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1 Introduction

Symmetries are key in quantum field theory and they constrain the spectrum of states
and local operators. The notion of symmetry has been extended to include generalized
higher form symmetries [1], which constrain the spectrum of extended objects like for
instance Wilson and ‘t Hooft lines of a gauge theory. A generalized p-form symmetry, Γ(p),
is generated by a (charge) topological operator Ug supported on a (d− p− 1)-dimensional
subspace, Mp of d-dimensional space-time, and it acts on a p-dimensional object (when
p > 0 these are sometimes called defects), which is defined as the charge object. The
standard case is when p = 0, where the charged object are point particle operators O,
whereas the charge operator Ug is supported on a (d− 1)-dimensional manifold surrounding
O. In general, we have that the linking of the topological operator with the charged one
gives the symmetry group element, g(O), as follows,

Ug
(
Md−p−1

)
O (Mp) = g (O)O (Mp)Ug

(
Md−p−1

)
. (1.1)

Higher form symmetries can be both continuous and discrete but they are abelian
by construction.

These generalized symmetries are present in many physical system of interest to
condensed matter and particle physics, from d = 2 space-time dimensions [2] to d = 4.
In particular, 1-form symmetries can be present in gauge theories. Gauge theories with
adjoint or no matter have discrete 1-form symmetries corresponding to the center of the
gauge group Z(G), and they act on line operators of the gauge theory, which can be Wilson
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or ‘t Hooft lines. In addition, 1-form symmetries depend on and are closely related to
the global structure of the gauge group as seen in [1, 3]. The presence of matter fields
can break the 1-form symmetries by screening, that is a phenomenon consisting in the
matter particles ending on the line operator, making the topological operator that define the
symmetry, Ug, trivial. 1-form symmetries are present in gauge theories in any dimensions
from d = 2, 3, 4 [4–8] to d > 4 [9–12]. In Higher dimensions (d > 4), Lagrangian field
theories can only be effective low-energy descriptions of interacting strongly coupled field
theories, whose existence has been predicted via string theory geometric constructions, such
as superconformal field theories (SCFTs). In particular, 6d (1, 0) and (2, 0) theories have also
2-form symmetries due to the presence of dynamical anti-symmetric tensor fields [1, 13]. The
knowledge of standard and generalized symmetries provide a useful tool to constrain local
and extended objects of higher dimensional field theories as well. Moreover, string theory
together with geometric engineering provide frameworks where all possible symmetries can
be computed from the boundary geometry [9, 10, 12, 14–18].

Generalized p-form symmetries can have ‘t Hooft anomalies, which are robust quantities
expressed in terms of the background fields of these symmetries. One or more symmetries
might be involved, in this case the anomaly is called mixed. In particular, they are seen as the
obstruction for gauging all the involved symmetries. If an effective Lagrangian description
exists, these anomalies can be computed by coupling the theory to the background field for
the p-form symmetry, that is a (p+ 1)-form gauge field. ‘t Hooft anomalies are quantized
quantities, which do not depend on any scale and therefore they are robust under RG-
flow. For this reason, they have been importantly used to constrain the strongly coupled
dynamics of interacting quantum field theory via what is indeed called anomaly matching.
For instance, in 4d adjoint QCD theories there are anomalies between the chiral symmetry
(which acts on the fermions and the θ-parameter) and the 1-form constrains the infra-red
(IR) physics [1, 7, 19–23], and predict certain non-trivial features of the strongly coupled
regime, which are difficult to access otherwise. Anomalies of generalized symmetries are
present also in higher d > 4 dimensions. In 5d supersymmetric SU(N) gauge theories
with no massless matter and with possibly a classical Chern-Simons level [24], there is a
mixed anomaly between the instanton symmetry, given by the following topological current
JI = ∗5 1

4Tr(f ∧ f) and the 1-form symmetry ZN [25]. When the classical Chern-Simons
level is present, there is also a cubic ‘t Hooft anomaly for the 1-form symmetry [26].

Symmetries, anomalies and the choice of global structure of a d-dimensional theory can
be encoded in a (d+ 1) topological field theory action [27–37]. This (d+ 1)-dimensional
theory is called symmetry topological field theory (Symmetry TFT or SymTFT). String
theory and geometric engineering provide a systematic framework to compute the symmetry
TFT of the engineered models via tools described and developed in [38]. 5d SCFTs are
engineered by 3-dimensional Calabi-Yau cones in M-theory or IIB five-brane webs. As
described in [38], the symmetry TFT for these theories has been derived by reducing the
topological couplings of 11d supergravity on the boundary of the Calabi-Yau cones or from
the IIB webs. We also remark that the topological action obtained from supergravity usually
contains continuous field. This is different from the standard notion of Symmetry TFT
introduced in [27, 31], which relies on discrete gauge fields. In the latter case the existence
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of a gapped (topological) boundary condition, which fixes the theory at the boundary,
is basically guaranteed. Depending on the space-time dimensions of the system, when
continuous fields are present in the topological action this can be not true any longer,
and topological boundary conditions might not exist. This is indeed the case for 7d bulk
topological theory of 6d theories with (1, 0) and (2, 0) theories. For instance, 7d Chern-
Simons theory does not allow for gapped boundary condition in general, which is consistent
with the fact that the 6d theories are generically relative (i.e. they do not have a partition
function, but rather a partition vector). Given this caveat, we will extend a little the
meaning of the definition for symmetry TFT and still call the 7d topological bulk theory
the symmetry TFT for the 6d system, even if a gapped boundary condition might not exist.

