ� T ) = 4α2
sCRζ(3)T 3

π

[
2CA + 3NfTF

]
ln µ2

T 2 . (B.6)

Non-logarithmic, O(1) constants have been dropped in these expressions. The second
one also features a ln(T/mD) contribution. Numerically, the ratio of the two leading-log
coefficients, 4αsT 2ζ(3)

[
2CA+3NfTF

]
/(πm2

D), is approximately 0.85 for Nc = Nf = 3 QCD.
Finally, the O(g) correction to C(l⊥) can be found in [17]. A prescription for connecting

it to eqs. (B.1) and (B.2) without double countings is available in [75]. For l⊥ � g2T the
screened Coulomb picture is replaced by non-perturbative behavior, with C(l⊥) ∼ k−3

⊥ [27].

C Technical details

C.1 Details on thermal integrations

We start by showing how the thermal part of eq. (3.10) is derived under the assumption
νUV � T � νIR. The main idea is to introduce an intermediate ε regulator, in the spirit of
dimensional regularization, i.e.∫ νUV

νIR

dk+

k+ nB(k+) = lim
ε→0

[∫ νUV

0

dk+

k+ k+εnB(k+)−
∫ νIR

0

dk+

k+ k+εnB(k+)
]

= lim
ε→0

[∫ ∞
0

dk+

k+ k+εnB(k+)−
∫ νIR

0

dk+

k+ k+ε
(
T

k+−
1
2

)]
+O

(
νIR

T
,e−

νUV
T

)
= lim
ε→0

[
T εζ(ε)Γ(ε)−

(
TνεIR

νIR(ε−1)−
νεIR

2ε

)]
+O

(
νIR

T
,e−

νUV
T

)
= T

νIR
+ 1

2 ln νIRe
γE

2πT +O
(
νIR

T
,e−

νUV
T

)
. (C.1)

The main advantage is that it allows us to use the known analytically-continued integrations
of the Bose-Einstein distribution in terms of the Riemann ζ and Euler Γ functions.

We now move to employ this method for eq. (3.4). Its thermal part is best evaluated
by changing the order of the integrals, i.e.

∫ µ2
q̂0

τint

dτ

τ

∫ µ2τ

q̂0τ2

dk+

k+ nB(k+) =
∫ µ2τint

q̂0τ2
int

dk+

k+ nB(k+)
∫ √ k+

q̂0

τint

dτ

τ
+
∫ µ4

q̂0

µ2τint

dk+

k+ nB(k+)
∫ √ k+

q̂0

k+
µ2

dτ

τ
.

(C.2)
In our q̂0τ

2
int � ωT � µ2τint hierarchy, the second integral is exponentially suppressed. For

the first one we can proceed as follows

∫ µ2τint

q̂0τ2
int

dk+

k+ nB(k+)
∫ √ k+

q̂0

τint

dτ

τ
= 1

2

∫ µ2τint

q̂0τ2
int

dk+

k+ nB(k+) ln k+

q̂0τ2
int
. (C.3)
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We can then exploit that∫ ∞
0

dk+

k+ k+εnB(k+) ln k
+

T
= T εΓ(ε)

(
ζ ′(ε) + ζ(ε)ψ(ε)

)
, (C.4)

where ψ(x) is the digamma function. This, together with eq. (C.1), leads to

∫ µ2τint

q̂0τ2
int

dk+

k+ nB(k+)
∫ √ k+

q̂0

τint

dτ

τ
= T

2q̂0τ2
int

+ 1
8

(
− ln2 ωT

q̂τ2
int

+ γ2
E −

π2

4 + 2γ1

)

+O
(
q̂0τ

2
int
T

, e−
µ2τint
T

)
, (C.5)

which in turn can be added to the straightforward vacuum part to give

δq̂(µ)few = αsCR
2π q̂0

{ 2T
q̂0τ2

int
+ ln2 µ2

q̂0τint
− 1

2 ln2 ωT
q̂0τ2

int
+ γ2

E

2 −
π2

8 + γ1 + . . .

