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1 Introduction

The holographic superfluid model [1–4], often mislabelled as holographic superconductor,1
is one of the most simple and widely studied setups in the context of applied hologra-
phy [6–9]. Its potential application in the understanding of high-Tc superconductors [10]
has made this system the object of many thorough analyses in the years since its inception
(see [11, 12] for a review). Thus, the lack of a complete study of the quasinormal mode

1See [5] for a nice discussion about the differences in the context of field theory and holography.
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excitations corresponding to hydrodynamic modes of the holographic superfluid [13] is sur-
prising. Until now, the study of the hydrodynamic modes has been limited to the so-called
probe limit, where all the gravitational degrees of freedom (and in particular energy and
momentum) are kept frozen [14–17].

In this work we fill this gap in the literature by carrying out the first complete study
of the quasinormal modes of the holographic s-wave superfluid with backreaction [13].2 In
particular, we numerically compute the spectrum of the lowest lying quasinormal modes
for the original setup [13], and also for the modified system [30–33] where momentum
dissipation is introduced using the so-called holographic axion model [34, 35]. We success-
fully compare our results to the predictions of superfluid hydrodynamics [36] extending the
results of [37, 38].

This study of the QNMs will allow us to carry out a novel analysis of the support of
the hydrodynamic modes of the holographic superfluid. Superfluids display a characteristic
coexistence of two different sound modes [39] which can be easily captured within the two-
fluid Tisza-Landau model [40, 41]. In addition to the standard density fluctuations, giving
rise to the common first sound excitation, superfluids support also a second sound mode
which is driven by temperature fluctuations. First sound can be visualized as the in-phase
motion of the normal fluid component and the superfluid one; on the contrary, second sound
is displayed as the out-of-phase collective dynamics of the two. In [42], a field theoretical
study of the nature of first and second sound as density or entropy waves or a mixture of the
two was performed. Even though in superfluid 4He, the nature of first and second sound
is preserved for all temperatures, this seems not to be the case for ultra-cold atoms and
weakly-interacting bosons [42]. Here, we carry out a similar analysis within the holographic
superfluid which stands as a putative toy model for a strongly coupled superfluid system:
we determine the support of the hydrodynamic modes of the system on excitations of the
different operators present in the dual theory.

In order to analyze the nature of the hydrodynamic excitations of the holographic
superfluid we define a quantitative measure of the support that a quasinormal mode ex-
citation has on the different dual operators. We then apply this procedure to the sound
and diffusive modes present in our gravity dual. Our results rule out any role reversal
between first and second sound and place the holographic model in the same phenomeno-
logical class of standard superfluid 4He. This is in contrast to the weakly coupled bosonic
field theory results of [42] described above. Naturally, an obvious difference between both
setups is given by the inherently strongly coupled nature of the holographic description.
Moreover, [42] is neglecting dissipating effects in their description.

In a final part of this work we study the response of the system from a different perspec-
tive. One is typically interested in the poles of (the Fourier-transformed) Green’s functions
in the complex frequency and real momentum space. These are the QNMs. Nevertheless
one can also consider the poles in the space of real frequency and complex momentum.
These modes carry information about the response of the system to a perturbation of the

2The p-wave superfluid model [18–22] with backreaction may be found in [23] and the analysis of the
associated transport/hydrodynamics in [24, 25]. At the same time, a holographic model for d-wave super-
conductivity was introduced in [26–28] and with backreaction explored in [29].
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form e−iωt+ikx where ω now is a real number and k a complex one. Although this approach
is not usual in holography, it is a standard practice in the study of propagation of waves, in
particular in relation to absorption and reflection properties of media (e.g. EM waves in a
medium [43]). Once momentum is decomposed as k = Re(k) + i Im(k), its real part defines
the propagation wavelength in real space while its imaginary part the so-called penetration
length λ ≡ 1/Im(k). In other words, this second setup corresponds to considering the
decay of a wave in space rather than in time.

The curves ω(k) described by the QNMs in the complex plane feature a complicated
structure (e.g. the presence of different sheets, and singularities). Hence, a priori it is not
clear that the behavior of the modes at real frequency and complex momentum can be
obtained straightforwardly from that of the standard QNMs. Indeed, notice that these
two types of modes encode responses to perturbations with different boundary conditions.
Consider for instance an elastic rod immersed in a viscous liquid. Considering complex
frequency and real momentum corresponds to keeping the extreme of the rod fixed and
creating an oscillating wave on it. The wave in that case will not propagate in space but
just oscillate (and decay) in time. On the contrary, one could imagine exciting a wave
at one of the extremes of the rod and studying its propagation along the rod. That is
equivalent to considering real frequency and complex momentum.

In the context of holography, the modes at real frequency and complex momentum have
been overlooked and only few works considered this second setup [44–48]. On a different
note, recently, several studies of the modes in the complex frequency/complex momentum
plane have been performed in relation to the so-called pole-skipping phenomenon [49] and
the convergence radius of the linearized hydrodynamics expansion [50]. In the last part
of our work, we study the excitations of a holographic superfluid at real frequency and
complex momentum and discuss their physical interpretation in detail.

Structure of the paper. In section 2, we first summarize the main results of the hydro-
dynamic description of a relativistic superfluid. We then introduce the holographic model
and set the framework of the analysis we carry out in the remainder sections. In section 3,
we compute the quasinormal modes of the backreacted holographic superfluid model nu-
merically and use the results to match holographic and hydrodynamic predictions for the
system. In section 4, we perform a new analysis of the support of the various hydrody-
namic modes in terms of the dual field theory operators. Finally, in section 5, we compute
the excitations of the system and their main properties by considering real frequency and
complex momentum. We conclude in section 6 with a summary of our results and some
comments for the future.

2 Superfluids in hydrodynamics and holography

In this section, we first review the main features of the hydrodynamic description of a
conformal superfluid. Next, we introduce the holographic dual of a superfluid and set up
the tools for the analysis performed in the remaining of this work.
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2.1 Superfluid hydrodynamics, a brief summary

We shall briefly summarize the main features of superfluid hydrodynamics [42, 51–55], with
a focus on the properties of the different hydrodynamic modes. For connections between
superfluid hydrodynamics, holography and effective field theory see [36–38, 53, 54, 56–63].

Let us start by considering a relativistic charged fluid with conserved momen-
tum [64, 65]. The longitudinal spectrum contains two sets of hydrodynamic modes. First,
charge and energy conservation imply the presence of a thermoelectric diffusive mode
ω = −iDqk

2 whose diffusion constant is explicitly given later on in eq. (2.5). Additionally,
we have a pair of propagating first sound modes ω = ±c1 k− iΓ1 k

2 which result from the
interplay of longitudinal momentum and energy. In a conformal system, their propagation
speed is given by

c2
1 = ∂p

∂ε
= 1

2 (2.1)

where ε and p are the energy density and the thermodynamic pressure, respectively. Ad-
ditionally, the attenuation constant reads

Γ1 = η

2χππ
, (2.2)

with η being the shear viscosity and χππ = ε+ p the momentum susceptibility.
Below the critical temperature, a superfluid may be viewed in the two-fluid picture as

composed of two components: a normal component as the (relativistic) fluid just described;
and a condensed or superfluid component that flows without dissipation. Each component
has its own velocity and density. In the normal phase, the interplay of charge, energy
and longitudinal momentum gives rise to a propagating mode: first sound, and a diffusive
mode. In the superfluid phase T < Tc, first sound remains in the spectrum, the diffusive
mode gets a purely imaginary gap, and the Goldstone fluctuations, coupled to those of
charge and energy give rise to a new propagating mode: second sound ω = ±c2 k− iΓ2 k

2,
known as second sound [39]. Its speed and attenuation constant are given by

c2
2 = ρs ξ

2

(µρn + sT ) ∂ξ
∂T

, (2.3)

Γ2 = µρs
2χππ (µρn + sT ) η + µχππ

2T 3 ρ2 (∂ξ/∂T )|µ
κ + ρs χππ

2µ (µρn + sT ) ζ . (2.4)

Here we have defined: the superfluid density ρs, the normal density ρn = ρ−ρs, the reduced
entropy ξ = s/ρ, the diffusivity κ and the superfluid diffusivity ζ.

Notice the only difference with the results presented in [36], and valid for d = 4, is the
numerical constant in front of the term proportional to the shear viscosity η.

