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1 Isntroduction and summary

The Swampland program initiated in [1] advocates the idea that a consistent coupling to
gravity poses severe constraints on an effective field theory. The criteria which an effective
field theory (EFT) must satisfy in order to comply with these constraints are the subject
of the so-called swampland conjectures. In view of the growing web of such conjectures
formulated so far [2–5], it is important to continue to test and sharpen our candidates for
swampland constraints in order to advance our understanding of the fundamental charac-
teristics of a theory of quantum gravity.

Among the most acclaimed swampland conjectures is the Weak Gravity Conjecture
(WGC) [6]. In its most modest formulation, it posits that for a given gauge theory coupled
to gravity, there exists at least one particle whose gravitational interaction is weaker than
the interaction associated with the gauge symmetry. The usual bottom-up motivation
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comes from the requirement that extremal black holes should be able to decay to avoid
clashes with certain entropy bounds [6, 7], at least in flat space and with four or more
spacetime dimensions, which is the physical setting which we exclusively focus on in this
paper.

Many versions of the WGC have been formulated in the last decade [8, 9], and it is
important to investigate the application and the limitations of each formulation in well-
controlled setups of quantum gravity. A stronger version of the WGC that was first moti-
vated by consistency with dimensional reduction is the tower WGC (tWGC) [10–13], which
states that in any EFT coupled to gravity there must exist at least one formally infinite
tower of super-extremal states of charge qk and mass Mk satisfying the relation

q2
k

M2
k

&
1

Λ2
WGC

, (1.1)

where ΛWGC = gYMMPl denotes the magnetic weak gravity scale and the precise numerical
factor on the right depends on the details of the theory. The motivation behind the appear-
ance of a tower is two-fold: first, if the WGC is satisfied by a super-extremal tower, then
after circle reduction the convex hull condition [14] is automatically obeyed in the gauge
sector defined by the original gauge theory and the Kaluza-Klein (KK) gauge field [10].
Note, however, that at least in the presence of massless charged states in the original theory,
a tower is only a sufficient, rather than a necessary condition for the convex hull condition
to be satisfied after compactification.

Second, a tower of super-extremal states is well-motivated in the weak coupling limit
of a gauge theory. We will refer to this version as the asymptotic tower WGC. The limit
gYM → 0 for a gauge theory lies at infinite distance in field space. In view of the Swampland
Distance Conjecture [15], it should therefore be accompanied by a tower of infinitely many
states which become asymptotically light. It is natural to identify at least a sub-tower
of the tower of states predicted by the Swampland Distance Conjecture with a tower of
super-extremal states. In fact, not only the tower WGC, but even the WGC as such is best
motivated, from a bottom-up perspective, in the limit where gYM → 0, because at least the
entropy arguments invoked in [6] point to a potential inconsistency of black holes in the
absence of a super-extremal state strictly speaking only in this limit. Another argument
that favors a tower of charged asymptotically light states in the weak coupling limit is
provided by the Emergence Proposal [3, 16–18], which attributes the asymptotic vanishing
of the gauge coupling to the appearance of a charged tower that must be integrated out.

Overwhelming evidence has been accumulated in the past years for the tower WGC in
the literature. This evidence appears either in the context of the asymptotic tower WGC,
i.e., in the limit gYM → 0, or, away from this limit, in theories where the super-extremality
condition is protected [19] by the BPS property of states.1

Concerning the latter type of setups, the tower WGC has been analyzed in detail in [24]
in the context of five-dimensional M-theory compactifications on Calabi-Yau 3-folds. The

1We stress again that in this paper, we focus exclusively on the WGC in at least four dimensions
and in Minkowski space. Holographic checks of the WGC in (three- or higher-dimensional) AdS space
include [12, 16, 20–23].
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super-extremal states are furnished by M2-branes wrapping 2-cycles on the Calabi-Yau.
Interestingly, the BPS condition and the super-extremality condition are both saturated
for BPS states precisely in those situations where a tower of states can be identified among
the BPS particles [24].

As for the asymptotic tWGC, two different types of situations have been investigated
in detail: in the first class of limits, a tower of BPS states becomes light in four-dimensional
compactifications of string theory with N = 2 supersymmetry near infinite distance bound-
aries of moduli space. This tower of states includes a WGC tower for the asymptotically
weakly coupled abelian gauge theories associated with the closed string sector [17, 18, 25–
27]. In the second class of theories, the tower of states comes from the excitations of a
weakly coupled heterotic string in various dimensions [6, 11]. In the latter case, modular
invariance is in fact sufficient to prove the appearance of a super-extremal tower [11, 12, 28–
32]. This second type of constructions includes certain weak coupling limits in F-theory in
which a solitonic heterotic string becomes light [28–31, 33].

It is interesting to note that the two types of super-extremal towers observed so far —
the BPS towers and the heterotic string excitation tower — precisely correspond to the two
possible types of towers of states which should generally become light at infinite distance
in moduli space according to the Emergent String Conjecture [30]. The BPS towers are
interpreted as KK towers in a dual frame, while the heterotic string excitations are the
excitations of an emergent critical string, which is predicted to become tensionless in any
infinite distance limit that is not a decompactification limit. In this sense, at least in its
asymptotic, weak coupling form, the tower WGC can, so far, be viewed as a consequence
of the Emergent String Conjecture. At a technical level, it rests either on the BPS nature
of states or on the modular properties of the heterotic string partition function. In both
cases, the towers arise from the closed string sector.

Summary of results. In this work, we analyze the asymptotic tower WGC for more
general weak coupling limits with N = 1 supersymmetry in four dimensions. Our goal is
to understand weak coupling limits in which no critical heterotic string becomes light, es-
pecially for open string realizations of the gauge sector. According to the Emergent String
Conjecture, such limits must be decompactification limits. Neither of the two known
mechanisms that have guaranteed the appearance of a super-extremal tower so far — BPS
protection or the modular properties of the heterotic string — are at work. A particularly
fruitful approach to understand such weak coupling limits at infinite distance is the frame-
work of EFT or axionic string limits introduced in [34–36] (and further studied in [37, 38]).
The starting point of this construction is the observation that an infinite distance limit in
four dimensions is characterized by an emergent axionic shift symmetry. By dualizing the
underlying axion to a 2-form, one finds that such limits are automatically accompanied
by weakly coupled solitonic strings charged under the 2-form. In fact, according to the
Distant Axionic String Conjecture (DASC) of [34–36], every infinite distance limit in four
dimensions can be realized as the endpoint of a flow induced by the backreaction of pre-
cisely those axionic strings which become weakly coupled in the limit. The emergent strings
featuring in the Emergent String Conjecture are special examples of such axionic or EFT
strings given by critical strings.
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It is then natural to speculate whether the asymptotically weakly coupled EFT strings
could be the source of the super-extremal tower of states in general weak coupling limits.
Intriguingly, it was observed in [39, 40] that the tension of these strings parametrically
coincides with the magnetic weak gravity scale,

TEFT ∼ ΛWGC = gYMMPl . (1.2)

Therefore, if one treats the EFT strings as the source of particle-like excitations, as would
be appropriate for a critical string, the relation (1.2) may suggest that this tower contains
the super-extremal tower required by the asymptotic WGC.

To test this idea, we will work, for concreteness, in the context of F-theory compactified
to four dimensions. We will analyze the possible weak coupling limits for a gauge theory
realized on a stack of 7-branes wrapping a divisor on the base of an elliptic Calabi-Yau
4-fold, extending both the analysis of [34–36] and of [30, 33].

As our first result, which in fact is of interest independently of the WGC, we will
classify the possible infinite distance limits in the Kähler moduli space of the base B3 in
the language of EFT strings. The building blocks of such limits are what we call quasi-
primitive EFT strings, which are obtained by wrapping D3-branes along certain curves
in the movable cone [34–36] of B3.2 We will characterize the quasi-primitive strings via
a topological invariant of their associated curve. Depending on the type of string under
consideration, its associated limit either corresponds to an emergent string limit or to a
decompactification limit to six or ten dimensions (see figure 2b). This is in agreement with
the findings of [30, 33] and sheds further light on the systematics of the decompactification
limits.

We then turn to the effective action governing the dynamics of the EFT strings which
characterize the various weak coupling limits. For the special case of primitive EFT strings,
the action resembles the effective action of a weakly coupled heterotic string, up to a
numerical factor that is related to the topological invariant classifying the strings. While
this might motivate treating the asymptotically weakly coupled EFT strings as having
particle-like excitations, the would-be excitations turn out to violate the super-extremality
condition — except in the special case of a critical heterotic string. At first sight, this seems
to conflict with the predictions of the asymptotic tower WGC. Upon closer inspection,
however, we find that all weak coupling limits other than the emergent string limits leave
the realm of validity of the asymptotic tower WGC conjecture. The reason is that in such
limits, the species scale associated with the KK tower, Λsp,KK, sits at or even below the
WGC scale ΛWGC, which coincides with the asymptotic EFT string tension. This interplay
between the different characteristic scales is summarized in figure 1. As a result, the gauge
theory either decompactifies to an — in general — non-weakly coupled theory in higher
dimensions, or even to a defect theory from which gravity decouples completely. In both
cases, the usual bottom-up motivation for the tower WGC, and in fact even for the WGC
as such, does not apply.

2See appendix A for the definition of the movable cone, which as explained in [34, 35] underlies the
structure of EFT strings in the Kähler moduli sector of F-theory, and Definitions 1 and 2 for the precise
notion of (quasi-) primitive EFT strings.
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(a) q = 0.

M2
Pl ∼ 1
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λ

M2
KK ∼ 1

λ2

(b) q = 1.

M2
Pl ∼ 1

TEFT ∼ 1
λ2

Λ2
sp,KK ∼M2

IIB ∼ 1
λ3

M2
KK ∼ 1

λ4

(c) q = 2.

Figure 1. Characteristic scales for the three possible types of quasi-primitive EFT string limits in
the Kähler moduli space of F-theory compactified to four dimensions. The limits are parametrized
by λ→∞. The topological invariant q classifies the possible quasi-primitive EFT string limits, as
explained in section 2.2. The limit with q = 0 is an emergent string limit, which stays effectively
four-dimensional. Limits with q = 1 describe effective decompactifications to six dimensions, while
limits with q = 2 decompactify to ten dimensions and the 7-brane gauge sector is a defect theory.
This picture summarizes the findings of section 3.2.

The upshot of our findings is that the excitations of a weakly coupled EFT string
in F-theory can account for a tower of super-extremal states if and only if the string
corresponds to a heterotic emergent string. Consistently, in all other weak coupling limits
of a 7-brane gauge theory in F-theory the WGC is less obviously motivated also from a
bottom-up perspective, to the extent that we leave the regime of a weakly coupled gauge
theory coupled to a perturbative gravitational sector.

In principle, this does not preclude that the WGC may nonetheless be satisfied even
in such situations, but there are no obvious candidates for the super-extremal states, in
particular not for a marginally super-extremal tower of states. At the same time, the
existence of such a tower would, in a sense, run counter to the very motivation behind the
WGC.

While we focus in this work on weak coupling limits for gauge theories on 7-branes in
four-dimensional F-theory, the three types of patterns which we find (see figure 1) generalize
to other setups. For example, as we will explain, the weak coupling limit on a stack of
D3-branes in Type IIB orientifolds decouples the gauge and gravity sectors similar to the
behavior in figure 1c. The perturbative open string excitations only furnish a finite number
of highly super-extremal states, rather than a tower of marginally super-extremal states as
in weak coupling limits of the emergent heterotic string type. This is no surprise because
a decoupling between the gauge and gravity sector trivializes the weak gravity constraint.

Structure of the paper. The paper is organized as follows: section 2 contains the
geometric part of our analysis, which is of interest independently of the Weak Gravity
Conjecture. In section 2.1 and appendix A we review the definition of EFT strings and
the F-theory Kähler field space. Section 2.2 introduces the notion of quasi-primitive EFT
strings and their classification, together with the systematics of the EFT string limits in
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F-theory. For better readability of the paper, the oftentimes technical proofs of our main
results are relegated to appendix B. In section 2.3 and appendix C we discuss an exhaustive
series of examples that illustrate all the main results of our geometric findings.

Section 3 analyzes the tower Weak Gravity Conjecture for weak coupling limits in F-
theory. In section 3.1 we study the super-extremality bound for the (putative) excitations
of a primitive EFT string, showing that the tower WGC is satisfied by the excitations
of primitive EFT strings only when the latter correspond to emergent critical heterotic
strings. In section 3.2 we derive the relation summarized in figure 1 between the weak
gravity scale and the species scale for more general quasi-primitive EFT string limits. In
section 3.3 we generalize this to the most general weak coupling limits in F-theory. In
section 3.4 we explain that, except for the emergent string limit, the weak coupling limits
leave the regime of applicability of at least the asymptotic tower WGC, reconciling our
findings of section 3.1 with the Swampland philosophy. Section 4 contains the summary
of our results, along with a discussion of other setups in which the tower Weak Gravity
Conjecture is not required to be satisfied and more speculative remarks.

2 EFT string limits in F-theory

The starting point for our classification of different weak coupling limits is a certain class
of infinite distance limits introduced in [34–36] and studied further in [37, 38]: as their
main property, they can be reached as the end-point of Renormalization Group (RG) flows
induced by axionic, or EFT, strings in four dimensions. Throughout this work, we refer to
them as EFT string limits. This section serves to introduce the basic notion of such EFT
string limits and to describe how they are realized in the F-theory Kähler field space. In
section 2.1 we start by giving a brief review of the EFT string flows realizing infinite distance
limits in field space [34, 35] and introduce the basics of the F-theory Kähler field space
to which we will apply the EFT string analysis. In section 2.2 we then provide a refined
classification of certain EFT string limits in F-theory which we will call quasi-primitive
EFT string limits: their associated EFT strings are obtained by wrapping D3-branes on
special movable curves in the base B3 of the elliptically fibered Calabi-Yau 4-fold. These
curves can be written as intersections of certain Kähler classes and admit an intriguing
classification via a certain topological invariant that will govern the physics of the EFT
string limit. We illustrate our findings in a simple example in section 2.3 and in more
complicated settings in appendix C.

The quasi-primitive limits will then serve as the starting point to characterize even the
most general weak coupling limits for gauge theories in section 3.

2.1 Review of EFT strings and F-theory Kähler field space

Consider a N = 1 supersymmetric EFT in four dimensions. Complex scalar fields in such
a theory reside in chiral multiplets. Let us denote a subset of these chiral scalar fields by
Ti, i = 1, . . . , n, and the field space spanned by them as M. We further assume that the
imaginary parts of the Ti are periodic, such that we can identify Ti ∼ Ti + i. For a general
N = 1 EFT in four dimensions, the field spaceM is not an actual moduli space, since the
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fields Ti can become massive due to the presence of a non-trivial scalar potential V . For
instance, in the EFT defined by a string compactification, such a potential can be induced
by background fluxes or through non-perturbative effects. In this work, we do not turn
on fluxes such that we only have to worry about a potential induced by non-perturbative
effects. In a general N = 1 EFT in four dimensions the scalar F-term potential can be
expressed in terms of a superpotential W as

V = eK
(
gij̄DiWD̄j̄W̄ − 3|W |2

)
. (2.1)

Here K = K(Ti) is the Kähler potential, gij̄ = ∂Ti∂T̄j̄
K the metric on field space and

Di = ∂Ti + ∂TiK the Kähler covariant derivative. In the absence of classical contributions,
the superpotential W only receives corrections from instantons such that

W =
∑
m
Ame

−Sm . (2.2)

Here m = (m1, . . . ,mn) labels the instanton charge under the shift symmetry Ti →
Ti + i, Sm = 2πmiTi is the action of an instanton, and A is the one-loop determinant. It
is expected [41] that for a generic N = 1 theory at least some Am are non-zero. We are
interested in situations in which we can neglect also these non-perturbative contributions
to W . This is the case if Sm → ∞ for all m. In this regime, all instanton effects become
irrelevant, and we recover a continuous shift symmetry Ti → Ti + ici for ci ∈ R. Thus, the
imaginary part of Ti can be treated as an axion, i.e., we can write Ti = si + iai, and M
takes the rôle of a quasi-moduli space. The relevant part of the 4d action is then given by

S4d = M2
Pl

2

∫ (
R ? 1− gij̄dTi ∧ ?dT̄j̄

)
. (2.3)

In the perturbative regime, the axion ImTi can be dualized into a 2-form B2,i and we
can consider the object carrying electric charge under this 2-form, i.e., a string in 4d. The
tension of this string is controlled by the linear multiplet obtained upon dualizing the chiral
field Ti,

Li = −1
2

∂K

∂ ReTi
. (2.4)

The associated cosmic string solutions are determined as four-dimensional solutions to
the equations of motion, preserving two-dimensional Poincaré invariance along the direc-
tions parallel to a string in 4d. This motivates the ansatz (cf. [34, 35])

ds2 = −dt2 + dx2 + e2D(z)dzdz̄ , (2.5)

where z ∈ C is the coordinate transverse to the string. Supersymmetric solutions to the
equations of motion now correspond to [42]

∂z̄Ti(z) = 0 , e2D = |f(z)|2eK , (2.6)

with f(z) a holomorphic function.
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Thus, the chiral fields Ti must have a holomorphic profile along the directions transverse
to the string. Of particular interest are such 1

2 -BPS cosmic string solutions associated to a
string carrying charge e = (e1, . . . , en) under the 2-form B2,i. When encircling the string
core, the chiral fields are expected to undergo a monodromy transformation of the form
Ti → Ti + iei. The holomorphic profile for Ti respecting this symmetry is given by

Ti(z) = T
(0)
i − ei

2π log
(
z

z0

)
, (2.7)

where T (0)
i is some background value for the scalar field and z0 some constant. This profile

for Ti(z) is valid as long as |z| � |z0|. The description of the backreaction of the string is
self-consistent if the limit z → 0 corresponds to the regime where Sm →∞ for all instantons
charged under the shift induced by the string. In this case, the continuous shift symmetry
of Ti(z) is approximately realized, and we can indeed treat the fields ImTi as axions.
Furthermore, the contribution to the non-perturbative superpotential from the instantons
charged under the string shift symmetry can be neglected. If we tune the “spectator fields”,
i.e., the fields that do not exhibit a z-dependent profile due to the backreaction of the string,
to suitable values we can then completely neglect W and hence any scalar potential for
the fields Ti. In the vicinity of the core, we reach the limit Ti →∞. A string leading to a
self-consistent backreaction was dubbed EFT string in [35]. In particular, the limit z → 0
then corresponds to an infinite distance limit inM. Therefore, the EFT strings provide a
very useful way to study infinite distance limits in field space.