In this paper we derive the symmetry TFT involving 1-form symmetries and 2-form
symmetries of 6d (1, 0) SCFTs from their tensor branch description (see [29, 30] for the
(2, 0) case), by using the bosonic Lagrangian of the theory when the scalar components of
the tensor multiplets acquire non-vanishing vacuum expectation value (vev). This is done
by generalizing to higher dimensions the 4d Maxwell theory case analyzed in [1, 39]. The
SymTFT is derived by coupling the Lagrangian to the higher-form symmetry backgrounds,
and by analyzing the transformation rules of these symmetries on the various dynamical
and background fields. A first consequence of the 1-form symmetry transformation is that
the background field for the 2-form symmetry should transform accordingly, i.e. by mixing
with 1-form symmetry transformations in order to avoid dangerous ambiguities that depend
on dynamical fields. This signals the presence of a 3-group structure. Moreover, some
ambiguities cannot be reabsorbed by counterterms, but rather by a 7d topological action.
This is the symmetry TFT for the 6d theories, and in this case is not invertible, which
means that the theory living at the boundary does not have a partition function but rather
a partition vector (see [27, 31] for the definition of invertible TFT). In general, there can
be boundary conditions leading to a theory at the boundary that is absolute, i.e. with a
well defined partition function. This symmetry TFT contains also a coupling between the
2-form and the 1-form symmetry backgrounds. We then discuss explicit examples, focusing
on (tensor branch) rank 1 theories. We also study absolute theories coming from these
rank 1 SCFTs, and combinations thereof. The nontrivial coupling between the 2-form and
1-form symmetry of the symmetry TFT does not lead to a mixed anomaly for any of the
absolute theories studied. To support this we provide a derivation of the symmetry TFT
for some specific examples constructed holographically via the AdS7 ×M3 solutions of
IIA supergravity in [40, 41] with orientifold O6+ planes sources with D6 branes on top.
This is done by reducing on M3 the topological coupling of IIA supergravity, including
Chern-Simons couplings related to the brane sources, see [32–35, 37, 42, 43] for similar
examples. Subsequently, we study the compactification on S1 of this symmetry TFT on a
circle. This consists of the symmetry TFT for the 5d N = 1 kk-theory (which uplift to the
6d (1, 0) SCFT in the UV). In this case there are choices of boundary conditions which
lead to absolute theories with an invertble symmetry TFT, leading to anomalies of the
5d kk-theory, or alternatively giving rise to a theory with a 3-group. We also derive the
symmetry TFT from the 5d low-energy Coulomb branch action coupled to backgrounds,
generalizing the procedure and results of [44]. As a bonus we also recover the symmetry
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TFT for 5d SU(p)q gauge theories with q Chern-Simons level and for the BN , B(1)
N , B

(2)
N

discussed in [9, 38, 45], which do not have a non-abelian gauge theory effective description at
low-energy. Finally we comment on the fate of the 2-form symmetries of 6d rank 1 theories
when we couple them do 6d dynamical gravity. Compatibly with [46] all global symmetries
must be either gauged or broken. We provide evidence that when the 2-form symmetry
is broken the surface defect charged under them are screened by the supergravity strings.
This is detected by checking whether the Dirac quantization condition for the supergravity
strings is violated or not [11]. In other examples the 2-form symmetry survives [47] as well
as the diagonal combination of 1-forms symmetries. Therefore the full 3-group including
the 1-form symmetry part should be gauged.

The paper is organized as follows. In section 2 we derive the symmetry TFT for 6d
(1, 0) relative theories from their tensor branch, and we discuss what survives for absolute
ones. In section 3 we derive the symmetry TFT holographically. In section 4 we discuss the
5d perspective on these SymTFT deriving the circle compactification and directly from the
5d Coulomb branch effective action. Finally in section 5 we discuss implication for 2 and
1-form symmetries in 6d when coupled to dynamical gravity.