In the normal phase, ρs = 0, the first sound remains in the spectrum and the second
sound becomes the thermoelectric diffusive mode [66, 67]

ω = −iDqk
2 = −i k2 κµχππ

T 3 ρ2 (∂ξ/∂T )|µ
. (2.5)

Once momentum conservation is broken, the first sound in the normal phase gets substi-
tuted by the energy diffusion mode ω = −iDe k

2 whose diffusion constant obeys the stan-
dard Einstein relation. At the same time, in the superfluid phase, the second sound mode is
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replaced by the so-called fourth sound first predicted by [68, 69] where we keep the normal
component stationary. The dispersion relation of fourth sound reads ω = ±c4 k − i Γ4 k

2,
where the velocity and attenuation constant are given by

c2
4 = ρs

µ
(
∂ρ
∂µ

) , Γ4 = κ

2T χqq
+ ρs

2µ ζ . (2.6)

For completeness, we list here all the Kubo formulas used to extract the various transport
and thermodynamic parameters entering in the dispersion relations above

η = lim
ω→0

1
ω

ImGTxyTxy(ω, 0) , (2.7)
κ

T
= lim

ω→0
lim
k→0

1
k

ImGJxJt(ω, k) , (2.8)

ζ = lim
ω→0

ω ImGφφ(ω, 0) , (2.9)

together with the expression for the electric conductivity

σ(ω) = i

ω
GJxJx(ω, 0) =

(
i

ω
+ δ(ω)

)[
ρ2
n

µρn + s T
+ ρs
µ

]
+ σ0 . (2.10)

For slow momentum dissipation this two-point function is modified to

σ(ω) = i

ω
GJxJx(ω, 0) = ρ2

n

µρn + s T

1
Γ− i ω + i

ω

ρs
µ

+ σ0 . (2.11)

In this discussion, φ refers to the superfluid Goldstone mode which is dual to the phase of
the complex bulk scalar (see next section for the details). Also, GAB is the retarded Greens
function of the operators A and B. These Kubo formulas will be used in section 3 when
we analyze the transport properties of holographic superfluids.

2.2 The holographic model

We consider the standard bulk action for a s-wave holographic superfluid [1, 13]

S = 1
2κ2

4

∫
dd+1x

√
−g

[
R− 2Λ− 1

4FmnF
mn − |Dψ|2 −M2|ψ|2

]
, (2.12)

where ψ is a complex scalar, F ≡ dA, and the covariant derivative is defined as Dmψ ≡
(∂m − i q Am)ψ. We consider the 4-dimensional bulk case d = 3, and fix Λ = −3 and
2κ2

4 = 1. The AdS radius L has also been set to one for convenience.
The resulting equations of motion are

Rmn −
1
2

(
R− 2Λ− 1

4F
2 − |Dψ|2 −M2|ψ|2

)
gmn

= 1
2FmkF

k
n + 1

2 [Dmψ(Dnψ)? +Dnψ(Dmψ)?] , (2.13a)
1√
−g

∂m
(√
−g Fmn

)
− iq(ψ?Dnψ − ψDnψ?) = 0 , (2.13b)

1√
−g

Dm
(√
−g Dmψ

)
−M2ψ = 0 . (2.13c)

– 5 –
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We consider the following ansatz for the background

ds2 = 1
z2

[
−u(z) dt2 − 2 dtdz + g(z) (dx2 + dy2)

]
, (2.14)

A = At(z) dt , ψ = ψ1(z)− i ψ2(z) , (2.15)

in Eddington-Finkelstein coordinates {t, z, x, y} with the AdS boundary located at z = 0
and the black brane horizon at zh = 1.

Assuming this ansatz, the temperature and chemical potential of the dual field theory
are given as

T = −u
′(1)
4π , µ = At(0)−At(1) . (2.16)

For numerical convenience, we impose At(1) = 0. Furthermore, we choose the value of the
background condensate to be real by setting ψ(2)

2 to zero (see (A.6) for the definition of the
expectation values)3

〈Oψcond〉 = 2ψ(2)
1 . (2.17)

The analysis in sections 3 and 4 will rely on the study of the fluctuations about the
background discussed above. In particular, we switch on the full set of longitudinal per-
turbations gmn = ĝmn + ε hmn/z

2, Am = Âm + ε am, ψi = ψ̂i + ε δψi

{htt, htx, hxx, hyy, at, ax, δψ1, δψ2} , (2.18)

where we choose the momentum to be aligned with the x-direction without loss of gener-
ality. From now on, we will add to all symbols referring to background quantities a hat Â.
Moreover, we assume the radial gauge4

hzi = 0 = az. (2.19)

We decompose all our fluctuations as

f(t, z, x) = e−iωt+ikx f(z) . (2.20)

The quasinormal modes and all the transport coefficients can be obtained following stan-
dard methods. To compute the thermodynamic derivatives accurately, for example the
one appearing in eq. (2.3), we re-write the derivative in terms of dimensionless quantities;
we then compute the background on a Chebychev grid in that variable (for example T/µ)
and use the spectral differentiation matrices to compute the thermodynamic derivative (see
appendix B.4 in [70] for more details).

In order to introduce momentum dissipation and study the properties of fourth sound,
we supplement the action (2.12) by a linear axion term [34]

S2 = − 1
2κ2

4

∫
dd+1x

√
−g ∂mφI∂mφI (2.21)

3We add a factor of 2 to the expectation values of the scalars ψ to account for the non-canonical
normalization in the action (2.12).

4Note that since we work in Eddington-Finkelstein coordinates, the bulk solution for the scalar field is
complex even though we impose the ψ(2)

2 to be zero.
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where the index I runs only along the spatial directions I = x, y, and the background
profile for the scalars is

φ̂I = αxI . (2.22)

In the dual field theory, this corresponds to switching on an operator which breaks trans-
lational invariance explicitly. For more details about this model we refer to the recent
review [35]. In presence of momentum dissipation, we add the fluctuation of the longitu-
dinal axion field δφx to the fluctuations in eq. (2.18).

Finally, throughout all the manuscript we set q = 1 and M2 = −2.

3 Transport & hydrodynamic modes

In this section, we explicitly verify that the hydrodynamic framework described in the
previous section (see [36] for the original reference, albeit in one dimension more) is indeed
the correct hydrodynamic description of the holographic superfluid model [1]. Surprisingly,
even though partial checks may be found in the literature [36–38], a complete matching
of the two pictures considering the full backreaction [2] in the gravitational model has not
appeared yet.

We start by plotting the normal and superfluid densities as function of T/Tc in the
superfluid phase. The normal and superfluid density, respectively, may be extracted numer-
ically from eq. (2.10) (translationally invariant case) and eq. (2.11) (broken translations).
While in the latter case, the superfluid density is simply given by the i/ω pole in the
conductivity, we have to use that ρn = ρ− ρs and solve eq. (2.10) for ρs in the translation-
ally invariant case. The results are shown in figure 1 for both the translational invariant
model and the model where translations are broken explicitly using axion fields [35, 71].
As it should, the superfluid density vanishes at the critical temperature for both models.
In the translational invariant case, we also observe that the normal density vanishes at
zero temperature. This last feature holds in superfluid Helium and BCS superconductors,
while a residual normal density at zero temperature has been reported in some high-Tc
superconductors [72]. Interestingly, [73] has shown that in quantum critical superfluids the
nature of the IR fixed point of the theory is crucial for the fate of the normal density:
it vanishes for fixed points with an emergent Lorentz symmetry as in our translation in-
variant case [74], while some quantum critical points of the hyperscaling-Lifshitz type can
support a nonvanishing normal density [75]. The model breaking translations (right panel
of figure 1) shows a slower decay of the normal density for T → 0 and a fit of the numerical
data shows a scaling of ρn/ρ ∼ 0.05265 + 3.14843(T/µ)1.2583 for T/µ ∈ [5 · 10−7, 5 · 10−6]
indicating a non-zero normal density in the zero temperature limit. It would be interesting
to characterize the IR geometry of our model and analyze it in the light of the results
of [73]. We leave a more accurate analysis of this feature for the future.

We then move to the study of the sound modes. On the gravity side these correspond
to quasinormal modes of the black hole geometry. As we review in section 4.1, with further
technical details in appendix D, we obtain them by numerically solving the linearized
equations of motion for the fluctuations (2.18). This will allow us to compute the speed
and attenuation of the different sound modes and compare them against the hydrodynamic
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Figure 1. The normal and superfluid densities ρn and ρs as function of the temperature. Left:
translational invariant theory. Right: model with broken translations, α/µ = 1/10.
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Figure 2. The propagation speed and the attenuation constant of first sound as function of T/Tc
above and below the critical point. The red lines are the hydrodynamic formulas (2.1), (2.2) and
the colored circles the numerical data extracted from the QNMs. Blue color indicates the normal
phase. The plot for the speed is not extended into the normal phase since the speed is trivially
constant in the full range of T due to the conformal symmetry.

predictions of section 2.1. The propagation speed and attenuation constant of the first
sound mode are shown in figure 2. The propagation speed is fixed by conformal symmetry
to the expected value c2

1 = 1/2 and it is continuous across the phase transition at T =
Tc. Its dimensionless attenuation constant Γ1T is shown in the right panel of figure 2
and it is in perfect agreement with the hydrodynamic formula in eq. (2.2) in which all
the parameters are independently computed using thermodynamic relations and transport
Kubo formulas. One should notice that the dimensionless attenuation constant vanishes
at zero temperature, indicating that at T = 0 first sound is an infinite living excitation.
This is tantamount to saying that the shear viscosity of the system vanishes at T = 0.
Finally, we observe that the attenuation constant of first sound is continuous at T = Tc
even though its first derivative is not.
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Figure 3. The propagation speed and the attenuation constant of second sound as function of T/Tc
above and below the critical point. The red lines are the hydrodynamic formulas (2.3), (2.4) and
the colored circles the numerical data extracted from the QNMs. Blue color indicates the normal
phase. The inset in the right panel shows the diffusion constant of the purely diffusive mode in the
normal phase together with its hydrodynamic expression.