We can make the notion of EFT string more precise, by considering the non-perturbative
corrections as, e.g., in (2.2). Defining Ti = si + iai and s = (s1, . . . , sn) the collection of all
saxions, the perturbative regime is obtained whenever∣∣∣e−2πmiTi

∣∣∣ = e−2π〈m,s〉 � 1 , (2.8)

where we have introduced the pairing 〈m, s〉 = misi between the instanton charges mi and
the saxions si. Following [35], let us denote the set of all instanton charges correcting the
effective action by CI . For (2.8) to hold, we need that 〈m, s〉 � 1. Therefore, the saxions
si need to lie inside the saxionic cone ∆ ≡ {s|〈m, s〉 > 0 , ∀m ∈ CI}, which can be viewed
as ∆ = C∨I ⊗ R. Inserting the profile (2.17) in (2.8) one finds that under a string flow the
non-perturbative contributions behave like

e−2π〈m,s〉 = e−2π〈m,s0〉
(
z

z0

)〈m,e〉
, (2.9)

where e ∈ CS is an element of the lattice CS of BPS string charges. Assuming that s0 is
chosen inside ∆, in order not to spoil the perturbative description in the limit z → 0, we
need e to satisfy 〈m, e〉 > 0 defining the sub-cone

CSEFT ≡ {e ∈ CS |〈m, e〉 ≥ 0 , ∀m ∈ CI} ⊂ CS , (2.10)

i.e., the cone dual to CI [35]. In particular, an elementary EFT string charge is a generator
of the cone CSEFT corresponding to a string that carries unit charge under a single 2-form
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B2,i [35]. In the following, we will be interested in EFT strings that are charged under
a single 2-form, but not necessarily with unit charge. We will refer to such strings as
primitive EFT strings. Thus, every elementary string is a primitive string, but not every
primitive string is elementary.

In this work, we are studying infinite distance limits corresponding to weak coupling
limits for gauge theories in F-theory compactified on an elliptically Calabi-Yau 4-fold Y4
with a smooth projective variety B3 as base. Given the relation between EFT strings and
infinite distance limits, we should be able to realize certain weak coupling limits as EFT
string limits for some choice of EFT string charges. We are primarily interested in the
scalar field spaceM of the effective 4d EFT associated to the Kähler deformations of B3.
A basis of the complex scalar fields spanningM is given by

Ti = 1
2

∫
Di

J ∧ J + i
∫
Di

C4 . (2.11)

Here, {Di}, i = 1, . . . , h1,1(B3) is a basis of generators of the cone of effective divisors of
B3, C4 is the type IIB RR 4-form and J the Kähler form on B3. Note that if the effective
cone is non-simplicial, the definition of the scalar fields Ti depends on the choice of a basis
of generators of Eff1(B3). In the following we denote by {Di} such a basis of generators.
Similarly, we can expand the Kähler form as

J = viJi , (2.12)

where Ji are a basis of generators of the Kähler cone K(B3). The geometry of the scalar
field space is governed by a Kähler potential given by

K = −2 logVB3 , (2.13)

where VB3 is the volume of B3 measured in units of the type IIB string scale MIIB and
given by

VB3 = 1
6

∫
B3
J3 , (2.14)

in the large volume approximation. The effective bosonic 4d action including the scalar
fields then takes the form

S4d = M2
Pl

2

∫ (
R ? 1− gij̄ dTi ∧ ?dT̄j̄

)
+ . . . , (2.15)

where gij̄ = ∂Ti∂T̄j̄
K is the classical metric on M. The dots in S4d stand for additional

terms describing, e.g., 1-form gauge theories. In F-theory, this includes the gauge sector
from stacks of 7-branes wrapping effective divisors S =

∑
aiDi, with ai ∈ R≥0. The gauge

coupling for these gauge theories is set by the volume VS of S as

2π
g2

YM
= VS . (2.16)

The weak coupling limits thus correspond to the regime VS → ∞. Since S is a linear
combination of the Di with non-negative coefficients, we can study weak coupling limits
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by considering limits where Ti → ∞ for some i. As required by the DASC [34, 35], these
limits can be obtained as end-points of certain EFT string flows. Since the relevant strings
should be magnetically charged under the axionic component of Ti, they correspond to
D3-branes wrapped on curves in B3.

According to our previous discussion, the backreaction of such D3-brane strings induces
a profile for the saxionic partners of the axions, which in this case are the divisor volumes
ReTi. To find a basis of EFT strings, we first consider elementary EFT strings, i.e., strings
carrying unit charge under only one 2-form with respect to the chosen basis of chiral fields
Ti and their dual linear multiplets Li. In this case, the saxionic profile close to the EFT
string core reads

T0 = T
(0)
0 − 1

2π log z

z0
+ . . . , Ti = T

(0)
i ∀i 6= 0 . (2.17)

In the vicinity of z = 0 this leads to a limit in field space given by

VD0 →∞ , VDi = const. for i 6= 0 . (2.18)

As discussed in [35], the elementary EFT strings inducing these kinds of limits are obtained
from D3-branes wrapping the generators of the cone of movable curves, Mov1(B3), of B3.
To see this, let us consider the saxionic form

s = 1
2J ∧ J . (2.19)

This form can be expanded in terms of a basis of curve classes Ci as

s = siC
i . (2.20)

By comparison with (2.11), the si can be identified with the saxions, si = ReTi, by choosing
the curves Ci such that

Ci ·Dj = δij . (2.21)

If Eff1(B3) is simplicial, this means that the Ci are a basis of curves dual to the Dj . In this
case, since Dj are generators of the cone of effective divisors, Eff1(B3), and Eff1(B3)∨ =
Mov1(B3) [43], we conclude that the curves Ci are generators of the movable cone. Modulo
a subtlety that will be addressed momentarily, one expects the F-theory EFT strings to
arise from D3-branes on curves C ∈ Mov1(B3) leading to limits of the form (2.18). If
Eff1(B3) is non-simplicial, while it is still true that Eff1(B3)∨ = Mov1(B3), for a given
basis {Di} of generators not all curves satisfying (2.21) are in Mov1(B3). If for instance C0

is non-movable, it cannot lead to an EFT string since there exists an effective divisor that
shrinks in the EFT string limit and hence gives rise to an unsuppressed instanton close to
the string core. Based on the given choice of basis for Eff1(B3), one would then conclude
that there is no EFT string realizing the EFT string limit (2.17) for ReT0. By choosing
a different basis of generators of Eff1(B3) this problem may be circumvented, but it is not
guaranteed that such a basis exists within the given Kähler cone.

We now address the subtlety alluded to above. Even if Eff1(B3) is simplicial, not every
EFT string limit may be realizable in a given chamber of the Kähler cone. To see this,
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notice that by (2.19), the saxionic form s depends on the choice of the Kähler form J . As
stressed in [35], the map K(B3) 3 J 7→ 1

2J ∧J ∈ Int(Mov1(B3)) is in general not surjective.
Therefore, not all limits of the form (2.18) necessarily exist for a given base B3. We will
see the origin of this complication more clearly in the next section. This problem can be
circumvented by working with bases B3 modulo birational equivalence [35], i.e., by taking
into account all bases B′3 that are isomorphic to B3 outside higher-codimension loci. For
instance, if B′3 and B3 are related by a flop transition, their respective cones of effective
generators agree, but the cone of nef divisors might differ, i.e. K(B3) 6= K(B′3). Gluing
together all Kähler cones obtained by such flops, one arrives at the extended Kähler cone

Kext(B3) =
⋃

B′3∼B3

K(B′3) , (2.22)

where “∼” means that B′3 and B3 are related by a flop transition. The claim of [35] (see
also [44]) is now that the map

Kext(B3) 3 J 7→ 1
2J ∧ J ∈ Int(Mov1(B3)) (2.23)

is a bijection. We are going to confirm this expectation in explicit examples in appendix C.
For most of this work we consider, however, the bases B3 without taking into account
the flop transitions. In other words, we restrict ourselves to a single chamber of the Kext
corresponding to a single element on the r.h.s. of (2.22). The benefit of this is that

i) we can work with an explicit base B3 with a fixed set of generators of the Kähler
cone, and

ii) we do not have to worry about subtleties arising at the boundaries K(B3) corre-
sponding to a flop transitions, for instance due to tensionless strings obtained from
D3-branes wrapping the flopped curve.

2.2 EFT string limits

We now study the limits of the form (2.18) that can be realized in a given chamber of Kext.
Since in F-theory the saxionic components of the chiral fields correspond to the volumes of
a basis of the generators of Eff1(B3), the EFT string limits describe limits where (a subset)
of these volumes diverge. Crucially, in order for such a limit to be an EFT string limit
all volumes that are not kept constant have to scale at the same rate, since, by (2.17), all
saxions with non-trivial profile have to scale homogeneously in the limit z → 0. Any limit
for which the volumes of the generators of Eff1(B3) do not scale homogeneously can thus
not be obtained as an EFT string limit. In F-theory we can therefore characterize an EFT
string limit, i.e., a limit that can be obtained as the z → 0 limit for a cosmic EFT string
solution, via

Definition 1 (EFT string limits). An EFT string limit in the F-theory Kähler quasi-
moduli space is a limit in which the volume of a subset I ⊂ {Di} of a given basis of
generators of the effective cone of divisors Eff1(B3) diverges homogeneously, i.e.,

VD ∼ λ→∞ , ∀D ∈ I , (2.24)
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while VD̂ < ∞ for D̂ /∈ I. In this case, we call the set I homogeneously expandable. In
particular, a primitive EFT string limit corresponds to a limit for which |I| = 1.

Among the EFT string limits, the primitive EFT string limits can be viewed as the ba-
sic building blocks. Recall from the discussion in the paragraph after (2.7) that a primitive
EFT string limit is the limit induced by an EFT string charged only under a single 2-form
B2,i. As a result, out of the basis of generators {Di} of Eff1(B3) only a single generator Di

acquires a large volume in such limits, as in Definition 1. This prompts the question under
which condition the limit VDi → ∞ can be reached as such a primitive EFT string limit
for a fixed base B3 without taking into account flop transitions. A potential obstacle arises
since the volume of divisors of B3 are not all independent, but depend quadratically on
the volumes of curves arising as the expansion parameters of the Kähler form J in terms
of a basis of Kähler cone generators (cf. (2.12)).3 It is therefore more practical to check
for primitive EFT string limits at the level of curves in B3. In the following, we always
assume that we have specified a basis of Kähler cone generators. To obtain a minimal set
of generators of Eff1(B3) acquiring a large volume, we are advised to scale up a minimal
set of vi. Given an element J0 of our chosen basis of Kähler cone generators we may thus
ask if the limit v0 →∞ can correspond to a primitive EFT string limit.

If v0 appears in the volume of more than one generator of Eff1(B3), then in order to
obtain a primitive EFT string limit, we must perform a co-scaling. This means that we
need to scale to zero or to infinity other vi in order to realize a primitive EFT string limit,
as in Definition 1. The scaling to zero may be required in order to minimize the set of
divisors becoming large, in particular, for a primitive EFT string limit, to ensure there
is only one generator of Eff1(B3) with this property. The following proposition gives a
geometric criterion for a primitive EFT string limit to exist within the chosen chamber of
Kext:

Proposition 1. Consider a primitive EFT string limit for a generator D of Eff 1(B3),
corresponding to the limit v0 → ∞ with v0 being the volume of a curve C0 in the Mori
cone contained in D. Then all other generators of Eff 1(B3) containing C0 are rational or
genus-one fibrations with C0 contained in the base of this fibration.

We provide the proof of this Proposition in appendix B. While in classical moduli
space, this is a sufficient criterion, we must in addition ensure that in the process of co-
scaling no divisor volume scales to zero. If this happens, quantum corrections, for instance
from D3-brane instantons, become non-negligible and the classical analysis breaks down.
Hence, we only consider limits in which no divisor volume shrinks to zero to ensure validity
of the effective supergravity approximation. To this end, the co-scaling may also require
taking some of the vi, i 6= 0 to infinity. Accordingly, Proposition 1 only provides a necessary
condition for the EFT string limit to exist for a given generator D of Eff1(B3).

3 Notice that if the Kähler cone of B3 is simplicial, the expansion parameters of J are simply the
volumes of the dual Mori cone generators. In case the Kähler cone is non-simplicial, one should specify a
basis of Kähler cone generators in which J is expanded. In this case the coefficients of the expansion do
not necessarily correspond to the volumes of Mori cone generators.
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From Proposition 1, it is clear that a primitive EFT string limit may not exist for
every generator of Eff1(B3) within a given Kähler cone chamber. This means that in case
a gauge theory is realized on a 7-brane wrapping such a divisor, its weak coupling limit
cannot be studied by only taking primitive EFT strings into account. We therefore need
to broaden the notion of “minimal” EFT strings to include the large volume limits that
cannot be realized as primitive EFT string limits within the chosen chamber of Kext(B3).
Again, we start by studying limits in which we scale up a single vi and check whether,
via suitable co-scalings, we can obtain an EFT string limit. If this is possible, we are
interested in limits in which the set I in Definition 1 is minimized. We dub the resulting
limits quasi-primitive EFT string limits, defined as follows:

Definition 2 (Quasi-primitive EFT string limit). Given a Kähler cone generator J0 we
can associate to it a quasi-primitive EFT string limit as the limit v0 → ∞ co-scaled in
such a way to obtain an EFT string limit and to minimize |I| > 0 for the set I as in
Definition 1. In particular, a minimal set must only contain divisors whose volume does
not scale to infinity (at the same rate as the other divisors in I) only as a result of the
required co-scaling of some other vi 6= v0 →∞.

Notice that, according to this definition, every primitive string limit is quasi-primitive.
Note furthermore that there can be multiple quasi-primitive EFT string limits for a given
Kähler cone generator J0 depending on the chosen co-scaling. At the same time, it is still
possible that a generator of Eff1(B3) is not contained in I for any quasi-primitive EFT
string limit. This can happen if the required co-scaling v0 6= vi → ∞ either leads to
divisors with expanding volume not contained in the set of divisors becoming large only as
a consequence of v0 → ∞, or if we leave the class of EFT limits altogether because some
of the expanding divisors do so at different rates. We will discuss the weak coupling limits
for these theories separately in section 3.3.

Having defined the EFT string limits in field space, we may ask about the EFT strings
giving rise to such limits via their backreaction. As noticed before, an EFT string in
F-theory can be obtained by wrapping a D3-brane on a movable curve. Following the
discussion in section 2.1, for a given EFT string limit, we can identify the EFT string
giving rise to the limit by considering the instantons that become suppressed in that limit.
The relevant instantons in our setup are Euclidean D3-branes wrapped on effective divisors
D =

∑
im

iDi of B3. Their action is simply given by

Sm = 2πmi Ti , (2.25)

where Ti are the chiral scalars introduced in (2.11). These instantons are charged under
the axionic shift induced by the EFT string solution (2.7). In the F-theory setting, this
amounts to the statement that the curve C giving rise to the string and the instanton
divisor have non-vanishing intersection, i.e. C ·D 6= 0. In an EFT string limit, the action
of an instanton vanishes, i.e. ReSD3 → ∞, if and only if the instanton is charged under
shift symmetries induced by the string. For a given quasi-primitive EFT string limit, this
allows us to identify the string giving rise to the corresponding limit. More precisely we
have the following
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Proposition 2. Given a quasi-primitive EFT string limit associated to a Kähler cone
generator J0, then the EFT string giving rise to this limit is obtained by wrapping a D3-
brane on

P2a. C = αJ2
0 if J2

0 6= 0, or

P2b. C = αJ0 · Ji if J2
0 = 0 with Ji 6= J0 a suitable Kähler cone generator,

for some α ∈ Q>0.

We prove this Proposition in appendix B.
Since the curves in Conditions P2a and P2b have non-negative intersection with the

generators of Eff1(B3), these curves are necessarily movable. However, in general, these
curves are not necessarily generators of the movable cone. Notice that Proposition 2
assumes that for a given Kähler cone generator, an associated quasi-primitive EFT string
limit exists within the chosen Kähler cone chamber. This means that there is a co-scaling
such that neither does |I| increase, nor does any generator of Eff1(B3) shrink to zero size.
This is a non-trivial assumption, which may fail in general. In appendix C, we discuss
examples where curves of the form as in Condition P2a or P2b do not give rise to a quasi-
primitive EFT string limit. However, following the discussion around (2.22), we expect that
for each generator of Mov1(B3), there exists a chamber of Kext in which the corresponding
primitive EFT string limit can be obtained. By Proposition 2, this means that for each
generator of Mov1(B3) there exists a chamber of the extended Kähler cone in which the
generator can be written as in Condition P2a or P2b. Indeed, this is confirmed in the
examples of appendix C.

As we have seen in Proposition 2, every quasi-primitive EFT string can be written as
the product of two Kähler cone generators. For a general curve of the form C = D1 ·D2,
with D1 and D2 effective (but not necessarily movable) divisors, we can define the two
quantities

Q1 = D2
1 ·D2 , Q2 = D1 ·D2

2 , (2.26)

which only depend on the intersection numbers of D1 and D2. As we will see below, such
curves D1 ·D2 on B3 can be nicely classified according to the value of

q = Θ(Q1) + Θ(Q2) , (2.27)

where we defined the step-function

Θ(x) =


1 , x > 0
0 , x = 0
−1 , x < 0

. (2.28)

Accordingly, q takes values in q ∈ {0,±1,±2} and is non-negative for movable curves
hosting (quasi-)primitive EFT strings since for these D1,2 are Kähler cone generators. As
it turns out, the crucial properties of (quasi-)primitive EFT string only depend on the
value of the topological quantity q which can therefore be used to classify (quasi-)primitive
EFT string. For instance for q = 0 we can show the following
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S

J0

C0

C

B3

P1

(a) A q = 0 EFT string curve C = J2
0 , with J3

0 = 0,
is a P1-fiber.

J0

C

S

C0

B3

P1

(b) A q = 1 EFT string curve C = J0 · Ji lies in a
surface fiber of B3.

Figure 2. Schematic representation of quasi-primitive EFT strings with q = 0 (figure 2a) and
q = 1 (figure 2b). The limits correspond to expanding the base of the rational fibration (q = 0)
or of the surface fibration (q = 1). EFT string limits with q = 2 correspond to a homogeneous
decompactification.

Proposition 3. A quasi-primitive EFT string limit for a string with q = 0 is a primitive
EFT string limit.

The proof for this proposition can be found in appendix B. Like Proposition 2, Propo-
sition 3 assumes that there exists a co-scaling leading to the quasi-primitive EFT string
limit. As we illustrate in the examples in appendix C, there may exist geometries where a
q = 0 curve of the form J2

0 as in Proposition 2 does in fact not give rise to a (quasi-)primitive
EFT string limit within a chosen chamber of Kext.

It was shown in [30], that a curve with q = 0 corresponds to the generic fiber of a
genus-one/rational fibration and the D3-brane wrapped on it is dual to a critical type
II/heterotic string. The relation between the q = 0 curve C, the generator of the Kähler
cone J0 and the Mori cone generator C0 is illustrated in figure 2a.