}
, (C.6)

whose purely double-logarithmic contribution we have anticipated in eq. (3.5). The dots
stand for the suppressed terms. Eq. (4.13) can be obtained using the same techniques.

Let us turn to eq. (4.15). The starting point is

I ≡
∫ µ2τint

k+
IR

dk+

k+

(1
2 + nB(k+)

)∫ τint

k+/µ2

dτ

τ

[
− 1

4τ2 ln
(
1 + 4m2

Dτ
2
)
−m2

D ln
(

1 + 1
4m2

Dτ
2

)]
.

(C.7)

The τ integration yields

I =
∫ µ2τint

k+
IR

dk+

k+

(1
2 + nB(k+)

)[
m2
D

2 Li2
(
− µ4

4k+2m2
D

)
− m2

D

2 ln
(

1 + µ4

4k+2m2
D

)

− µ4

8k+2 ln
(

1 + 4k+2m2
D

µ4

)
+O

( 1
τ2

int

)]
, (C.8)

where Li2 is the dilogarithm and we have expanded for mDτint � 1, recalling that 1/gT �
τint � 1/g2T . The vacuum (1/2) part needs to be integrated as is, without further
expansions: while close to the IR boundary we could exploit that µ2/(2k+mD)� 1, that
would not be true close to the UV boundary, where instead µ2/(2k+mD)� 1. The integral
is however not problematic and yields

Ivac =

− 1
6m

2
D

[
ln3
(

µ2

2k+
IRmD

)
+ 3

2 ln2
(

µ2

2k+
IRmD

)
+ 1

4
(
6 + π2

)
ln
(

µ2

2k+
IRmD

)
+ 1

8
(
6 + π2

)]

+O
( 1
τ2

int
, (k+

IR)2
)
, (C.9)

where we have again expanded in the cutoffs. For the thermal part we can on the other
hand expand for µ2/(2k+mD) � 1, as the effective UV cutoff introduced by Boltzmann
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suppression makes the region where µ2/(2k+mD) . 1 exponentially suppressed. Hence

IT = −m2
D

∫ ∞
k+

IR

dk+

k+ nB(k+)
[

ln2 µ2

2k+mD
+ ln µ2

2k+mD
+ 1

2

(
1 + π2

6

)]
+ . . . , (C.10)

where the dots stand for higher-order terms in the expansions in the cutoffs and for the
exponentially suppressed term arising from approximating the UV cutoff to infinity. This
integral can be done with eqs. (C.1), (C.4) and∫ ∞

0

dk+

k+ k+εnB(k+) ln2 k
+

T
= T εΓ(ε)

[
ζ ′′(ε) + 2ψ(ε)ζ ′(ε) + ζ(ε)

(
ψ(ε)2 + ψ(1)(ε)

)]
,

(C.11)
where ψ(1) is the polygamma function of order 1. Using these three integrals we find

IT = −
m2
DT

(
ln2
(

µ2

2k+
IRmD

)
− ln

(
µ2

2k+
IRmD

)
+ π2

12 + 3
2

)
k+

IR

+ m2
D

6

{
ln3
(

µ2

2k+
IRmD

)
− ln3

(
µ2

2mDωT

)
+ 3

2 ln2
(

µ2

2k+
IRmD

)
− 3

2 ln2
(

µ2

2mDωT

)

+ 1
4
(
6 + π2

)
ln
(

µ2

2k+
IRmD

)
+ ln

(
µ2

2mDωT

)[
6γ1 − π2 + 3γ2

E −
3
2

]

− 6γEγ1 − 3
(
−γ1 + γ2 + π2

8

)
+ 1

2(3− 4γE)γ2
E

}
+ . . . . (C.12)

Upon summing eqs. (C.9) and (C.12) we see that all logarithmic dependence on k+
IR

vanishes, yielding

I =−
m2
DT

(
ln2
(

µ2

2k+
IRmD

)
− ln

(
µ2

2k+
IRmD

)
+ π2

12 + 3
2

)
k+

IR

+ m2
D

6

{
− ln3

(
µ2

2mDωT

)
− 3

2 ln2
(

µ2

2mDωT

)
+ ln

(
µ2

2mDωT

)[
6γ1 − π2 + 3γ2

E −
3
2

]

− 6γEγ1 − 3 (−γ1 + γ2) + 1
2(3− 4γE)γ2

E −
1
4
(
3 + 2π2

)}
+ . . . . (C.13)

Upon reinstating the proper prefactor we have

δq̂l
−−dep

semi = 2α2
sCRCAT

π
I, (C.14)

whose highest logarithmic term we anticipated in eq. (4.15).