2 2-form and 1-form symmetries TFT from the tensor branch

We start by deriving the Symmetry TFT for 2-form and 1-form symmetries of a generic
N = (1, 0) SCFTs in the tensor branch. The (2, 0) case has been studied in [26, 29, 30],
differently from these works we assume here the existence of a Wu-structure in the 7d
space. Relaxing this condition will require the use of differential cohomology as in [27, 29–
31, 37]. A tensor branch (pseudo)-Lagrangian description comes from taking the vev of
the scalar component of the tensor multiplet such that 〈φi〉 6= 0. The theory consists of
NT tensor multiplets, coupled to a quiver gauge theory. For each tensor multiplet there
is an associated gauge group, which can also be trivial. The gauge groups are connected
by bifundamental hypermultiplets, forming a quiverlike structure. Moreover there can
be matter (hypermultiplets) rotating under certain flavor groups. The generic bosonic
pseudo-action reads1

S ⊃ 2π
∫

Ωij

(
−1

2dφ
i ∧ ∗dφj − 1

4h
i ∧ ∗hj

)
+Ωij

(
φi ∧ 1

4Tr
(
f j ∧ ∗f j

)
+ bi ∧ 1

4Tr
(
f j ∧ f j

))
(2.1)

where φi and bi are the scalars and antisymmetric 2-form fields of the dynamical tensor
multiplets, whereas f i are the field strength of the gauge vectors. The coupling is dictated
by the Dirac pairing, Ωij , in the BPS integral string lattice of charges under bi. Finally, we
recall that (2.1) is a pseudo-action where we need to impose the (anti-)self duality constraint
on dbi = ± ∗6 dbi. The Bianchi identity reads dhi = 1

4Tr(f
i ∧ f i), such that

hi = dbi − κCS3(ai) (2.2)

for some integral Chern-Simons coefficient κ. Therefore there are NT 2-form conserved
currents given by J i(2) = ∗6dbi.

1Where we used the notation for which the instanton density of SU(N), 1
4 Tr(f ∧ f), has integer

periods. Therefore we rescaled f by 2π and Tr is the normalized trace Tr(f ∧ f) = trfund(f∧f)
Ind(fund(SU(N))) , with

Ind(fund(SU(N))) = 1
2 .
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We now implement a similar strategy to [39]. We couple the theory to the background
fields for the 2-form symmetries associated to each U(1) two-form gauge fields, bi. We
denote them by Ci3. The bosonic action coupled to the 2-form symmetries background reads,

S
[
Ci3

]
= 2π

∫
Ωij

(
−1

4

(
hi−Ci3

)
∧∗
(
hj−Cj3

)
+bi∧ 1

4Tr
(
f j∧f j

)
+dbi∧Cj3−κCS3

(
ai
)
∧Cj3

)
(2.3)

where we ignored the part involving the scalars and the kinetic term is invariant under the
2-form symmetry transformations,

bi → bi + Λi(2), Ci3 → Ci3 + dΛi(2) (2.4)

the third term is the coupling of Ci3 to the 2-form symmetry currents J i(2), and the last one
is a counterterm. This is the very low-energy effective action together with its symmetries
and the backgrounds thereof. Accounting for the BPS strings charged under the dynamical
bi, the 2-form symmetry is generically broken to the following product

Γ(2) =
∏
i

Zni (2.5)

which is dictated by the Smith normal form of the pairing in the string charge lattice Ωij ,
that is generically ΩSNF = diag{n1, . . . , ni, . . .} [12].

6d theories, more specifically 6d SCFTs2 on the tensor branch, can also have 1-form
symmetries, which sit in the center of the gauge groups (let us suppose we have a single
one) [11, 12, 49]. Moreover, because of the absence of massless gauge U(1) [50] the 1-form
symmetry that sit in the center of the gauge group can be at most discrete. Coupling the
theory to its B2 background field we also have an additional term that is,

S
[
Ci3, B

i
2

]
= S

[
Ci3

]
+ 2π

∫
Ωijb

i αjGP(B2) (2.6)

where P(B2) is the Pontryagin square due to the fractionalization of the instanton number
when activating B2 that sits in the center of the gauge groups [21]. Moreover, αjG are
generically fractional coefficient that depend on the gauge groups as well as which subgroup
of the associated center symmetry has been activated.

We can look now what happens when we apply the 2-form symmetry transforma-
tion (2.4). The action shift as follows,

S
[
Ci3, B

i
2

]
→ S

[
Ci3, B

i
2

]
+ 2π

∫
Ωij

(1
2dΛi(2)C

j
3 + Λi(2) α

j
GP(B2)

)
(2.7)

This shift cannot be reabsorbed by adding additional counterterms, but instead can be
reproduced by the following 7d action evaluated on the 6d boundary

SSymTFT = 2πΩij

∫ (1
2C

i
3 dC

j
3 + Ci3 α

j
GP(B2)

)
(2.8)

This action is the key to read off the true 1-form symmetry of the theory, i.e. by looking at
boundary conditions of this action. Let us assume the theory has a Γ(1) = Zp symmetry,

26d SCFTs do not have continuous 1-form symmetries, [48].
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whose background is B2. In order to avoid dangerous ambiguities, which depend on
dynamical fields, due to symmetry transformations, we need to impose

B2 → Bj
2 + dΛj(1), Cj3 → Cj3 + dΛj(2) − pαGΛj(1)B2 − p2αGΛj(1)dΛj(1) (2.9)

This signals that the Γ(2) and Γ(1) combine in a 3-group structure, Z3, via a generalized short
exact sequence implementing the extension 1→ Γ(2) → Z3 → Γ(1) → 1. Something similar
happens in 4-dimension with the theta angle promoted to a dynamical axion field, [51, 52],
since the dynamical bi are higher-form version of an 4d axion field in 6d. This structure
will proliferate also in the explicit examples of the next subsection.

