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1 Introduction

In the traditional momentum space, amplitudes are specified by asymptotic wave functions,
which transform simply under spacetime translations, and describe transitions between mo-
mentum eigenstates. But what if four-dimensional Minkowski space is not the right space
to see all their properties? Very recently, attention has surged towards celestial ampli-
tudes. For the massless case, celestial amplitudes are the Mellin transform of scattering
amplitudes in four-dimensional Minkowski space and are conformal correlation functions
on the two-dimensional celestial sphere, i.e. the null infinity of four-dimensional Minkowski
space. This map was proposed in [1], and explicitly applied to three and four-point tree-
level gluon amplitudes in [2] for the first time. It stems from the observation that there
is a basis which represents massless spin s free fields in four-dimensional Minkowski space
as spin s conformal primaries on the two-sphere. Indeed, the Lorentz group SO(1, 3) is
mapped to the two-dimensional conformal group SL(2,C): therefore, scattering ampli-
tudes (i.e. momentum eigenstates) in four-dimensional Minkowski space can be interpreted
as two-dimensional conformal correlators (i.e. boosts eigenstates) of primary fields. Since
its inception, a lot of progress has been made: in the computation of the Mellin trans-
form of various tree-level gluon amplitudes [3], of all-loop four-point amplitudes [4], and of
string amplitudes [5]; in the study of symmetries and soft theorems [6–16]; in extensions
to supersymmetric theories [17–20].

On one side, understanding the precise nature of the two-dimensional conformal field
theory on the celestial sphere would enable a holographic description of spacetime. On
the other, celestial amplitudes provide us with yet another powerful tool for exploring the
mathematical properties of ordinary amplitudes by using our knowledge of conformal field
theories. However, our understanding is still preliminary and more work is necessary to
advance it to the same level as, or even beyond, our understanding of ordinary amplitudes.
We have only started to walk the same path which we travelled for understanding ordi-
nary amplitudes — analytic properties, factorization, symmetries — nevertheless, we do
not know anything about their geometric structure. The natural question which arises is
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whether we can learn more about scattering amplitudes, and therefore further constrain the
S-matrix, by understanding of the conformal field theory on the celestial sphere. Moreover,
does a positive geometry [21] for celestial amplitudes exist?

In this paper we start to fill this gap by presenting a Grassmannian formulation of
celestial superamplitudes. A first look at Grassmannian formulae for amplitudes has been
presented in [22], where tree-level gluon amplitudes have been considered. We want to go
beyond this and consider the supersymmetric version. Indeed, if we want to retrace the
path we have covered for ordinary amplitudes in momentum space, this is the first step
towards the definition of (positive) geometries for celestial amplitudes. In particular, the
results of [23, 24], which presented tree-level scattering amplitudes in N = 4 super Yang-
Mills (sYM) theory in terms of integrals over a Grassmannian space, paved the way for the
discovery of the amplituhedron [25] and, more generally, positive geometries underlying
scattering amplitudes in various theories. Therefore, we consider scattering amplitudes in
N = 4 sYM. This theory enjoys a high amount of symmetry, the infinite-dimensional Yan-
gian symmetry [26], which is beautifully realized in the Grassmannian formulation [27, 28].
This feature of the theory makes it simpler to explore and therefore a useful playground to
investigate properties of amplitudes. Moreover, while all previous explicit results for celes-
tial amplitudes were either worked out on a case-by-case basis or resulted in very involved
expressions, a Grassmannian formula is usually very neat and renders some properties more
manifest. To this end, in this note we perform the Mellin transform of the Grassmannian
integral representation of the n-point helicity k tree-level superamplitude and thereby find
its celestial counterpart. This is the long sought-after Grassmannian formulation of ce-
lestial superamplitudes and the starting point for a plethora of investigations which are
expected to bring us novel information both on the holography side and on the ordinary
amplitudes side.

This note is organised as follows. In the next section we review some definitions
which will be useful for presenting our main result. In particular, we will review celestial
amplitudes and the Grassmannian formulation of scattering amplitudes in N = 4 sYM.
Thereafter we perform the Mellin transform of the Grassmannian formulation and find its
celestial version. We then present some examples.

2 Definitions

In this section we briefly review some of the definitions that will be needed for the main
result of this note. In particular, we review the celestial (super)amplitudes and the Grass-
mannian formulation of scattering amplitudes in N = 4 sYM.