On the other hand, in order for a q = 1 curve C to exist, there must exist at least
one generator J0 of the Kähler cone such that J2

0 = 0. This implies that B3 is a surface
fibration with generic fiber J0. From Proposition 2, in order for the curve C to have q = 1,
there must exist a second Kähler cone generator J1 with J2

1 · J0 6= 0. This means that the
generator J1 must be a vertical divisor with respect to the surface fibration. The curve C
is then a curve inside the surface fiber. Figure 2b provides an illustration of the relation
between J0, C and the curve C0 with volume VC0 = v0 associated to the (quasi-)primitive
EFT string limit.

2.3 A simple example

Let us illustrate our discussion so far, and in particular Proposition 2, in a simple example.
In appendix C, we discuss various variations of this geometry, exemplifying how in settings
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where Kext has multiple chambers, not all primitive EFT string limits can necessarily be
obtained in all chambers of Kext.

The example we would like to study corresponds to a P1-fibration over Fn. We denote
the generators of the Kähler cone of Fn by j0 and j1, chosen such that the intersection
polynomial is

I(Fn) = nj2
0 + j0 · j1 . (2.29)

The twist of the P1-fibration is encoded in a line bundle T with

c1(T ) = sj0 , s ≥ 0 . (2.30)

The Kähler cone of B3 = P1 T→ Fn is generated by

J0 = p∗j0 , J1 = p∗j1 , J3 = S− + p∗c1(T ) , (2.31)

where S− is the exceptional section of the fibration p : P1 → Fn.4 The intersection ring
for B3 can be computed as

I(B3) =s2nJ3
3 + snJ0 · J2

3 + sJ1 · J2
3 + nJ2

0 · J3 + J0 · J1 · J3 . (2.32)

For a P1-fibration the anticanonical class reads [45]

K = 2S− + p∗c1(T ) + p∗c1(B2) , (2.33)

which means that for the present example K = 2J3 − (s − 2)J0 + (2 − n)J1. The cone of
effective divisors is generated by

Eff1(B3) = Cone 〈D0, D1, D3〉 , (2.34)

where we have introduced the set of prime divisors Di that can be written in terms of the
Ji Kähler cone generators of B3 as

D0 = J3 − sJ0 , D1 = J0 − nJ1 , D3 = J1 . (2.35)

These divisors can be obtained from the divisors in (C.9) for u = J2 = 0. Their respective
volumes are

VD0 = 1
2v

0(nv0 + 2v1) ,

VD1 = v1v3 ,

VD3 = 1
2v

3(2v0 + sv3) .

(2.36)

From (2.34), we define the generators of the movable cone Mov1(B3) = Eff1(B3)∨ as

C0 = J0 · J1 , C1 = J1 · J3 , C3 = J0 · J3 , (2.37)
4We call the third generator J3 instead of J2 to unify the notation with the example in appendix C.1,

where we will consider blow-ups of Fn.
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whose volumes are
VC0 = v3 ,

VC1 = v0 + sv3 ,

VC3 = nv0 + v1 + snv3 .

(2.38)

Notice that we can write J2
0 = nC0 and J2

3 = sC3.
Let us now discuss the (quasi-)primitive EFT string limits and the curves in B3 giving

rise to these limits when wrapped by a D3-brane.
Using Definition 2, we can consider the limits va → 0 for some Mori cone generator

volume va and then use co-scalings in order to arrive at an EFT string limit in the sense of
Definition 1. For instance, for v0 ∼ λ→∞ we can obtain a primitive EFT string limit by
co-scaling v1 ∼ λ and v3 → λ−1. For this choice of scalings, VD0 →∞ while the volume of
the other generators of Eff1(B3) remain finite. In this case, a curve C0 giving rise to this
primitive EFT string limit is proportional to J2

0 in accordance with Proposition 2. Next, we
can consider the limit v1 ∼ λ→∞. In this case, there are two co-scalings possible. First,
we can again take v0 ∼ λ and v3 → λ−1, corresponding to the same primitive EFT string
limit as before. Another possible co-scaling is given by v0 ∼ λ−1 and yields a primitive
EFT string limit in which only VD1 becomes large. Its dual curve C1 = J1 · J3 yields a
q = 1 string in agreement with Proposition 2.

Finally, we can consider the limit v3 ∼ λ → ∞, which is sufficient in order to blow
up VD3 and realizes the last primitive EFT limit we were looking for. For s 6= 0, we can
summarize the curves giving rise to quasi-primitive EFT strings and the corresponding
limits as follows:

Movable curve q factor Primitive EFT limit VDi →∞

C0 = J0 · J1 q = 0 v0, v1 →∞ , v3 → 0 D0

C1 = J1 · J3 q = 1 v1 →∞ , v0 → 0 , v3 ' const. D1

C3 = J0 · J3 q = 2 v3 →∞ , v0 ' const. , v1 ' const. D3

(2.39)

The three EFT strings have q = 0, 1, 2, respectively, and are precisely of the form required
by Proposition 2 (recall C0 = nJ2

0 and C3 = sJ2
3 ). Thus, in this example, the number of

(quasi-) primitive EFT strings agrees with the dimension of the scalar field space and all
the generators of Mov1(B3) give rise to a primitive EFT string.

In appendix C, we illustrate that some primitive EFT string limits may not be real-
izable in a given chamber of the Kähler cone. Put differently, there may be a generator
of the effective cone which cannot acquire infinite volume in an EFT string limit without
any other effective cone generator becoming large. To realize the limit as an EFT string
limit, one must instead pass to a different chamber in the Kähler cone by performing a flop
transition.

3 Non-critical EFT strings and the Weak Gravity Conjecture

We now build on the EFT string limits discussed in the previous section to investigate the
weak coupling regimes for gauge theories on 7-branes in F-theory. Our goal is to test the
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asymptotic tower Weak Gravity Conjecture at weak coupling. Our analysis proceeds in
three steps.

In the first step, we focus on weak coupling limits that can be obtained as primitive
EFT string limits.5 We therefore assume that a gauge theory with gauge group G is
realized on a divisor S containing a generator of Eff1(B3) which by itself is homogeneously
expandable (cf. Definition 1) within a given chamber of Kext. Using Propositions 1 and 2,
we can then identify a curve C on B3 giving rise to the EFT string that becomes weakly
coupled in the EFT string limit. By Proposition 2, this ensures that 2m ≡ S · C > 0. As
a result, the N = (0, 2) supersymmetric worldsheet theory of the string has charged zero
modes, as explained microscopically in [46]. Due to these charged zero modes, some string
excitations are charged under the gauge theory, provided the – in general non-critical – EFT
string has particle-like excitations. One might then contemplate that these charged states
constitute a tower of super-extremal states required by the tower Weak Gravity Conjecture
along the lines of [39]. For critical strings becoming light in Emergent String limits, this
had previously been shown to be the case [28, 29, 33, 47].

As we will explain in section 3.1, in primitive EFT string limits corresponding to the
weak coupling limit for gauge theory, the effective action resembles that of a perturbative,
critical string. We can therefore evaluate the Repulsive Force Condition [48, 49] for possible
string excitations explicitly. We will show that in general the excitations of the primitive
EFT string cannot account for the states required by the tWGC due to a mismatch in the
O(1) factors. The only exception are primitive EFT strings with q = 0, which precisely
correspond to the emergent strings in [28, 29, 33, 47].

In the second step, we analyze more general weak coupling limits realized as quasi-
primitive EFT string limits in section 3.2. We will show that for such weak coupling
limits, the tension of the relevant EFT string always lies at or above the species scale of a
KK-tower becoming light in the limit, again unless q = 0.

This result is generalized, in step three (see section 3.3), to the most general weak
coupling limits for gauge theories on 7-branes which can not necessarily be obtained as
quasi-primitive EFT string limits or even as EFT string limits in the first place.

Based on these observations, we argue, in section 3.4, why it is consistent that we have
not found any tower of marginally super-extremal states for the gauge theories associated
to primitive EFT strings with q > 0 and why in general we do not even expect the tWGC
to be realized by marginally super-extremal excitations of quasi-primitive EFT strings
with q > 0.

3.1 Repulsive force condition

In this section, we will test the tower WGC for gauge theories on 7-branes in F-theory that
become weakly coupled in a primitive EFT string limit in the sense of Definition 1.

5Since for each generator of Mov1(B3) there exists a chamber of Kext in which the corresponding primitive
EFT string limit can be attained, there exists a weak coupling limit of this kind for each gauge theory.
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To this end, we will first show that for such a primitive EFT string limit the relevant
part of the effective action has the general form

S4d =M2
Pl

2

∫ (
R ? 1− ξdT0 ∧ ?dT̄0

(T0 + T̄0)2

)
− κM2

Pl

8

∫ (
ReT0 tr|F |2 − i ImT0 tr(F ∧ F )

)
+ . . . .

(3.1)

Here the chiral field T0 denotes the complexified volume of a generator D0 of Eff1(B3)
with the property that ReT0 → ∞ in the primitive EFT string limit. According to Def-
inition 1, D0 is the only generator of Eff1(B3) which becomes large in the primitive EFT
limit. Furthermore, F is the gauge field strength of any gauge theory becoming weakly
coupled in the primitive EFT string limit.

To derive (3.1), we first observe that the gauge kinetic function for any gauge theory
becoming weakly coupled in a primitive EFT string limit is asymptotically proportional
to T0. To see this, note that such a gauge theory necessarily originates from a 7-brane
wrapping a divisor S that can be written as

S = κD0 + . . . (3.2)

for some numerical constant κ. In the primitive EFT string limit, where ReT0 � 1, the
volume of S (and hence the inverse gauge coupling squared of the corresponding gauge
theory) is, to leading order, given by κReT0.

We now turn to the kinetic term for the complex scalar field T0, which derives from
the Kähler potential. In fact, we claim that, in the limit, the Kähler potential takes the
form

K = −ξ log
[
T0 + T̄0

]
+ . . . , ξ = 1 + q , (3.3)

from which the kinetic term in (3.1) follows. Indeed, in our F-theory setup K is given
by (2.13), and we claim that in the primitive EFT string limit the volume VB3 factorizes
in such a way that K acquires the form (3.3). The reason for this factorization is that in
the primitive EFT string limit, ReT0 →∞ while the volumes of all other divisors remain
finite, see (2.18). More precisely, for a primitive EFT string, we can show the following

Proposition 4. Given a primitive EFT string obtained in F-theory from a D3-brane
wrapped on a curve C0 in B3 charged under an axion ImT0. Then in the correspond-
ing EFT string limit, the volume of B3 behaves as

V2
B3 → (ReT0)1+q P2−q(ReTi 6=0) , (3.4)

where ReT0 is the saxionic partner of the axion ImT0, q is the topological quantity asso-
ciated to C0 defined in (2.27), and P2−q is a polynomial of degree 2 − q in the remaining
saxions. This implies that the parameter ξ appearing in (3.1) is given by

ξ = 1 + q . (3.5)
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The proof of Proposition 4 is technical and is provided in appendix B. With this key
result, the effective action (3.1) indeed follows.

Notice that (3.1) resembles the effective action of the weakly coupled heterotic string
in 4d once we identify T0 with the heterotic axio-dilaton and F with the field strength
of the perturbative heterotic gauge group. In particular, this form of the action suggests
that the axion decay constant (and hence the 2-form gauge coupling for the 2-form under
which the string is charged) and the 1-form gauge couplings are all determined by a single
saxion. This saxion takes over the rôle of the dilaton for the primitive EFT string. In
the special case q = 0, i.e. ξ = 1, the EFT string is the critical heterotic string, and the
above observations are part of the content of the Emergent String Conjecture [47]. The
excitations of the emergent heterotic string indeed contain a marginally super-extremal
tower, satisfying the tower WGC [28–30, 33].

Given this state of affairs, it is natural to speculate that the WGC in primitive weak
coupling limits for general values of q is realized similarly. To show this, one would first
have to postulate that the primitive EFT string with q > 0 can be treated as having a
spectrum of excitations similar to a critical string. Of course, this is a strong assumption,
but for the primitive EFT strings considered in this section one might motivate this by the
observed similarity between the effective action (3.1) and the action of a weakly coupled
heterotic string, apart from the numerical factor ξ.

From an EFT point of view, the relation between weak coupling limits of effective 4d
strings and the tWGC for the gauge symmetry has been analyzed in detail in [39]. As
a consequence of anomaly inflow on the string, the EFT string charged under θ = Im T

needs to have excitations charged under the gauge group. It was then shown in [39] that
as a consequence of the WGC for the axion to which the string couples, these charged
excitations of the string must satisfy the relation

Mk . gYMMPl , (3.6)

which is to be interpreted as a parametric relation up to O(1) coefficients. Here, Mk is
the mass of a charged string excitation at level k (assuming it exists), gYM is the gauge
coupling and MPl the 4d Planck mass. Notice that this parametric scaling is a necessary
condition for the WGC for the gauge theory to be fulfilled by the tower of charged string
excitations. However, to decide whether the WGC is indeed satisfied by these states, the
O(1) coefficients must be determined.

We now turn to this question, assuming for simplicity a gauge group of the form
G = U(1).6 To be precise, the tWGC is fulfilled if the states in the tower of charged
excitations satisfy the relation

g2
YMq

2
k

M2
k

≥ 1
M2

Pl

[
d− 3
d− 2

∣∣∣∣
d=4

+ 1
4
M4

Pl

M4
k

grs∂r

(
M2
k

M2
Pl

)
∂s

(
M2
k

M2
Pl

)]
. (3.7)

6In this case, the gauge divisor S is to be identified with the height pairing of a rational section of the
elliptic fibration (see e.g. [50, 51] for reviews), but this technicality plays no essential rôle in the forthcoming
discussion.
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Here, qk is the charge of the k-th excitation, and we have included the effect of scalar fields
φr in the second term with grs the inverse metric on the scalar field space. This relation
arises from the Repulsive Force Conjecture [48, 49] that requires that the super-extremal
state does not form bound states with itself, since its Coulomb repulsion is stronger than
the attractive gravitational and Yukawa forces. In its form (3.7), it is assumed that we
have a perturbative description for all three forces involved. In particular, the first term on
the r.h.s. arises from a Newton-like gravitational potential and therefore requires the scale
at which we evaluate (3.7) to correspond to weakly coupled gravity. It can be shown that
in weak coupling limits, the equality in the condition (3.7) corresponds to the extremality
bound of a dilatonic Reissner-Nordstrom black-hole (cf. [29] for the corresponding discus-
sion in 6d).

To test this relation for the putative excitations of a primitive EFT string, we assume,
as before, that the primitive EFT string is obtained from a D3-brane wrapping a curve C0

in B3. The gauge divisor S is characterized by m ≡ 1
2 C

0 · S > 0 (cf. Proposition 2). The
gauge coupling g2

YM for the gauge group is given by

2π
g2

YM
= VS , (3.8)

which in the primitive EFT string limit reduces to

VS = κ ReT0 + . . . . (3.9)

From the modular properties of the elliptic genus of the effective string, one can infer the
existence of states at mass level nk and charge [30–33]

q2
k = 4mnk . (3.10)

As explained in [30–33], these are the candidates for the super-extremal states, and we
henceforth focus on them. As stressed before, via the action (3.1), the EFT string resembles
a perturbative string in the corresponding weak coupling limit. One may hence assume
that the quantization of the string proceeds similarly to the quantization of critical strings,
such that the mass of an excitation at level k is given by

M2
k = 8πTEFT(nk − a) , (3.11)

where a is the vacuum energy of the string that can be calculated as a = 1
2K̄ ·C

0 [30]. Thus,
we can rewrite the l.h.s. of (3.7), in the limit of large nk, for the candidate super-extremal
states with the property (3.10) as

q2
kg

2
YM

M2
k

= m

TEFT κ ReT0
. (3.12)

On the other hand, the tension of the EFT string in the EFT string limit is given by the
linear multiplet

TEFT

M2
Pl

= e0L
0 = −e0

2
∂K

∂ ReT0
= e0

2
(1 + q)
ReT0

, (3.13)
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where we used Proposition 4 to infer the dependence of K on ReT0 in the primitive EFT
string limit. Here, e0 is the charge of the string under the 2-form dual to ImT0. Since the
curve with e0 = 1 corresponds to the string associated with the generator of the movable
cone dual to D0, we find

2m = κe0 , (3.14)

leading to

q2
kg

2
YM

M2
k/M

2
Pl

= 1
1 + q

. (3.15)

Let us now turn to the r.h.s. of (3.7). Whereas the first term always yields a contribu-
tion of 1

2 in 4d, the second term is determined by how the mass scale, and hence the EFT
string tension, depends on the scalar fields in the theory. By (3.11) and (3.13) the mass of
the excitations only depends on a single scalar field L0. Hence

grs∂s

(
M2
k

M2
Pl

)
∂r

(
M2
k

M2
Pl

)
= (8πe0(nk − a))2 g00 . (3.16)

We are thus left with evaluating the metric component g00:

g00 = 1
2

∂2K

∂(ReT0)2 = − ∂L0

∂(ReT0) = 1
2

1 + q

(ReT0)2 . (3.17)

Putting things together, we obtain

1
4
M4

Pl

M4
k

grs∂r

(
M2
k

M2
Pl

)
∂s

(
M2
k

M2
Pl

)
= 1

4

(2 ReT0
(1 + q)

)2 (1 + q)
2(ReT0)2 = 1

2(1 + q) . (3.18)

For a string with given q, the repulsive force condition then requires

g2
YMq

2
k

M2
k/M

2
Pl

= 1
1 + q

!
≥

1 + q
2

1 + q
=
[
d− 3
d− 2

∣∣∣∣
d=4

+ 1
4
M4

Pl

M4
k

grs∂r

(
M2
k

M2
Pl

)
∂s

(
M2
k

M2
Pl

)]
. (3.19)

We notice that the inequality in the above expression is only satisfied for −1 < q ≤ 0. Thus,
since for primitive EFT strings q is restricted to 0, 1 or 2, we expect such strings to lead
to a tower of states satisfying the repulsive force condition (3.7) only for q = 0. The result
for q = 0, of course, matches with the computation in [33] for the (heterotic) emergent
string limit: in this case, one finds a marginally super-extremal tower of states, in the
sense that at higher and higher excitation level the super-extremal states asymptotically
become extremal.

Let us stress that still, as noticed in [39], the repulsive force condition is parametrically
satisfied in that any dependence on ReT0 drops out of the relation (3.7). This follows from
the dependence of K on ReT0 as given by Proposition 4 and the relation between the
string tension and ReT0, which in turn is a consequence of the BPS properties of the
string. Thus, indeed, the BPS property of the string ensures that (3.7) is parametrically
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satisfied. However, the O(1) coefficients do not match. These O(1) coefficients are sensitive
to the actual particle excitations of the string via (3.10) and (3.11).

One might contemplate whether the relation (3.11) receives corrections for non-critical
strings with q ≥ 1 which change the quantization condition to

M2
k = 8π n(q)TEFT(nk − a) , (3.20)

for some q-dependent factor n. Following the same steps as before, one finds that n would
have to be given by

n(q) = 2
2 + q

(3.21)

in order to obtain a marginally asymptotic tower, as for the emergent string with q = 0.
However, we actually do not expect that the tWGC is realized in this manner: first, the
simple rescaling (3.20) is not only completely ad hoc, but more importantly it does no
longer work for more general limits beyond the primitive strings considered in this section.