2.1 Examples: rank 1 6d SCFTs

For the sake of concreteness, let us analyze the 6d SCFTs with a single tensor multiplet. [53].
The cases with nontrivial 1-form symmetry [11, 12, 49], Γ(1), are

Ωii G F Γ(1) αG

3 SU(3) ∅ Z3
1
3

4 Spin(8) ∅ Z2 × Z2
(

1
2 ,

1
2

)
4 Spin(2k + 4), k > 2 Sp(2k − 4) Z2

1
2

6 E6 ∅ Z3
2
3

8 E7 ∅ Z2
1
2

(2.10)

where for Spin(8) we have two αG referring to the coefficients of P(BL +BR) and BL ∪BR
respectively, and BL, BR are the background 1-form symmetry fields for the two Z2 factors.
F denotes the flavor symmetry rotating matter hypermultiplets when they are present. We
also restrict to the global structure choice for the gauge group that leads to the simply
connected case and electric 1-form symmetry. The symmetry TFTs are determined by
plugging in the data (2.10) into (2.8), for instance we have

SSymTFT = 2π
∫ (1

2 nC3 dC3 + 3nC3 αGP(B2)
)

(2.11)

with n = 3, 4, 6, 8. Specifying for concreteness to n = 3 the SymTFT reads,

SSymTFT = 2π
∫ (1

2 3C3 dC3 + 3C3
1
3P(B2)

)
(2.12)

where the 3-group symmetry transformation reads,

C3 → C3 + dΛ(2) − Λ(1)B2 − 3Λ(1)dΛ(1). (2.13)

For all these cases, the symmetry TFT does not describe an absolute quantum field theory
living at the boundary, i.e. such that it has a well defined partition function, but rather a
relative field theory, which instead has a partition vector, see [9, 10, 12, 13, 26] for explicit
example of relative vs absolute field theories. The important aspect is that a relative theory
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is described by a non-invertible TQFT in the bulk, whereas the anomalies of an absolute
theory are described by invertible TQFTs.

We now investigate whether the second term in (2.8), which can potentially lead to an
invertible TQFT for absolute theories, describing therefore a mixed anomaly between the
1-form symmetry, Γ(1), and the 2-form symmetry, Γ(2). Many 6d (1, 0) SCFTs coming from
string theory constructions are actually relative theories. For instance, the rank 1 theories
listed in (2.10) are all relative apart from the case with Ωii = n = p2 = 4, with p = 2.
Similarly to the (2, 0) case as discussed in [26], we can add a topological boundary term,

SSymTFT → SSymTFT + 2π
2

∫
∂

2(C3 −B3)Y (2.14)

where B3 is a Z2 valued field living on the boundary, and Y is a U(1) valued 3-form field.
The variation with respect to Y results in

C3|∂ = B3 (2.15)

that is a boundary condition consistent with gauge invariance, leading to L = Z2 as maximal
isotropic subgroup. For these cases, the second term in (2.10) has always integer coefficient,
due to

∮
C3 ∈ Z/2, and it does not lead to an anomaly term for an absolute 6d SCFT. As

in [26], the only anomaly theory that is left is

San = 2π
2

∫
4B3dB3. (2.16)

We can also take the product of two theories and understand what boundary condition
are allowed and what are the maximal isotropic subgroup that survive as 2-form symmetries
for absolute theories. Let us focus on a product of two copies of the same rank 1 theory
in (2.10). The maximal isotropic subgroup for the product of two Ω11 = 4 theories is
isomorphic to L = Z2 [26], and therefore since

∮
C3 ∈ Z/2 the second term in (2.10) has

integral coefficient. This works similarly in the case of Ω11 = 8. So we conclude that the
Ci3 ∧ α

j
GP(B2) coupling does not lead to an anomaly for any absolute 6d (1, 0) theories

studied in this section, i.e. coming from rank 1 theories or product thereof. It would be
interesting to study higher rank cases, which by a change of basis in the string charge
lattice (or by a 7d generalization of the level rank duality [54]) [26], can be understood in
terms of a single C3 field theory and its 7d topological action, that should correspond to
the nontrivial ( 6= 1) diagonal entries in ΩSNF [12]. We will see though how this turns out to
be an anomaly under when we compactify the theory on S1.