C.2 Hard semi-collinear subtraction

In this appendix, we will show how the second term in eq. (4.8) is automatically taken
into account if we add the hard contribution to q̂ from [14]. Indeed, that paper computes
the contribution to q̂ for

√
ET � k⊥ � gT at leading order, i.e. through elastic Coulomb
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scatterings with the light quarks and gluons of the medium. The incoming and outgoing
momenta for such scatterers are named P2 and P2 −Q there. We can then identify P2 with
our L and Q with −K.14 In order to obtain the contribution to C(k⊥) and thence q̂, [14]
integrates over all values and orientations of p2. In so doing, it ends up including the slice
where p2 ∼ gT , k⊥ ∼

√
gT , which is precisely the semi-collinear scaling we investigated in

section 4. As explained there, we need to subtract this limit of [14], so as to avoid double
countings. We thus proceed to its determination.

Our starting point is eq. (3.8) of [14], where we have specialized to the case of scattering
off a soft gluon (nB(l0) ≈ T/l0) and undone a couple of auxiliary integrals (see (3.7) there),
as well as applied the dictionary just described. We then have

δC(k⊥)hard = 2g4CRCA
k4
⊥

∫
dk0

2π

∫
dkz

2π

∫
d4L

(2π)4

(
l0 − lz

)2 T

l0

(
1 + nB

(
l0 + k0

))
× 2πδ

(
k0 − kz

)
2πδ

(
(L+K)2

)
2θ
(
l0 + k0

)
2θ
(
l0
)

2πδ
(
L2
)
. (C.15)

For a soft gluon L ∼ gT we can simplify the expression above as

δC (k⊥)hard = 2g4CRCA
k4
⊥

∫
dk+

2π

∫
d4L

(2π)4
T l−2

l+ + l−/2
(
1 + nB(k+)

)
× 2πδ

(
2k+l− − k2

⊥

)
2θ(k+)2θ

(
l+ + l−/2

)
2πδ

(
L2
)
. (C.16)

We can set up the δ function to fix l+, in analogy to what has been done in section 4, i.e.

δC(k⊥)hard = 2g4CRCA
k4
⊥

∫
dk+

2π

∫
d4L

(2π)4
T l−2

l+ + l−/2(1 + nB(k+))θ(k
+)

k+

× 2πδ
(
l− − k2

⊥
2k+

)
θ(l+ + l−/2)
|l−|

2πδ
(
l+ − l2⊥

2l−

)
. (C.17)

This finally yields

δC(k⊥)hard = g2CR
πk4
⊥

∫
dk+

k+ (1 + nB(k+))θ(k+)
∫

d2l⊥
(2π)2

g2CAT 2l−2

l2⊥ + l−2

∣∣∣∣
l−=

k2
⊥

2k+

. (C.18)

It is encouraging to see the resemblance of this result to that of the second term of
eq. (4.8) when plugged in eq. (4.7). However, to get the two results to match exactly, we
need to compute the same result with same integral with instead L→ L−K and L+K → L

keeping L soft, that is, a soft outgoing gluon scatterer. This second integral will give the
negative k+ contribution, and the integrals’ sum will indeed yield

δC(k⊥)hard
semi = g2CR

πk4
⊥

∫
dk+

k+ (1 + nB(k+))q̂[14]

(
ρ; k

2
⊥

2k+

)
. (C.19)

14In the language of eq. (B.2), which reproduces the hard contribution to C(l⊥), we should identify q there
with l here and l there with k here.
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C.3 T/k+
IR terms from the soft, classical calculation