2.1 Celestial amplitudes

In the following we will consider tree-level scattering amplitudes of massless particles. The
massless momenta can be then written in terms of the spinor-helicity variables pαα̇ = λαλ̃α̇,
α, α̇ = 1, 2. To map the amplitudes from Minkowski space to the celestial sphere, we
first need to introduce celestial coordinates and parametrize the massless momenta in the
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following way:
pαα̇ = εw kαα̇ , (2.1)

where w is the angular frequency associated to the energy of the particle, conventionally
called “energy”, and kαα̇ = ξαξ̃α̇ with

ξα =
(
z

1

)
, ξ̃α̇ =

(
z̄

1

)
, (2.2)

where z, z̄ are the coordinates on the celestial sphere. ε is a sign which depends on whether
the particle is incoming or outgoing. We parametrise the spinors as

λα = ε
√
w

(
z

1

)
= ε
√
w ξα, λ̃α̇ =

√
w

(
z̄

1

)
=
√
w ξ̃α̇ . (2.3)

Since we are working with superamplitudes, we also have Grassmann variables ηAs. In the
language of celestial amplitudes, they will be called τ̃A [19]. After performing this change
of variables, the massless scattering superamplitude is mapped on the celestial sphere via
a Mellin transform [18, 19]:

Ãn,k({∆i, zi, z̄i, τ̃i}) =
n∏
i=1

∫ ∞
0

dwiw
∆i−1
i An,k({wi, zi, z̄i, τ̃i}) , (2.4)

where the celestial superamplitude transforms as a two-dimensional conformal correlator
on the celestial sphere with weights ∆i. We end this section by remarking that, under
conformal transformations, we have the following behaviour

w → w′ = |cz + d|2w , z → z′ = az + b

cz + d
, z̄ → z̄′ = āz̄ + b̄

c̄z̄ + d̄
, τ̃A → τ̃ ′A = (cz + d)1/2

(c̄z̄ + d̄)1/2 τ̃
A ,

(2.5)

with a, b, c, d ∈ C and ad− bc = 1.

2.2 Grassmannian integrals

Let us now review the formulation of scattering amplitudes in N = 4 sYM in terms of
Grassmannian integrals. In [23, 24] the leading singularities of the N = 4 sYM Nk−2MHV
n-point amplitudes were described by an integral over the space of k-planes in n dimensions,
the Grassmannian G(k, n), along suitable closed contours. This arose from the observation
that momentum conservation, which is a quadratic constraint in the spinor-helicity space,
can be linearised by using auxiliary spaces. Indeed, we can introduce an auxiliary k-plane
in n-dimensions, C = (cai), such that

C · λ̃ = 0 , λ · C⊥ = 0 , (2.6)

where C⊥ is the orthogonal complement of C. In this way, the condition
∑n
i=1 λ

α
i λ̃

α̇
i = 0

is linearised. The tree-level amplitudes in spinor-helicity space can therefore be written as

An,k =
∫
γ
dΩn,k

k∏
ȧ=1

δ2
(

n∑
i=1

cȧiλ̃i

)
n∏

a=k+1
δ2
(

n∑
i=1

c⊥aiλi

)
k∏
ȧ=1

δ4
(

n∑
i=1

cȧiηi

)
, (2.7)
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where γ is a closed contour. The measure is

dΩn,k =
∏
ȧ,i dcȧi

GL(k)(1 . . . k)(2 . . . k + 1) . . . (n . . . n+ k − 1) (2.8)

where the denominator consists of the cyclic product of the minorsMi = (i i+1 . . . i+k−1),
i.e. the determinants of (k × k) submatrices of the matrix C. The contour γ can be deter-
mined by using e.g. the Britto-Cachazo-Feng-Witten (BCFW) recursion relations [29, 30].

3 Grassmannian on the celestial sphere

We are now ready to consider our scattering superamplitude in the Grassmannian formu-
lation (2.7) and perform the Mellin transform. Despite the simplicity of this idea, we will
soon discover that in the process a few tricks need to be used in order to find a neat result.
We start by using the GL(k) redundancy to write C ∈ G(k, n) as

Cȧḃ = δȧḃ , Cȧb = cȧb . (3.1)

With this particular choice, the bosonic delta-functions in (2.7) read

δk×2(C · λ̃) =
∏
ȧ

δ2
(
λ̃ȧ +

∑
b

cȧbλ̃b

)
, δ2×(n−k)(λ · C⊥) =

∏
a

δ2

λa −∑
ḃ

cḃaλḃ

 .