We perform an analogous analysis for second sound in figure 3. We remind the reader
that the second sound mode exists only in the superfluid phase below the critical tempera-
ture T < Tc. Interestingly, we observe a very non-monotonic behavior for the second sound
speed which vanishes both at the critical temperature T = Tc and at zero temperature
T = 0, with a maximum around T = 0.6Tc. Apparently, this behavior is not univer-
sal and it rather depends on the charge and the conformal dimension of the dual scalar
operator [37]. Again the hydrodynamic formula (2.3) fits the numerical data very well.

The attenuation constant of second sound is more interesting. First, it vanishes at
zero temperature. Second, across the phase transition it is connected to the imaginary
part of the gapped scalar modes present in the normal phase [76] and responsible for the
superfluid instability at T = Tc. Nevertheless, the data display a clear and sharp jump
around T = Tc where our hydrodynamic description is no longer applicable as is evident
in the right panel of figure 3. Moreover, the attenuation constant of second sound is not
continuously connected to the diffusion constant which we present in the inset in the same
figure 3. Our numerical observation was confirmed by the authors of [77] in a simpler setup
(without chemical potential) using analytic arguments.

Finally, when momentum is dissipated and the normal component is prevented from
flowing, a new excitation called fourth sound appears in the superfluid [68, 69]. We obtained
the speed of propagation and the attenuation constant numerically in figure 4 and compared
them with the hydrodynamic expressions in eq. (2.6). As expected the speed of fourth sound
interpolates between the speed of second sound at the critical temperature Tc to the speed
of first sound for T → 0 [69, 78]. Additionally, notice how the attenuation constant of
fourth sound is much larger than those of first and second sounds. Finally, we observe that
the speed and attenuation constant of fourth sound have the same qualitative behavior as
those of the sound mode obtained in the probe limit in [15]. We do expect the two to
coincide in the limit of very fast momentum dissipation, α/T � 1.
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below the critical temperature for α/µ = 0.1. The red lines are the hydrodynamic formulas (2.6)
and the colored circles the numerical data extracted from the QNMs. The dashed lines in the left
panel are the speed of first and second sound for α/µ = 0.

To conclude this first part, let us iterate that the hydrodynamic description presented in
the previous section perfectly matches the numerical results obtained from the holographic
superfluid model both in the normal and superfluid phases with and without momentum
dissipation.

4 Tomography of superfluid sound modes

After verifying the hydrodynamic theory in our holographic model explicitly, we now move
on to investigate the so-called support of the hydrodynamic modes.

4.1 Theory

A quasinormal mode is a solution to the linearized equations of motion in a black hole
background with in-going boundary conditions on the horizon and normalizable ones at
the boundary of AdS [79, 80]. In general, such a solution will consist of a collection of
fields which we denote by ΦI . For a single QNM all these fields oscillate with the same
frequency and decay exponentially with the same decay rate. At late times and close to
equilibrium, we may write a generic QNM solution as a superposition of modes

φI(z, t, ~x) =
∫ ddk

(2π)d
∑
n

AIn(z,~k)e−iΩn(~k)te−Γn(~k)tei
~k~x . (4.1)

The bulk wave functions of a QNM AIn(~k, z) do not contain the leading (non-normalizable)
terms of the asymptotic boundary condition. We can therefore multiply the field φI with the
appropriate power of z such that AIn(0,~k) is the coefficient of the non-normalizable mode.
According to the holographic dictionary the boundary value of ΦI

n encodes the expectation
value of an operator 〈OI(t, ~x)〉 (see appendix A). Since the solution (4.1) evaluated at the
boundary represents a propagating and attenuated sound wave in the dual field theory, it
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is instructive to think about the quasi-normal mode as corresponding to a hydrodynamic
sound wave. One should notice that sound waves consist of more than one perturbation,
for example the perturbations of the energy density ε and the pressure p (as is clear from
the thermodynamic formula for the speed of sound c2

s = ∂p/∂ε). Hence, we expect the
QNM solution dual to a sound mode to consist of more than one field ΦI and taking the
form of eq. (4.1).

To simplify the analysis further, we assume that rotational symmetry is not broken.
Then the quasinormal frequencies are function of |~k|2 only. From now on we write k for
|~k|. Since the collection ΦI includes vector fields and metric components the dependence
of the amplitudes may be more complicated in general.

Demanding that the fields ΦI be real results in the following condition for the quasi-
normal frequencies and amplitudes

(φI)∗ = φI =
∫ ddk

(2π)d
∑
m

AI∗m (z,−~k)eiΩm(k)te−Γm(k)tei
~k~x . (4.2)

Combining this constraint with (4.1) leads to the condition that the quasinormal fequencies
come in pairs (n,m) with

Ωm = −Ωn , Γm = Γn , AI∗m (z,−~k) = An(z,~k) ,

or are purely damped with vanishing Ωn and AI∗n (z,−~k) = AIn(z,~k).
In view of this structure, the minimal way of constructing a real QNM solution for ΦI

is to excite the mode n at wave number ~k and the mirror mode m with Ωm = −Ωn at wave
number −~k.

ΦI(z, t, ~x) = e−Γnt
[
AI(z,~k) e−iΩt+i~k~x +AI(z,~k)∗eiΩt−i~k~x

]
. (4.3)

If we evaluate this at the boundary, we get the space-time evolution of the set of operators
OI as

〈OI(t, ~x)〉 = e−Γnt〈OI(0,~k)〉 cos(Ωnt− ~k~x+ αIn) , (4.4)

where we take 〈OI(0, ~k)〉 to be positive since the phase αIn accounts for the sign of 〈OI(t, ~x)〉.
We need to take into account, however, that (4.4) represents a solution to the linearized
equations of motion. This means that we can multiply it with an arbitrary complex number
and obtain another valid solution. Therefore only relative amplitudes and phases contain
physical information. Moreover, since a generic solution will involve operators OI with
different dimensions, we should only compare dimensionless expectation values that can be
easily obtained by normalizing with the corresponding power of the temperature, namely

OI(t, ~x) = T−∆〈OI(t, ~x)〉 . (4.5)

We also denote the dimensionless absolute values of the amplitudes as RIn(~k) =
T−∆|〈OIn(0, ~k)〉| (note that all RIn∈R+

0 ). We can then write our normalized operators as

OI(t, ~x) = e−ΓntRIn(~k) cos(Ωnt− ~k~x+ αIn) . (4.6)
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A measure of the relative support on the different operators OI of a given QNM is thus
given by the ratio of their amplitudes RIn. Namely, rJIn = RJn/R

I
n measures the relative

support of a mode on the operator OI with respect to the operator OJ . In addition, the
relative phases φIJ = αI −αJ encode the phase delay between the excitations of operators
OI and OJ .5

A useful way of thinking about these ratios and relative phases of the expectation
values, would be to consider a (thought) experiment where a device couples directly to the
operator OI and only to that one. This device would act as a source of OI alone among
all other operators. But the operator mixing inherent to the system would result in a state
where operators other than OI are also excited. Then, the ratios rJIn and phases φJI will
precisely characterize the response of the operator OJ when a source is switched on for the
operator OI .

A (thorough) study of relative amplitudes and phases of QNMs is lacking in the lit-
erature, although closely related analyses of the residues of holographic Green’s functions
were carried out in [45, 81, 82]. We will do this here for a particularly interesting example,
namely the first and second sound modes of a holographic superconductor. Notice that
a similar study of relative phases and amplitudes for sound modes of a weakly coupled
superfluid has been carried out in [83], and we will eventually compare our results to it.

Finally, we shall comment on the difference between the ratios of amplitudes that we
will determine here, and the residues of a certain mode ω(k). The residue of a mode quan-
tifies the contribution of that mode to a given response: i.e. the weight of its corresponding
pole in the spectral representation of a given Green’s function. Instead, the amplitudes we
discuss here represent the weight of a given operator in the collective excitation correspond-
ing to a specific mode. In a sense, these observables provide complementary information
about the system.