3 SymTFT from holography

Since 1-form symmetries are rare in 6d, let us discuss a specific example which has one,
and it is a straightforward generalization of the rank 1 Ω11 with G = Spin(2k + 4). The
IIA brane system which describe this theory is

4N NS5sp(k − 2) sp(k − 2)

O6+/D6 O6+/D6
(3.1)
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where the 6-directions x0 to x5 of the 10d space of IIA supergravity are in common. The
horizontal direction is x6 and the vertical direction on the plane where (3.1) lives represents
x7,8,9. The 6d theory in the tensor branch is a quiver given by

[Sp(2k − 4)]

Spin(2k+4)
4

Sp(2k−4)
1

Spin(2k+4)
4

Sp(2k−4)
1

Spin(2k+4)
4

[Sp(2k − 4)] (3.2)

The 1-form symmetry is Γ(1) = Z2 and it sits diagonally in all the center of the gauge groups,
and under which the vector representation of Spin is not charged. The holographic dual
solutions, which are the near-horizon limit of the brane set-up (3.1), have been discussed
in [40, 41], and there are two features of these solutions that are important for our purposes.
The first one is that the space is AdS7 ×M3, where M3 is a 3-dimensional closed manifold
consisting of a RP2 fibered over an interval that is topologically equivalent to a 3-sphere.
The second one is that there are two D6/O6+ sources at the two poles. Due to the presence
of the O6 plane there is a non-trivial action on the 10-dimensional NSNS B-field of IIA,
B → −B [55, 56]. This implies that the surviving modes are the one such that

2B = 0 (3.3)

so the holonomies of B are integers modulo 2. In addition the net NS5-brane charge or
equivalently the H flux quanta in the holographic dual are

∫
M3

H = 4N . The symmetry TFT
is derived by reducing the topological action of IIA supergravity together with contributions
from brane sources, that in this case involves

SIIA
top = 2π

∫
dC3 ∧ C3 ∧H + δ(sources)SO6+/D6

CS (3.4)

where Cp are the RR potentials, and the 6-brane Chern-Simons action at large k D6-
branes reads,

S
O6+/D6
CS = 2π

(
4k
∫ ∑

p

Cp ∧ e−B
)

(3.5)

where we do not consider any gauge field living on the branes, as well as any nontrivial
space-time curvature and R-symmetry backgrounds, see [57] for the complete action. The
part that involves the 2-form symmetry background has 2 contributions. The first one come
from the bulk topological action the second comes from the contributions of the D6 branes
stacks present at the pole of the holographic solution. At large N and large k we have

SsymTFT = 2π
(

4N
∫
C3 ∧ dC3 + 4k

∫
C3 ∧

1
2B ∧B)

)
. (3.6)

This confirms the structure of the symmetry TFT action obtained from the tensor branch,
and matches at large k the case (2.10) with n = 4 and N = 1, and G = Spin(2k + 4) with
k odd.
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4 A 5d perspective

We will now describe how to derive the symmetry TFT in 5d and then discuss the com-
pactification of the 6d SymTFT on a circle. We will subsequently discuss some example of
5d theories and their SymTFTs derived in the Coulomb Branch, which match the results
obtained in [38]. We shall see that in both cases, for some specific choices of boundary
conditions the SymTFT reduce to an invertible theory that reproduces the anomaly theory
of the absolute 5d SCFT.

4.1 Derivation from 5d

Let us now discuss how one generally couples the background field to a 5d action in the
(partial) Coulomb branch. A generic Coulomb branch action reads,

SCB = 2π
∫ (1

2Gijf
i ∧ ∗f j + cijk

6 ai ∧ f j ∧ fk
)

+ . . . (4.1)

where we do not display the scalar and fermion parts, for i = 1, . . . , r. The electric 1-form
symmetry currents are given by J2 i = Gijf j + ∗5

cijk
6 ajfk. The presence of the CS term

breaks the electric U(1) 1-form symmetry to a discrete subgroup depending on the levels cijk.
This can be read off from the massive states that are decoupled and generate these CS terms
via loop-corrections [12]. The magnetic 2-form symmetry currents are J i3 = ∗5f i. Similarly
to Maxwell theory in 4d [39], we can now couple the previous action to the U(1) background
fields for the 1-form symmetries and 2-form symmetries, Bi

2, B
i
3. The action reads,

S [B2, B3] = 2π
∫ (1

2Gij
(
f i −Bi

2

)
∧ ∗

(
f j −Bj

2

)
+ GijBi

3 ∧ f j

+cijk
6 Ai

(
f j −Bj

2

) (
fk −Bk

2

)
+ 1

2AηGij
(
f i −Bi

2

)
∧
(
f j −Bj

2

))
(4.2)

where generically we have many emergent U(1) currents due to the conservation equations
d(f i ∧ f j) = 0. However, in certain cases such us theories with a low-energy non-abelian
gauge theory description, there is a natural coupling to Aη background fields corresponding
to U(1)η symmetries, where η labels the diagonal blocks of Gij . These symmetries are the
ones that contribute (sometime enhancing) to the symmetry of the UV SCFT.3 In addition,
the first term is invariant under the 1-form symmetry action,

ai → ai + Λi(1), Bi
2 → Bi

2 + dΛi(1) (4.3)

whereas the second and third terms lead to a shift of the action, as well as Aη → Aη + αη.
All of those can be reabsorbed by,