Furthermore, as we argue in the next section, we do not expect the (quasi-)primitive
EFT strings with q ≥ 1 to have particle-like excitations in 4d in the first place. In fact, we
will conclude from this, in section 3.4, that the limits with q ≥ 1 do not even motivate an
asymptotic WGC in the usual sense.

3.2 String scale vs. species scale for (quasi-)primitive EFT string limits

So far, we have treated the primitive EFT strings on similar grounds to a critical string in
four dimensions and assumed that it has particle-like excitations. However, for this to be
the case, we need to ensure that in the EFT string limit we can still consider the D3-brane
string as an effective string in four dimensions. In this section, we will assess the validity
of this assumption section by analyzing the relation between the KK-scale of the F-theory
compactification and the tension of the primitive EFT string. The consequences of this
analysis for the WGC will then be discussed in section 3.4.

We can in fact widen the scope of our analysis and focus on quasi-primitive EFT string
limits in the sense of Definition 2, which include the primitive string limits studied in the
previous section as special cases.7 As in [35], the relation between the KK-scale and the
EFT string tensions is governed by the so-called scaling weight w defined as

m2
∗ ∼ AM2

Pl

(
TEFT

M2
Pl

)w
, (3.22)

where m∗ is the cut-off scale of the EFT, i.e., the mass scale of the lightest tower, and A

is some constant depending on the free parameters of the string flow. In our discussion
of EFT string limits in the Kähler field space of F-theory, the lightest scale is always (at
least parametrically) the KK-scale. For our three cases q = 0, 1, 2, we can calculate the
respective value of w and find

q = (0, 1, 2) ←→ w = (1, 2, 2) . (3.23)
7In the next section, the restriction to EFT string limits will be dropped altogether.
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Thus, unless q = 0, the tension of the string is always above the KK-scale. These limits
therefore correspond to decompactification limits, in agreement with the Emergent String
Conjecture. However, one might still be tempted to view the strings as effectively four-
dimensional objects as long as their tension remains below the species scale Λsp,KK associated
to the tower of KK-modes.

We therefore should evaluate the species scale associated to the KK-tower with mass
scale MKK. When decompactifying n dimensions, the number N of KK states with mass
m2 ≤ k2M2

KK for some k ∈ N grows like

N ∼ kn . (3.24)

On the other hand, the species scale in four dimensions is defined as [52]

Λ2
sp = M2

Pl

Nsp
, (3.25)

where Nsp is the number of species with masses Λsp. Using (3.24) we find

Λ2
sp,KK = k2

maxM
2
KK

!= M2
Pl

knmax
⇒

Λ2
sp,KK

M2
Pl

=
(
M2

KK

M2
Pl

) n
2+n

. (3.26)

Here kmax is the maximal excitation level of the states with masses below the species scale.
As we show in the sequel, in terms of the type IIB string scale MIIB the scale Λsp,KK for the
different values of q is given as follows:

q 0 1 2

Λ2
sp,KK

M2
Pl

∼
(
M2

IIB

M2
Pl

)4/3

∼ M2
IIB

M2
Pl

∼ M2
IIB

M2
Pl

Thus, for limits of type q = 1, 2 the KK species scale coincides with the Type IIB
string scale MIIB, which turns out to be the higher dimensional Planck mass for the de-
compactification limits under consideration. However, in order for Λsp,KK to correspond to
the actual species scale, we need to ensure that the tension of the EFT string giving rise to
the asymptotic limit does not lie between MKK and Λsp,KK. If this was the case, the actual
species scale would be set by TEFT [53, 54] and we could still consider the EFT string limit
as effectively four-dimensional.8 As we show below, the relation between MIIB and TEFT

can be conveniently written as

M2
IIB ∼M2

Pl

(
TEFT

M2
Pl

) q+1
2
. (3.27)

Therefore for q > 0 the EFT-string tension sits at or above Λsp,KK and hence the EFT string
should effectively be viewed as an object in a higher-dimensional theory. In particular, in

8Here we assume for the time being, as before, that it makes sense to speak of a tower of EFT string
excitations in four dimensions. The following considerations serve as a consistency check of this assumption,
and in fact will show that for q > 0 this assumption is not justified.
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this case Λsp,KK is the actual species scale since any other tower of states sits at or above
Λsp,KK and should therefore not be taken into account when calculating the species scale.
On the other hand, for q = 0 we have TEFT - Λ2

sp,KK such that here the effective asymptotes
to a bona fide four-dimensional theory in the EFT string limit. Notice that for q = 0, the
emergent critical string, the KK-species scale does not coincide with MIIB as would be
expected for a decompactification limit. This discrepancy in fact already signals that the
q = 0 limit cannot be a decompactification and that consistency requires the presence of
an additional tower of states. Thus, for q = 0 one could have inferred the existence of the
emergent string merely based on the scaling of the species scale associated to the KK-tower.

We will now show how to obtain the relation (3.27) between Λsp,KK, MIIB and TEFT for
the different values of q:

q = 0: Recall that in a q = 0 EFT string limit, the F-theory base B3 admits a rational or
genus-one fibration (see figure 2a) and in the limit the volume of the base of this fibration
is scaled up homogeneously as λ2 → ∞, while the volume of the fiber C shrinks as λ−1

(each in Type IIB string units). Here v0 ∼ λ→∞ is the volume of a curve C0 in the base
of the fibration which becomes large. The q = 0 string arises from a D3-brane wrapped
around the shrinking fiber. Altogether, the volume of B3 scales up as VB3 ∼ λ (cf. [33] and
the proof of Proposition 3 in appendix B). It follows that the KK scale is given by

M2
KK

M2
Pl
∼ 1
λ2 for q = 0 , (3.28)

where we used the standard relation between type IIB scale and MPl,

M2
Pl

M2
IIB

= 4πVB3 . (3.29)

Since the base of the fibration expands while the fiber shrinks, the λ → ∞ limit naïvely
resembles a decompactification to 8d, i.e., if we take into account the KK modes from the
expanding base in the computation of the KK species scales as in (3.26), we must set n = 4.
The species scale associated to the KK tower is then given by

Λ2
sp,KK

M2
Pl
∼
( 1
λ2

)2/3
∼ 1
λ4/3 -

1
λ
∼ M2

IIB

M2
Pl

for q = 0 . (3.30)

At the same time, if the theory actually decompactified to an effective theory in eight
dimensions, Λsp,KK would have to coincide with the higher-dimensional Planck scale, which
would, up to order one factors, be set by the ten-dimensional string scale MPl.9 The
parametric discrepancy between these two scales thus indicates that the q = 0 limit cannot
correspond to a bona fide decompactification limit, but requires the excitations of the q = 0
EFT string for consistency. This is of course in precise agreement with the Emergent String
Conjecture, according to which this type of limit is an effectively four-dimensional weak
coupling limit, with the rôle of the new fundamental string played by the q = 0 EFT string.

9In the putative eight-dimensional theory, no residual scaling limit is taken; the claim then follows from
the usual relation between the Planck scale in ten dimensions and the Planck scale after decompactification.
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By Proposition 3, all quasi-primitive EFT string limits with q = 0 are in fact primitive,
and we can therefore use Proposition 4 to find

VB3 ∼ (ReT0)
1
2 for q = 0 . (3.31)

On the other hand, since the tension of the q = 0 EFT string is given by

TEFT

M2
Pl
∼ (ReT0)−1 for q = 0 , (3.32)

we arrive at

M2
IIB ∼M2

Pl

(
TEFT

M2
Pl

) 1
2

for q = 0 . (3.33)

Therefore, as expected, the EFT string scale is below the species scale for the KK tower,
as shown also in figure 1a.

q = 1: For q = 1, we know, from the discussion at the end of section 2.2, that for such
a curve to exist, B3 needs to admit a surface fibration (cf. figure 2b). In this case, the
quasi-primitive EFT string limit for the D3-brane on the curve C with q = 1 is given by
the limit where the base of this fibration blows up. Let us denote the volume of the base P1

by v0 ∼ λ→∞. From the proof of Proposition 2 we know that the total volume scales as

VB3 ∼ λ for q = 1 , (3.34)

because the surface fiber does not scale in the limit. All this points to a decompactification
limit to six dimensions, corresponding to the value n = 2 in (3.26). The KK scale is
given by

M2
KK

M2
Pl
∼ 1
λ2 for q = 1 , (3.35)

leading to the species scale

Λ2
sp,KK

M2
Pl
∼
( 1
λ2

)1/2
∼ M2

IIB

M2
Pl

for q = 1 . (3.36)

The result (3.36) confirms that indeed the q = 1 limit corresponds to a decompactification
limit to 6d, and we arrive at a six-dimensional theory for which no particular scaling limit
is taken. If we do not take any scaling limit, the 6d Planck scale is indeed just set by MIIB

(cf. [30] for a similar discussion of decompactification limits).

To find the relation between MIIB and TEFT we proceed as follows: let C0 be the curve
associated to the q = 1 quasi-primitive EFT string limit, such that v0 ∼ λ → ∞ in the
quasi-primitive EFT string limit. Then from Proposition 2, we have (3.34). On the other
hand, the same proposition tells us that the EFT string curve is given by J0 · J1 for some
Kähler cone generator J1. Since the volume of all divisors intersecting J0 · J1 blow up in
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the EFT string, but no other divisors, the limit cannot involve any co-scaling v1 → ∞.10

On the other hand, since J0 · J2
1 6= 0 we know that

VJ0·J1 ∼ v1 + . . . , (3.37)

where the dots stand for possibly sub-leading terms. Therefore, we find

M2
IIB ∼M2

Pl

(
TEFT

M2
Pl

)
for q = 1 , (3.38)

such that TEFT is of the order of MIIB. The scalings are shown in figure 1b.

q = 2: By Proposition 2, a quasi-primitive EFT string limit with q = 2 corresponds to the
limit v0 ∼ λ→∞ for a Kähler cone generator J0 with J3

0 6= 0. Hence the base B3 blows-up
homogeneously and

VB3 ∼ λ3 for q = 2 . (3.39)

We thus encounter a decompactification to 10d, corresponding to a value of n = 6 in (3.26).
The KK-scale is given by

M2
KK

M2
Pl
∼ 1
λ4 for q = 2 , (3.40)

such that via (3.26) the species scale follows as

Λ2
sp,KK

M2
Pl
∼
( 1
λ4

)3/4
∼ M2

IIB

M2
Pl

for q = 2 . (3.41)

Thus, the species scale coincides with MIIB, the ten-dimensional Planck scale (recall that
the axio-dilaton is not scaled). On the other hand, to find the relation between MIIB

and TEFT we can use that, by Proposition 2, the volume of the curve giving rise to the
quasi-primitive EFT string scales like

VαJ2
0
∼ v0 + . . . ∼ λ . (3.42)

Altogether, this leads to

M2
IIB ∼M2

Pl

(
TEFT

M2
Pl

)3/2
for q = 2 , (3.43)

such that TEFT is parametrically above MIIB. The scalings are schematically shown in
figure 1c.

10To see this, we notice that there needs to be a divisor for which the volume contains a term (v1)2 since
J2

1 = 0. If this term would only be contained in the divisors intersecting J0 · J1, the EFT string limit could
equally be reached just by sending v1 → ∞ with EFT string given by a D3-brane on αJ2

1 . This would,
however, correspond to a q = 2 string.
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Consequences for the nature of the EFT strings and the weak coupling limits.
For q ≥ 1, the scale set by the tension of the EFT string is bounded from below by the
higher dimensional Planck scale. Therefore, these strings do not have excitations that
can be treated as particle-like excitations in a weakly-coupled theory of gravity. The two
cases q = 1 and q = 2 are nonetheless considerably different: in the quasi-primitive EFT
string limit for a q = 1 string, the theory decompactifies to 6d since the volume of the
P1 base of a surface fibration Σ → P1 is scaled up. On the other hand, the divisor S on
which the weakly coupled gauge theory is realized must contain this P1. Therefore, the
EFT string limit effectively gives rise to a six-dimensional gauge theory coupled to gravity.
However, this six-dimensional gauge theory is, generically, not weakly coupled since after
decompactification no additional limit is taken in the six-dimensional field space, at least
not in the most general type of limits.11 On the other hand, the quasi-primitive EFT string
is obtained by wrapping a D3-brane on a movable curve C0 ⊂ Σ. Hence, the resulting 6d
theory still contains an effective string which, just as the gauge theory, is not weakly
coupled. In particular, the tension of this string can never drop below the six-dimensional
Planck scale since C0 satisfies

C0 ·Σ C0 > 0 . (3.44)

In the resulting six-dimensional theory, this string is thus a supergravity string in the
language of [55] (see also [56]) whose tension is bounded by the six-dimensional Planck
scale. Notice that this is consistent with the estimate (3.27) that the tension of the q = 1
EFT string is always of the order of MIIB.

The situation for the q = 2 quasi-primitive EFT string limit is different: here the theory
decompactifies all the way to ten dimensions. The weakly coupled gauge theory now flows
to an eight-dimensional defect theory within the full ten-dimensional gravitational bulk
theory, such that effectively the gauge and the gravity sector completely decouple. In
contrast to the q = 1 EFT string, which remains an effective string in six dimensions, the
q = 2 string ceases to be an effective string in the full ten-dimensional theory since the limit
resolves the internal directions of the D3-brane. This is consistent with the relation (3.27)
telling us that for q = 2 the tension of the EFT string is always parametrically above MIIB

in the weak coupling limit. Whereas the q = 1 string can be thought of as a version of a
six-dimensional supergravity string, the q = 2 string does not have a higher-dimensional
analogue. As an effective string, it thus only exists in four dimensions.

The nature of the q = 0 strings is notably different: here the limit results in a genuinely
four-dimensional gauge theory weakly coupled to gravity, which also satisfies the tWGC
through the excitations of the q = 0 EFT string (see also [30, 33]). Notice that the q = 0
string also has a higher-dimensional analogue since it already exists in eight dimensions,
i.e., in F-theory compactified on an elliptic K3 surface. Moreover, in 8d the q = 0 string
could be viewed as a genuine supergravity string since its tension cannot drop below the 8d
Planck scale (both, the tension of the D3-brane on the base of the K3 and the 8d Planck

11At the end of the next section, we will discuss situations in which an additional limit leads to a weak
coupling regime in six dimensions.
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scale are proportional to the volume of the base of the K3). We can summarize our findings
as follows:

dimeff(gauge theory) Supergravity string4d effective string for gYM → 0 exists in:
q = 0 d = 4 d ≤ 8
q = 1 d = 6 d ≤ 6
q = 2 d = 8 d = 4

Let us stress that while the q = 0 string already exists in eight dimensions, its EFT
limit does not lead to a decompactification for the associated gauge theories; by contrast the
q = 2 string only exists as a string in four dimensions, but its EFT string limit corresponds
to a decompactification to eight dimensions for the gauge sector within a ten-dimensional
gravitational bulk theory.

Comparison to supergravity strings in 5d. It is instructive to compare our clas-
sification of the four-dimensional supergravity strings in terms of the quantity q to the
five-dimensional supergravity strings discussed in [57]. Therefore, consider the Coulomb
branch of a 5d supergravity theory with effective action

S5d = M3
Pl

2

∫ (
R ? 1−GIJdφI ∧ ?dφJ −GIJF I ∧ ?F J −

1
6CIJKA

I ∧ F J ∧ FK
)
. (3.45)

Here F I are the field strengths of the U(1) gauge fields AI in the 5d vector multiplets, φI

the corresponding scalars, GIJ the metric on the scalar fields space and CIJK the integer
coefficient of the cubic Chern-Simons term. The supergravity strings now arise as monopole
strings for the gauge fields AI carrying charge

pI = 1
2π

∫
S2
AI , (3.46)

where S2 is a sphere encircling the string. According to [57], a string is a supergravity
string if all supersymmetrically compatible BPS-particles in the theory carry non-negative
electric charge under the Abelian gauge field AI . In [57], the worldsheet theory of these
monopole strings is investigated and the anomaly inflow on the string due to space-time
gauge theories is used to constrain the possible gauge theories in 5d supergravity theories.
In particular, [57] identifies a class of supergravity strings for which they conjecture that
the worldsheet theory flows to a N = (0, 4) SCFT with SU(2) R-symmetry. This class of
supergravity strings is characterized by the condition CIJKpIpJpK > 0. On the other hand,
supergravity strings that arise from higher dimensional supergravity strings (e.g., 6d) or
strings for which the worldsheet supersymmetry gets enhanced, can have CIJKpIpJpK = 0.
In view of our classification of supergravity string in 4d in terms of the parameter q we are
thus led to identify the q = 2 strings as the 4d analogue of the CIJKpIpJpK > 0 strings
as these strings do not arise from a higher dimensional supergravity string. On the other
hand, the q = 0, 1 strings should be viewed as being the analogues of the strings in the
CIJKp

IpJpK = 0 class. In this paper, we do not attempt to scrutinize this analogy further,
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e.g., by investigating the worldsheet theory on the different 4d supergravity strings, but
leave this task for future work.

We observe that whereas in six and five dimensions, the relevant scale to distinguish
different kinds of supergravity string is the respective Planck scale, the analysis in this
section shows that the relevant scale in four dimensions is the species scale associated to
the KK tower.12 In particular, we have the three options:

TEFT

Λ2
sp,KK

� O(1) , TEFT

Λ2
sp,KK

∼ O(1) , or TEFT

Λ2
sp,KK

� O(1) , (3.47)

corresponding to q = 0, 1, and 2, respectively. Replacing Λsp,KK by MPl in six dimensions,
the first case is the analogue of a string with charge vector q satisfying q · q = 0 whereas
the second case corresponds to q · q > 0. The last case does not have an analogue in six
dimensions.

We will discuss the consequences of the findings of this section for the WGC in sec-
tion 3.4.

3.3 Non-EFT string weak coupling limits

So far, we have focused our discussion on weak coupling limits for gauge theories that can
be thought of as perturbative gauge theories for a quasi-primitive EFT string. We now
turn to gauge theories whose weak coupling limits cannot be achieved as quasi-primitive
EFT string limits in our chosen chamber of Kext. For these gauge theories, we can show
the following

Proposition 5. Given a generator D0 of Eff 1(B3) such that the limit VD0 → ∞ cannot
be realized as a quasi-primitive EFT string limit. Then the weak coupling limit for a gauge
theory on any divisor S = κD0 + . . . corresponds either to a limit in which the gauge theory
effectively becomes a defect theory in an 8d or 10d gravitational bulk theory, or to a limit
in which the gauge theory effectively becomes a generically non-weakly coupled 8d theory
coupled to gravity.