4.2 Results

For concreteness, we study the longitudinal spectrum of excitations, to which first and
second sounds belong. This amounts to solving for the set of fluctuations in eq. (2.18), as
we describe at the end of section 2.2. Moreover, we will consider solutions corresponding
to QNMs: these are dual to configurations in which all the sources of the dual operators
vanish, while (some of) the expectation values do not. In appendix A, we work out the
map between fluctuations and dual operators. As a result, in the dual theory we will be
dealing with the following set of operators corresponding to the expectation values of the
fluctuations

〈δT tt〉 : energy density,
〈δT tx〉 : longitudinal momentum,
〈δT xx〉 : pressure in the x – direction,
〈δT yy〉 : pressure in the y – direction,

5We could also consider taking the logarithm of the ratios rIJn and defining r̃IJn = log(RJn) − log(RIn).
This has the advantage that the r̃JIn are antisymmetric in JI as are the relative phases φIJ .
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〈δJ t〉 : charge density,
〈δJx〉 : longitudinal current,
〈δH〉 : Higgs mode (condensate fluctuations),
〈 ∂tϕ〉 : time derivative of the phase fluctuation (Goldstone) ,
〈 η1〉 : real part of the charged scalar operator ,
〈 η2〉 : imaginary part of the charged scalar operator ,
〈 δφx〉 : longitudinal axion operator . (4.7)

In eq. (A.6) we express these expectation values in terms of the asymptotics of the fluc-
tuations (2.18). Notice that in the superfluid phase we are rewriting the operator dual to
the fluctuation of the complex scalar in terms of its modulus and phase, which we denote
by δH and ϕ respectively. Moreover, for the model breaking translations, we switch on
an extra fluctuation, δφx. The meaning of all of these quantities is well known apart from
δφx, corresponding to the longitudinal axion operator. The colored circles in (4.7) display
the color scheme used in all the figures in this section.

In the remainder of this section we will present results for the amplitudes and phases of
the expectation values (4.7) for the different QNMs of the system. These are all computed
in Fourier space (see eq. (2.20)), at finite frequency and momentum. Finally, we restrict
our analysis of the amplitudes and phases to the following hydrodynamic modes

1. first and second sounds in the superfluid phase (with preserved translations);

2. fourth sound and energy diffusion in the superfluid phase with broken translations;

3. first sound and a purely diffusive mode in the normal phase (with preserved transla-
tions);

4. thermo-electric diffusion modes (energy and charge diffusion in the decoupling limit)
in the normal phase with broken translations.

Additionally, in the normal phase we shall also consider the gapped scalar mode that
drives the superfluid phase transition at T = Tc.

Finally, let us explain our normalization of the amplitudes. We may formulate the
linearized equations for the fluctuations in terms of a generalized eigenvalue problem (see
appendix D for more details)

(A(k)ω −B(k) ) x(k) = 0, (4.8)

where A and B are differential operators and x is a vector consisting of the fluctuations.
Solving this generalized eigenvalue problem numerically, we find a set of eigenfunctions
xn (consisting of the fluctuations) for each eigenvalue ωn (the quasinormal frequency).
We will refer to the set of eigenfunctions as eigenvector from now on. First, we make
all expectation values of the eigenvectors consisting of the fluctuations (4.7) dimensionless
by dividing by the appropriate power of the temperature (depending on the conformal
dimension of the corresponding operator). Then, we normalize the sum of all absolute
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Figure 5. The amplitudes of the various field theory operators (4.7) in the normal phase (T > Tc)
at fixed k/T = 0.01 for the diffusive mode (left), first sound (center), and the gapped scalar modes
(right). The color scheme is that illustrated in (4.7).

values of the dimensionless expectations values of the eigenvectors to one. This means
that an amplitude of 0.5 implies for example that 50% of the support of such a mode is
controlled by this type of fluctuation. With this normalization, the amplitudes are invariant
under the scaling symmetry inherent to the linear analysis which acts on all fluctuations
as 〈δf i〉 → λ〈δf i〉.

In order to make the reader familiar with the language, we start our analysis in the
normal phase which corresponds to considering a standard relativistic charged fluid in the
field theory dual. There, the two hydrodynamic modes are first sound and the purely
diffusive mode. Nevertheless, for completeness we will consider also the gapped scalar
modes which are the responsible for the superfluid instability at T ≤ Tc [76]. Notice that
in the normal phase the background value of the scalar is zero and therefore the fluctuations
of the phase are not a well defined object. Thus, in the normal phase, we will consider the
expectation value of the fluctuations of the imaginary part of the scalar operator dual to
the complex bulk field ψ.

The results for the amplitudes of the normal fluid are shown in figure 5. As ex-
pected, we find that the gapped scalar mode is solely carried by the fluctuations of the
scalar charge operator. The purely diffusive mode (left panel of figure 5) is carried by
the fluctuations of the charge density 〈δJ t〉, as one can derive analytically from hydro-
dynamics (see appendix (C.3)). The hydrodynamic treatment shows that in first order
hydrodynamics this mode consists solely of 〈δJ t〉 (and of the by a Ward identity re-
lated 〈δJ t〉). Moreover, the second order correction includes δT tt with a relative ampli-
tude of 〈δT tt〉/(〈δJ t〉T ) = k2/T ρ/(µρ + s T ). We shall point out that our result that
the diffusive mode is solely carried by 〈δJ t〉 is not in contradiction with the findings
of [66, 84] where it was observed that the diffusive mode is carried by the ‘incoherent
charge’ δQdiff ≡ δJ t − ρ/(µρ + sT ) δT tt.6 As we detail in appendix C, our computation
describes the situation where only the diffusive mode is excited in the system. The authors
of [66, 84] consider a generic perturbation in which all modes are excited instead. We show
in that appendix that one can relate both situations via the hydrodynamic framework and
match them to the holographic computation.

6We thank Blaise Goutéraux and Richard Davison for discussions about this point.
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Finally, first sound is dominated by the fluctuations of energy density and is almost
entirely supported on the fluctuations of energy density, pressure and longitudinal momen-
tum. The ratio between pressure and energy fluctuations is approximately 0.5 as we expect
from the Ward identities that constrain the expectation values given in eq. (A.10). Note
that the pressure fluctuations contribute approximately equally via 〈δT xx〉 and 〈δT yy〉 to
first sound as is obvious from the tracelessness of the energy-momentum tensor and the
Ward identities (A.10). We furthermore observe that the amplitudes of the fluctuation of
longitudinal momentum are approximately 0.7 time the energy fluctuations (or 1.4 times
the pressure fluctuations) which may be seen from eq. (A.10) or equivalently from eq. (B.8)
using the conformal speed. From the inset of figure 3 we know that in the range of tem-
peratures shown there, the diffusion constant takes values in the range Dq T ≈ {0.04, 0.1}.
Using the Ward identity (A.11), we find that the fluctuations of the longitudinal current in
the purely diffusive mode should be approximately {4·10−4, 10−3} of the charge fluctuation
as evident in the left panel in figure 5 and in eq. (B.3). The simple relation eq. (B.3) is
Fick’s law for diffusion. This discussion shows that we can use the amplitudes and the
Ward identities to compute the diffusion constant in the hydrodynamic dispersion relation
and vice versa. In the case of first sound a similar analysis holds albeit it is a bit more
complicated. We refer the interested reader to appendix B. In the normal phase, the scalar
sector decouples and the fluctuations of the scalar operator do not enter into either of the
sound modes in the normal phase.

As already mentioned, when the axion fields are switched on and momentum is not a
conserved quantity anymore, first sound is destroyed at large wavelength and the only two
hydrodynamic modes in the normal phase are the thermo-electric diffusive modes [85]. We
show the amplitudes for these two modes in figure 6. At α = 0, the left panel corresponds to
the diffusive mode shown in figure 5. Indeed, for α/T � 1, such a mode is totally dominated
by charge fluctuations. Interestingly, around α/T ≈ 8, we observe a smooth crossover
to a regime where the original diffusive mode is now dominated by energy fluctuations.
Moreover, the ratio between pressure and energy fluctuations is approximately 0.5 for
all α/T , as we already observed for the first sound mode which is a consequence of the
tracelessness of the energy-momentum tensor (since 〈δT tt〉 = 〈δT xx〉 + 〈δT yy〉). Notice
that in that large α/T � 1 regime the contribution from charge fluctuations drops to zero
indicating a drastic change in the nature of the diffusive mode.

As shown on the right panel of figure 6, the situation is different for the other diffusive
mode present in the normal phase of the model with momentum dissipation. For small
values of momentum dissipation, α/T . 2, the momentum chosen for the extraction of the
amplitudes, k/T = 0.01, is too large and the mode is not diffusive anymore but already
sound-like, i.e. propagating. There, we find the same features as for first sound in figure 5.
Around α/T ≈ 2, momentum is not a well-defined quantity anymore, and its contribution
to the mode drops rapidly to zero. At very large value of momentum dissipation, the mode
in the right panel of figure 6 is totally decoupled from everything else and it is dominated
by energy and pressure. Note that for α/T & 200, we enter the regime where the scalar
modes are unstable since the critical temperature (which is a function of the momentum
dissipation strength) is now larger the temperature we chose. Similarly to the diffusive
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Figure 6. The amplitudes of the various operators (4.7) for the thermo-electric diffusive modes in
the normal phase with momentum dissipation. We fixed k/T = 0.01 and T/µ = 0.025. The color
scheme is that illustrated in (4.7).

mode, we observe that the ratio between energy and pressure fluctuations is approximately
0.5 for all α/T .

