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ABSTRACT: We study charged perturbations of the thermofield double state dual to a
charged AdS black hole. We model the perturbation by a massless charged shell in the bulk.
Unlike the neutral case, all such shells bounce at a definite radius, which can be behind
the horizon. We show that the standard “shock wave” calculation of a scrambling time
indicates that adding charge increases the scrambling time. We then give two arguments
using the bounce that suggest that scrambling does not actually take longer when charge is
added, but instead its onset is delayed. We also construct a boundary four point function
which detects whether the shell bounces inside the black hole.
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1 Introduction

It has been shown that the physics near a black hole horizon is closely related to quantum
chaos [1]. In particular, the process of a particle falling into an asymptotically anti-de Sitter
(AdS) black hole corresponds to scrambling of the thermofield double state in the dual field
theory [2, 3]. However the dual interpretation of the trajectory of a particle inside the black
hole is much less understood.

To shed light on this issue, we study a charged perturbation of the state dual to a
(four-dimensional) charged black hole. We model the bulk perturbation by a spherical,
massless charged shell. As we will review, all such shells bounce at a certain radius, so a
shell that is sent in from the left asymptotic region ends on the left side of the Penrose



Figure 1. A charged shell sent in from the left at time ¢,,;, can bounce in the interior close to the
event horizon. An observer on the right can meet the shell only if they fall in before time t.

diagram. By choosing the energy and charge of the shell appropriately, we can arrange for
the shell to bounce inside the black hole, but close to the event horizon (see figure 1).

We first calculate a scrambling time for the charged perturbation by generalizing the
original calculation of scrambling for a neutral perturbation of a neutral black hole [2, 3].
This was extended to a neutral perturbation of a charged black hole in [4], and we further
extend it to a charged perturbation of a charged black hole.! We find that the scrambling
time appears to increase with the addition of charge. This calculation does not probe the
shell inside the black hole, and hence seems independent of the bounce. However, we then
point out a surprising coincidence. Let t,,7, be the time the charged shell is sent in from the
left. Since the shell bounces inside the horizon, there is a maximum time ¢, at which an
observer on the right can fall in and still meet the shell (see figure 1). We show that, away
from extremality, the difference in scrambling times between a charged and neutral shell
with the same energy is just? —t, — t; (up to an order one multiple of the thermal time).

We then give two arguments which depend on the physics inside the horizon that
indicate that, from one point of view, the actual scrambling time does not increase with
charge. Instead, the effect of the charge is to delay the start of scrambling. The first
is motivated by considering quantum circuits. It has been argued that the geometry on
particular spacelike surfaces in the bulk reflects the minimal tensor network required to
prepare the state [6]. Since these surfaces extend inside the black hole, one can model
evolution inside it in terms of a unitary quantum circuit. A description of black hole
scrambling has been developed using these quantum circuits [7, 8].

Let us now consider two perturbations (one sent in from the left and one from the right)
that meet inside the black hole. It was proposed in [9] that one can compare the scrambling
times of these two perturbations by computing the four-volume of the post-collision region,
and seeing how it varies as one changes the time at which one perturbation is introduced.
We construct the solution with two null shells, one charged and one neutral, and compute
the volume of the post-collision region. The result does not behave as expected if the two

!This was previously studied in [5] in three dimensions, even though the presence of the bounce was
not considered.
2We define t so that it increases to the future on both asymptotic boundaries. So in figure 1, twr < 0.



scrambling times are different. Instead, it behaves exactly as predicted if the scrambling
times are the same, but the onset of scrambling for the charged perturbation is delayed.

Our second argument for the delay comes from a calculation in a two-dimensional
black hole. A massless charged particle bounces inside the black hole just like in higher
dimensions. We compute an out-of-time-order four-point correlator (OTOC) with two
charged and two neutral operators. With one choice of times for the operator insertions we
obtain an “exterior OTOC” which depends only on the perturbation outside the black hole.
This is similar to the OTOC that was studied in the seminal work [2]. With a different
choice of times, we obtain an “interior OTOC” which is sensitive to the perturbation inside
the horizon. We find that the interior OTOC only starts to decay after a certain delay.

When the operators are all neutral, a certain derivative of this OTOC was shown to
reproduce the momentum of a bulk particle (in a particular frame) [10]. We show that with
two charged operators, the same derivative of the interior OTOC vanishes at the time when
the charged particle bounces. Independent of scrambling, it is interesting that the interior
OTOC provides a boundary observable that detects the bounce of a charged particle inside
the black hole.

2 Bouncing trajectories

In this section, we first review the motion of charged null shells falling into a charged black
hole. We will see that they always bounce, and with appropriately chosen charge, the
bounce will occur inside the black hole, but close to the event horizon. We then compute a
scrambling time for the dual charged perturbation of the black hole state, by generalizing
the work of [2, 4, 5]. We will see that the scrambling time computed this way is longer for
a charged shell than a neutral shell with the same energy.

2.1 Geometry and trajectories of charged shells

We start with the four-dimensional asymptotically AdS Reissner-Nordstrom spacetime

ds* = —f(r)dt* + f(r)"Ldr? + r?dQ?, (2.1)
with ) 0?
r 2M
— 41y x 2.2
fr) =T 1= 2 (22)

where M is the mass of the black hole and @ is its charge. The horizons of the black hole are
given by f(ry) = 0. It will also be convenient to use Kruskal coordinates defined through

UV = =™ /8 (2.3)
U
V _ _6—47rt/ﬁ ’ (24)
with the tortoise coordinate r* defined as
. o dy!
S A ) 7

so that r* = 0 at the boundary.
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Figure 2. (a) Null energy condition is violated beyond 7. (b) Correct trajectory of a charged shell.

We now add a massless charged shell with energy E and charge gq. The resulting
solution is given by a black hole geometry with mass M and charge @ inside the shell, glued
to a black hole with mass M + E and charge @) 4+ ¢ outside the shell. The surface between
the two regions is the trajectory of the shell. Therefore, the geometry inside the shell and
outside will have a metric given by (2.1) with different choices of f(r), which we will denote
by fi(r) and f,(r), respectively.

One may consider the gluing using the null junction formalism [11], where one specifies
the null surface and calculates the stress tensor of the shell. In particular, the conditions
require that the degenerate induced metric on the null surface must be continuous and the
surface stress tensor is related to the discontinuity in the derivatives of the metric. The
naive choice for a surface representing an in-going shell sent from the left boundary is to
use a constant U surface, i.e. the same surface that represents the trajectory of a neutral
shell in [2, 4]. One finds the surface stress tensor for this shell to be of the form

5 = p(r)k“EP (2.6)

with '
() = fZ(T)S;TfO(M’ (2.7)

and k% is the tangent vector along the shockwave. This stress tensor vanishes at the radius

vy — q(2Q + q)

=L, (2.8)

where f;(ry) = fo(rp). If one extends the trajectory to smaller radii, one finds p(r) < 0 so
the stress energy tensor would violate the null energy condition (7}, ¢/¢” > 0 for all null ¢).
This problem was addressed in [12, 13] where it was shown that the correct evolution of the
matter past 7 is that the in-going particles reflect and become out-going particles. Thus,
at r, the charged shell will cease to follow the U constant trajectory and start following a
constant V' surface (see figure 2).