The proof is again provided in appendix B.
According to Proposition 5, weak coupling limits for gauge theories that do not cor-

respond to a quasi-primitive EFT string limit always lead to higher dimensional theories.
As for the quasi-primitive limits studied in the previous section, the asymptotic theory
cannot contain any non-critical EFT string whose tension lies between the scale of the
KK-tower and the associated KK species scale. By contrast, there can appear a critical
string between these two scales. This is possible if we take a q = 1 EFT string limit,
leading to a decompactification to six dimensions, and on top of this an additional limit is
taken in the six-dimensional theory. The combined limit is then no longer a q = 1 EFT
string limit. To allow for such a limit, B3 must be a surface fibration over P1 (in order for a
decompactification limit to six dimensions to exist) and the surface fiber itself must admit

12In the case q = 0 this is not the actual species scale, but just the would-be species scale if we did not
have an EFT string.
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for a P1-fibration (in order for a critical heterotic string to exist in the six-dimensional
effective theory).

To illustrate this point, we assume for simplicity that the F-theory base B3 admits a
simple fibration structure p : P1

0 →
(
P1

1 → P1
2
)
. In this case, the Mori cone is generated

by the curve classes of the three P1
i , i = 0, 1, 2, with volumes vi. In order to reach a

decompactification limit to six dimensions with a critical string below the species scale, we
can assume the general scaling

v0 ∼ λ−a , v1 ∼ λb , v2 ∼ λc , a, b, c ≥ 0 . (3.48)

Here we have chosen a ≥ 0 to engineer the relation Thet .M2
IIB between the tension of the

heterotic string and the type IIB scale. In order for the limit λ → ∞ to correspond to a
decompactification to six (rather than to eight or ten) dimensions, the parameters must lie
in the range where c > b such that

M2
Pl

M2
IIB
∼ VB3 ∼ λb+c−a , (3.49)

independently of the chosen twists. The KK-scale is given by

M2
KK

M2
IIB
∼ λ−c , (3.50)

and, by (3.26), the species scale is

Λ2
sp,KK

M2
Pl
∼ λ

a−b
2 −c . (3.51)

Using Thet/M
2
IIB ∼ λ−a we find that Thet . Λ2

sp,KK provided a+ b ≥ 0, which is the case by
assumption. However, if a = b = 0 the theory does not undergo any additional limit after
decompactifying to six dimensions. The simplest option to engineer an additional limit is
to take a = b 6= 0. In this case, the species scale coincides with MIIB, signaling that the
six-dimensional Planck scale is constant in units of MIIB. The resulting six-dimensional
limit then corresponds to the emergent string limits analyzed in [28, 29]. The volume of
the divisors scale as

Vp∗(P1
2) ∼ λc−a , Vp∗(P1

1) ∼ const. , VP1
1→P1

2
∼ λc+a . (3.52)

Notice that the condition c > b = a ensures that no divisor is shrinking in the limit, which is
necessary to retain perturbative control [33]. We observe that a gauge theory on a 7-brane
wrapping the divisor P1

1 → P1
2, the base B2 of the fibration p, becomes weakly-coupled

at the fastest rate, but unlike in the q = 0 primitive EFT string limit, the gauge theory
becomes effectively six-dimensional in the asymptotic limit.

To summarize, there also exist certain limits in which the tension of a critical string
lies above the KK-scale but below the KK-induced species scale,

M2
KK � Tcrit � Λ2

sp,KK . (3.53)
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As a result, the actual species scale is set by Tcrit. Since Λsp,KK can be identified with
the Planck scale in the higher-dimensional, i.e., six-dimensional, theory, this implies that
the latter undergoes an additional infinite distance limit corresponding to a weak coupling
limit for the six-dimensional gauge theory on B2. From this perspective it is not surprising
that a relation of the form (3.53) is only possible for critical, rather than general EFT,
strings since in six dimensions critical strings are the only strings which can become ten-
sionless, in Planck units, in weak coupling limits.13 Therefore, in four dimensions, there
cannot appear any other weakly coupled strings with a tension below Λ2

sp,KK, which in the
decompactification limit is the six-dimensional Planck scale.

3.4 Consequences for the four-dimensional WGC

Let us summarize our findings so far and discuss their consequences for the WGC.
We have studied weak coupling limits for four-dimensional gauge theories realized on a

stack of 7-branes in F-theory. Our goal was to identify a marginally super-extremal tower
of states as predicted by the asymptotic tWGC. A natural candidate for such states are the
excitations of a certain (solitonic) EFT string. The EFT string is obtained by wrapping a
D3-brane on a suitable curve on the base of the F-theory elliptic fibration such that the
EFT string tension TEFT sits at the expected weak gravity scale

ΛWGC ∼ gYMMPl . (3.54)

Contrary to expectations based on this parametric behavior alone, we have found that the
excitations of the EFT string satisfy the asymptotic tower WGC in its form (3.7) only if

a) the solitonic EFT string with TEFT = ΛWGC is a heterotic string and

b) the gauge theory can be identified with a perturbative gauge theory in the dual het-
erotic string duality frame associated with the EFT string.

We arrived at this conclusion by classifying the weak coupling limits imposed by the back-
reaction of EFT strings. For these limits, we found that conditions a) and b) are necessary
and sufficient to ensure that the extremality bound (3.7) is satisfied by the hypothetical
excitations of the EFT string and that the theory can be treated as a four-dimensional the-
ory even in the weak coupling limit. The hallmark of such situations is that the relevant
scales satisfy the relation

M2
KK ∼ TEFT ∼ Λ2

WGC � Λ2
sp, KK . (3.55)

Here, ΛWGC serves as the cut-off scale for the gauge theory required by the magnetic WGC.
The crucial point is that the first three scales in (3.55) lie below the would-be species scale
Λsp, KK associated to the KK-tower of mass MKK. This ensures that the EFT string and
its excitations can be viewed as genuinely four-dimensional and weakly coupled to gravity.

13Non-critical strings from D3-branes wrapping curves of negative self-intersection on the base of an
elliptic 3-fold become tensionless in the strongly coupled SCFT regime, while, as discussed around (3.44),
strings associated with curves of positive self-intersection cannot become tensionless in Planck units.

– 32 –



J
H
E
P
1
1
(
2
0
2
2
)
0
5
8

On the other hand, the fact that ΛWGC � Λsp,KK indicates that also the gauge theory can
be treated as a weakly coupled gauge theory in a weakly coupled four-dimensional theory
of gravity even at the scale at which we expect to encounter the super-extremal states
required by the WGC. Note that the actual species scale in this limit is determined by the
excitations of the (critical) EFT string tension itself [53, 54], and hence lies slightly above
the WGC scale ΛWGC.

In our classification of section 2.2, weak coupling limits of the above type correspond
to the so-called q = 0 EFT string limits.14 Theses are the emergent string limits studied
in four dimensions in [30, 33].

The situation for the weak coupling limits that cannot (to leading order) be described
as a q = 0 EFT string limit is different. We have found two possible asymptotic hierarchies:

MKK � Λsp,KK ∼ ΛWGC

or MKK � Λsp,KK � ΛWGC .
(3.56)

The first type of hierarchies is realized in generic q = 1 EFT string limits in the language
of section 2.2 and similar non-EFT string limits (as discussed in section 3.3). Since the
magnetic WGC cut-off ΛWGC of the gauge theory parametrically lies at the KK species
scale, the gauge theory should be viewed as a gauge theory in a higher-dimensional setting.
Without further specializations of the limit, the higher-dimensional gauge theory is not
weakly coupled. It is therefore not surprising that the naïve tower of charged excitations
of, e.g., the q = 1 string does not satisfy the repulsive force condition (3.7). On the one
hand, in order to formulate a condition such as (3.7), the gravitational and Coulomb force
must effectively be described by a Newton and Coulomb potential. In a strongly coupled
gauge and gravity theory, this assumption is certainly not valid. On the other hand,
in the higher-dimensional duality frame also the EFT string is strongly coupled. The
naïve assumption of having a perturbative string spectrum, which underlies the analysis
of section 3.1, is therefore not justified. Notice that this does not mean that there is
no tower of super-extremal states at all, but that such a tower cannot come from the
excitations of a perturbative string and that the actual super-extremality condition might
differ significantly from (3.7).15 We will come back to this point in the next section.

The second type of hierarchies in (3.56) is different and corresponds to q = 2 EFT
string limits and their analogous non-EFT string limit counterparts. Here, the gauge and
the gravitational theory decouple entirely, as is signaled by the relation Λsp,KK/ΛWGC � 1.
This is consistent with the fact that in such limits, the gauge theory asymptotically reduces
to a defect theory in a higher-dimensional gravity theory. Since gravity decouples from the
gauge sector, the WGC conjecture should become trivial in this limit. Indeed, consider the
charged states associated with (p, q)-strings with mass M2

k ∼ kM2
IIB. The charge-to-mass

14Notice that one could also modify the q = 0 EFT string limit slightly and impose a non-homogeneous
scaling. As long as one can still interpret this limit as a q = 0 EFT string limit plus small corrections, one
still expects the asymptotic tWGC to be fulfilled, see the discussion in [33].

15Note also that by specifying the limit further one can engineer a weak coupling limit in the effective
higher-dimensional theory such that the tWGC is satisfied by excitations of an emergent heterotic string
in the higher dimensional theory. See section 3.3 for a discussion.
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ratio for these states diverges asymptotically,

g2
YMq

2

M2
k/M

2
Pl
→∞ , (3.57)

such that the constraint from theWGC becomes trivial, as expected. There is hence no need
for an additional, marginally super-extremal tower of states coming from the excitations of
an EFT string. On the contrary, it would be surprising if there was such a tower of states
that marginally satisfies the WGC, since the gauge theory and the gravity theory decouple
at scales corresponding to ΛWGC.

Our analysis reveals that in order to test the asymptotic WGC in four dimensions
based on the properties of axionic or EFT strings, it is not enough to just consider the
weak coupling limit for a gauge theory in an EFT with some cut-off Λ = m∗. Instead, one
also needs to know the nature of the lightest tower of states with mass of order, m∗ since
this determines the species scale. We have found that the WGC in its usual form (3.7) is
only satisfied by the tower of excitations of an axionic string if the latter sets the species
scale. Otherwise, the species scale associated with the KK tower per se is always at or
below the string scale and one either ends up with a (generically) strongly coupled theory
in higher dimensions or with a defect gauge theory from which gravity is decoupled.

4 Discussion

In this section, we would like to extend the conclusions of our analysis of weak coupling
limits beyond the concrete realization of the gauge sector via 7-branes in F-theory.

Quite generally, the nature of a weak coupling limit gYM → 0 of a four-dimensional
gauge theory coupled to quantum gravity is controlled by the ratio of the magnetic weak
gravity scale ΛWGC ∼ gYMMPl and the species scale Λsp of the quantum theory. There are
four possible conceivable regimes:

i) The WGC scale lies parametrically below the species scale, i.e.
ΛWGC

Λsp
� O(1) . (4.1)

This type of weak coupling limits characterizes decompactification limits in which
ΛWGC can be identified with the scale of the KK tower and in which the latter furnishes
the super-extremal tower for a KK U(1): the species scale is set by Λsp,KK, and (4.1)
follows from (3.26) by identifying MKK ∼ ΛWGC. By the Emergent String Conjecture,
decompactification limits should be the only type of limits falling into the class (4.1).
In particular, all limits in which the super-extremal tower is provided by BPS states
(not associated with a tower of string excitations) should have a (possibly dual)
interpretation of this type. Note that in string theory, the super-extremal states and
the gauge sector are realized in the closed sector.

ii) The WGC scale lies marginally below the species scale, i.e.,
ΛWGC

Λsp
. O(1) , (4.2)
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such that gravity remains weakly coupled at the WGC scale. This scenario is realized
in heterotic string theory and for theories which asymptote, up to duality, to a four-
dimensional heterotic theory in the weak coupling regime (emergent string limit).16

In such limits, the gauge theory is effectively weakly coupled in four dimensions and
the WGC predicts a tower of states satisfying the repulsive force condition (3.7).
Indeed, the emergent string tower contains an infinite tower of charged states which
are marginally super-extremal, as in figure 3. By the Emergent String Conjecture,
all weak coupling limits with the property (4.2) are of the emergent string type.

iii) The WGC scale is of the order of the species scale, i.e.,

ΛWGC

Λsp
∼ O(1) . (4.3)

Hence gravity is strongly coupled at the WGC scale. As a consequence, the gauge the-
ory cannot be viewed as a weakly coupled theory in four dimensions, and one does not
expect a tower of perturbative states satisfying the four-dimensional repulsive force
condition as in (3.7). The EFT string limits with q = 1 (and their generalizations)
are examples of this behavior. Further refinements of the limit may result in a weak
coupling limit of a higher-dimensional gauge theory coupled to gravity, in which the
relation (4.2) holds with respect to the higher dimensional weak gravity and species
scale.

iv) The WGC scale parametrically lies above the species scale, i.e.,

ΛWGC

Λsp
� O(1) . (4.4)

At the WGC scale, the gauge theory is effectively decoupled from the gravity sector,
as for example in the EFT string limits with q = 2. In open string realizations, the
repulsive force condition is trivially satisfied by highly super-extremal open string
states. Any marginally asymptotic tower of states, even if present, would necessarily
decouple from the gauge theory.

Notice that the asymptotic decoupling of the gravitational and gauge sector does not need
to correspond to a geometric decompactification limit in which the gauge theory becomes
a defect theory in a higher dimension, even though this was the case for the corresponding
limits on 7-branes studied in this paper. As an example, consider a D3-brane gauge theory
in type IIB Calabi-Yau orientifolds. The gauge coupling strength is set by the string
coupling,

g2
YM ∼ gs , (4.5)

such that the weak coupling limit corresponds to the regime where gs → 0 (with the other
moduli unchanged). In this case, the species scale can be identified with MIIB, the tension

16Here the species scale is determined by the degeneracy of the heterotic string excitations and is thus
(slightly) above the heterotic string scale [53, 54] and the WGC scale.
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M

Q

MPl

Figure 3. Super-extremal states for weakly coupled open (blue dots) versus heterotic strings (red
dots). For a fixed value of the dilaton, the open string only provides a finite number of super-
extremal states, while the heterotic string contains a marginally super-extremal tower of states.

of the fundamental type IIB string. Since M2
Pl is suppressed with respect to M2

s by one
additional power of gs,

M2
Pl

M2
IIB
∼ g−2

s , (4.6)

one concludes that

Λ2
WGC

Λ2
sp
∼ g2

YMM
2
Pl

M2
IIB

∼ g−1
s →∞ . (4.7)

This places the regime gs → 0 into the context of the weak coupling limits of iv), and
effectively decouples the gauge theory on the D3-branes from the gravity sector. In the
present framework, this amounts to the well-known statement that for type IIB orientifolds
in the limit gs → 0 the open and closed string sectors decouple. The WGC is now trivially
satisfied by the open type IIB string excitations that become infinitely super-extremal in
the limit gs → 0.

A key difference of such perturbative open string towers compared to their heterotic
counterparts is, of course, that the charges of the string states are only determined by the
Chan-Paton factors, and hence the highest charge per excitation level does not increase
with the level. Strictly speaking, then, the string excitations tower only provides a finite
number of super-extremal states for a fixed value of gs � 1. This is in contrast with the
marginally super-extremal tower of infinitely many states which arise in the weak coupling
limit of a heterotic string, even for a fixed value of the heterotic dilaton. See figure 3 for
an illustration.

One might wonder to what extent our results are in conflict with the WGC or its tower
version. First, our focus has been entirely on weak coupling limits of the gauge sector and
hence on the asymptotic WGC. It is in this regime where one has computational control and
therefore the best chances of reliably identifying a super-extremal tower. More importantly
perhaps, some of the original bottom-up arguments in favor of the WGC primarily hold
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in the weak coupling limit, and in fact in limits of type i) or ii): as was argued in [6], if
extremal black holes were not able to decay, this would be in tension with the covariant
entropy bound in the limit gYM → 0, in which an infinite number of extremal black holes
can be constructed with mass below every finite cutoff. Away from this asymptotic regime,
no immediate contradiction with entropy considerations arises. Clearly, this does not mean
that the WGC or its tower version does not hold also away from the weak coupling limit,
but it is less clear, from a bottom-up point of view, why this would have to be the case.

Indeed, examples where the tower WGC is satisfied even at strong coupling have been
studied in detail in [24], in the framework of M-theory compactifications to five dimensions
with eight supercharges: the asymptotic tower of states is formed by BPS states, at least
in favorable circumstances. As long as the WGC bound and the BPS bound coincide,
the appearance of a tower of exactly super-extremal states was found to be protected by
supersymmetry. Our focus in this paper, by contrast, is on minimally supersymmetric
settings in which the WGC states, if any, are not BPS. It is striking that in all bona fide
weak coupling limits coupled to gravity, a marginally super-extremal tower of states can
be identified beyond doubt, from the excitations of an (emergent) perturbative heterotic
string. In all other weak coupling limits, where no such tower is available among the
weakly coupled and hence well-controlled sets of states, the WGC is substantially less well
motivated also from a bottom-up perspective — either because the gauge theory is no
longer weakly coupled after passing to the emergent higher dimensional duality frame or
because the gauge and the gravity sector decouple.

While we do therefore not find any contradiction to the asymptotic tWGC (valid in the
limit gYM → 0 for a gauge theory coupled to weakly coupled gravity), it would clearly be
interesting to continue analyzing other potential sources of super-extremal towers beyond
these regimes.

There are two qualitatively different situations to consider. The first would be a
gauge theory coupled to gravity away from the regime gYM → 0, but in situations where
the BPS condition does not protect the WGC tower.17 It is tempting to hypothesize
that traces of a marginally super-extremal tower should indeed be present whenever a
continuous deformation connects the strongly-coupled theory to a weakly coupled regime
without decoupling gravity, i.e., in situations where one can take a limit of type ii). To
settle this question, one would have to follow the excitations of the emergent perturbative
heterotic string regime into the strongly coupled region of moduli space. First steps in
this direction were taken already in [33], where subleading corrections to the charge-to-
mass ratio were taken into account. Clearly, whether a full tower of super-extremal states
survives parametrically away from weak coupling, and without the protection of a BPS
condition, is a considerably more ambitious question.

The second type of challenges for the WGC is posed by those theories which are not
smoothly connected to a weak coupling limit of type ii) and for which the weak coupling
limit of the gauge theory necessarily implies a decoupling from gravity. We have exem-

17This includes limits of type iii) after dualizing to the higher dimensional frame where the gauge theory
is — in general — not weakly coupled.
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plified one such instance in our discussion of the gauge theory on D3-branes in Type IIB
orientifolds. To identify a tower of marginally super-extremal states, the only option seems
to be to resort to the D1-brane, or more generally to (p, q)-strings, either by hypothesiz-
ing about their potential excitations or by arguing for stretched, possibly multipronged
string networks giving rise to particle states in four dimensions:18 At the parametric level,
TD1 ∼ Λ2

WGC, but in the limit gs → 0 under consideration, this implies that the D1-brane
theory becomes asymptotically strongly coupled and hence, by design, decouples from the
gauge theory because of (4.7). Again, not only does it not seem plausible to obtain a
marginally super-extremal tower of states from such strongly coupled objects, it appears
not even to be required in the limit in which (4.7) holds.