Before moving on to the broken phase, let us investigate the normal phase with broken
translations further; in particular, we are interested in the two thermoelectric diffusion
modes. At intermediate values of T/µ and α/T , energy diffusion and charge diffusion are
coupled and therefore their support is mixed between the various operators. This is no
longer true in the so-called incoherent limit [66], at which the momentum dissipation rate
becomes the dominant scale in the system, i.e. α/T, α/µ � 1. In such a regime, we
do expect the two diffusive modes to decouple again [86] and the corresponding diffusion
constants acquire the simple values

De = κ

cv
, Dq = σ

χρρ
, (4.9)

where κ is the thermal conductivity, cv the specific heat, σ the electric conductivity and
χρρ the charge susceptibility. For the linear axion model considered in this work, the
formulas for the diffusion constants above are known analytically and can be found in
the literature (see for example [87]). In figure 7, we repeat the analysis of figure 6 but
this time going into the aforementioned incoherent limit. As expected, in this case, the
contributions to the support of the two diffusive modes from charge and energy fluctuations
crosses around α/T ∼ 10, which corresponds exactly to the location at which the diffusion
constants approach the values mentioned in eq. (4.9), i.e. the edge of the incoherent limit.
Going towards α/T → ∞, the support of the two modes becomes solely dominated by
either charge or charge and energy fluctuations, as expected from their decoupling. This
result is explained in more detail in appendix C.2 where we show the relative coefficients in
figure 14 explicitly. Note that we extracted the diffusion constants from the amplitude data
at one fixed k/T using eq. (B.3). Not only that, but the amplitudes of these two diffusive
modes can be derived analytically at any value of the parameters from hydrodynamics (see
appendix (C.3)), matching perfectly the numerical results presented here.

We now move on to the analysis of the superfluid phase of our system. We study
the amplitudes of the operators (4.7) for the two hydrodynamic modes in the longitudinal
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Figure 7. Top: the amplitudes of the various operators for the two thermoelectric diffusion modes
at T/µ = 5. Bottom: the corresponding diffusion constants. The blue points are numerical data
obtained from the amplitude data in the upper panel using the Fick’s law (B.3) as explained in
appendix B. The red lines are the analytical formulas (4.9) valid in the incoherent limit, which
is reached around α/T ∼ 10. At that point, the support of the two modes decouple into energy
density and charge density fluctuations. See also the figures in appendix C.2.

sector of this phase: first and second sound. The results are plotted in figure 8. Notice
that in this condensed phase we represent the fluctuations of the scalar operator in terms
of its amplitude (the Higgs mode δH) and the time derivative of its phase which carries
information about the norm of the Goldstone boson since in our background |Aµ− i ∂µϕ| ∼
µ − i ∂tϕ + O(ϕ2). As one can see on the left panel of figure 8, the behavior of the
amplitudes of the first sound mode is rather featureless and dominated by energy, pressure,
and longitudinal momentum fluctuations across the phase transition and down to the lowest
temperatures. The fluctuations of the Goldstone mode are highly suppressed, and those
of charge and current decrease as T is lowered. We show the results for second sound
on the right panel of 8. This mode is dominated by the fluctuations of the superfluid
condensate (the Higgs mode). In view of these results one can rule out a role reversal
between first and second sound in which the nature of the fluctuations supporting those
modes is interchanged as the temperature is lowered across the superfluid phase as in [83].
Finally, notice that the fluctuations of the scalar operator are not shown above the critical
temperature in the left panel of figure 8. They decouple from the other operators and
therefore do not contribute to the support of the first sound mode above Tc.
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Figure 8. The amplitudes of the various operators (4.7) for first (left panel) and second (right
panel) sound normalized to T at fixed k/T = 0.01. The inset is a non-logarithmic presentation of
the same curves to show the ratio of approximately 0.5 between pressure and energy fluctuations.
The color scheme is that illustrated in (4.7).
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Figure 9. The amplitudes of the various operators (4.7) for the diffusive mode (left) and 4th sound
(right) in the superfluid phase with momentum dissipation. We fixed α/T = 6 and k/T = 0.01.
The color scheme is that illustrated in (4.7).

We can now perform the same analysis in the superfluid phase in presence of momentum
dissipation. In this case, first sound is replaced by a diffusive mode and second sound is
replaced by fourth. In figure 9 we show the results for the amplitudes of the fluctuations
for the diffusive mode (left) and fourth sound (right). Except at temperatures near the
critical temperature, where the Higgs mode takes over, the diffusive mode is dominated by
energy and pressure fluctuations. Fourth sound is always dominated by energy fluctuations.
Interestingly, at low temperature the ratios between energy, longitudinal momentum, and
pressure fluctuations asymptote to the same ratios observed for first sound since the speed
of fourth sound tends to the speed of first sound as T → 0 there (while the attenuation
constant tends to zero). Finally, we shall point out that we also observe a purely imaginary,
gapped non-hydrodynamic mode which is solely supported by the scalar fluctuations. This
higher quasi-normal mode might be the Higgs mode discussed in [88–91].
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without momentum dissipation δT tt δT tx δT xx δT yy δJx δH ∂tϕ δφx

diffusive mode (T > Tc) 0 0 π π π/2
1st sound with Re(ω) > 0 (T > Tc) π π 0 0 π

1st sound with Re(ω) > 0 (T < Tc) π π π π 0 0 0
2nd sound with Re(ω) > 0 (T < Tc) π/2 π/2 π/2 π/2 0 0 0
with momentum dissipation

4nd sound with Re(ω) > 0 (T < Tc) π π π π 0 0 0 π/2
diffusion (T < Tc) π π/2 π π −π/2 π 0 π/2

Table 1. The phase differences modulo 2π with respect to δJ t for the various fluctuations for the
normal fluid (T > Tc) and superfluid (T < Tc) phases for temperatures sufficiently far from the
phase transition and in the ideal limit k → 0. The gray cells indicate that such a fluctuation is not
present in the corresponding mode. In the case of the sound modes, the phases of the “partner”
mode may be obtained by taking into account that the phases add up to 0 (for parity even operators)
and π (for parity odd operators), respectively. Concretely, the computation of the phases for the
momentum dissipation case has been performed for α/T = 6.

4.2.1 About the relative phases

As explained in detail in section 4.1, the value of the amplitudes of the various fluctu-
ations (4.7) of the different (hydrodynamic) modes is not the only information we can
extract from our analysis. We can also compute the phase differences between the var-
ious fluctuations present in a specific (hydrodynamic) mode. We used the phase of the
charge density fluctuation ΘδJt as reference phase and computed the phases of the other
fluctuations with respect to ΘδJt . Note that the phases are defined modulo 2π. The phase
differences of the various fluctuations are listed in table 1. The phases differences remain
almost constant throughout the phase diagram. However, it is important to notice that
the “ideal” phase differences as listed in 1 are only reached in the k → 0 limit. As we show
in eq. (B.4) and eq. (B.9), the relative phases between certain fluctuations are intimately
related to damping, i.e. for vanishing phase differences we reach ideal hydrodynamics. In
other words, the relative phases give us insights about the damping in the system and we
may compute the diffusion and attenuation constants, respectively, from them.

4.2.2 Momentum dependence of the amplitudes

So far, all the fluctuations amplitudes have been computed for a single value of momentum,
k/T = 0.01. In this section, we briefly discuss the momentum dependence of the amplitudes
presented in section 4.2. The results are shown in figure 10.

For first sound, both the amplitudes and the relative phases are constant in a large
range of momenta (we considered them until k/T ≈ 12). In the case of second sound,
we observe that the biggest amplitude, the Higgs fluctuations, remains dominant until
k/T ≈ 10 and the relative phases approximately constant. Away from the small momentum
limit, we notice that the contribution from the fluctuations of the superfluid condensate
becomes smaller and the mode is eventually dominated by the energy fluctuations which are
the biggest contribution at large k. At the same time, at k/T ∼ 1, we observe a crossover
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Figure 10. The momentum dependence of the normalized amplitudes (4.7) at T/µ = 0.016 (T/Tc =
0.804). Top panels: first sound. Central panels: second sound; the inset shows a zoom on small
momenta (and we omit plotting the amplitude of the Higgs fluctuation in orange). Bottom panels:
second sound beyond the linear part of the dispersion relation (k/T � 1).

between the fluctuations of the charge density (which is the first subleading contribution at
small k, even thought it accounts for less than 10% of the total weight) and that of energy
and longitudinal momentum which become more relevant at large wave-vector.

All in all, we can state that, in the hydrodynamic limit k/T � 1, our results depend
only minimally on the specific value of the momentum k.

5 Alternative approach via complex momentum modes

5.1 Theory

Quasinormal modes can be understood as the response of the system to a perturbation that
happened in the past. Thus, quasinormal modes describe how the system relaxes back to
equilibrium at late times.