A good way to understand this bounce is to think of the massless shell as the limit of a
massive shell. As we show in appendix A, a massive charged shell always bounces since it is
attracted to the oppositely charged singularity. As the mass of the shell goes to zero, the
bounce becomes sharper and sharper, leading to the reflection seen in the massless case.



Another way to derive the location of the bounce is to use the DTR conditions [14-16]
for matching across two colliding null shells. In the limit when the second shell disappears,
i.e., its energy goes to zero, the condition reduces to f;(ry) = fo(73).

In the limit where the shell is a small perturbation with ¢ < @, the turning point
simplifies to r, &~ ¢@Q/FE. In this case, the turning point only exists when the charge of
the black hole @) and the charge of the shell ¢ are of the same sign, as one might expect.
At energy FE = qQ/r, the shell bounces exactly at the event horizon. In fact, this is the
energy that leads to a vanishing variation of entropy from the first law

TdS = dM — ®dQ = E — 37 (2.9)
+
This also shows that shells that bounce inside the black hole always lead to AS > 0 in
agreement with the second law, and shells bounce outside if and only if the parameters of
the shell are such that they would lead to AS < 0 if the shell were to enter the black hole.?
If the charge on the shell is large enough so that the bounce occurs outside the horizon,
then a field theory description of the black hole interacting with a massless, charged scalar
field typically exhibits instabilities. This is because w < ¢@/r4+ is the condition for charged
superradiance, so the black hole develops scalar hair [17]. In this paper we will focus on the
case of bouncing inside the horizon as shown in figure 2(b). The scrambling effects we are
interested in will be large when the bounce occurs close to the event horizon, i.e., r, > r_
and 4 —1p K 4.

2.2 Butterfly effect with charge

In the previous section, we obtained the geometry of general massless charged shells. We
will now restrict to the case of a small perturbation, where £ < M and ¢ < Q. If we
simply take the limit E, ¢ — 0, the backreaction on the geometry by the shell vanishes and
the equation of motion of the shell reduces to the equation for a collection of test particles.
However, if one simultaneously takes the limit that the time, t,,7,, at which the perturbation
is made is asymptotically early, then there will still be a nontrivial backreaction effect on
the geometry. This implies an effect on the thermofield double state at t = 0, which can be
detected by looking at the change in mutual information or an appropriate OTOC which
are related to spacelike probes that anchor to each boundary at ¢t = 0. This leads to the
butterfly effect originally obtained in [2, 4] and we will consider how the presence of charge
modifies those results.

In appendix B, we give the (by now standard) calculation showing that in the limit
Bi/0B > —twr/Bi > 1 the main effect of the backreaction of the shell is a shift of the
Kruskal V' coordinate:

VorVi+a (2.10)

with 5
a=eCle2mtur/B T+ , (2.11)
Ty —T—

3This sharp statement is only true for massless shells. For massive shells, it is possible for shells to have
parameters that would lead to AS > 0 but still bounce outside the horizon.



where C' is an order one constant. As mentioned in the previous section, a shell that enters
the black hole increases its entropy, hence dry > 0 and the shift « is positive.

Notice that no matter how small dry /r is, we can make a ~ 1 by taking t,,, far in
the past, so spacelike probes at ¢ = 0 that cross the shell will experience significant changes
and signify a large change in the state at t = 0 in the presence of a small perturbation.
This is the hallmark of chaos.

We first examine the bounce to see whether it can affect spacelike probes that intersect
the shell. The analysis in appendix B shows that for a bounce near the horizon, we have (B.4):

b Ty — T4
b ) 2.12
Yi < ory ) “ ( )
Finding dr1 through the first law of thermodynamics:
g ( qQ)
ory = E-— 2.13
T+ 27TT'_|_ T+ ( )
and using (2.8) for the bounce (in the limit ¢ < @), we find
2172 o
b +
b _ . 2.14
=" (2.14)

When backreaction is relevant, i.e. o ~ 1, we always have |V;?| > 1 since r; /E >> 1 for weak
perturbations. The Wheeler-DeWitt patch at ¢ = 0 is bounded by the null hypersufaces
V, = —1, U, = 1 near the left boundary and V; = 1, U; = —1 near the right boundary.
Following the hypersurfaces V, = —1, U, = 1 across the shell and writing them in terms
of V;,U;, one obtains a shift that is at most O(1). Therefore, shells that have strong
backreaction never bounce inside this region and, consequently, spacelike probes at ¢t = 0
will not reach the turning point of such shells.

In the limit we are working in, the difference between the effects of charged and
uncharged shells lies only in dry in the expression of «. In the case of uncharged shells
ory o< E, whereas or; o« E — qQ/r4 for charged shells. Rather than focus on the effect of
the perturbation on the state at t = 0, we can use the boost symmetry to rephrase the result
in terms of the state at any time ¢y on the left (and —ty on the right). The only change is
that —t,z, in the exponent in (2.11) is replaced by t; — t,,z,. Now consider the following
two processes. At time t,,;, we can either throw in a shell with energy E and charge ¢
(gQ > 0), or we can throw in a neutral shell with energy E. Let ¢ be the time at which
the shell will induce significant backreaction (o ~ 1) on the geometry. Then (2.11) implies

E
#7040 = % 108 T GaTre (2.15)
i.e., compared with a neutral shell carrying the same energy, the charged shell takes a longer
time to induce the same amount of backreaction to the geometry. This suggests that the
scrambling time of charged perturbations is longer. Even though the above calculation is
independent of the bounce, notice that the difference (2.15) becomes large when the shell
bounces close to the horizon since E' — Qq/r approaches zero.



Figure 3. An observer on the right can meet the charged shell only if they fall in before time ¢.

It should be noted that this difference in scrambling times is the same as one would
have with two neutral shells if one had energy Fy = FE — puq for some ¢ (where = Q/r4),
and the other had energy Fo = E. So from the standpoint of this section, the effect of
adding charge is indistinguishable from decreasing the energy. In particular, the bounce
is clearly playing no role. In section 3 and section 4 we will discuss effects for which the
bounce does play a role.