More generally, a gauge theory in F-theory can never become weakly coupled along a
direction compatible with ii) if the base of the elliptic fibration does not admit a rational
fibration, or if the stack of gauge 7-branes does not intersect the rational fiber. As we
have shown, at least the (hypothetical) excitations of the weakly coupled EFT strings
sitting at the weak gravity scale do apparently not satisfy the perturbative repulsive force
condition and hence do not yield a marginally super-extremal asymptotic tower. Similarly
to the theory on the D3-branes, it is hard to imagine which other states could produce
a marginally super-extremal tower instead. At the same time, a highly super-extremal
pseudo-tower of states is provided by the open string sector in such situations; it comprises
only finitely many super-extremal states for fixed gYM � 1, but infinitely many in the limit
gYM → 0.

Upon circle compactification, these states will continue to act as the super-extremal
states for the original gauge group; however, taking into account the effect of the KK U(1)
as in [10], one might worry that the convex-hull condition will now be violated. Even if
this turned out to be the case, the gravity sector of the lower-dimensional theory continues
to decouple from the gauge theory, since the relation Λ2

WGC/Λ2
sp → ∞ still holds. In this

sense, there is no immediate contradiction with the WGC even after circle compactification,
according to our more conservative interpretation of the WGC.

Barring these subtleties, it is fair to say that in all instances in which a marginally
super-extremal tower of states has been reliably confirmed in gauge theories coupled to
gravity in Minkowski space, this is either due to the BPS condition or an artifact of the
specific shape of the charge-to-excitation-level diagram of the perturbative heterotic string.
In fact, in all these cases, the tower WGC (in flat Minkowski space) follows from the
Emergent String Conjecture in the sense that the super-extremal tower either furnishes a
(dual) KK tower (in situations where the tower is BPS) or corresponds to the excitations of
an emergent heterotic string. In all other situations, in particular away from weak coupling
and amiss of a BPS protection, the tower WGC can in principle be violated and in fact
is not even required for bottom-up consistency of the theory. It will be interesting to find
a counter-example to this preliminary interpretation, or, if corroborated, to understand
further what it teaches us about the true rationale behind the WGC in general quantum
gravity theories.

18In F-theory, such multipronged string networks can lead to a proliferation of charges, but from all we
believe to know this requires strong coupling rather than weak string coupling.
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A The geometry of EFT strings in F-theory

This appendix briefly covers the necessary algebraic geometrical notions for describing
EFT strings in F-theory [34–36]. Accordingly, we consider a compact Kähler manifold Bn
of dimension n as the base of an elliptically fibered Calabi-Yau. For further details on our
assertions and definitions in what follows, we refer the reader to [58].

As a starting point, let us introduce the Néron-Severi group, the set of divisors modulo
numerical equivalence, which in our case of interest is given by

N1(Bn) = H1,1(Bn) ∩H2(Bn,Z)/torsion , (A.1)

and its real extension N1(Bn)R = N1(Bn) ⊗Z R. Similarly, we introduce its intersection
pairing counterpart, the set of curves modulo numerical equivalence, which is

N1(Bn) = Hn−1,n−1(Bn) ∩H2n−2(Bn,Z)/torsion , (A.2)

and its real extension N1(Bn)R = N1(Bn) ⊗Z R. In the following, we describe the convex
cones in N1(Bn)R and N1(Bn)R that are relevant to us:

The pseudo-effective cone: the cone of effective divisors Eff1(Bn) ⊆ N1(Bn)R is the
convex cone of all effective divisors, i.e., positive linear combinations of complex codimen-
sion-one cycles on Bn. The pseudo-effective cone Eff1(Bn) ⊆ N1(Bn)R is the closure of
Eff1(Bn).

The Kähler cone: the Kähler cone is the set K(Bn) ⊂ H1,1(Bn,R) of classes of Kähler
forms {J} on Bn. We identify

K(Bn) = Amp(Bn) ⊂ N1(Bn)R , (A.3)

which is the convex cone of all ample divisors on Bn, as
∫
V J

k > 0 for every J ∈ K(Bn) and
all irreducible V ⊆ Bn with k = dim(V ) > 0 according to the Nakai-Moishezon criterion
for ampleness [58]. Similarly, we identify its closure to be

K(Bn) = Nef(Bn) ⊂ N1(Bn)R , (A.4)

which is the convex cone of all nef divisors on Bn, as
∫
V J

k ≥ 0 for every J ∈ K(Bn) and
all irreducible V ⊆ Bn with k = dim(V ) > 0 following Kleiman’s theorem [58].
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The Mori cone: the cone of curves NE(Bn) ⊆ N1(Bn)R is the cone spanned by the classes
of all effective complex one-cycles on Bn. Its closure NE(Bn) ⊆ N1(Bn)R, also known as
the Mori cone, is dual to the nef cone, i.e

NE(Bn) = {C ∈ N1(Bn)R | J · C ≥ 0 for all J ∈ Nef(Bn)} . (A.5)

The Movable cone: a movable curve is an irreducible complex one-cycle that is a member
of an analytic family {Ct}t∈S such that

⋃
t∈S Ct = Bn. We denote by ME(Bn) the convex

cone generated by movable curves. We call its closure Mov1(Bn) = ME(Bn) the movable
cone. If Bn is projective, then the movable cone is dual to the pseudo-effective cone of
divisors [43], i.e.

Mov1(Bn) =
{
C ∈ N1(Bn)R | D · C ≥ 0 for all D ∈ Eff1(Bn)

}
. (A.6)

Finally, let us define the integral cones Eff1(Bn)Z≡Eff1(Bn)∩N1(Bn) and Mov1(Bn)Z≡
Mov1(Bn) ∩ N1(Bn). Based on the results of [35], we summarize the correspondence be-
tween EFT objects and geometry for a given compact Kähler 3-fold B3:

EFT data Geometric cone
Saxionic cone ∆ ME(B3)
EFT strings CSEFT Mov1(B3)Z
BPS instantons CI Eff1(B3)Z

B Proofs of Propositions 1–5

In this appendix, we provide the proofs of Propositions 1, 2, 3, 4 and 5.

Proof of Proposition 1. In order to achieve VD →∞, we need to scale up the volume v0

of some curve C0 inside the Mori cone contained in D.19 Now, if C0 is contained in another
divisor D̂ /∈ I, also VD̂ →∞ unless we can compensate by shrinking another holomorphic
curve contained in D̂, i.e., we perform a co-scaling. In order for this to be possible, D̂
needs to be a genus-one or rational fibration over C0 as follows from the results of [28] (see,
e.g., their section 2.220).

Proof of Proposition 2. Consider a quasi-primitive EFT string associated to a Kähler
cone generator J0. By Definition 2, the EFT string limit is given by the limit v0 ∼ λ→∞.
In general, we can now differentiate between the two cases J2

0 6= 0 and J2
0 = 0 which we

are going to discuss separately:
19In case the Kähler cone is simplicial, C0 is simply the volume of a Mori cone generator, see also

Footnote 3.
20In [28] only the case of a rational fibration is considered explicitly because of the extra requirement that

the infinite distance limits lead to a vanishing gauge coupling for a 7-brane; more generally, also genus-one
fibrations are compatible with infinite distance limits leaving the volume of a surface finite.
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J2
0 6= 0: In this case, there exists a non-empty set {Di}i∈J of generators of Eff1(B3), for

some index set J , such that

VDi = κi
2 (v0)2 + . . . , (B.1)

for some integers κi. Since this is the highest possible power of v0, it is clear that Di ∈ I
∀i ∈ J . There may now also exist a different set {D̂ı̂} of generators whose volumes scale like

VD̂ = ηı̂v
0vı̂ + . . . , (B.2)

for some vı̂ and integers ηı̂. Since the scaling differs from VDi we need to co-scale vı̂ ∼ 1
λ → 0

in order to minimize |I| in the sense of Definition 2 and keep VD̂ı̂
constant.21

All instantons with action ReS → ∞ are thus obtained from D3-branes wrapping
divisors containing at least one generator in {Di}i∈J . From (B.1), we infer that these
divisors thus have non-zero intersection with a curve C̃ = J2

0 , whereas the divisors D̂ /∈
{Di}i∈J have necessarily vanishing intersection with C̃. It is always possible to find a set
of curve classes Ci s.t. Di · Cj = δji .22 In terms of these curves, we can expand C̃ as

C̃ =
∑
i∈J

κiC
i . (B.3)

Notice that the κi are the charges which the effective string carries w.r.t. the 2-forms dual
to ImTi. Hence, an instanton is asymptotically suppressed precisely if it is charged under
the D3-brane string wrapped on C̃ = J2

0 . From the general form of the profile of an EFT
string (2.7), it is expected that these charges give the ratio between the saxions that blow
up in the EFT string limit. And indeed, from (B.1), we infer that the ratio between the
VDi for i ∈ J is precisely given by the κi. This ratio is not altered if we re-scale all charges
of the EFT string by the same factor. Therefore, in general an EFT string giving rise to the
EFT string limit in question only needs to wrap a curve C proportional to C̃, i.e., C = αC̃.
Here α ∈ Q>0 has to be chosen such that all string charges are still integer quantized. Thus,
indeed a curve giving rise to the EFT string associated to our limit satisfies Condition P2a.

J2
0 = 0: in this case there is no generator D of Eff1(B3) whose volume scales as in (B.1).

However, there will be a non-empty set {Di}i∈J of generators of Eff1(B3) with volume
scaling as

VDi =
h1,1(B3)∑
j=1

κijv
0vj + . . . , (B.4)

where the omitted terms are independent of v0. In order to minimize |I|, we can now
fix one j0 6= 0 and co-scale vk → 0 for j0 6= k ∈ {1, . . . , h1,1(B3)}. Since by assumption

21As stressed in the main text, to prevent a divisor from shrinking in the limit vı̂ → 0, one might be
forced to scale up another vj 6=0. This is fine as long as it does not change |I| by adding new expanding
divisors.

22In case Eff1(B3) is simplicial, these are simply the generators of Mov1(B3).

– 41 –



J
H
E
P
1
1
(
2
0
2
2
)
0
5
8

the quasi-primitive EFT string limit exists, it is possible to find such a co-scaling without
taking the volumes of any additional generators of Eff1(B3) to infinity. Thus, an instanton
becomes irrelevant if and only if it is charged under the string obtained from a D3-brane
string on αJ0 · Jj0 , α ∈ Q>0, since only the action of these instantons contains a term
v0vj0 . Thus, in this case the EFT string is obtained from a D3-brane on C = αJ0 · Jj0 as
in Condition P2b.

Proof of Proposition 3. By Proposition 2, a quasi-primitive EFT string is obtained from
a D3-brane wrapping a curve C0 proportional J2

0 or, if J2
0 = 0, to J0 · J1, where J0 and J1

are Kähler cone generators. In order for the string to have q = 0, we need that J3
0 = 0.

From the analysis of [30], it follows that C0 is the generic fiber of a rational or genus-one
fibration p : P1 → B2 over some base B2. For such a fibration, the cone of effective divisors
is generated by the exceptional section S−, divisors obtained by restricting the fibration p
to the generators of Eff1(B2) as well as possible exceptional divisors obtained by blowing-up
B3.23 Except for S− all generators of Eff1(B3) necessarily contain fibral curves. Hence, the
intersection of these divisors with C0 vanishes. Thus, the curve C0 only has non-vanishing
intersection with S−. Therefore, the EFT string limit has to correspond to a limit where
we scale up the volume of a curve contained in S− which can be expanded in terms of some
of the Mori cone generators of B2. Since the other generators of Eff1(B3) are fibrations
over curves containing these generators, by Proposition 1 we conclude that the q = 0 EFT
string limit is primitive. Notice that in order to arrive at the actual primitive EFT string
limit, we need to shrink all curves in the fiber of B3. In order for the generators of Eff1(B3)
other than D0 = S− not to shrink to zero size, the base B2 must expand in a homogeneous
way. In fact, from this discussion, it follows that the limit v0 →∞ for J3

0 = 0 and J2
0 6= 0

can always be co-scaled to lead to a primitive EFT string limit.

Proof of Proposition 4. Since we restrict ourselves to primitive EFT strings, we can
invoke Proposition 2 and only consider curves C satisfying either Condition P2a or P2b
and which are generators of the movable cone. If Eff1(B3) is non-simplicial, we assume
that we have fixed a basis {Di} of generators of Eff1(B3) and in the following only deal
with those effective cone generators that are contained in this basis. We now treat the
cases q = 0, 1, 2 separately:

q = 2: in this case, by Proposition 2 the curve C has to be of the form

C = J2
0 , (B.5)

for some J0 satisfying J3
0 6= 0. For simplicity, we set the parameter α appearing in Propo-

sition 2 to α = 1 throughout this proof. On the other hand, since we assume a primitive
EFT string limit, we have a single generator, D0, in our basis of Eff1(B3) such that

VD0 ∼ (v0)2 + . . . , (B.6)

23In case the genus-one fibration does not have a section, the rôle of the section is played by the multi-
section.
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with the EFT string limit corresponding to v0 →∞. By definition, the volume of all other
generators of Eff1(B3) remains constant in the primitive EFT string limit so that we find

V2
B3 → (v0)6 ∼ (ReT0)3 , (B.7)

since no other scalar ReTa 6=0 contains a term proportional to (v0)2. Thus, for q = 2 we
indeed recover (3.4) in the asymptotic EFT string limit.

q = 1: the case of a q = 1 primitive EFT string corresponds to the situation in Condi-
tion P2b, i.e., to a curve C given by

C = J0 · J1 , (B.8)

for some Kähler cone generator such that J2
0 = 0 and J2

1 6= 0. The base B3 can be viewed
as surface fibration over P1 with J0 being the class of the generic fiber. In the following,
we assume that this fibration is non-trivial and that B3 does not allow for a second surface
fibration. The two special cases, corresponding to a trivial fibration or a second surface
fibration, will be discussed below. Since by assumption there exists a primitive EFT string
limit there also exists a single generator D0 of Eff1(B3) with non-zero intersection with C
whose volume receives a contribution

VD0 ∼ v0v1 + . . . . (B.9)

The volume of any other generators of the chosen basis of Eff1(B3) cannot contain such
a term proportional v0v1 as they would intersect J0 · J1 otherwise. Since J2

0 = 0, there
cannot appear a term (v0)2 in the volume of any divisor. The primitive EFT string limit
is given by v0 →∞ while keeping v1 finite. Still, in order to find the behavior of VB3 , we
need to determine the scalings of the other parameters va, 0, 1 6= a, in the limit v0 → ∞.
To this end, we group the remaining elements of our basis of Kähler cone generators into
two classes:

µ ∈ J1 if J3
µ 6= 0 ,

r ∈ J2 if J3
r = 0 .

(B.10)

First, consider the scaling of vr for r ∈ J2. If Jr · J0 6= 0 we know from [30] that [Jr · J0] =
n[J2

r ] for some n > 0. Notice that this assumes that Jr · Jr · J0 = 0, which is necessarily
the case if the surface fibration is non-trivial.24 Since by assumption J2

r is a curve different
from J0 · J1, we know that the volume of a generator Dr of Eff1(B3) satisfying Dr · Jr 6= 0
cannot have a contribution proportional to v0v1. On the other hand, it will certainly have
a contribution

VDr ∼ v0vr , (B.11)

since by assumption Dr · Jr · J0 6= 0. In order for this volume not to diverge in the limit
v0 ∼ λ→∞ we need to scale vr ∼ 1/λ. If J0 · Jr = 0 we do not have such a condition and
can keep the corresponding vr finite.

24To see this, notice that J2
r is the fiber of a genus-one or rational fibration. Jr · Jr · J0 6= 0 implies that

J0 is a section of this fibration. On the other hand, J2
0 = 0 implies that the genus-one/rational fibration is

trivial. This implies, however, that the surface fibration with J0 the generic fiber is also trivial.
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Let us now turn to the scaling of vν for 1 6= ν ∈ J1. Let us split the set J1 into two
sets J1 = J ′1 ∪ J ′′1 , according to:

ν ′ ∈ J ′1 if [J0 · Jν′ ] = n[J0 · J1] for some n ,
ρ′′ ∈ J ′′1 if [J0 · Jρ′′ ] 6= n[J0 · J1] for any n .

(B.12)

Thus the volume of the divisor D0 contains a contribution

VD0 ⊃∼ v
0 ∑
ν′∈J ′1

aν′v
ν′ + . . . . (B.13)

Since J0 · J1 6= J2
ν′ 6= 0, there needs to be a generator of Eff1(B3) other than D0 for which

the volume contains a term (vν′)2. In order for the volume of this generator to remain
constant in the q = 1 primitive EFT string limit, we need vν′ to remain at best constant
in the limit v0 → 0. None of the generators Eff1(B3) different from D0 can further contain
a term proportional to v0vν

′ since this would require a non-trivial intersection with J0 ·J1.

For ρ′′ ∈ J ′′1 we know that if VD0 contains a factor proportional to v0vρ
′′ , then this

term needs to appear in the volume of at least one other generator, D̂, of Eff1(B3) since
otherwise [J0 · Jρ′′ ] = n[J0 · J1] which by definition of J ′′1 is not the case. In order for the
volume of this additional generator to remain finite in the limit v0 ∼ λ → ∞, we need to
scale vρ′′ ∼ 1/λ.

To conclude, we have the scalings

v0 ∼ λ , vr ∼ 1
λ
, for r ∈ J3 if Jr · J0 6= 0 ,

vν
′
- const. , vρ

′′ ∼ 1
λ
, for ν ′ ∈ J ′1 , ρ′′ ∈ J ′′1 .

(B.14)

Using these scalings, the leading behavior of VB3 in this limit is set by

VB3 ∼
∑

µ′,ν′∈J ′1

1
2κ0µ′ν′v

0vµ
′
vν
′
. (B.15)

Thus V2
B3

is a polynomial of degree-2 in v0. On the other hand, V2
B3

is a polynomial of
degree-3 in the volumes of the generators of the effective cone. Since J0 · J0 = 0, none of
these volumes is proportional to (v0)2 and therefore, in the limit determined by (B.14),
V2
B3

needs to be proportional to the product of two divisor volumes each containing terms
proportional to v0vν

′ with ν ′ ∈ J ′1. From our previous discussion, we know that the only
such divisor is D0. Hence

V2
B3 ∼ (ReT0)2 P1(ReTµ′) , (B.16)

where we used that the remaining polynomial P1 has to be independent of ReT0.