A different way of studying the response is by perturbing the system with a periodic
source of frequency ω and looking for the corresponding wave with complex wave number
q = k + iκ. If we were to excite only one particular mode then the response would be

ΦI(z, t, x) = ÃIn(ω, z)e−iωt+iknxe−κn|x| . (5.1)
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The complex momentum is now a function of the real frequency kn = kn(ω) and
κn = κn(ω). This was investigated in [45] where it was shown that one can isolate the
modes that decay exponentially by choosing the integration in the complex momentum
plane appropriately. Only a few other works considered this choice within the holographic
framework [44, 46, 47].

We can now proceed with the same attitude as in the previous section and investigate
the amplitudes and the relative phases. Whether these are different from the ones of the
quasinormal modes is an open question and it is our main motivation for this last analysis.
A naive expectation would be that the phases and amplitude ratios are the same as long
as the mode in question has not gone through some crossing point with another mode in
the complex plane. Generally, such a crossing point has complex frequency and complex
momentum so its neither visible from the quasinormal mode (real momentum) nor from
the complex momentum mode (real frequency).

5.2 Results

Before discussing the amplitudes and the phases of the various operators, let us briefly
comment on the nature of the low-energy modes for complex momentum and real frequency.
Let us start with the equation for a generic attenuated sound wave

ω2 = v2 k2 − i ω 2 Γ k2 + . . . , (5.2)

where as always v,Γ are the propagation speed and the attenuation constant, respectively.
Let us now consider eq. (5.2) in terms of a real-valued frequency and a complex valued
momentum. At low frequency, it is easy to verify that

Re(k) = ± ω
v

+ O
(
ω3
)
, Im(k) = ± Γ

v3 ω
2 + O

(
ω4
)
. (5.3)

The same analysis can be repeated with a damped diffusive mode (such as the diffusive
mode in the superfluid phase)

ω = − i γ − iD k2 (5.4)

yielding

Re(k) = ± ω

2
√
γ D

+ O
(
ω3
)
, Im(k) = ±

√
γ

D
+ O

(
ω2
)
. (5.5)

The equations (5.3) and (5.5) represent the low-momentum behavior of the low-energy
modes in this new inverted picture. As expected, our numerical results shown in figure 11
are in perfect agreement with this picture. We can now analyze the amplitudes of the
fluctuations in (4.7) at constant frequency. We show them in figure 12 for a fixed small
value of (real) frequency ω/T = 0.01. The results for first sound are exactly identical to
those obtained at complex frequency and real momentum (inset in the left panel of figure 8).
In the second sound case shown on the right panel of figure 12 (to be compared with the
right panel of figure 8), the dominant contributions corresponding to the condensate and
charge density fluctuations are identical while the subleading contributions are slightly
different between the real and imaginary frequency modes. Still the qualitative behavior
in the two frameworks is very similar.
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Figure 11. The three lowest modes in the superfluid phase. The temperature is fixed at T/µ =
0.019 (T/Tc = 0.92). Second sound (green), first sound (red), the former damped diffusive mode
(black). The dashed lines in the top panel show the expectation from eq. (5.3).
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Figure 12. The amplitudes of the fluctuations (4.7) for first (left) and second sound (right) at
fixed ω/T = 0.01 in the superfluid phase (T < Tc) without axion fields.

6 Conclusions

In this work we have revisited the holographic S-wave superfluid model [2] focusing on the
hydrodynamic description of the low-energy modes and taking into account the backreac-
tion on the gravity side. Despite the long history of this model, a complete analysis of this
sort was missing. Through this approach we have explicitly verified the match between
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relativistic superfluid hydrodynamics and the holographic model, both in terms of the dis-
persion relations and, most importantly, in terms of all the first order transport coefficients.
Our study has revealed that all the hydrodynamic transport coefficients are continuous at
the phase transition. Moreover, differently from what [15] found in the probe limit, even
the second sound attenuation constant is smoothly connected to the gapped scalar modes in
the normal phase. We also analyzed the low energy modes for real frequency and complex
momentum, finding agreement with the hydrodynamic description. Finally, we extended
the analysis to a setup where momentum was not conserved and succesfully matched the
peculiar fourth sound mode with its hydrodynamic counterpart. Interestingly, we find a
non-zero normal density in the setup with broken translations, similarly to the results
of [73, 75] for hyperscaling-Lifschitz type geometries.

After demonstrating the validity of the hydrodynamic description of the holographic
superfluid, we carried out a study of the support of the various hydrodynamic modes in
terms of the dual field theory operators. In a nutshell, we have quantified “how much” a
single boundary field theory operator contributes to a specific hydrodynamic mode. The
analysis has been performed both in the superfluid and normal phases and also in presence
of momentum dissipation. In contrast to the field theory results of [83], we do not observe
a role-reversal phenomenon between first and second sound in terms of the support of those
modes. From the amplitudes and phases, we can reconstruct the dispersion relations of
the hydrodynamic modes. This allows us to compute the speed of sound and the atten-
uation/diffusion constants from our data of the amplitudes and relative phases at a fixed
value of the momentum. We notice that the absolute values of the amplitudes give us
insights about the speed of the sound modes, and the relative phases between the fluctua-
tions are related to damping. Furthermore, the amplitudes and relative phases give us an
(computational) easy recipe to compute the hydrodynamic dispersion relations since it is
sufficient to determine them at only one point of the dispersion relation (within the radius
of convergence). Beyond hydrodynamics, we observe a purely imaginary gapped mode in
the superfluid phase which is solely supported by the scalar fluctuations; this could be the
Higgs mode discussed in [88, 90, 91].

In the future, it would be interesting to enlarge the analysis in this work to scenarios
like those in the following list

• Consider more complex symmetry breaking patterns such as the pseudo-spontaneous
breaking of the U(1) symmetry (as initiated in [77]). Even though the explicit break-
ing of a U(1) vector symmetry is definitely not a physical option, this could serve
as a toy-model to improve our understanding of the pseudo-spontaneous breaking of
translations in the homogeneous models [92–99] and the possible relation between
phase relaxation and pseudo-spontaneous breaking [100–106]. Finally, if these two
breaking mechanisms are analogous or even equivalent, one could try to tackle the
phenomenology of superfluid current relaxation induced by vortices [107] within this
effective construction.

• Since we investigate the match of hydrodynamics and our holographic model, it would
be interesting to determine the radius of convergence of linearized superfluid hydro-
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dynamics throughout the phase diagram following the recent studies [50, 108–119] in
other holographic models.

• Compute the second order contributions to equilibrium transport, as initiated
in [120, 121], in superfluids and systems with second order phase transitions in
general.

• Work out the hydrodynamics of holographic superfluids in presence of a background
superfluid velocity [122–124]. The excitations in the probe limit have been already
presented in [16] and the dynamical Landau instability in [125]. It would be inter-
esting to extend them to the fully backreacted scenario and compare them to the
hydrodynamic description.

• Holographic superfluid models in presence of disorder have been constructed in the
past years [126, 127]. It would be interesting to study the transport of those models
and compare it with our results in the simpler axion model.

We leave these questions for the near future.
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A The pocket dictionary

In this appendix, following the standard holographic renormalization procedure, we com-
pute the one- and two-point functions relevant for the analysis in the main text. We start
by computing the variation of the renormalized on-shell action. To the action (2.12) we
add the standard counterterms

Sct = 1
2κ2

4

∫
d3x
√
−γ

(
2K − 4− |ψ|2 −R(γ)

)
. (A.1)

A straightforward computation leads to the following expression for the variation of the
renormalized on-shell action (see also [37])

δSo−s
ren =−

∫
d3x
√
−γ
{
nmF

mnδAn +2nm
[
δψgmn (∂n+iq An) ψ̄+δψ̄gmn (∂n−iq An)ψ

]
− δγmn

(
Kmn− (K + 2 + |ψ|

2

2 +R(γ)

2 ) γmn−R(γ)
mn

)
+ 2ψδψ̄ + 2ψ̄δψ

}∣∣∣∣
z=ε
, (A.2)
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where γmn denotes the induced metric at a z = ε hypersurface, while Kmn is the extrinsic
curvature at that hypersurface, K is its trace, and R(γ)

mn the Ricci tensor.7
In order to read the one-point functions from (A.2) we need the boundary expansions

of the bulk fields. These take the generic form

gµν = g(0)
µν (1 + o(z)) + g(3)

µν z
3(1 + o(z)) , (A.3)

Aµ = A(0)
µ +A(1)

µ z + o(z2) , ψ = ψ(1)z + ψ(2)z2 + o(z3) . (A.4)

For the background solution (indicated with a hat symbol), we have

ψ̂(1) = 0 , ψ̂(2) = 〈Oψcond〉/2 , Â
(0)
t = µ , Â

(1)
t = −ρ, ĝ

(3)
tt = −u3 . (A.5)

Hence, we are taking the leading contribution of the scalar towards the boundary to be real.
As usual this will correspond to picking a real value for the symmetry-breaking condensate.