As we mentioned in section 4.3, this appendix is devoted to showing how the results of [54]
can be used to explicitly derive the T/k+

IR terms that arise on the AR contour of figure 7 in
the reduction to EQCD derived in [17]. For reasons that shall soon become clear, let us
start from eq. (F.49) of [54]. It reads

δq̂L
∣∣∣
loop
−δq̂L

∣∣∣diff

subtr.
= 4g4CRCAT

∫
CR

dq+

2π

∫
d2q⊥
(2π)2

∫
d4K

(2π)4 (C.20)

×
{
G−−rr (K)πδ(k−)

q2
⊥+m2

∞

(
q2
⊥

q2
⊥+m2

∞
− q2

⊥+q⊥ ·k⊥
(q⊥+k⊥)2+m2

∞

)
+O

( 1
q+

)}
+CA,

where we have dropped subleading terms on the CR and CA arcs, which are defined below
eq. (3.19) in [54]. G−−(K) denotes the Coulomb-gauge HTL propagator, as per appendix A.
We can now symmetrize the expression in round brackets, leading to

δq̂L
∣∣∣
loop
−δq̂L

∣∣∣diff

subtr.
= 2g4CRCAT

∫
CR

dq+

2π

∫
d2q⊥
(2π)2

∫
d4K

(2π)4 (C.21)

×
{
G−−rr (K)πδ(k−)

(
q⊥

q2
⊥+m2

∞
− q⊥+k⊥

(q⊥+k⊥)2+m2
∞

)2

+O
( 1
q+

)}
+CA.

We can now observe that this is an expression for the longitudinal momentum diffusion
q̂L ≡ 〈q2

z〉/Lmed. It can be translated to its transverse counterpart by multiplying by q2
⊥/q

+2

under the integral sign. We can further translate to our momentum coordinates with the
dictionary mentioned in section 4, i.e. Q[54] → K, K[54] → L. By comparing the definition
of the arcs there with ours, as per figure 7, we can also translate CR to AR.15 This yields

δq̂
∣∣∣arcs

soft
= 2g4CRCAT

∫
AR

dk+

2π

∫
d2k⊥
(2π)2

∫
d4L

(2π)4 (C.22)

×
{
k2
⊥

k+2G
−−
rr (L)πδ(l−)

(
k⊥

k2
⊥ +m2

∞
− k⊥ + l⊥

(k⊥ + l⊥)2 +m2
∞

)2

+O
( 1
k+3

)}
+AA.

We can now perform some of the L integrations using the reduction to EQCD discussed
around eq. (4.14), finding

δq̂
∣∣∣arcs

soft
= g4CRCAT

2
∫
AR

dk+

2π

∫
d2k⊥
(2π)2

∫
d2l⊥
(2π)2 (C.23)

×
{
k2
⊥

k+2
m2
D

l2⊥(l2⊥ +m2
D)

(
k⊥

k2
⊥ +m2

∞
− k⊥ + l⊥

(k⊥ + l⊥)2 +m2
∞

)2

+O
( 1
k+3

)}
+AA.

If we take the l⊥,mD � k⊥ approximation, consistently with our treatment across the k+
IR

boundary, we find

δq̂
∣∣∣arcs

soft
= g4CRCAT

2
∫
AR

dk+

2π

∫
d2k⊥
(2π)2

∫
d2l⊥
(2π)2

1
k+2k2

⊥

m2
D

l2⊥ +m2
D

+AA. (C.24)

15CR is clockwise, whereas AR is counterclockwise. But what we want is only the red, horizontal part
of the contour in figure 7, so we should be subtracting AR, thus equating it with CR. Hence in a bit of a
misnomer the AR contribution in this appendix is minus the contour in figure 7.
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Figure 8. Diagrams whose cuts correspond to virtual processes.

If we use the harmonic-oscillator approximation to regulate the l⊥ integration, consistently
with what we did in section 4, we find

δq̂
∣∣∣arcs HO

soft
= g4CRCAT

2m2
D

4π

∫
AR

dk+

2π

∫
d2k⊥
(2π)2

1
k+2k2

⊥
ln
(
ρ2

m2
D

)
+AA. (C.25)

We can then rewrite the k⊥ integration as a τ one, with the same boundaries of eq. (4.12), i.e.