It remains to be shown that (3.4) also holds if B3 is a trivial fibration Σ×P1 for some
surface Σ. In this case |J1| = 0. The Kähler cone is now generated by the class J0 = [Σ]
and Ji = [P1 × ji], with ji the Kähler cone generators. The cone of curves giving rise to
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primitive EFT strings in this case agrees with the cone of movable curves and is similarly
generated by

Mov1(B3) = Cone
〈
J2
i0 , J0 · Ji

〉
, (B.17)

for some i0. Notice that the first curve class has q = 0 whereas the second class of curves
has q = 1 unless j2

i = 0. The cone of effective divisors, on the other hand, is generated by

Eff1(B3) = Cone
〈
D0 = J0, Di = δij

(
P1 × cj

)〉
, (B.18)

with ci the Mori cone generators of Σ. The volume of these effective cone generators are
given by

VD0 = 1
2ηijv

ivj , VDi = δijv
0vj , (B.19)

where ηij is the intersection pairing on Σ. We are interested in the limit VDi → ∞ while
keeping all other volumes finite. This is achieved for v0 ∼ λ→∞, vj 6=i ∼ 1/λ and vi finite.
Since ηii 6= 0 by assumption VD0 remains finite in this limit. We then have

V2
B3 → (v0vi)2(vi)2 ' V2

Di
VD0 , (B.20)

in accordance with (3.4). We can thus also confirm (3.4) for the case q = 1. The case that
B3 allows for two surface fibrations corresponds to a q = 0 case to which we turn now.

q = 0: in this case C can either be as in Condition P2a, i.e., C = J2
0 with J3

0 = 0, or a
curve as in Condition P2b, i.e., C = J0 · J1 with J2

0 = J2
1 = 0. In the latter case, the base

B3 has two independent surface fibrations with generic fibers J0 and J1 which intersect
over a curve C = J0 · J1. However, using Proposition 6 in [30], both fibrations have to be
trivial, and the base is the product P1 × P1 × P1, for which V2

B3
is just a product of all

three divisor volumes and hence (3.4) is true in any limit. We can thus consider C = J2
0

without losing generality. Notice that q = 0 is the heterotic string case, and (3.4) follows
from the analysis of [30, 33]. To recover this result, let us first borrow the classification of
the Kähler cone generators other than J0:25

Jµ · J2
0 6= 0 if µ ∈ K1 ,

Jr · J2
0 = 0 and Jr · Js · J0 = 0 if r, s ∈ K2 .

(B.21)

We then observe that the volume of D0 is given by

VD0 ∼
1
2(v0)2 + nrv

rv0 + 1
2nrsv

rvs , (B.22)

for D0 the generator of Eff1(B3) dual to C, and r, s ∈ K2 in the language of [30]. On the
other hand, we have

VJ0 = κ00µv
µ
(
v0 + nrv

r
)
, (B.23)

for µ ∈ K1. Since there is no term proportional to (v0)2 it follows that

J0 =
∑
i 6=0

aiDi , (B.24)

25In [30, 33], K1,2 are called I1,3, respectively.
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for some ai and Di · C = 0. Since in the EFT string limit all VDi 6=0 need to remain finite,
we need to have κ00µv

µ → 0, which is precisely the heterotic emergent string limit [30, 33].
We then have

V2
B3 ∼

(1
2(v0)2 + nrv

rv0 + 1
2nrsv

rvs
)

︸ ︷︷ ︸
=ReT0

(1
2(v0)2 + nrv

rv∗ + 1
2nrsv

rvs
)

(κ00µv
µ)2︸ ︷︷ ︸

=P2(ReTi 6=0)

. (B.25)

Notice that one might have been tempted to identify the first two factors as VD0 . However,
the last term goes to zero and therefore cannot correspond to a polynomial in the remaining
VDi which are assumed to be constant in the limit. We thus can also confirm (3.4) for the
case q = 0.

Proof of Proposition 5. There are two ways in which the weak coupling limit for the
gauge theory on D0 can fail to be describable as a quasi-primitive EFT string limit: i)
the weak coupling limit is an EFT string limit but not quasi-primitive or ii) the weak
coupling limit is not even an EFT string limit according to Definition 1. We can further
differentiate two cases: the volume of the divisor D0 contains a term (va)2 quadratic in
some curve volume va which scales to infinity, or it does not. Let us start with the first
case, i.e., assume that the volume of D0 contains a term

VD0 ∼ (v0)2 + . . . . (B.26)

If the limit VD0 → ∞ cannot be realized as a quasi-primitive EFT string, this means
that D0 or some other generators of our basis of Eff1(B3) contain also terms linear in v0,
but every co-scaling (performed in order that the scaling linear in λ for v0 ∼ λ → ∞ is
compensated) blows up some other v1 ∼ λ and induces a large volume limit for some other
generator in our basis of Eff1(B3), or scales the volume of a divisor to zero so that we lose
perturbative control.

If J3
0 6= 0, the volume of the base scales as VB3 ∼ λ3 → ∞ such that the limit

corresponds to an effective decompactification to 10d and any gauge theory on D0 reduces
to an 8d defect in 10d — irrespective of whether the limit is an EFT limit or not. However,
there is the possibility that J3

0 = 0 but still no (quasi-) primitive EFT string limit exists.26

In this case VB3 ∼ λ2 ∼ VD0 and hence we decompactify effectively to 8d with the gauge
theory corresponding to a non-weakly coupled gauge theory in 8d coupled to gravity as
opposed to a defect theory. Thus, the weak coupling limits for gauge theories on D0
obtained by blowing up VD0 ∼ λ2 and not corresponding to a quasi-primitive EFT string
limit or not to an EFT string limit at all are either limits in which we obtain 8d defects
in a 10d gravitational bulk theory or non-weakly coupled gauge theories in 8d coupled to
gravity.

There is an alternative way to engineer a weak coupling limit for a gauge theory on
D0 provided VD0 contains a term

VD0 ∼ v0v1 + . . . , (B.27)
26In appendix C we discuss an example of this kind where any co-scaling necessary to get a set of

homogeneously expanding divisors forces some generator of Eff1(B3) to shrink.
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but no term quadratic in v0 and/or v1. Without loss of generality, let us assume that there
is no such term for v1. We can then try to reach the weak coupling limit for a gauge theory
on D0 by scaling v1 ∼ λ→∞ without co-scaling v0.27 We can now differentiate the three
cases J2

1 = 0, J2
1 6= 0 but J3

1 = 0 and J3
1 6= 0.

J2
1 = 0: in this case v1 appears at most linearly in the volume for all generators of Eff1(B3).

Thus, the limit v1 ∼ λ→∞ is automatically a quasi-primitive EFT string limit for a q = 1
string unless we super-impose it with another limit, as discussed in section 3.3.

J2
1 6= 0, J3

1 = 0: the proof of Proposition 3 shows that for such intersection numbers, there
exists a q = 0 primitive EFT string limit for a D3-brane on the curve J2

1 which takes
v1 ∼ λ →∞. In this q = 0 limit, since J2

1 6= 0, there exists a divisor whose volume scales
to infinity as (v1)2 ∼ λ2. Since by assumption, VD0 only scales linearly in v1 ∼ λ and we
do not co-scale v0, the weak coupling limit for D0 under consideration is certainly not the
q = 0 primitive EFT string limit associated with J2

1 .

First, we observe that the weak coupling limit where VD0 ∼ v0v1 linearly in v1 can
only exist if J2

1 · J0 6= 0: otherwise, it would follow from the intersection numbers that
J0 · J1 ∼ J2

1 , and hence any scaling with v1 ∼ λ is necessarily quadratic in v1. If this were
the case, we would just be considering the primitive EFT string limit associated with the
q = 0 string on the curve J2

1 , contrary to our assumption.

Now, as noted already, the difference between the weak coupling with linear scaling
in v1 compared to the strict q = 0 primitive EFT string limit is that we do not impose a
co-scaling on v0. Combined with J2

1 ·J0 6= 0, this implies that the volume of B3 behaves as

VB3 ∼ (v1)2v0 + . . . ∼ λ2 . (B.28)

As J2
1 ·J0 6= 0, the tension of the string on J2

1 has a contribution proportional to v0 ∼ O(1).
The string scale for the q = 0 string on the curve J2

1 is therefore of order ofMIIB. The scaling
of VB3 identifies the limit as a decompactification limit to 8d rather than an emergent string
limit. And indeed, using (3.26), we find that the species scale of the KK-tower signaling
the decompactification to 8d agrees with MIIB. Notice that since we have a Kähler cone
generator with J3

1 = 0, the manifold B3 needs to admit a rational/genus-one fibration.
The decompactification to 8d corresponds to the limit where the base of this fibration
becomes large. Now, since a curve C0 in the movable cone with non-zero intersection with
D0 cannot be proportional to J2

1 , it cannot be just the fiber of the p-projection. Hence,
in the 8d limit, we resolve the internal directions of the D3-brane wrapping C0. Similarly,
since D0 · J2

1 = 0 the divisor D0 cannot contain the exceptional section of the fibration
p : B3 → B2. Instead, D0 has to be a combination of p-vertical or exceptional divisors. In
the 8d theory, the gauge theory on the 7-brane stack wrapping D0 is thus a defect theory
in 8d.

27In case we also scale v0 ∼ λ and v0 appears quadratically in the volume of some generator in our basis
of Eff1(B3) we can apply the logic of the previous case to this generator. In case J2

0 = 0, v0 only appears
at most linearly in all relevant volumes, and we have a decompactification to a non-weakly coupled gauge
theory in 8d since for J2

0 = 0, we have to leading order VB3 ∼ const. v1v0 ∼ VD0 and if both v1 ∼ λ and
v0 ∼ λ are scaled up, this leads to a quadratic expansion VB3 ∼ VD0 ∼ λ2.
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J3
1 6= 0: in this case the volume of B3 again scales as VB3 ∼ λ3 indicating a decompactifi-

cation to 10d as in section 3.2.

C Examples

In this appendix, we provide examples for F-theory bases B3 for which we analyze the
possible (quasi-)primitive EFT string limits. These example serve to illustrate the subtleties
of EFT string limits in the F-theory Kähler field space in concrete setups. Based on the
example discussed in section 2.3, we explore different blow-ups of B3 = P1 → Fn: first
in section C.1 the base B2 is replaced by a blow-up of Fn and second in section C.2 an
example is discussed for which the fiber of B3 = P1 → F1 is blown-up. Notice that in all
the following examples the Kähler cone is simplicial.

C.1 P1-fibrations over Bl(F2)

Let us consider a P1-fibration over a base B2 that is Fn blown-up in a smooth point on its
base P1. We denote the resulting base by B2 = Bl(Fn). Due to the blow-up the Kähler
cone of Bl(Fn) has an additional generator compared to Fn which we call j2. The resulting
intersection polynomial is

I(B2) = nj2
0 + j0 · j1 + (n− 1)j2

2 + j2 · j1 + nj0 · j2 . (C.1)

The twist of the P1-fibration is encapsulated in a line bundle T with

c1(T ) = sj0 + tj1 + uj2 , s, t, u ≥ 0 , (C.2)

where, compared to (2.30), we also allowed for a twist depending on the exceptional divisor
in B2. The Kähler cone generators of B3 = P1 T→ Bl(Fn) are given by

J0 = p∗j0 , J1 = p∗j1 , J2 = p∗j2 , J3 = S− + p∗c1(T ) , (C.3)

where S− is the zero section of the fibration p : P1 → B2. The intersection ring for B3
reads

I(B3) =
(
s2n+ 2st+ 2sun+ 2tu+ u2(n− 1)

)
J3

3 +

+ (sn+ t+ un)J0 · J2
3 + (sn+ t+ u(n− 1))J2 · J2

3 + (s+ u)J1 · J2
3 +

+ nJ2
0 · J3 + (n− 1)J2

2 · J3 + nJ0 · J2 · J3 + J0 · J1 · J3 + J1 · J2 · J3 .

(C.4)

Notice that for J2 = u = 0, one obtains the example discussed in section 2.3. In what
follows, we discuss toric constructions for these geometries when n = 2.

An explicit realization for B2 = Bl(F2) is encoded by the toric data

c0 c1 c2


d1 0 −1 1 −2 0
d2 −1 −1 1 0 −1
d3 −1 −2 −1 1 1
d4 1 0 0 1 0
d5 0 1 0 0 1

. (C.5)
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Here da and ca denote the toric divisors and Mori cone generators for B2 respectively,
where the latter intersect with the Kähler cone generators {ja}a=0,1,2 in B2 as ca · jb = δab .
Notice that the toric divisor d2 is the exceptional divisor associated with the blow-up of
F2. Moreover, we obtain that the first Chern class is c1(B2) = j0 + j2.

Now, we construct smooth P1-fibrations determined by the twist bundle c1(T ) = sj0 +
uj2 for the toric projective bundle B3 = P(OB2 ⊕ OB2(sj0 + uj2)) → B2. Under this
consideration we obtain the following toric data for the choices of parameters s, u ∈ {0, 1}:

C0 C1 C2 C3



D0 0 0 1 −s 0 −u 1
D1 0 −1 s 1 −2 0 0
D2 −1 −1 0 1 0 −1 0
D3 −1 −2 0 −1 1 1 0
D4 1 0 2s 0 1 0 0
D5 0 1 u 0 0 1 0
D6 0 0 −1 0 0 0 1

. (C.6)

Here the anticanonical class reads

K(B3) = 2J3 + (1− s)J0 + (1− u)J2 . (C.7)

The P |Q matrix (C.6) determines the linear equivalence relations among toric divisors,
which read

D4 ∼ D2 +D3 , D5 ∼ D1 +D2 + 2D3 ,

D6 ∼ D0 + (s+ u)D1 + (2s+ u)D2 + 2(s+ u)D3 .
(C.8)

As each Dρ toric divisor is prime, an effective divisor in B3 has the form
∑
ρ∈Σ(1) aρ[Dρ]

with all aρ ≥ 0, where Σ(1) is the set of rays that span the fan Σ for B3. From (C.8), we
determined [D4], [D5], and [D6] to be positive linear combinations of {[Di]}i=0,1,2,3. Hence,
the latter set is a minimal basis that spans N1(B3) and the cone of effective divisors is
Eff1(B3)Z = Cone({[Di]}). Taking into account the basis of Kähler divisors Ji · Cj = δji ,
we obtain the expressions

[D0] = J3 − sJ0 − uJ2 , [D1] = J0 − 2J1 , [D2] = J1 − J2 , [D3] = J2 + J3 − J0 .

(C.9)

By abuse of notation, we drop the [·] symbol from now on and refer to each effective divisor
[Di] by Di.

Before proceeding to discuss the physics for B3, let us remark that we can perform the
blow-down Bl(F2) → F2 by removing the lattice point in the toric data that is associated
to the exceptional divisor D2, and then, one proceeds with the same computation we used
to obtain (C.9). In this way, we can verify expression (2.35) in our constructed examples.28

The same method can be applied for other values n 6= 2 for Fn.
28Upon blow-down the divisor class D0 maps to J3 − sJ0, while D3 maps to J1.
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Different twist parameters s, u ∈ {0, 1} in (C.6) give rise to inequivalent polytopes
with a different number of triangulations. For concreteness, in the following discussion
and subsections, we focus on the choice s = 1 and u = 0. In this case, the depicted
triangulation in (C.6) realizes a P1-fibration over Bl(F2) with twist bundle c1(T ) = j0.
The cone of effective divisors is

Eff1(B3) = Cone 〈D0, D1, D2, D3〉 , (C.10)

whose expression in terms of the Kähler cone generators of B3 follows from (C.9). The
volumes of the generators are given by

VD0 = v0
(
v0 + v1

)
+ v2

(
2v0 + v1 + 1

2v
2
)
,

VD1 = v3v1 ,

VD2 = v3v2 ,

VD3 = 1
2v

3
(
2v0 + v3

)
.

(C.11)

We can easily identify the generators of the movable cone Mov1(B3) = Eff1(B3)∨ as

C0 = J0 · J1 , C1 = J1 · J3 , C2 = J2 · J3 , C3 = J0 · J3 , (C.12)

with volumes

VC0 = v3 ,

VC1 = v0 + v2 + v3 ,

VC2 = 2v0 + v1 + v2 + 2v3 ,

VC3 = 2v0 + v1 + 2v2 + 2v3 .

(C.13)

Note that J2
0 = 2J0 · J1 and J2

3 = J0 · J3.
Let us identify those curves giving rise to the (quasi)-primitive EFT string limits for

the chosen B3. Compared to the example in section 2.3, we now have the additional
divisor D2 and the associated generator C2 of the movable cone. We first notice that, by
Proposition 1, the limit VD2 →∞ cannot be realized as a primitive EFT string limit within
the given Kähler cone. To see this, consider figure 4 where we show B3 and the topology
of the divisors. The divisors are expressed in terms of the fibral curve P1

f of B3, the base
P1
b of Bl(F2) and the two fibral curves P1

A and P1
B which together give the generic fiber of

Fn. Figure 4 illustrates Proposition 1 since the two curves P1
f and P1

B contained in D2 are
also contained in other generators of Eff1(B3) as fibers of a non-trivial fibration. Hence,
blowing up either of the two curves will also blow up either D0 or D3 such that there is no
primitive EFT string limit associated to VD2 →∞.

On the other hand, the limit VD2 → ∞ cannot be realized as a quasi-primitive EFT
string limit either. To see this, notice that we either need to blow-up v2 →∞ or v3 →∞.
However, in both limits we have another generator of Eff1(B3) blowing up at a faster rate
such that it is not an EFT string limit. For v2 ∼ λ → ∞ one might try to co-scale
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P1
fB3 :

P1
A P1

B

P1
b

P1
A P1

BD0 :

P1
b

P1
fD1 :

P1
b

×

P1
fD2 :

P1
B

×

P1
fD3 :

P1
A

Figure 4. We show the base B3 = P1 → Bl(Fn) (center) for u = t = 0 as well as the topology of
the divisors Di, i = 0, . . . , 3.

v3 ∼ λ to obtain an EFT string limit as defined in Definition 1. However, in this way
|I| is not minimized such that v2 → ∞ with this co-scaling does not qualify as a quasi-
primitive EFT string limit according to Definition 2. Thus, in this example we only find
three (quasi)-primitive EFT string limits, despite the dimension of the field space being
four. In particular, a gauge theory on D2 is of the kind discussed in section 3.3. Thus,
the weak coupling limit for this gauge theory cannot necessarily be realized as an EFT
string limit within the given chamber of the Kähler cone. This is illustrated in figure 5.
There we show parts of the Kähler field space, including the directions corresponding to
the volumes of the divisors D0, D2 and D3 in the vicinity of VDi = ∞. The red surface
corresponds to the boundary of the chosen chamber of the Kähler cone embedded in the
saxionic field space. From our previous discussion, it is clear that the bulk of the gray
plane corresponding to VD2 = ∞ cannot be reached within this chamber of the Kähler
cone chamber, but we need to perform at least one flop transition in the base B3. The
necessary flop transitions are discussed in the following. Notice, however, that the origin
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VD2 =∞

V−1
D0

V−1
D2

V−1
D3

Figure 5. A sketch of part of the Kähler field space for B3 = P1 → Bl(Fn) with u = 0.

in figure 5 can be reached in a linear fashion corresponding to an EFT string obtained
by a D3-brane on a0C

0 + a2C
2 + a3C

3 for some coefficients ai. This is, however, not a
quasi-primitive EFT string.