Equations (A.2)–(A.5) result in the following expressions for the expectation values of
the dual field theory operators up to first order in fluctuations

〈Ψ〉 = 1√−γ(b)

δSo−s
ren

δψ̄(b)
= 〈Oψcond〉+ 2ψ(2)(x, t) , (A.6a)

〈Ψ̄〉 = 1√−γ(b)

δSo−s
ren

δψ(b)
= 〈Oψcond〉

∗ + 2ψ(2)∗(x, t) , (A.6b)

〈J t〉 = 1√−γ(b)

δSo−s
ren

δAt(b)
= ρ− a(1)

t (x, t) , (A.6c)

〈J i〉 = 1√−γ(b)

δSo−s
ren

δAi(b)
= a

(1)
i (x, t) , (i = x, y) , (A.6d)

〈Ttt〉 = 2√−γ(b)

δSo−s
ren

δγtt(b)
= 2u3 − 2h(3)

tt (x, t) , (A.6e)

〈Txx〉 = 2√−γ(b)

δSo−s
ren

δγxx(b)
= u3 − h(3)

tt (x, t) + 3h(3)
yy (x, t) , (A.6f)

〈Tyy〉 = 2√−γ(b)

δSo−s
ren

δγyy(b)
= u3 − h(3)

tt (x, t) + 3h(3)
xx (x, t) , (A.6g)

〈Ttx〉 = −3h(3)
tx (x, t) , 〈Tty〉 = −3h(3)

ty (x, t) , 〈Txy〉 = −3h(3)
xy (x, t) , (A.6h)

where the energy density is given by ε = 2u3. The subindex (b) stands for the finite value
of the different fields towards the boundary, hence once stripped of the powers of z (e.g.
δγmn(b) = δγmn/z

2).
It is worth pointing out that the boundary expansions (A.4) fulfill the necessary rela-

tions for the relevant Ward Identities to be satisfied. First, they obey the constraint

h(3)
xx (x, t) + h(3)

yy (x, t) = 0 , (A.7)

guaranteeing that 〈Tµµ 〉 = 0, as required by conformal invariance. As for the Ward Identity
〈∇µTµν〉 = 0, that results from translational invariance, it boils down to the following

7We write the induced metric and extrinsic curvature in the four-indices notation, see e.g. [128].
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constraints:

2ωh(3)
tt (ω, k) + 3kh(3)

tx (ω, k) = 0 , (A.8a)

−3ωh(3)
tx (ω, k) + k(−h(3)

tt (ω, k) + 3h(3)
yy (ω, k)) = 0 , (A.8b)

where we have assumed an harmonic spacetime dependence of the fluctuations as in (2.20).
Finally, the Ward Identity 〈∇µJµ〉 = 0, stemming from the global U(1) symmetry, is
satisfied once

k a(1)
x + ω a

(1)
t = 0 , (A.9)

holds. By solving the equations (2.13) towards the boundary we have checked that indeed
the constraints (A.8), (A.9) are satisfied.

From the Ward identities and the tracelessness of the energy-momentum tensor, we
find the following relations between the expectation values of the fluctuations

〈δT tt〉 = 1
1− ω2/k2 〈δT

yy〉 = − k
ω
〈δT tx〉 = k2

ω2 〈δT
xx〉, (A.10)

〈δJ t〉 = k

ω
〈δJx〉, (A.11)

where the δ in the expectation values indicates that we are referring to the fluctuations.
Regarding the axion fields introducing momentum dissipation, the boundary expansion

for the axion fluctuations reads we have (see [34] for the derivation)

φI = φI(0) + . . . + φI(3) z
3 (A.12)

Hence, in addition to the expectation values (A.6), we have the expectation value of the
axion fluctuation [34]

〈φI〉 = 6φI(3) . (A.13)

for the operator dual to φI . Since the axions break translational invariance, the Ward
identities discussed above do no longer hold at the level of the fluctuations. For a discussion
see [129].

Finally, by computing the one-point functions at sources on from (A.2), we can deter-
mine the form of the correlators relevant for the Kubo-formulas employed in the main text:

〈ΨΨ〉 = ψ(2)

ψ(1) + i(qµ− ω) , 〈TxyTxy〉 = u3 − 3h
(3)
xy

h
(0)
xy

+ iω

(
k2

2 − ω
2
)
, (A.14a)

〈JxJx〉 = a
(1)
x

a
(0)
x

+ iω , 〈JxJ t〉 = −a
(1)
x

a
(0)
t

+ ik . (A.14b)

– 26 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
6

B Dispersion relations from amplitudes

From the amplitudes computed at a certain value of the momentum, we might extract the
diffusion constants and the hydrodynamic dispersion relations. The dispersion relation of
the purely diffusive mode in the normal phase is for example given by eq. (2.5)

ω = −iDq k
2. (B.1)

Using the Ward identity eq. (A.11), we find

〈δJx〉 = −iDq k 〈δJ t〉 (B.2)

or in other words, the diffusion constant is given by

Dq = i

k

〈δJx〉
〈δJ t〉

(B.3)

which is nothing else than the very well-known Fick’s law. The imaginary unit in eq. (B.3)
simply implies that the amplitudes have a phase difference of π/2

Dq = 1
k

|〈δJx〉|
|〈δJ t〉|

ei(ΘδJx−ΘδJt+π/2) Dq∈R= 1
|k|
|〈δJx〉|
|〈δJ t〉|

sin(ΘδJt −ΘδJx), (B.4)

where we required the diffusion constant to be real in the last step. Requiring the diffusion
constant to be real and positive and thus the cosine to vanish fixes the relative amplitudes
to π/2 mod 2π. From this equation it is obvious, that damping is intimately related to
a phase difference between the fluctuations. We will see the same for sound waves. Note
that the momentum dependence of the expectation values is more general, i.e. they also
contain all higher orders in k.

For a sound mode with speed vs, attenuation constant Γs and real momentum k, we
notice with eq. (A.10) that

− vs + iΓs/2 k = 〈δT
tx〉

〈δT tt〉
. (B.5)

In the case, where we know the speed of sound (first sound), we can simply take the absolute
value of this equation and solve for the attenuation constant

Γs = 2
k

√∣∣∣∣〈δT tx〉〈δT tt〉

∣∣∣∣2 − v2
s . (B.6)

The easiest way to compute the speed is to use the information about the relative phases
and decompose the ratio of the expectation values as

〈δT tx〉
〈δT tt〉

= |〈δT
tx〉|

|〈δT tt〉|
ei (ΘδTtx−ΘδTtt ) (B.7)

and we thus find for the speed of sound according to eq. (B.5) and Euler’s formula

vs = |〈δT
tx〉|

|〈δT tt〉|
cos (ΘδT tt −ΘδT tx + π) . (B.8)
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Note that in the case of first sound we observe a ratio of approximately 0.7 between |〈δT tx〉|
and |〈δT tt〉| (see for example figure 5 or 8) which yields a conformal speed of 1/

√
2. The

attenuation constant is then simply given by

Γs = 2
k

|〈δT tx〉|
|〈δT tt〉|

sin (ΘδT tt −ΘδT tx + π) . (B.9)

Instead of the Ward identity between 〈δT tt〉 and 〈δT tx〉, we can of course derive similar
relations with 〈δT xx〉 and 〈δT yy〉 using the tracelessness of the energy-momentum tensor.
This is in particular important in the case of 4th sound, where the Ward identity associated
with energy momentum conservation no longer holds. Independently, we may also use
eq. (A.11) to express the speed and attenuation constant in terms of the expectation values.

C Eigenvectors in hydrodynamics

In this appendix, we discuss two simple examples within the hydrodynamic framework.
They serve the purpose of putting our results for the amplitudes in section 4 into context
and connecting them to the existing literature.

C.1 The purely diffusive mode in normal fluids

Let us consider the longitudinal sector of a conformal charge fluid with conserved mo-
mentum. Following the same notations as [84], we may write the Fourier transformed
hydrodynamic equations of motion in the form

−iω ik 0
ik β1

k2πs
4 (µρ+sT ) − iω 0

k2 α1 αQ
ik ρ

µρ+sT −iω − k2 α1αQ (µρ+sT )
ρ

 ·
δT

tt

δT tx

δJ t

 =

0
0
0

 , (C.1)

where α1 =
(
∂µ
∂ε

)
ρ
− µ

T

(
∂T
∂ε

)
ρ
, β1 =

(
∂P
∂ε

)
ρ
, αQ = σ. Note that δT tt and δT tx are not

independent variables but related by the Ward identities (A.10). Instead of an indepen-
dent hydrodynamic variable, δT tx should be viewed as an auxiliary variable to reduce the
generalized eigenvalue problem to first order in ω as explained below eq. (D.1).

Solving the hydrodynamic equations as a generalized eigenvalue problem with respect
to the frequency ω, we find a pair of sound modes and a purely diffusive mode in agreement
with the results in the main text, i.e.