δq̂
∣∣∣arcs HO

soft
= g4CRCAT

2m2
D

4π

∫
AR

dk+

2π

∫ τint

k+/µ2

dτ

4π
1

k+2τ
ln
(
ρ2

m2
D

)
+AA. (C.26)

The contribution on the arc can be carried out as follows, understanding the arc to be at
constant |k+| = k+

IR. Changing variables to k+ = k+
IRe

it then gives
∫
AR

dk+

2π
1
k+2 ln

(
µ2τint

k+

)
= i

2πk+
IR

∫ 0

π
dte−it

[
ln
(
µ2τint

k+
IR

)
−it

]
= −1
πk+

IR

[
ln
(
µ2τint

k+
IR

)
−1−iπ2

]
.

(C.27)
The imaginary part cancels against an opposite one from CA. We then have

δq̂
∣∣∣arcs HO

soft
= 2g

4CRCAT
2m2

D

16π2
−1
πk+

IR

[
ln
(
µ2τint

k+
IR

)
− 1

]
ln
(
ρ2

m2
D

)

= −2αsCRT q̂0(ρ)
πk+

IR

[
ln
(
µ2τint

k+
IR

)
− 1

]
. (C.28)

This is precisely opposite to the T/k+
IR-proportional part of eq. (4.13), as we set out to

show. As a final remark, the cancellation of the T/k+
IR terms associated with the τ > τint

contribution requires a different calculation, which we do not show.

D Diagrammatic evaluation of the semi-collinear and virtual processes

In this appendix we provide a sketch of the diagrammatic evaluation of the diagrams
in figure 5 in the semi-collinear scaling. In addition, we shall also consider the virtual
counterpart, as depicted in figure 8. The name labels the fact that the coft gluon is virtual,
and transverse momentum exchange happens exclusively via the soft interactions with the
medium. The only nonvanishing cut in these diagrams goes through the soft gluon’s HTL,
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Figure 9. Two type of diagrams that do not contribute to C(k⊥), see main text.

and corresponds to the interference of the leading-order soft scattering with the medium
with its coft-gluon-loop virtual correction.

The attentive reader will have noticed that the diagrams of figures 5 and 8 do not form
the complete set at that order. Missing diagrams are part of two classes. Figure 9 depicts
an example for each. On the left we have diagrams that vanish because their only cut goes
through a single coft gluon. Coft gluons have vanishing spectral weight at k− = 0, which is
imposed by the x+ integrations at large Lmed. On the right instead we have x⊥-independent
diagrams: they thus contribute to the constant part of C(x⊥) which is related to probability
conservation. Hence, by looking at eqs. (4.4) and (4.5) we can get the contributions to
C(k⊥) by only considering non-vanishing, x⊥-dependent diagrams and undoing the overall
Fourier transform.

D.1 Real processes

We start from the two diagrams on the top line in figure 5. Their combination contains the
C2
R-proportional cross term of the one-coft-gluon exchange with the one-soft-gluon exchange,

which is part of the exponentiation of the tree-level contribution. As the one-coft-gluon
exchange vanishes for the kinematical reasons just mentioned, only the CRCA-proportional,
non-abelian piece of the top right diagram survives. It is given by

δC(k⊥)II+X = CRCAg
4
∫
dk+dk−

(2π)2

∫
d4L

(2π)4
1

(l− − iε)2G
−−
> (K + L)G−−> (−L)2πδ(k−).