2.3 Coincidence

In the regime where the above time difference is much larger than the thermal time 3, there
is an interesting coincidence. Consider a shell sent from the left boundary at time t,,r,.
Since we have chosen t to increase to the future on both boundaries, the corresponding time
on the right under analytic continuation is —t,,;,. A natural way to detect the bouncing of
the shell is to note that there is a latest time on the right, t;, for an observer to fall in and
still meet the shell. If the observer falls in any later, the shell bounces and the two never
intersect (see figure 3). From (2.14) one finds the time difference t4 = —t,,1, — t;, to be

o (e ) ¢
tg = —twr, —tp, = — |lo : -] . 2.16

Note that this time difference is a boost invariant quantity. Moreover, recall that C
is an O(1) constant defined in appendix B that depends only on the geometry. Therefore,
away from extremality, the difference in scrambling times t;E’q) — tScE’O) agrees with t; up to
terms of order the thermal time. As we will argue in the next section, one can interpret tg4

as the amount of scrambling delay.

3 Scrambling delay from interior bounces

In this section we use a proposed connection between physics inside a black hole and
properties of a quantum circuit to shed light on the difference between scrambling of neutral
and charged perturbations. We will find evidence that rather than charged perturbations
taking a longer time to scramble (as indicated in the previous section), the effect of adding
charge is to delay the start of scrambling.
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Figure 4. Left Panel: a unitary quantum circuit with local interactions which becomes longer when
tr, or tg is increased. Right Panel: an extremal surface in a Schwarzschild AdS black hole connecting
tr, on the left and tg on the right. The part of the surface inside the black hole (marked in yellow)
increases as ty, or tg is increased, and is believed to be described by a quantum circuit.

3.1 Collision in the black hole interior and a quantum circuit description

We begin by briefly reviewing the quantum circuit description of a black hole interior, and
how it is related to the interior trajectory of an infalling object as well as collisions inside
the black hole.

In the gauge-gravity correspondence, it was argued that the bulk geometry reflects the
minimal tensor network preparing the state [18]. In particular, there is a unitary quantum
circuit that becomes longer as one evolves the state, reflecting the fact that the black hole
interior along an extremal surface gets longer [6, 19] (see figure 4).

An object falling into the black hole corresponds to a perturbation that spreads within
the circuit [20]. It spreads since the initial perturbation affects some gates, which then
affect some other gates, etc. Eventually all gates are affected by the perturbation. The
difference between the time at which the perturbation enters the circuit and the time when
all gates are affected is its scrambling time in this quantum circuit.

In the case of a Schwarzschild AdS black hole, two infalling objects coming from
opposite boundaries may or may not meet in the interior before hitting the singularity. This
phenomena has been interpreted as the possible overlap of two perturbations in the shared
quantum circuit [8, 21]. More precisely, it was proposed in [8] that the number of gates
which are unaffected by either perturbation (called “healthy gates” in [22]) in the overlap
region is related to the spacetime volume of the bulk region to the future of the collision
between the two objects falling into the black hole? (see figure 5).

When the two perturbations overlap and have significantly different scrambling times,
the number of gates which are unaffected by either perturbation remains constant for a
while as one varies the time the shells are introduced (see figure 6). In the rest of this
section we apply this reasoning to charged black holes. We add either neutral or charged
ingoing shells and calculate how the volume of the post-collision region changes when we
change the times that the shells are introduced. The existence of a plateau, where the
volume remains constant, will be a sign of different scrambling times.

4The intuitive reason is that these gates are applied after both shockwaves come in. So it will correspond
to a bulk region which is to the future of both shockwaves.
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Figure 5. Left Panel: the red perturbation from the left and the pink perturbation from the right
have some overlap in the quantum circuit. Right Panel: the two perturbations meet in the black
hole interior. It has been proposed that the number of gates in the grey region on the left is related
to the spacetime volume of the grey region on the right.

At

Figure 6. The grey region corresponds to the healthy gates in the overlap, which barely changes as
we vary At.

(Er, = E — pq,0) N (B, 0)

Figure 7. Collision between two neutral shells with different energies. We are interested in the
volume of the region to the future of both shocks, up to the inner horizon (shaded in grey).

3.2 Collision between neutral shells with different energy

We first consider the collision of two neutral massless shells thrown into the Reisner-
Nordstrom AdS geometry. To mimic the change in ry when we later add charge, we will
fix an energy F and reduce it by pg for some ¢, where = @Q/r4. So one shell carries
energy Fr, = F — uq and comes from the left boundary at time ¢, and the other one
carries energy Fr = E and comes from the right boundary at time t,r (figure 7). We
consider the regime where % < 1 so the scrambling times of the two perturbations are
significantly different.



Figure 8. Collision between a charged particle and a neutral particle carrying the same energy.
The post-collision region is shaded.

In appendix C we show how to construct the spacetime with the two shocks and
compute the volume of the region to the future of both shocks. We cut this region off at the
inner horizon, since it is unstable and perturbations turn it into a singularity. As mentioned
above, from quantum circuit considerations, when the two scrambling times are significantly
different, there will be a regime where the number of healthy gates in the overlap region
does not change as we vary At = —t,,;, — twr. Assuming the same connection between the
number of healthy gates and the volume of the post-collision region as discussed above, we
expect a plateau in the post-collision region spacetime volume as a function of At [9]. As
we explain in the next section, this is indeed what we find. So for neutral perturbations of a
charged black hole, the connection between the number of healthy gates and post-collision
volume appears to hold. We are therefore encouraged to extend it to charged perturbations.

3.3 Collision between a charged shell and a neutral shell

Next, we consider the collision between a charged shell and a neutral shell. We send in a
shell with energy E; = E and charge ¢ from the left boundary at time t,,7,, and another
neutral shell with energy Fr = E from the right boundary at time t,,gz. The resulting
geometry is shown in figure 8.

The construction of the geometry and calculation of the volume of the post-collision
region in this case is more involved, and is explained in appendix C. We have numerically
computed this volume as a function of At = —t,,;, — twr for several choices of mass M and
charge @) of the original black hole. In each case, we choose E <« M and q < @ so that
E — qQ/ry < E. The final results are shown by the blue dots in figure 9. For comparison,
the results for the case the two neutral shells (discussed in the previous subsection) are
shown by the orange dots.

The top plot in figure 9 is for an average charged black hole (with r_ ~ ry/2). The
next one has very little charge and the bottom plot is close to extremality. In all cases, one
can see that the orange dots have a plateau in the middle as expected from the quantum
circuit analysis, which is a signal that the two scrambling times are significantly different.

~10 -



For the blue dots, instead of a plateau in the middle, in all cases one sees a delay at the
beginning. In the first two plots, the initial delay, t4, equals the width of the plateau which
is the result of the coincidence we discussed in section 2. This suggests that away from
extremality, the scrambling of the charged particle takes the same amount of time as the
scrambling of the neutral particle with the same energy, but the onset of the process, i.e.,
the time at which the perturbation enters the circuit, is delayed by 4.