To summarize, only the generators Di for i = 0, 1, 3 are each individually homoge-
neously expandable. Hence, classically all three curves C0, C1 and C3 are expected to give
rise to primitive EFT strings with the following associated limits:

Movable curve q factor Primitive EFT limit VDi →∞

C0 = J0 · J1 q = 0 v0, v1, v2 →∞ , v3 → 0 D0

C1 = J1 · J3 q = 1 v1 →∞ , v0, v2 → 0 , v3 ' const. D1

C3 = J0 · J3 q = 2 v3 →∞ , v1, v2 → 0 , v0 ' const. D3

(C.14)

However, in the limit associated to C1, we effectively blow-down D2. Hence, this limit
might be obstructed at the quantum level. On the other hand, co-scaling v3 → ∞ would
increase |I| and therefore the EFT string limit would not be quasi-primitive anymore.
Thus, even though all curves Ci with i = 0, 1, 3 are as in Proposition 2 not all of them are
associated to quasi-primitive EFT string limits. In total, we only have two primitive EFT
strings, despite the dimension of the field space being four.

The associated polytope of this example – with s = 1 and u = 0 — allows for two ad-
ditional triangulations besides (C.6) that correspond to different chambers of the extended
Kähler cone Kext(B3). Thus, B3 relates via flop transitions to geometries that we call B′3
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and B′′3 . In terms of toric data, we obtain

C1
I C2

I C3
I C4

I C2
II C3

II C4
II C5

II



D0 0 0 1 −1 −1 0 1 −2 0 0 1
D1 0 −1 1 −1 1 1 −1 0 1 −2 1
D2 −1 −1 0 1 0 1 −1 1 1 0 −1
D3 −1 −2 0 0 0 −1 1 0 −1 1 0
D4 1 0 2 1 0 0 0 1 0 1 −1
D5 0 1 0 0 1 0 0 1 0 0 0
D6 0 0 −1 0 0 1 0 0 1 0 0

. (C.15)

Here CiI are the Mori cone generators of B′3, while CiII are the Mori cone generators of B′′3 .
More explicitly, the flop map can be realized via the following curves’ basis transformation:

Flop I:


C1

I = C0 + C1

C2
I = C0 + C2

C3
I = C0 + C3

C4
I = −C0

, Flop II:


C2

II = C1
I + C2

I = 2C0 + C1 + C2

C3
II = C3

I = C0 + C3

C4
II = C1

I + C4
I = C1

C5
II = −C1

I = −C0 − C1

. (C.16)

Nevertheless, notice that the linear equivalence relations among toric divisors are pre-
served, i.e.,

D4 ∼ D2 +D3 , D5 ∼ D1 +D2 + 2D3 , D6 ∼ D0 +D1 + 2D2 + 2D3 , (C.17)

which implies that, again, the effective cones Eff1(B′3) and Eff1(B′′3 ) are spanned by the
basis {Di}i=0,1,2,3 in each respective case.

C.1.1 Primitive EFT string limit of C1

In order to find the primitive EFT string limits for the other two generators of Mov1(B3)
we first perform a flop transition on the base B3 to B′3. The geometry now corresponds
to a P1-fibration over F1 with twist bundle c1(T ) = j0 + j1 for which we blow-up the fiber
over a point in B2 leading to an additional fibral curve over B2. The flop can thus be
understood by blowing-down a fibral curve of Bl(F2) and replacing it by a fibral curve in
the P1-fiber over F1. The twist of the original curve over P1

b is reflected now in the change
of the twist bundle c1(T ) = j0 → j0 + j1. The cone of effective divisors is spanned again
by (C.10), but now expressed in terms of the Kähler cone generators of B′3 as

D0 = J4−J2−J1 , D1 = J2 +J3−J4−J1 , D2 = J1 +J3−J4 , D3 = J4−J3 . (C.18)

Here we introduced the new generators {Ji}i=1,2,3,4 of the Kähler cone to which we associate
the volume vi of the dual generators of the Mori cone {CiI}i=1,2,3,4.

The intersection ring compatible with the fibration structure of B′3 and B3 is

I(B′3) =2J3
3 + 2J2 · J2

3 + J1 · J2
3 + 3J4 · J2

3 + J2
2 · J3 + 3J2

4 · J3 + J2 · J1 · J3 +
+ 2J2 · J4 · J3 + J1 · J4 · J3 + 3J3

4 + 2J2 · J2
4 + J1 · J2

4 +
+ J2

2 · J4 + J2 · J1 · J4 .

(C.19)
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The volume for the effective divisors read

VD0 = 1
2v

2(v2 + v1) ,

VD1 = 1
2(v4)2 + v3v1 + v4v3 + v1v4 ,

VD2 = 1
2(v4)2 + v3v2 + v4v3 + v2v4 ,

VD3 = 1
2(v3)2 .

(C.20)

The movable cone Mov1(B′3) = Eff1(B′3)∨ is then spanned by the curves

C0 = J1 · J2 , C1 = J1 · J3 , C2 = J2 · J4 , C3 = J2
3 . (C.21)

The volume for these curves are

VC0 = v3 + v4 ,

VC1 = v2 + v3 + v4 ,

VC2 = v1 + v2 + 2v3 + 2v4 ,

VC3 = v1 + 2v2 + 3v3 + 2v4 .

(C.22)

Notice the splitting of C0 in terms of the Mori cone generators C3 and C4. We identify
C0 as the heterotic curve since C0 · K̄(B′3) = 2. Using the adjunction formula, we obtain
g(C3) = 0 where we used K̄(B′3) = 2J3 + J2. Also, note that C3 = J2

1 with J3
1 = 0 holds.

In this chamber of the Kähler cone, we can now realize the EFT string limit for the
D3-brane on C1 as

Movable curve q factor Primitive EFT limit VDi →∞

C1 = J1 · J3 q = 1 v1 →∞ , v2 → 0 , v3, v4 ' const. D1
(C.23)

without shrinking any additional divisor. This is, however, the only primitive EFT string
limit in this chamber that can be reached without leaving the perturbative regime. In
order to realize the primitive EFT string limit for the D3-brane on C2 we need to perform
a second flop corresponding to yet another triangulation of the polytope.

C.1.2 Primitive EFT string limit of C2

To reach the third chamber of the Kähler cone, we need to blow-down the curve C1
I in B′3

and replace it by yet another fibral curve C5
II. The resulting manifold is a P1-fibration over

P2 for which the fiber splits into three curves C3
II, C4

II and C5
II. We realize the resulting base

B′′3 as a third triangulation for the polytope underlying also B3 and B′3. The generators of
the cone of effective divisors (C.10) in terms of the Kähler cone generators of B′′3 are

D0 = J5 − 2J2 , D1 = J3 + J5 − 2J4 , D2 = J3 − J5 + J2 , D3 = J4 − J3 . (C.24)
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Here we take {Ji}i=2,3,4,5 to be the Kähler cone generators dual to {CiII}. The intersection
ring compatible with the fibration structure of B′′3 and B3 reads

I(B′′3 ) =2J3
3 + 4J5 · J2

3 + 2J2 · J2
3 + 3J4 · J2

3 + 4J2
5 · J3 + J2

2 · J3 + 3J2
4 · J3 +

+ 2J5 · J2 · J3 + 4J5 · J4 · J3 + 2J2 · J4 · J3 + 4J3
5 + 3J3

4 + J4 · J2
2 +

+ 4J5 · J2
4 + 2J2 · J2

4 + 2J2
5 · J2 + 4J2

5 · J4 + J2
2 · J4 + 2J5 · J2 · J4 .

(C.25)

The volumes of the effective divisors are

VD0 = 1
2(v2)2 ,

VD1 = 1
2(v4)2 + v4v3 ,

VD2 = 1
2(v4)2 + 2v3v5 + (v5)2 + v3v2 + v5v2 + v3v4 + 2v5v4 + v2v4 ,

VD3 = 1
2(v3)2 .

(C.26)

Moreover, here we have that K̄(B′′3 ) = 2J3 +J2. The movable cone Mov1(B′′3 ) = Eff1(B′′3 )∨

is then spanned by the curves Ci given by

C0 = J2
2 , C1 = J3 · (J4 − J2) , C2 = J3 · J2 , C3 = J2

3 . (C.27)

The volumes of such curves read

VC1 = v3 + v4 + v5 ,

VC2 = 2v3 + 4v5 + 2v2 + 3v4 ,

VC3 = v3 + 2v5 + v2 + v4 ,

VC4 = 2v3 + 2v5 + v2 + 2v4 .

(C.28)

In this case we again have a single primitive EFT string limit corresponding to

Movable curve q factor Primitive EFT limit VDi →∞

C2 = J2 · J3 q = 2 v5 →∞ , v2, v3, v4 ' const. D2
(C.29)

Note that in this chamber of the extended Kähler cone we 2J3 · J2 = J2
5 such that the

curve C2 is indeed of the form required by Proposition 2. Even though also the curve C0

and C3 are of the required form, there are no primitive EFT string limits associated to
D3-branes wrapped on these curves in this chamber of the Kähler cone, as we would leave
the perturbative regime while imposing such a limit.

C.2 Curve blow-up in a P1-fibration over Fn

Another interesting example is blowing-up a curve in the base Fn of geometries in sec-
tion 2.3. Here, we will discuss the case that the blown-up curve is a generic fiber of F1
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with twist choices s = 1 for B3 = P1 → F1. The toric data for such a blow-up µ : B̃3 → B3
takes the form

C0 C1 C3 C4 C0
I C3

I C4
I C5

I



D0 0 0 1 −1 0 1 0 −1 1 0 0
D1 0 −1 1 1 −1 0 0 1 0 −1 1
D3 1 0 1 0 0 −1 1 0 −1 1 0
D4 1 0 0 0 1 1 −1 0 1 0 −1
D5 0 1 0 1 0 0 0 1 0 0 0
D6 −1 −1 0 0 1 0 0 0 0 1 −1
D7 0 0 −1 0 −1 0 1 0 0 0 1

. (C.30)

Here the polytope realizing B̃3 has another triangulation, whose associated geometry we
call B̃′3. In (C.30), we denote by Ci and CiI the Mori cone curves for B̃3 and B̃′3 respectively.

In B̃3, the toric divisor D4 is the exceptional divisor E that shrinks to the P1-fiber of
F1 upon blow-down. Moreover, we notice the following linear equivalence relations among
toric divisors,

D5 ∼ D1 +D3 +D4 , D6 ∼ D3 +D4 , D7 ∼ D0 +D1 +D3 , (C.31)

which imply that the cone of effective divisors is spanned by the divisors

Eff1(B̃3) = Cone 〈D0, D1, D3, D4〉 , (C.32)

which can be expressed in terms of the Kähler cone generators {Ji}i=0,1,3,4 of B̃3 as

D0 = J3 − J0 , D1 = J0 − J1 , D3 = J4 − J3 , D4 = J3 − J4 + J1 . (C.33)

Before moving on, let us analyze the geometry in some detail, see also figure 6. Therefore,
we start with a P1-fibration over F1 with twist given by the section j0 of F1 satisfying
j2
0 = 1. The generic fiber of B̃3 is given by C3, the base of F1 by C1 and a generic fiber of
F1 by C0. The blow-up now replaces C3 by C3 + C4 along the exceptional fiber C0

p of F1 at
one point in p ∈ C1. Schematically, this is shown in figure 6. The blow-up is done in such
a way that the zero section D0 of B3 wraps C4 over C0

p . Therefore, the divisor D0 should
be a connected sum made up by a copy of F1 and C0

p × C4 glued together along C0
p . We

therefore expect the volume of D0 to be given by

VD0 = VF1 + v0v4 . (C.34)

We can think of the fibration as a surface fibration over C1 with one exceptional fiber. The
volume of a non-exceptional surface fiber corresponds to VD3 and is not affected by the
blow-up and hence simply given by

VD3 = 1
2(v3)2 + v3v0 . (C.35)
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C3 C3 C4

C0 C0
p

C1

p

Figure 6. We show the base B̃3 of a blow-up of the P1-fiber of a P1-fibration over F1. The zero
section is in the darker curves.

The exceptional divisor D4 is contained in the exceptional surface fiber and its volume can
be calculated by taking the volume as

VD4 = 1
2
(
v3 + v4

)2
+ v0

(
v3 + v4

)
︸ ︷︷ ︸

=VJ1

−
(1

2(v3)2 + v0v3
)

︸ ︷︷ ︸
=VD3

= 1
2(v4)2 + v0v4 + v4v3 . (C.36)

Here, we notice that J1 is the pull-back of the C0 to the full fibration. Finally, we have the
volume associated to the pull-back D1 of C1. Since p ∈ C1 the fiber over C1 will contain
both C3 and C4. Since the original B̃3 does not include a twist over C1 for VD1 we need to
subtract a term proportional (v3)2 such that we arrive at

VD1 = v1
(
v3 + v4

)
+ 1

2
(
v3 + v4

)
− 1

2(v3)2 . (C.37)
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The volumes for the generators of Eff1(B̃3) can be calculated also straightforwardly
using the intersection ring, which reads

I(B̃3) =J3
3 + 2J2

3 · J4 + J0J
2
3 + J1 · J2

3 + 2J3 · J2
4 + J2

0 · J3 + 2J0 · J3 · J4 +
+ J1 · J3 · J4 + J0 · J1 · J3 + 2J3

4 + J2
0 · J4 + 2J0 · J2

4 + J1 · J2
4 +

+ J0 · J1 · J4 .

(C.38)

Using (C.33) we can calculate

VD0 = 1
2(v0)2 + v4v0 + v0v1 ,

VD1 = 1
2(v4)2 + v3v4 + v3v1 + v4v1 ,

VD3 = 1
2(v3)2 + v3v0 ,

VD4 = 1
2(v4)2 + v3v4 + v4v0 ,

(C.39)

in agreement with our previous discussion.
In order to find the curves giving rise to (quasi-)primitive EFT string in this limit, let

us first consider the movable cone Mov1(B̃3) = Eff1(B̃3)∨ being generated by

C0 = J0 · J1 , C1 = J1 · J3 , C3 = J0 · J3 , C4 = J3 · (J4 − J1) . (C.40)

Let us note that, as in section 2.3, J2
0 = sJ0 ·J1 and J2

3 = sJ0 ·J3, where here we use s = 1.
The volumes for such curves are

VC0 = v3 + v4 ,

VC1 = v0 + v3 + v4 ,

VC3 = v0 + v1 + v3 + 2v4 ,

VC4 = v0 + v1 + v3 + v4 .

(C.41)

Notice the splitting of C0 in terms of the Mori cone generators C3 and C4. Hence, we
identify C0 as the heterotic curve since C0 · K̄(B̃3) = 2 and using the adjunction formula
we obtain g(C0) = 0. Here we used that K̄(B̃3) = J0 + J3 + J4. Also, note that C0 = J2

0
with J3

0 = 0 holds. Compared to the previous example, we observe that here, one of the
generators of Mov1(B3), C4 is not of the form Ji ·Jj for two Kähler cone generators Ji and
Jj . Still, by Proposition 2 we expect that the curves giving rise to quasi-primitive EFT
strings to be of this form. And indeed, we find the primitive EFT limits:

Movable curve q factor Primitive EFT limit VDi →∞

C0 = J0 · J1 q = 0 v0, v1 →∞ , v3, v4 → 0 D0

C1 = J1 · J3 q = 1 v1 →∞ , v0 → 0 , v3, v4 ' const. D1

C3 = J0 · J3 q = 2 v3 →∞ , v1, v4 → 0 , v0 ' const. D3

(C.42)
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There is a quasi-primitive limit obtained for

Movable curve q factor Quasi-primitive EFT limit VDi →∞

C̃4 = J2
4 q = 2 v4 →∞ , v0 → 0 , v1, v3 ' const. D1, D4

(C.43)

Let us also note that C̃4 = C1 + C4 = J2
4 for this choice of twist. Hence, we again find

that all curves leading to (quasi-)primitive EFT strings are as in Proposition 2.

C.2.1 Primitive EFT string limit for C4

Let us now discuss the second chamber of the extended Kähler cone in which we can
realize the primitive EFT string limit for the divisor D4. The corresponding base B̃′3 can
be obtained by flopping the curve C1. More precisely, the flop map reads

Flop I:


C0

I = C0

C3
I = C3

C4
I = C1 + C4

C5
I = −C1

. (C.44)

Taking the Kähler cone generators {Ji}i=0,3,4,5 such that Ji · CjI = δji , the basis of effective
divisors in B̃′3 can be expressed as

D0 = J3 − J0 , D1 = J5 + J0 − J4 , D3 = J4 − J3 , D4 = J3 − J5 . (C.45)

The anticanonical class is K̄(B̃′3) = J0 + J3 + J4 and the intersection ring of B̃′3 reads

I(B̃′3) =J3
3 + J5 · J2

3 + J0 · J2
3 + 2J4 · J2

3 + J2
0 · J3 + 2J2

4 · J3 + J5 · J0 · J3 +
+ J5 · J4 · J3 + 2J0 · J4 · J3 + 2J3

4 + J5 · J2
0 + J5 · J2

4 + 2J0 · J2
4 +

+ J2
0 · J4 + J5 · J0 · J4 .

(C.46)

The volumes of the effective divisors follows as

VD0 = 1
2(v0)2 + v0v4 ,

VD1 = 1
2(v4)2 + v3v4 ,

VD3 = 1
2(v3)2 + v0v3 ,

VD4 = 1
2(v4)2 + v5v3 + v5v0 + v5v4 + v3v4 + v0v4 .

(C.47)

We can compute that the movable cone Mov1(B̃′3) = Eff1(B̃′3)∨ is then spanned by the
curves Ci given by

C0 = J2
0 , C1 = J3 · (J4 − J5) , C3 = J2

3 , C4 = J5 · J3 . (C.48)
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The volume for these curves read

VC0 = v3 + v4 + v5 ,

VC1 = v0 + v3 + v4 + v5 ,

VC3 = v0 + v3 + 2v4 + v5 ,

VC4 = v0 + v3 + v4 .

(C.49)

From these expressions, we see that there only are two (quasi-)primitive EFT string limits
that can be realized in this chamber of the Kähler cone corresponding to

Movable curve q factor Primitive EFT limit VDi →∞
C3 = J2

3 q = 2 v3 →∞ , v4, v5 → 0 , v0 ' const. D3
C4 = J3 · J5 q = 1 v5 →∞ , v0, v3, v4 ' const. D4

(C.50)

Notice that the first primitive EFT string limit can also be obtained in the Kähler cone
chamber discussed previously whereas the second limit corresponds to the one we could
not realize in the other chamber of the Kähler cone. Further, note that the curve C4 gives
rise to a q = 1 EFT string. Therefore, after flopping the curve C1, the resulting B̃′3 allows
for a surface fibration over P1 with the generic fiber corresponding to J5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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