(D.1)

II and X reflect the topology of the two diagrams, whereas the propagators are both
Wightman because of the path-ordering of the fields in the Wilson loop. However, the L
propagator is to be understood as soft, and thus HTL-resummed, whereas the K +L, being
coft, can be taken as bare. A factor of 2 has been added to account for the inverted scaling.
Coulomb gauge is implied here and in the rest of the calculation. The δ(k−) arises from
the x+ integrations at large Lmed. We do not proceed further with the evaluation, as we
prefer to combine all diagrams before.
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We now proceed to the self-energy diagram on the bottom left in figure 5. Its contribu-
tion reads

δC(k⊥)self =

g4CRCA

∫
dk+

2π

∫
d4L

(2π)4G
−ρ
R (K)

(
gγσ(2L+K)ρ−gσρ(2K+L)γ+gργ(K−L)σ

)
×Gσδ> (K+L)Gγα> (−L)

(
gδβ(2K+L)α−gαδ(2L+K)β−gαβ(K−L)δ

)
Gβ−A (K)

∣∣∣
k−=0

.

(D.2)

Cuts going through the K propagators are again vanishing, hence their retarded/advanced
assignments only, which is consistent with the cutting rules for Wightman functions [83, 84].

Finally, the Y-shaped diagram on the bottom right of figure 5, together with its
symmetry-related counterparts, yields

δC(x⊥)Y = 2g4CRCA

∫
dk+d2k⊥

(2π)3

∫
d4L

(2π)4
i

l− + iε
eik⊥·x⊥G−δ> (K + L)G−α> (−L)

×
(
gαδ(2L+K)β − gδβ(2K + L)α + gβα(K − L)δ

)
Gβ−F (K)

∣∣∣
k−=0

. (D.3)

At this point, it is useful to write the Feynman propagator as

GF (K) = 1
2
(
GR(K) +GA(K)

)
+Grr(K). (D.4)

Since Grr is the average of the bare cut propagators and we have already set k− = 0, it
vanishes. For the same reason, we have not considered the other real-time assignments.
That leaves us with the average of the retarded and advanced bare Green’s functions, which
when evaluated at k− = 0 are the same. We can then extract, as was done with the previous
diagrams

δC(k⊥)Y = −2g4CRCA

∫
dk+

2π

∫
d4L

(2π)4
i

l− + iε
G−δ> (K + L)G−α> (−L)

×
(
gαδ(2L+K)β − gδβ(2K + L)α + gβα(K − L)δ

)
Gβ−R (K)

∣∣∣
k−=0

. (D.5)

We can then get the semi-collinear rate by summing the contribution from the three
diagrams, i.e.

δC(k⊥)semi = δC(k⊥)II+X + δC(k⊥)self + δC(k⊥)Y. (D.6)

Upon taking care of Lorentz algebra and expanding the resulting expression for the scaling
L ∼ gT , k+ ∼ T, k⊥ ∼

√
gT we obtain

δC(k⊥)semi = 4g4CRCA

∫
dk+

2π

∫
d4L

(2π)4
GT>(K + L)

k4
⊥

(
l2⊥G

−−
rr (L)

+ 2GTrr(L)
(
l−

2 − l+l−l2⊥
l2

))
k−=0

.

(D.7)
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Upon inserting the form of the bare propagator, expanded under this scaling, we find

δC(k⊥)semi =2g4CRCA

∫
dk+

2π
1 + nB(k+)
k4
⊥k

+

∫
d4L

(2π)3 δ

(
l− − k2

⊥
2k+

)(
l2⊥G

−−
rr (L)

+ 2GTrr(L)
(
l−

2 − l+l−l2⊥
l2

))
. (D.8)

The l+ integration can be addressed using light-cone analyticity, as per [59], leading
to eq. (4.7).

D.2 Virtual processes

We start from the first diagram in figure 8. As was the case for the real II and X diagrams,
the C2

R-proportional, abelian part of this diagram vanishes with the counterparts, not shown
in the figure, where the coft gluon does not straddle the soft one. Accounting for this and
for the symmetric diagrams with the coft gluon attached to the other Wilson line we have

δC(l⊥)virt
T̂ = −g4CRCA

∫
d4K

(2π)4

∫
dl+

2π
1

(k− + iε)2G
−−
> (L)G−−rr (K)

∣∣∣
l−=0

, (D.9)

where we have labeled this diagram T̂ following its topology. We note that the Wilson
line integration forces l− = 0, differently from the real processes. In this case too we defer
the evaluation of this expression until after the second diagram has been evaluated. Its
contribution, together with that of its symmetric counterpart with two vertices on the
bottom Wilson line, is16

δC(x⊥)virt
Y =

g4CRCA
2

∫
d4K

(2π)4

∫
d4L

(2π)4
−i

k−−iε
eil⊥·x⊥Gβ−> (L)2πδ(l−)

×
(
G−δF (K)G−αF (K+L)−G−δ

F̄
(K)G−α

F̄
(K+L)

)
(gδβ(K−L)+gβα(2L+K)δ−gαδ(2K+L)β).