SsymTFT = 2π
∫ (
GijBi

3dB
j
2 + cijk

6 Bi
2B

j
2B

k
2 + 1

2AηGijB
i
2B

j
2

)
(4.4)

3In a gauge theory, G is the Cartan matrix of the algebra, and therefore it has a single block. Aη
in this case corresponds to background of the Instanton symmetry associated to the topological current
JI = 1

4 Tr(f ∧ f).
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It is very important to notice that there are corrections that come from coupling the action
to the first pontryagin class p1(TM6), via the congruence discussed in [38],

xp1 = 4x3 mod 24 x ∈ H2(M6,Z) (4.5)

The modified action then reads,

SSymTFT = 2π
∫ (
GijBi

3dB
j
2 + cijk

6 Bi
2B

j
2B

k
2 + 1

24ciB
i
2 p1(TM6) + 1

2AηGijB
i
2B

j
2

)
(4.6)

We will discuss later how to compute the ci coefficient in variuous models. To manifestly
see the 1-form symmetries and the anomalies, we need to use the Smith normal form of Gij ,
that reads,

GSNF = PGT = diag(p1, . . . , pr) (4.7)

where P and T are two r × r square matrices. The symmetry TFT then reads,

SSymTFT = 2π
∫ (

piB̃
i
3dB̃

i
2 + 1

2AηGij
(
B̃2P

)i (
B̃2P

)j
+cijk

6
(
B̃2P

)i (
B̃2P

)j (
B̃2P

)k
+ ci

24
(
B̃2P

)i
p1 (TM6)

) (4.8)

where the last term is relevant by congruence [38]. So for the explicit example we just need
to compute the integral coefficients pi, ci, cijk.

4.2 SymTFT for 6d theories from compactification

We now compute the compactification on S1 of a given SymTFT for a general 6d SCFT
disucussed in section 2. This will lead to the symmetry TFT of the 5d kk-theory that uplift
to 6d in the UV. The reduction ansatz reads

Ci3 = Bi
3 + ω ∧ B̂i

2, Bi
2 = Bi

2 (4.9)

where ω = dβ−A with A the background field for the isometry of the S1 direction. Plugging
this into (2.8) and integrating over S1, we get

SSymTFT = 2πΩij

∫ (
B̂i

2 dB
j
3 + B̂i

2 α
j
GP(B2) + 1

2dAB̂
i B̂j

)
. (4.10)

For simplicity let us focus on the single tensor cases (2.10) with Ω11 = n,

SSymTFT = 2πn
∫ (

B̂2 dB3 + B̂2 αGP(B2) + 1
2dAB̂2 B̂2

)
, (4.11)

where we recall that we choose the global structure for the gauge group such that the
group is the simply connected version. Let us study two particularly meaningful boundary
conditions of this action. The first one is given by varying the action w.r.t. B3, and it reads

ndB̂2 = 0 (4.12)
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This gives rise to a absolute theory with Γ(1)
full = Zn × Γ(1), where Γ(1) is given in (2.10). In

this case the periodicities of B̂2 are in Z/n. What is left is an invertible field TFT action
that reads,

San = 2πn
∫ (

B̂2 αGP(B2) + 1
2dAB̂2 B̂2

)
(4.13)

which corresponds to the anomaly of the absolute 5d kk-theory. The second boundary
condition which is significant to study is the variation of the action w.r.t. B̂2. The boundary
condition implies,

n(dB3 + αGP(B2)) = 0 (4.14)

that is a differential operation associated to the short exact sequence 1 → Γ(2) → Z3 →
Γ(1) → 1, and this realizes a 3-group structure for the theory at the boundary. This structure
is already present in the relative theory and implied by gauge invariance of the symmetry
TFT action (2.9).

4.3 SymTFT for rank 1 6d theories from 5d

For the 6d rank 1 theories compactified on S1, the constant part of G is given by the affine
Cartan matrix of the gauge groups (2.10), and the Chern-Simons level cijk can be read off
from an (affine) gauge theory prepotential, [58, 59]. We recall that the prepotential is a
cubic function of the Coulomb branch scalars and it is given by, [24, 60, 61].

F =
(

1
2g2
YM

Cijφ
iφj + κ

6 dij`φ
iφjφ`

)
+ 1

12

∑
α∈Φg

|αi φi|3 −
∑
Rf

∑
λ∈WRf

|λi φi +mf |3

 ,
(4.15)

where dij` = 1
2trfund (Ti(TjT` + T`Tj)), Cij = tr(TiTj), and κ is the classical Chern-Simons

level, which is half-integer quantized. Φg are the roots of g, and WRf
are weights of the

representation Rf if matter (hypermultiplets) with mass mf is present. Then we hae

Gfull
ij = ∂2F

∂φi∂φj
,

cij` = ∂3F
∂φi∂φj∂φ`

.