There is a simple explanation for this difference in the behavior of the post-collision
volume, between charged and neutral shells. First consider the neutral case represented by
the orange dots. When At is small, the two shells collide with small center of mass energy.
So the backreaction is negligible and the volume can be computed in RN AdS, and shown
to increase linearly.> As At increases, the shells are introduced earlier, and their center of
mass energy increases. Eventually, the backreaction becomes important, causing the black
hole to grow. This is the start of the plateau. While it is clear that the linear growth of the
post-collision volume will be modified, it is rather surprising from this perspective that the
volume remains constant. At very large center of mass energy, the collision takes place deep
inside a large black hole and the post-collision volume up to the inner horizon goes to zero.

Now consider the case of a charged perturbation. Since a charged shell bounces, there
is no collision unless the shell on the right starts before a time ¢, (see figure 3). So the
post-collision volume is strictly zero until At = —t,,, — t, = tq. After this, the volume
grows linearly for a while (for the same reason as the neutral case), and starts to decrease
when the backreaction becomes important.

4 Probing the bounce in a two-dimensional model

To gain more insight into the effects of a charged perturbation bouncing inside the horizon,
in this section we consider a simple two-dimensional model. We will see that the bounce
can be detected by the following out-of-time-ordered four-point correlator (OTOC)

(TFD| W' (twr)Vi(tr)Va(tr)W (tuwr) |TF D)

(VL(to)Vr(tr))w (TED|Wt(twr)W (twr) |TFD) ’

(4.1)

for a judicious choice of times for the operator insertions. Here W corresponds to a charged
perturbation and V is a neutral operator.® We will distinguish two choices of times. If
tr = —tr, we obtain the standard OTOC which has been used to discuss chaos and the
onset of scrambling [23]. We will call this the “exterior OTOC” since it only probes the
perturbation outside the horizon of the original black hole. If instead we take t; very
large, we obtain something we will call the “interior OTOC”, since we will see it probes the
perturbation inside the black hole. This OTOC not only can detect the bounce, but also
gives another indication of a scrambling delay.

®The post-collision volume at At = 0 is nonzero, but it is small compared to Vp = 4r(r} —r)8/3 which
is a convenient scale to measure the volume in.

5Tt is equally interesting to consider V to be a charged operator. However, for the sake of simplicity, we
choose to focus on the neutral case in what follows.

- 11 -
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Figure 9. Spacetime volumes of post-collision regions as a function of At in various examples.
The spacetime volumes are given in units of Vo = 4m(r? — r3)3/3 and At is given in units of
B. The scrambling times of the two neutral shells are marked as vertical grey lines. Top panel:
a black hole with medium charge r_ ~ r; /2 (r;/l ~ 4.82 and r_/l ~ 2.12) with perturbations
of size E/M =5 x 107% and (E — uq)/M =~ 3.74 x 10~L. Middle panel: a black hole far from
extremality (74 /l ~ 31.5 and r_/l ~ 1.27 x 10~%) with perturbations of size E/M ~ 1.91 x 10~°
and (E — pq)/M ~ 2.67 x 10713, Bottom panel: a black hole close to extremality (r, /I ~ 31.6 and
r_ /1 ~ 30.5) with perturbations of size E/M ~ 3.33 x 108 and (E — pgq)/M ~ 4.89 x 10~13.
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4.1 Bounces in AdS»

When focusing on operators V' with large scaling dimensions A one can sometimes exploit
the WKB approximation to write correlators in terms of geodesic lengths [24]

(VL(tL)Va(tr))w ~ e~ 2H00in) (4.2)

where L(tr,tr) corresponds to the appropriately renormalized geodesic distance connecting
both boundaries at the chosen times in the geometry perturbed by W. We will use this
to compute (4.1).
In particular, we will consider a perturbation W described by charged particles with
a turning point in an AdSy geometry. Such particles arise in the Jackiw-Teitelboim (JT)
gravity obtained through the dimensional reduction of a near extremal electrically charged
black hole [25, 26], where we end up with an AdSy geometry equipped with an electric field
and a dilaton ®. For the sake of simplicity, we will be agnostic regarding the particular
theory in which our setup is embedded and focus only on having the metric and the dilaton
be CY in an appropriate coordinate system. We will write the AdS, geometry in the
following coordinates
ds® = —f(r)dt* + f(r)"tdr? (4.3)
with
F) = (r = 1) (r—72), (4.4)
where we are setting the AdS length equal to one. We will assume that the dilaton takes

the form

in these coordinates, where ®;, is some arbitrary constant. This assumption is motivated
by the fact that in the context of a spherically symmetric dimensional reduction the dilaton
captures the size of the higher dimensional sphere. More concretely, this happens in the
JT-like gravity described in [26] after an appropriate coordinate redefinition. The Kruskal
null coordinates are still defined as in egs. (2.3) and (2.4) but now we can explicitly find
the tortoise coordinate in eq. (2.5), which yields

o < dr' B r—rg
ri(r) =— g ]‘(7“’)_47r10g<r—r>’ (4.6)
with
5= 47 _ 4 . (4.7)

frre)  ry—re
Let us now consider that we send a massless particle (which might carry electric charge)
from the left boundary of the AdSs black hole at some time t,,;,. This particle will initially
follow a trajectory of constant U, = e2™wL/8 We will assume that the ‘backreaction’” of

"For details on the exact meaning of backreaction in this situation, see appendix B in [27]. An alternative
way to think about it is that the two-dimensional model can represent the near horizon region of a higher
dimensional near extremal black hole. A perturbation in higher dimensions changes the parameters of the
black hole. As a consequence, a stationary observer measures a slightly different temperature before and
after the shell. A natural way to model this effect in the approximate AdSs near horizon geometry is to
change the Rindler patch.
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this particle is non-negligible and thus we must take a different Rindler patch of AdS, after
the particle is sent in, which we will denote by

ds® = —f(r)di2 + f(r)dr? (4.8)

with

fr)y =@ —7)(r—7-). (4.9)
The coordinate r is taken to be continuous across the trajectory of the particle in order to
impose continuity of the dilaton. As before, it is natural to take the time coordinate to
flow continuously along the boundary, which implies that the shell follows a trajectory of
constant Uy, = e2™wL/# in the new coordinates. Continuity of the r coordinate implies the
following relationship along the constant U trajectory of the shell
1 T4 + T_Uwv — F_g_(l + UwV)

V==
Uy T——ry+U, V(- —1_)

(4.10)

If the particle does not bounce, this fully describes the trajectory of the shell in both patches.
We are interested in considering shells that do bounce at some radius 7. If this happens, in
analogy to higher dimensions, the DTR condition [14-16] should be satisfied at the turning
point in order for the metric to be C° in appropriate coordinates. In this case, it implies

r-ry — f_f_;_

Fre) = flry) =>1p = (4.11)

T++T‘_—7Z+—f_ '
If the shell does bounce at some 7y, it will start following a trajectory of constant V =V, with
1 ry—m

%_

i (4.12)

and analogously for V =V, with appropriate replacement by tilded quantities. Again, using
the continuity of 7, we can find how U and U relate to each other along the shell after

the bounce
1ry 47 UV — (14 UV)

V, o1y + UV — 1)

0= (4.13)

4.2 OTOC behavior

With the setup described above in mind, one can compute the geodesic length between both
boundaries at times t;, and tg with the use of embedding coordinates. This computation is
carried out in detail in appendix D and yields

I 647T46AtL6AtR
e =— — ~ 5 (4.14)
B23%r2 [or— 4 (F— — ry)eBtr + (r_ — 7y )ette — dryeBtredtr|
where we defined

ory =7y — 1y, or— =7_ —r_ (4.15)

and® 5 5

™ T

Aty = F(tL - twL) ) Atg = F(_twL - tR) : (4‘16)

8Note that in this section we define At to be dimensionless.
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The variable r. corresponds to the radial cut-off. It is important to keep in mind that this
expression is only valid for Aty > 0, i.e., when evaluating the geodesic length after the
insertion of the operator W. In general, the insertion of the operator should be thought of
as creating both an ingoing and an outgoing particle and this expression does not take that
into account.