(D.10)

We can use the analogue of eq. (D.4) for the anti-time-ordered propagator, i.e.

GF̄ (K) = −1
2
(
GR(K) +GA(K)

)
+Grr(K) (D.11)

Using these definitions, we get

δC(l⊥)virt
Y =

g4CRCA

∫
d4K

(2π)4

∫
dl+dl−

2π
i

k−−iε
Gβ−> (L)δ(l−)

×
(
G−δrr (K)G−αR (K+L)+G−δR (K)G−αrr (K+L)

)
(gδβ(K−L)+gβα(2L+K)δ−gαδ(2K+L)β).

(D.12)
16At first glance, it is not clear why we cannot have any other real-time assignments for this diagram.

Indeed, one could imagine the assignment GF (L)G>(K + L)G>(−L). We have checked that this leaves us
with an expression that, at first order in the collinear expansion, is odd in k+ and thus integrates to zero.
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The virtual contribution is given by the sum of the two, that is

δC(l⊥)virt = δC(l⊥)virt
T̂ + δC(l⊥)virt

Y . (D.13)

In this case we do not enforce a semi-collinear scaling for the coft gluon, since, as we shall
show, there is no double-logarithmic contribution. Furthermore, the Wilson line integrations
set l− = 0, thus making the interaction with the medium instantaneous. We rather assume
l+ ∼ l⊥ ∼ k⊥ ∼ gT � k+, leading to

δC(l⊥)virt = 2g4CRCA

∫
dl+

2π

∫
dk+d2k⊥

(2π)3

1
2 + nB(k+)

k+
G−−> (l+, l⊥)
k2
⊥ +m2

∞ g

×
[

k2
⊥ + k⊥ · l⊥

(k⊥ + l⊥)2 +m2
∞ g

− k2
⊥

k2
⊥ +m2

∞g

]
. (D.14)

The asymptotic masses at the denominator have been included since we assumed k⊥ ∼ gT .
They arise from the k+ ∼ T , K2 ∼ g2T 2 limit of the HTL propagators in appendix A. The
l+ integration can be carried out through the mapping to EQCD, as summarized around
eq. (4.14). It leads to

δC(l⊥)virt = 2g4CRCA

∫
dk+d2k⊥

(2π)3

1
2 + nB(k+)

k+
Tm2

D

l2⊥(l2⊥ +m2
D)

1
k2
⊥ +m2

∞ g

×
[

k2
⊥ + k⊥ · l⊥

(k⊥ + l⊥)2 +m2
∞ g

− k2
⊥

k2
⊥ +m2

∞ g

]
. (D.15)

We recognize that this expression is proportional to the leading-order, adjoint soft scattering
kernel C(l⊥)LO

soft, eq. (B.1). From this expression and its associated q̂ contribution one can see
that the |k⊥ + l⊥| � l⊥ single-scattering region is free of double-logarithmic enhancements,
as found in [29]. Furthermore, for k⊥ ∼ l⊥ ∼ gT , which we have used for our derivation,
the lifetime of the virtual coft fluctuation is long, so that multiple soft scatterings can
occur within it. Hence, eq. (D.15) should just be considered as the N = 1 term in the
opacity expansion of the virtual contribution to eq. (5.11). Indeed, we have checked that
eq. (D.15) can also be obtained from the virtual terms in eq. (5.13), i.e. those proportional
to exp(ix⊥ · l⊥), further confirming the soundness of eqs. (5.9) and (5.11).
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