(4.16)

In our case we are interested in the constant values of Gij = Ĉij and cij`. Finally, the
ci coefficient can be computed by integrating our the fermions that are superpartner of
the W-boson. The 1-loop Feynman diagram with these massive fermions runnning in the
loop generates also mixed gravitational/gauge Chern-Simons terms, when the gravitational
backgrounds are turned on [62, 63].

For example if we specify G = Spin(8) we get,

G =


2 0 −1 0 0
0 2 −1 0 0
−1 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

 (4.17)
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The Smith normal form reads,

GSNF =


1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 0

 , P =


2 2 3 2 0
1 1 2 1 0
1 0 2 1 0
0 −1 0 1 0
1 1 2 1 1

 (4.18)

We also notice that (4.18) has a 0 diagonal element. This is due to the fact that in the
Coulomb branch we see a U(1)× Z2 × Z2 1-form symmetry where the U(1) is broken by
the massive instanton particle to Z4, and the Z2’s correspond to the left and right center
symmetry of Spin(8). cijk can be read off by plugging into (4.15) the affine root lattice.
The non-vanishing terms are,

c133 = c233 = c433 = c533 = −2, c111 = c222 = c333 = c444 = c555 = 8. (4.19)

We can now plug into (4.8) the matrices (4.18) as well as the CS numbers (4.19). The
symmetry TFT then reads,4

SSymTFT = 2π
∫ (

B̃1
2dB̃

1
3 + B̃2

2dB̃
2
3 + 2B̃3

2dB̃
3
3 + 2B̃4

2dB̃
4
3 + 4B̃5

2dB̃
5
3

+ 2dAB̃5
2B̃

5
2 + 8B̃5

2B̃
3
2B̃

4
2 + 8B̃5

2B̃
3
2B̃

3
2 + 8B̃5

2B̃
4
2B̃

4
2

) (4.20)

where in this action we show the Z4 SymTFT, which is visible via a careful computation of
the charge matrix as in [9, 10]. This includes the charge under the center symmetries of
the instanton particles, which are also visible through (mixed) Chern-Simons level in the
Coulomb branch. By varying this action w.r.t. the B̃3 fields we obtain

2dB̃3
2 = 0, 2dB̃4

2 = 0, 4dB̃5
2 = 0. (4.21)

Thus, we have that B̃3
2 and B̃4

2 have Z/2 periodicities, whereas B̃5
2 has Z/4 periods. By

choosing the boundary conditions (4.21) the second part of the action, which contains the
cubic couplings, (4.20) becomes an invertible theory that corresponds to the anomaly of the
absolute 5d KK-theory. This also coincides with the circle reduction of the symmetry TFT
for the 6d theory in the tensor branch described in the previous section 4.3. Analogous
results were obtained in [44, 64] by using M/F-theory geometry.

4.4 5d SU(p)q gauge theories

Using the action (4.8) we can also derive the symmetry TFT for 5d SU(p)q gauge theories.
In order to do this we need to evaluate G, which in this case corresponds to the Cartan
of the sup gauge algebra. Whereas the cijk can be computed from the prepotential (4.15).
The coefficient ci read [62, 63],

ci = ∂

∂φi

∑
α∈Φg

|αj φj | (4.22)

4Where the upper indices are not powers but rather labels corresponding to Bi2. This notation is used
through the entire paper.
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Therefore, the smith normal form GSNF = PGT reads,

GSNF = diag(1, . . . , p), P =



1 1 . . . 1 1
1 2 . . . 2 2
...
... . . . ...

...
1 2 . . . p− 1 p− 1
1 2 . . . p− 1 p


(4.23)

The Chern-Simons levels have the following non-zero values,

ciii = 8, ciii+1 = (p− 2i− 2) + q, cii+1i+1 = (2i− p)− q, ci = 4. (4.24)

In the presence of a non-trivial classical Chern-Simons level the 1-form symmetry is
further broken to Γ(1) = Zgcd(p,q) [9, 10]. Plugging into (4.8) the matrices, (4.23), and the
levels (4.24), we obtain

SSymTFT = 2π
∫

gcd(p, q)B2dB3 + qp(p− 1)(p− 2)
6 B2B2B2 + p(p− 1)

2 dAB2B2 (4.25)

where we use the congruence (4.5).5 The coefficient of the first term is gcd(p, q) instead of
p, as the classical Chern-Simons level dictates. This can be computed by including in the G
matrix the charges of the instanton particle under the U(1)(1) center of the U(1) Coulomb
branch gauge groups, that is

MiJ =



0
0
... Gij

q − p− 2
p− q


(4.26)

where J = 0, 1, . . . , p. The SNF form of this matrix provides information about the flavor
symmetry rank as well.