By studying eq. (4.14) as a function of t,,, for different choices of perturbations and
times (tr,tr) one can notice an interesting feature. When the particle does not bounce
between the two horizons, the OTOC monotonically decreases as t,,;, is moved into the
past. This is qualitatively the same as the standard result found in [2]. However, when
the bounce happens in between the horizons, the OTOC can have a maximum at some
tr ;. < tr and only monotonically decays for ¢,,;, < t; ; as we move the perturbation further
into the past. As we will show in more detail below, this maximum occurs exactly when
the geodesic between the two sides passes through the turning point of the particle and
thus it provides a boundary probe of the bounce inside the black hole interior. Naturally,
this only happens for suitable choices of times (¢r,tr) such that the geodesic meets the
particle in the interior.

To study this behavior in more detail we turn to a particular derivative of the geodesic
length, namely

B LL _2r ((6r_ —0ry et 4 (6ry — dr_)eAtR — 261 — 201, eAtreitr
dter B (r— —rp)edtr 4+ §r_ + (r— — ry)ePte — drypedtreBtn

(4.17)
where we assumed ry — r_ > dr1 and worked to leading order.® This can be achieved by
having the perturbation be much smaller than the background and, at the same time, by
not being too close to extremality. This derivative removes the renormalization ambiguity
e, and its vanishing will single out when the maximum of the OTOC occurs. It is perhaps
not surprising that this maximum occurs at the turning point of the particle. It was shown
in [10] that for neutral particles in two dimensions, precisely this derivative of the length
gives the momentum of the particle along the geodesic. Even though our particle is charged,
it still captures the fact that the momentum vanishes at the turning point.

Exterior OTOC. Having chosen t,, the time at which the boundary operator W is
inserted, we can still choose the boundary times (¢,tr) at which we wish to insert the
probe operators V.

We will start by considering the standard choice made in [2] by setting ¢t = —tg = ¢.1"
We call this the “exterior OTOC?” since the geodesic connecting the two boundaries at these
times does not pass through the black hole interior in the unperturbed geometry. Moreover,
using the results in appendix D, one can explicitly check that the geodesic always meets

Tt is important to only do this approximation after taking the derivative as otherwise one will neglect
contributions which are non-negligible for certain time configurations. In particular, when doing this
approximation one should be careful to account for the fact that small terms might be enhanced by
the exponentials.

10As mentioned at the end of section 2, ref. [2] considered the case t = 0, but due to the timelike Killing
symmetry this is equivalent to keeping ¢ free. This is made manifest by the fact that the final result (4.18)
depends only on the difference At.
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Figure 10. Exterior OTOC for the AdSs black hole.

the particle outside the initial black hole. Therefore this choice cannot directly probe the
presence of a bounce inside (see figure 10).
With the aforementioned choice of times, using eq. (4.17), we find

At —At
__d SE e or e L ()
dtyr, B \2(ry —r_) +drpedt —fr_e Bt
tp=—tp=t
where we defined 5
At = %(t—tw,;). (4.19)

As we remarked before, our expressions are only valid for Aty > 0 which in this case
amounts to At > 0. One can quickly check that eq. (4.18) is always positive for At > 0.
Furthermore, it grows as At — oo, saturating at a value of 47/B.11 This implies that,
regardless of the presence of a bounce in the interior, the OTOC obtained through this
choice of boundary times starts decreasing immediately at At = 0 and monotonically decays
as a function of At. This is no different from the standard result obtained in [2].

There is a sense, however, in which the bounce does affect this OTOC. Using eq. (4.11),
we can write

Srp=——t 0 (4.21)

from which we can see that r, — r4 implies dr4 — 0. It follows that as the bounce happens
closer to the horizon, the derivative computed above takes a longer time to become O(1),

""Had we written a valid expression for all At, we would naturally find it to be anti-symmetric under
At — —At
__d L
dt’LUL

A SrypelAt 4 §p_e~ 1A
T B \2(ry —r) 4 droelAt — §r_e—15t]

) sgn(At) . (4.20)
tp=—tp=t

From one perspective, this reflects the fact that the length itself should be invariant under this transformation
if the insertion of the operator simultaneously creates an outgoing and an ingoing particle. Alternatively,
this derivative is expected to capture an appropriate notion of momentum and therefore this anti-symmetry
can be seen as a natural consequence of the fact that each particle carries the same momentum in absolute

value, although one is ingoing and the other is outgoing.
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essentially because the growth is controlled by the term o = 67 e, We have called it « for
a reason. This is in every way analogous to the behavior of the parameter o we described
in section 2 where a bounce closer and closer to the horizon implies, for a fixed t,, a
smaller and smaller @ which vanishes in the limit, implying what appeared to be a longer
scrambling time. This is not surprising. After all, while we did not frame this discussion
in terms of a, the OTOC we just considered is computed through a spacelike probe at
t;, = —tr = t which is exactly the kind of probe affected by a. We should remember,
however, that as emphasized previously this effect cannot distinguish a shell with charge
from a shell without charge but less energy. While in our rough toy model we have not
introduced notions of energy or charge, we can observe that in the limit r, — —o0, in
which the particle never bounces, we have §ry = —dr_ and so we can make dr; as small as
we wish by decreasing ér_ in absolute value.'? This is equivalent to the fact that we can
decrease dr in higher dimensions by simply decreasing the energy of the shell instead of
making it bounce closer to the horizon by adding charge — in fact, the two statements are
the same if we word everything in terms of dr_ and dry instead of E and q. However, in
contrast to the discussion in section 2, we are not taking a large At limit.!® If we did so,
or_ contributions would become negligible and (4.18) would depend only on «. Since at
finite At the contributions arising from dr4 and dr_ can be comparable, even if small, (4.18)
encodes some distinguishable, although indirect, effects of the bounce. This follows from
the fact that r, is encoded in the relationship between 074 and dér_ through (4.21).