ω1,2 = ±
√
β1k − i

π s

8 (sT + µρ)k
2 + o(k3) , ω3 = i

α1 (sT + µρ)αQ
ρ

k2 + o(k3) , (C.2)

together with their corresponding eigenvectors

v1,2 =


µρ+sT
ρ

∓
√
β1(µρ+sT

ρ ) + iπs8ρk

1

+ o(k2) , v3 =

0
0
1

+ o(k2). (C.3)

Importantly, this means that the eigenvector corresponding to the purely diffusive mode,
v3, consists only of 〈δJ t〉 to first order in k, exactly as we observe in the left plot of figure 5.
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Figure 13. The contribution cδT tt (eq. (C.5)) of the δT tt fluctuations to the incoherent current ṽ3.
The blue points are numerically extracted by inverting the matrix of the amplitudes of the different
modes presented in the main text as in eq. (C.4). The red dashed line is the analytic result ρ T

sT+µρ .

Furthermore, we see that the ratio of the contributions to first sound from 〈δT tt〉 and 〈δJ t〉
is given by µρ+sT

ρ , exactly as we observe in the middle plot of figure 5.
Let us now explain why our results are not in contradiction with those in [84] and how

they relate to them. In [84] it was stated that the purely diffusive mode is carried by the
incoherent current δQdiff ≡ δJ t − ρ

sT+µρδT
tt. To get to this result, we have to perform a

basis transformation and consider

(
ṽ1 ṽ2 ṽ3

)
=
(
v1 v2 v3

)−1

δT
tt

δT tx

δJ t

 . (C.4)

Notice that, in this basis, the diffusive mode corresponds to ṽ3 = δJ t − ρ
sT+µρδT

tt. In
the language of [84], ṽ3 is the incoherent current. Note that the relative coefficient in ṽ3
is exactly the inverse of the relative coefficient between δT tt and δJ t in the sound mode.
For simplicity, we define the coefficients cI appearing in the decomposition of the various
eigenvectors in terms of the basis of operator fluctuations using:

ṽn =
∑
I

cI δOI , (C.5)

where n labels the eigenvectors and I the basis of operators. The coefficients cI are exactly
the quantities discussed in [84] and displayed in figures 13, 14 and 15.

The remaining vectors in (C.4) are

ṽ1,2 =
ρ

(
∓ iπks√

β1
+ 8µρ+ 8sT

)
16(µρ+ sT )2 δT tt ∓ ρ

(
π2k2s2 + 128β1(µρ+ sT )2)

256β3/2
1 (µρ+ sT )3

δT tx + . . . (C.6)

and they correspond to the first sound mode. Using the Ward Identity relating δT tt and
δT tx and assuming that the modes corresponding to ṽ1,2 (sound modes) are not excited,
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i.e. ṽ1, ṽ2 = 0, one immediately obtains the condition δT tt = 0. This implies that only
charge can fluctuate and leads to ṽ3 = δJ t, which matches exactly our result presented
in the main text shown in figure 5. In a nutshell, the main physical difference between
the approach of [84] and ours lies in considering the response of the system to different
perturbations. While in section 4 we studied the support of the different hydrodynamic
modes when only one of those modes is switched on, ref. [84] considered the question for a
generic perturbation in which all modes are excited. Obviously, as shown in eq. (C.4), the
information of the two approaches can be extracted from the same original hydrodynamic
matrix (e.g. eq. (C.1)). As a proof of that, we can invert the matrix of the amplitudes of
the eigenvectors, project it on the basis of the fluctuations and obtain exactly the ρ

sT+µρ
factor derived in [84]. The results of this procedure are shown in figure 13.

C.2 The diffusive modes in a normal fluid with momentum dissipation

We can perform the same analysis for the hydrodynamic modes in the longitudinal sector
when momentum is dissipated at a rate ∼ α/T . This section may be viewed as a supple-
mental discussion of the data presented in figure 7. With momentum dissipation, the only
conserved quantities are energy and electric charge. This leads to a 2 × 2 hydrodynamic
system in terms of energy and charge fluctuations δT tt, δJ t which, in matrix formalism,
takes (in the conventions of [66]) the following formk2(χ(ᾱµ+κ̄)−ζ(µσ+ᾱT ))

χcµ−Tζ2 − iω k2(ᾱ(cµT−χµ2)−κ̄(χµ+Tζ)+µσ(cµ+µζ))
χcµ−Tζ2

k2(ᾱχ−σζ)
χcµ−Tζ2

k2(σ(cµ+µζ)−ᾱ(χµ+Tζ))
χcµ−Tζ2 − iω

 · (δT tt
δJ t

)
=
(

0
0

)
. (C.7)

We have defined: σ the electric conductivity, χ ≡ ∂ρ/∂µ the charge susceptibility, κ̄ the
thermal conductivity, ᾱ the thermoelectric conductivity, ζ = ∂s/∂µ and the specific heat
cµ = T∂s/∂T . All these coefficients are known analytically for the linear axion model, see
for example [87].

At this point, we can perform the same analysis as before and compute the eigen-
vectors J± for the matrix eq. (C.7). The matrix is diagonal in the basis of the eigen-
vectors δJ± = a± (δT tt + γ± α δJ

t), where a± is just an overal normalization and
γ± = − 3ε

4αρ

(
1±

√
1 + 16α2 ρ2

9ε2

)
[86], with ε being the energy density and α the dimen-

sionful strength of momentum dissipation. We present the amplitudes and coefficients cI
in figure 14. In figure 15, we explicitly verify that the relative coefficient matches the
analytic expression of [86].

D Numerical methods

In this section, we briefly describe the numerical methods we employed to solve the dif-
ferential equations in this work following [130–132] (for a detailed introduction see [133]).
Both, the background equilibrium solutions as well as the solutions to the linearized per-
turbations about the equilibrium state are obtained by means of pseudo-spectral methods.
The idea of spectral methods is to approximate the numerical solution in terms of basis
functions on a discretized grid. Throughout this work, we choose Chebychev polynomials
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Figure 14. Top: the relative amplitudes of 〈δT tt〉 and 〈δJ t〉 for the two thermoelectric diffusion
modes at T/µ = 5 (in blue, corresponding to the data in figure 7) and the hydrodynamic prediction
for the ratio (dashed red line). Bottom: the normalized, dimensionless coefficients cδJt T 2 and
cδT tt T 3 in the basis of the eigenvectors from eq. (C.5). In the incoherent limit α� µ, δJ+ → δJ t

and δJ− ∼ δT tt+γ− αδJ
t. This implies that δJ− is purely δJ t and the other mode is still a mixture

of δT tt and δJ t. The relative coefficient of the bottom right plot is presented in figure 15.

as basis functions and a Chebychev-Lobatto grid to discretize the radial direction. Spec-
tral methods solve the equations of motions globally which is a big advantage compared to
shooting methods or finite-differences where we have to vary the initial conditions on one
side of the domain until we find the desired boundary values at the other end of the inter-
val. More importantly, spectral method are highly accurate and have a fast convergence
rate and are thus perfectly suited for problems in numerical holography.

Computing the static background and two-point functions in terms of pseudo-spectral
methods is fairly standard and we thus only comment on how to obtain the quasi-normal
modes. After obtaining the static background solution, we want to investigate time-
and space dependent (linearized) fluctuations about that background to compute (a) the
quasi-normal modes and (b) the retarded Green’s functions for the transport coefficients.
The coupled ordinary differential equations for the linearized fluctuations are generally of
the form

(C(k)ω2 + A(k)ω −B(k)) x(ω, k) = 0, (F (ω) k2 + D(ω) k −E(ω)) x(ω, k) = 0 (D.1)

where A to F are differential operators and the vector x consists of all the fluctuations
x = {htt, htx, hxx, hyy, at, ax, δψ1, δψ2, δφx}. We may recast both problems in terms
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line is the analytic result for δJ− ∼ δT tt + γ− α δJ

t.

of a generalized eigenvalue problem with respect to the quasi-normal frequency ω or the
momentum k by introducing auxiliary functions of the form f̃ = ω f and f̃ = k f so that
we find

(Ãω − B̃) x̃1 = 0, (D̃ k − Ẽ) x̃2 = 0 (D.2)

where

x̃1 = {htt, htx, hxx + hyy, hxx − hyy, at, ax, δψ1, δψ2, δφx, h̃xx + h̃yy} (D.3)

and

x̃2 = {htt, htx, hxx, hyy, at, ax, δψ1, δψ2, δφx, h̃tt, h̃yy, ãt, δψ̃1, δψ̃2} . (D.4)

The tilde in x̃1 and x̃2 denote the auxiliary functions.
By solving the generalized eigenvalue problem, we find for each eigenvalue ωn (or kn) an

eigenvector x̃. Finally, to resolve the strong gradients at the horizon at low temperatures
accurately we use up to 350 gridpoints in order to satisfy the equations of motion and
constraints with accuracy better than 10−12.

The Chebychev coefficients of the slowest convergent solution drop below 10−13 in
this case.

Open Access. This article is distributed under the terms of the Creative Commons
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