When varying the action w.r.t. B3 we get gcd(p, q)dB2 = 0 and periodicites of the
B2 fields are then Z

gcd(p,q) . The term p(p−1)
2 dAB2B2 corresponds to a mixed anomaly of

the absolute theory between the U(1) instanton symmetry and Γ(1) = Zgcd(p,q) discussed
in [25]. The cubic term is instead a ‘t Hooft anomaly for Γ(1) = Zgcd(p,q) studied from the
non-abelian gauge theory point of view in [26]. The full anomaly theory coincides with the
one obtained in [25, 26, 38].

4.5 5d “non-Lagrangian” theories

We can apply the Coulomb branch method to compute anomalies of 5d SCFTs with no
non-abelian gauge theory description in the IR. These are for instance the theories analyzed

5In presenting the final expression, we also removed the˜from the 1-form symmetry backgrounds B-fields,
which are the result of the change of basis to Smith normal form, in order to not overload the notation. We
will do this in the rest of the paper.
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in [9, 38, 45] called BN , B(1)
N , B

(2)
N . Even if these theories do not have a non-abelian gauge

theory description they do admit a IR Coulomb branch Lagrangian, that is fixed by enough
knowledge of the electric charges, which will fix Gij , as well as the Chern-Simons level
cijk. We can read off Gij and cijk from the intersection numbers computed via toric
geometry [9, 45]. Plugging in these data (4.8) we are able to reproduce the expression
in [38]. Let us discuss how this work in an explicit example, such us B3, where from toric
geometry we can read

G11 = 3, c111 = 9, c1 = 1. (4.27)

The coefficient c1 geometrically corresponds to the intersection between the compact surface
class S and the second Chern-class of the toric Calabi-Yau [63]. This implies the following
symmetry TFT action,

SSymTFT = 2π
∫

3B2dB3 + 3
2B2B2B2 + 1

24B2p1(TM6) (4.28)

By varying with respect of B3 the periodicites of B3 become Z
3 , we then get an anomaly

action that is
SAnomaly = 2π

∫ 1
9B2B2B2 (4.29)

where we used the congurence (4.5).

5 Fate of 2-form symmetries in 6d supergravity

Let us finally comment on what happens to higher-form symmetries of the 6d rank-1 theories
when we consistently couple them to 6d dynamical gravity. As anticipated this can be done
consistently because there exist string theory constructions realizing this coupling. The
theories obtained via this construction are called non-Higgsable clusters (NHCs), which
are engineered in F-theory via compactification on Calabi-Yau elliptically fibered over
Hirzebrouch surfaces Fn [65]. The intersection pairing reads,

Ω =
(

0 −1
−1 n

)
(5.1)

with n > 2. This consists of coupling the theories in (2.10) to a self-dual tensor field which
is present in the gravity multiplet, where the intersection pairing is given above. The
breaking of the 2-form symmetry Γ(2) = Zn associated to the antiself-dual tensor with
self-pairing n is given by a mechanism similar to the one described in [11]. For instance, we
can check whether backgrounds for Γ(2), C2

3 , such that the periodicities of dC3 are fractional
and they have Z/n periods, are consistent. In the effective action we have the coupling
Ωijb

i dCj3 = b1 dC
2
3 , and the Bianchi identity reads. This coupling measures the induced

charged by the background fields on the BPS strings, and therefore, because the BPS
string lattice needs to be integrally quantized by Dirac quantization, it must have integer
coefficient if the integrand has integral periods. Thus, we conclude that the activation of
the background field for Γ(2) = Zn violates Dirac quantization of the BPS string charges,
charged under the self-dual tensor of the gravity multiplet in 6d, also called supergravity
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strings. Our proposal provides a field theory explanation of the string theoretic/geometric
observation in [47]. Another equivalent way of phrasing this mechanism is that the 2-form
symmetry is broken since the surface defect are screened by the supergravity strings. This
can also be deduced by computing the Smith normal form of (5.1), which result in a trivial
2-form symmetry. Since the supergravity strings are tensionless only in the UV (or at
infinite distances), and do not lead to any massless state at low-energy the symmetries can
be treated as approximate in the sense of [66], whereas they are broken at a energy below
the Plank scale.

Another interesting model discussed in [11] is given is specified by the following
intersection pairing,

Ω =

 0 −1 −5
−1 3 0
−5 0 −75

 (5.2)

where we have an SU(3) associated with the tensor multiplet of self pairing 3 and another
SU(3) on the one with self pairing −15 with no massless matter. In the tensor branch
action coupled to backgrounds we have the following relevant coupling terms

S ⊃ 2π
∫
−b1

(
αSU(3)P

(
B1

2

)
+ 5αSU(3)P

(
B3

2

)
+ dC1

3 + 5dC3
3

)
+ . . .) (5.3)

where bi are dynamical 2-form tensor fields. This couplings tell us that the diagonal
1-form symmetry Zdiag

3 ∈ Z(SU(3) × SU(3)), whose background is B1
2 = B3

2 , together
with a Γ(2) = Z3, with background C1

3 = C3
3 , symmetry background do not violate Dirac

quantization for the supergravity strings. This means that the entire 3-group symmetry
should be gauged combining the geometric evidence of the constructions in both [11] and [47].
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