The bottom line of the above discussion is that despite the fact that (4.18) is indirectly
affected by the bounce at finite At, the bounce does not change its qualitative behavior.
In particular, the derivative is always positive and thus the OTOC always decreases as a
function of At.

Interior OTOC. We will now focus on a different choice of times for the operator
insertions so the OTOC will probe the interior of the black hole. Namely, we take (t1,tr) =
(a, —t) where a is positive and larger than the scrambling time of the perturbation. Contrary
to the choice studied before, this one ensures that the geodesic connecting both sides meets
the particle in the interior of the black hole (see figure 11), and therefore we expect it to
directly capture the presence of a turning point in its trajectory.

For simplicity, we will focus on the limit @ — 400 of the derivative

d
— I
dtwL

_Ar Sry et — (Sr_ —ory)/2 (4.22)
- (ry —r_) + orpent '

B

tr,—o0

Since we have ensured that Aty is always positive, this expression is valid for any finite At.

t

While, just like eq. (4.20), the growth of this expression is dominated by 5r+eA and

saturates at the same value 47/, we see that, contrary to the former (having in mind (4.20)),

12We must have §r_ < 0 in this case in order to preserve the second law: 6r. > 0.

33ee [28] for an analysis of scrambling in BTZ which generalizes the results in [2] to finite At.

171t is important to keep in mind that the OTOC itself will vanish in this strict limit. We take this limit
because it approximates the behavior of the derivative when a is large but finite by a simpler expression
where the Aty dependence drops out.
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Figure 11. Interior OTOC for the AdS, black hole.
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Figure 12. Plot of the derivative of the length associated to the interior OTOC for different
particles. Notice how the zero shifts towards larger At as the particle bounces closer to the horizon.

a significant growth only occurs in the direction of positive At. Moreover, it vanishes at

dr_ —ory Py — =Tt
At =t =1 T )~ = 2 4.23
d Og ( 2(57’_;,_ ) Og ( 7,+ _ Tb M ( )

where we used eq. (4.21) to write the last equality while working to leading order in the
perturbation. This zero exists provided that ér_ > dry or in terms of the position where
the bounce occurs r, > (r_ 4+ r,)/2,'° i.e. when the bounce occurs closer to the outer
horizon than to the inner horizon. This means that if a bounce happens too far inside the
black hole r, < (r— +1r4)/2, eq. (4.22) is always positive. Notice that the vanishing of the
derivative occurs in a regime in which all dr4 and ér_ contributions are comparable. We
illustrate this feature in figure 12.

This zero in the derivative can be shown to imply the existence of a local maximum in
the OTOC as a function of t,,;,. We now show that this maximum occurs exactly when

15\We remind the reader we are always assuming bounces inside the horizon, i.e. rp < 4.
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the geodesic meets the particle at the bounce. Thus the existence of a maximum can be
seen as a direct boundary probe of a bounce in the interior. In appendix D, we derived
Vin (D.5), the value of the coordinate V' at which the geodesic meets the particle along
its constant U part of the trajectory. In the limit t;, — +o00, we can ask at which At we
find V;,, = V3,'6 where Vj, corresponds to the value of the coordinate at which the particle
bounces and is given in eq. (4.12). We find the only solution of this equation to be At = ¢},
i.e. the same time difference at which the derivative vanishes. The reason why the zero
in the derivative disappears for bounces too far inside the black hole can then be easily
understood from the fact that the geodesics connecting both sides do not reach arbitrarily
close to the inner horizon.

In summary, we see that the interior OTOC is particularly sensitive to bounces close to
the horizon at finite At. In particular, the onset of its monotonic decay is delayed. At this
point, one could worry about the non-uniqueness of our choice of OTOC. After all, a priori,
despite the clear connection between this maximum and the bounce, a different choice of
times for the operator insertions could also have maxima as a function of t,,;, even without
a bounce in the interior, making the presence of a maximum less reliable as a marker of an
interior bounce. We now show this cannot happen. Equating (4.17) to zero, we find

1
Ty = = <7’_ +ry + (4.24)

ry —Tr— T+ —T—
2

_1_|_eAtL + 1+6*AtR

where we used (4.21) to write dry as a function of 7. Since Aty > 0, we see that eq. (4.17)
can only vanish if 7, > (r4 + r_)/2. In other words, there can only be extrema in the
OTOC as a function of ¢, if a bounce occurs closer to the outer horizon than to the inner
one. This establishes, without loss of generality, an intimate connection between the bounce
in the interior and the presence of extrema in the OTOC.'"

4.3 Remarks on scrambling delay

We saw above that the interior OTOC has the property that the onset of its monotonic
decay is delayed due to the presence of a bounce in the interior. If we define the onset of
scrambling as the moment at which the OTOC starts to monotonically decrease, it is natural
to relate this behavior to the scrambling delay discussed in section 3. In fact, our choice
of the variable t} in (4.23) was not arbitrary. In the context of Reissner-Nordstrom-AdS,
we defined t4 in (2.16) by considering the latest time that an observer from the right can
jump in and still meet the bouncing shell. We then argued that ¢4 captures, in some sense,
a delay in scrambling. If we do the same thought experiment in our background AdSs

geometry, we find the analogous time'®

tq = log (r_ — rb) ~ log (M—> . (4.25)

Ty — Ty ory

18Tn the limit t;, — 400, the time dependence for this equation comes only through At.

"We say extrema rather than maxima here since for t,z, close to tr., the OTOC can have a local minimum,
as can be checked by equating (4.17) to zero. This minimum is lost in eq. (4.22) due to the limit we
are taking.

18 Again, we are defining a dimensionless tq4, contrary to what we did in the previous sections.
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Comparing this result with eq. (4.23), we see that when the bounce happens close to the
horizon r, — r, which is equivalent to dr_ > 07, we have t; =t} + O(1), i.e. this time
difference agrees with the amount of delay for the onset of decay of the interior OTOC up
to an order one correction. Just like before, we can only talk concisely about a scrambling
delay in the limit in which we have a scale separation between the amount of delay and the
thermal time . This agreement further supports the statement that the interior OTOC,
similarly to the quantum circuit, is capturing a delay in scrambling due to the interior
bounce. It is important to emphasize that this effect is present only for particular choices
of OTOC. The onset of scrambling is not universally delayed, but probes of the black hole
interior which are blind to the exterior physics appear to take longer to notice scrambling
is occurring.

5 Discussion

Massless charged shells falling into a charged black hole bounce at a particular radius.
Starting with an asymptotically AdS black hole, we have investigated what effect this has
for scrambling in the dual field theory. We saw that a standard shock wave calculation of a
scrambling time indicates that adding charge to a perturbation at early time increases the
scrambling time. We then gave evidence that, at least from a certain viewpoint, scrambling
does not take longer. Instead, the onset of scrambing is delayed relative to a neutral
perturbation with the same energy.

The evidence consisted of two calculations. The first starts with two shells, one neutral
and one charged, that collide inside the black hole. Arguments based on quantum circuits
have suggested that the volume of the post-collision region can diagnose whether the
scrambling times of the dual neutral and charged perturbations are the same or very
different. We computed this volume and found that it behaves as if the scrambling times are
the same, but the charged scrambling is delayed. We next computed an OTOC in a simple
two-dimensional model. With one choice of times for the operator insertion we get a standard
exterior OTOC which probes the perturbation outside the black hole. With another choice
of times, we get an interior OTOC which is sensitive to the perturbation inside the horizon.
As we saw above, this interior OTOC detects the bounce of the charged particle, and only
starts to decay after a certain delay that agrees with the delay calculated earlier.

There are many open questions, and we mention just a few. First, our calculations
mainly probe the case when the charged shell bounces inside, but close to the horizon. (The
connection between the quantum circuit and post-collision volume is believed to hold only
for collisions and bounces near the horizon.) It would be interesting to determine what are
the effects of a bounce farther inside the black hole. Next, it is clearly of great interest to
have a more microscopic understanding of why scrambling is delayed for certain charged
perturbations. This can perhaps be studied in the context of a charged SYK model [29].
Besides that, our calculation of the OTOC is based on two-sided eternal black holes, but we
expect the lesson we learned to be general. For one-sided pure state black holes, how does a
similar construction work? We expect the correlators one needs will depend on the details of
the microstates. One natural starting place might be black holes with an end of world brane
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like those discussed by Kourkoulou and Maldacena [30]. Finally, while we have focused on
charged perturbations, one can equally have bouncing particles in the interior of a rotating
black hole' by having them carry angular momentum instead. Perturbations with angular
momentum have been studied previously in the literature: in rotating BTZ [5, 31] and,
very recently, in Kerr-AdS [32]. These results suggest that the scrambling time, as defined
through the parameter « in the context of our work, can be made longer by increasing
the angular momentum of the perturbation. It would be interesting to understand if this
increase in scrambling time is associated to the same features we find in the charged case,
namely a delay of the onset of scrambling from the interior perspective due to the presence
of a bounce.
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A Massive charged shell

In this appendix, we consider the motion of a massive charged shell in a Reissner-Nordstrom
AdS background. We then take a massless limit to show that the null trajectory has a
turning point. The turning point coincides with rp, where, according to the null matching
analysis in section 2, the shell should bounce in order to have a stress tensor that satisfies
the null energy condition.

The equations of motion for charged timelike shells in asymptotically flat black hole
backgrounds were previously studied in [33-36] and here we generalize them to the asymp-
totically AdS case. Similar to the null junction conditions, the conditions for a timelike
shell are that the induced metric on the shell is continuous on both sides of the spacetime
and that any discontinuity in the extrinsic curvature K, on the shell implies a surface

stress tensor given by
1

Sab = _% ([Ka ] - [K]hab)a (Al)
where the rectangular brackets denote the difference across the shell. The equations of
motion for the shell are obtained by requiring the stress tensor of the shell to take the form
of a dust shell S, = cugup. In the following, we parameterize the shell as r = R(7), where
T is the proper time on the shell. We obtain the equation of motion

L= IR+ R 1(R) + B2, (A2)

where m is the rest mass of the shell. The sign in (A.2) depends on the sign of the spatial
component of the outward unit normal to the shell. Squaring (A.2), we can rewrite this in

19Tt is important that the black hole rotates. While test particles with high enough angular momentum
can usually bounce outside any kind of black hole, they cannot bounce in the interior of a non-rotating
black hole.
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the form of a particle in an effective potential
m?R* + Veg(R) = 0, (A.3)

where the potential is
VarR) = 5() — (e () — £o() + ) (A4
eff = Ji m, 7 o 2R . .
We can find the turning points of the potential in the limit of small m. There is a turning
point at

rzl%%—O(l), (A.5)

which is due to the confining nature of asymptotically AdS space and approaches the AdS
boundary as we take the massless limit. There are two other turning points at r = r,+=0(m),
which approach 7, in the massless limit, thus agreeing with the prescription that the null
shell is given by two null surfaces joined together at 7.

B Scrambling by a charged shell

In this appendix, we consider the butterfly effect due to a charged shell. As in the case
of [2, 4], we will see that the scrambling is encapsulated in a shift « in the Kruskal V'
coordinate along the shell.

Consider a shell that is created on the left boundary at time ¢,,;,. The initial portion of
the trajectory is given by

U, = e2mtwr/Bo 7 U; = e2mtwr/Bi (B.1)

in terms of Kruskal coordinate U both inside and outside the shell. The V' coordinate along
this portion of the shell is given by

UpVo = —e'™olPo UV, = —e*mmi /P (B.2)

When the shell reaches the turning point rp, the shell will start following a trajectory of
constant V = V. We will first focus on the portion of the shell before the turning point. In
the limit that the shell is created at early times tg < 0, the shell approaches the horizon.
Near the horizon of a non-extremal RN-AdS black hole, we have

o % (CHOg (“”)) 7 (B.3)

ry —Tr—

where the constant C' depends on the geometry and does not have a compact analytical
form in general. Therefore, close to the horizon, we can write

U,V, ~ fﬂe(/’o, U;Vi ~ iMGCi . (B.4)

0 __ 2.0 il
ry —r2 Ty —rl

The junction conditions require r as a function of U, V to match on both sides. Since
we are considering a small perturbation, we can write

Co=Ci+6C, 15 =rf+ory, r°=r_+d6r_, Bo=pi+3B (B.5)
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with 6C/C; ~ dry /r'. ~ ér_/r" ~ §B3/B; < 1. Matching r in both sets of coordinates gives
the following relationship between the coordinates V, and V;

Vo~ Ve (1 L0 — 57} - 5?“_ B 2mtyr 55) I ecie—th“,L/,BiL , (B.6)
rlo—rt Bi  Bi rt —rt
while the relationship between U, and U; is given by
27t 5ﬁ)
Uo ~ Uz (1 — — ] . B.7
Bi B (B.7)
Assuming further that 8;/65 > —t,r/B; > 1, we can write at leading order
VorVita, U,~U (B.8)
with 5
o = Co2mtur/B_ 0T+ (B.9)

re—r_’
where we dropped the i index for the sake of simplicity of notation.

C Post-collision geometry

In this appendix, we calculate the spacetime volume of the post-collision region for both a
collision between two neutral shells and a collision between a charged shell and a neutral
shell. The spacetime in the case of two neutral shells is shown in figure 13. The shells
collide and partition spacetime into 4 regions, labeled by T, B, L, R and each has a metric
given by (2.1) with different masses. Inside the black hole, the Kruskal coordinates (in any
of the four regions) are related to r by

UV =t (/8 (C.1)

where the inner tortoise coordinate 7* is defined such that dr* = dr/f(r) and U,V are
continuous across the horizon.
The trajectory of the left perturbation is given by Up; = e?mtwr/BB and that of the

— e27rt

right perturbation is given by Vg, wr/PB in terms of coordinates in the bottom region.

We want to calculate the spacetime volume of the top region, which is given by

B /°° o r(UV)?|fr(r(U,V))|
Y=— dU dVv , C.2
2 Ur. Vi, Uuv (C2)

where we have used coordinates in the top region. In order to evaluate (C.2), we need to
find out where the collision occurs and account for the backreaction from the collision in the
top region. Using (C.1) at the collision, one finds that the collision occurs at r. given by

2% (1) = — At (C.3)

where At = —t,1, — tyr. The mass parameters in the B, L, R regions are given by energy
conservation. The mass parameter in the top quadrant M; depends on the collision and is
determined by the DTR condition [14-16]

fr(re)fe(re) = fr(re) fr(re), (C.4)
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Figure 13. Geometry with two neutral shockwaves colliding.

which gives

fu(re(At))
fB(re(At)) -

Using M7 and (C.1) again at 7. in terms of the T coordinates, one obtains a relation

Mrp(At)=M + Er + Eg (C5)

between Ur; and Vr,. Since we can use any Kruskal coordinate in the top region, we can
fix Up,; arbitrarily and find V7, (At)

Vi (At) = Le‘lﬂf}(rc(At))/ﬁT ] (C.6)
’ Ur,

This determines the limits of integration in (C.2). The integrand is also determined by My
and can be obtained from inverting (C.1) in the 7" coordinates. The integral (C.2) can then
be evaluated numerically.

When a charged shell and a neutral shell collide, the spacetime is as shown in figure 14,
where the masses and charges in each region are given by charge and energy conservation
and the DTR condition. We will again use Kruskal coordinates. The spacetime volume of
the top region is now given by

ﬁ2 /oo Vrp T‘(U, V)Z‘fT(T(U) V))|
V=2 dU dv ’ c1
2 Ur, Vi, uv ( )

where we defined V7, to be the turning coordinate of the shell on the left or oo if the shell
bounces behind the inner horizon (7. < R7_). One can find the post-collision geometry
and the coordinates Ur;, V1, as before, so it remains to find V7.

Recall that the turning point 7, is given by

qQ;

=—" C.8

T (©3)
Here the turning point occurs between the top and right regions. Thus,

ro(At) = 9@ (C.9)

-~ Mrp(At)— M — Ep’
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R Q)

Figure 14. Geometry with a neutral shockwave colliding with a charged shockwave.

Using (C.1) at the turning point, one finds

1 ot 3
Vrp(At) = ﬁe47rTT<Tb<At>>/ﬁT (C.10)

for r, < Ry—. We then evaluate (C.7) numerically.

D Obtaining the geodesic distance in AdS,

In this appendix, we calculate the geodesic distance between two points, at times t;, and tr
respectively, in each asymptotic boundary of an AdSs black hole. We compute this geodesic
distance taking into account the backreaction of a null particle, sent at time ¢, from the
left boundary. We assume that this particle can have a turning point somewhere in the
interior of the black hole. In order to achieve our goal, we will make use of embedding
coordinates. We can describe AdS, as an embedding

~TE T3+ X*=—1, (D.1)

in the geometry
ds® = —dT? — dT2 + dX?. (D.2)

The appropriate embedding to obtain AdSy in Kruskal and Schwarzschild-like coordinates
in the right asymptotic region is

V+U 2wt
= 1—|—+UV zg (r—r+)(r—r,)sinh%,
_1-UV  2r—r_—ry
o 1 + UV - Ty —T— ’

V-U 2wt

B (r—nr)(r—r_)coshl.

B

1

15

14UV 27
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The left asymptotic region can be covered in Schwarzschild-like coordinates by adding i3/2
to t.2° Since our geometry is purely AdS,, we know that the geodesic distance between two
spacelike separated points (77, 7T%, X ) and (77,75, X') is given by

coshd = T\T} + ToTy — XX' | (D.3)

With this information at hand, we can compute the geodesic distance between two points
in each asymptotic boundary. In order to do that, since we are taking into account the
backreaction of a null particle that bounces somewhere along its trajectory, we first need to
consider that the geodesic might pass through the particle either before or after it bounces.
Let us first consider connecting both boundary points by a geodesic that meets the shell
before it bounces, i.e. it meets the shell at a point (Uy, Vi, < V4). Using the embedding
coordinates, we can compute the total distance d = d; + dy between the two boundaries
along curves which are geodesics until meeting the shell. Here, d; is the geodesic distance
from the left asymptotic boundary (¢z,7.) to a point V along the trajectory of the particle
and dg is the geodesic distance from there to the right asymptotic boundary (tg,7.). We
find in the large 7. limit

wrty o (2R LT _2mp
BBQTZG_TG 7rle 7° +Up)le ? —Uy)|(l—e 7V
C

4 Uu(1 + UpV)? (D.4)
27t ~
. (e TPy — 1 4 (P — ) ULV) + T (s + UV — (1 + UwV)> .

Not all gluings of such pairs of geodesics are themselves a geodesic of the perturbed geometry.
To find the actual geodesic distance between the two boundaries, we must extremize d
with respect to V. In other words, we need to find the point V = V,,, at which the gluing
actually yields the geodesic of the perturbed geometry connecting both sides. We find a
maximum at

1 (ry —72) = (r— + 7 — 2ry)ePR 4 0r el + (r_ — 1y + 61y )ePiretir

Vim = Uy, (At —1)(2 4 Atr)r_ + (F_ 4+ 1r4) 4+ F_eBtr — At (ry 4+ 7y + 7y eAir)
(D.5)
where we defined
ory =74 — 1y, or— =7_—r_ (D.6)
and 5 5
T 0
Aty = F(tL—twL), Atg = F(_twL_tR)' (D.7)
Evaluating eq. (D.4) at V =V}, yields
64 4 Aty Atg
el B (D.8)

B 52327'2 [0r_ + (F= —ry)ettr + (ro — 7y )Rt — (5T+€AtL€AtR]2 ’

where L is the geodesic distance. A priori, this computation is only valid for boundary
times such that V,,, < V. Afterwards, the geodesic will start meeting the particle at a point

20Quch an analytic continuation yields a coordinate that flows down on the left asymptotic region. We
will make it flow up by taking t — —t after doing the analytic continuation.
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(Upy > Uy, V). We can follow an analogous procedure to find the geodesic distance L’ in this
case. The expression turns out to be the same as (D.8) if the DTR condition is satisfied, i.e.
if we impose egs. (4.11) and (4.12). In this case we also find that V,, =V}, <= U, = Uy,
i.e. as we move the boundary times, the geodesic smoothly interpolates between the constant
U, and constant Vj, parts of the particle trajectory. In summary, when the DTR, condition is
satisfied, the geodesic distance is always given by (D.8) and as a consequence it is completely
smooth across the turning point as we change the boundary times.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP? supports
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