(3.2)

If we now move to celestial coordinates, these delta-functions will contain square roots of
the form √ωi introduced via (2.3). To remove these and render the computation easier,
we utilize the trick presented in [22] and use the little group scaling transformations

λi → tiλi , λ̃i → t−1
i λ̃i , η̃i → t−1

i η̃i , (3.3)

which are reflected on the superamplitude as An → t2i An. In particular, we choose different
forms for the scalings of different particles:

tȧ = w
−1/2
ȧ , ȧ = 1, . . . , k , ta = w1/2

a , a = k + 1, . . . , n . (3.4)

After performing this little group transformation, we find that

Ãn,k =
∫
γ
dΩn,k

(
n∏
i=1

∫ ∞
0

dwi
wi

w∆i
i

)∏
ȧ

w−1
ȧ

∏
a

wa

·
∏
ȧ

δ2
(
wȧξ̃ȧ +

∑
b

cȧbξ̃b

)∏
a

δ2

εawaξa −∑
ḃ

cḃaεḃξḃ

∏
ȧ

δ4
(
√
wȧτ̃ȧ +

∑
b

cȧb
τ̃b√
wb

)
,

(3.5)

where now no square root is present in the bosonic delta-functions. To illuminate the
transformational properties of Ãn,k, it will prove useful to introduce auxiliary parameters
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pi and p̄i for each particle i, where p̄i = (pi)∗ or both parameters are real and independent.
Rewriting wi as

wi ≡ (pip̄i)2yi , (3.6)

we find

Ãn,k =
n∏
i=1

[
(pip̄i)2

]∆i ∏
ȧ

p2
ȧ

p̄6
ȧ

∏
a

1
(pap̄a)2

∫
γ
dΩn,k

(
n∏
i=1

∫ ∞
0

dyiy
∆i
i

)

·
∏
ȧ

δ2
(
yȧξ̃ȧ +

∑
b

cȧb
ξ̃b

(pȧp̄ȧ)2

)∏
a

δ2

εayaξa −∑
ḃ

cḃa
εḃξḃ

(pap̄a)2


·
∏
ȧ

δ4
(
τȧ +

∑
b

cȧb
(pȧp̄b)2

τb√
yȧ
√
yb

)
, (3.7)

where we have defined new fermionic variables

τi ≡
p̄i
pi
τ̃i . (3.8)

By performing the change of variables1 cȧb → cȧb(pȧp̄b)2, the bosonic delta-functions can
then be written as

δ2
(
yȧξ̃ȧ +

∑
b

cȧb
ξ̃b

(pȧp̄ȧ)2

)
→ p̄4

ȧδ(yȧ − Eȧ)δ
(∑

b

cȧb(p̄ȧp̄b)2z̄ȧb

)
, (3.9)

δ2

εayaξa −∑
ḃ

cḃa
εḃξḃ

(pap̄a)2

→ p4
aδ(ya − Ea)δ

∑
ḃ

cḃa(pḃpa)
2εḃεazḃa

 , (3.10)

where

Eȧ = −
∑
b

cȧb

(
p̄b
p̄ȧ

)2 [bχ̃]
[ȧχ̃] , Ea =

∑
ḃ

cḃa

(
pḃ
pa

)2 εḃ〈ḃχ〉
εa〈aχ〉

, (3.11)

are “energies” as in [22] and χα, χ̃α̇ are auxiliary reference spinors. Finally, we obtain
the main result of our paper: the Mellin transform of the N = 4 sYM amplitudes in the
Grassmannian formulation is

Ãn,k = Pn · In,k , (3.12)

where In,k is an integral over the Grassmannian G(k, n)

In,k =
∫
γ
dΩn,k

n∏
i=1

E∆i
i 1>0(Ei)

·
∏
ȧ

δ

(∑
b

cȧb(p̄ȧp̄b)2z̄ȧb

)∏
a

δ

∑
ḃ

cḃa(pḃpa)
2εḃεazḃa

∏
ȧ

δ4
(
τȧ +

∑
b

cȧb
τb√
EȧEb

)
,

(3.13)
1This change of variables leaves the Grassmannian measure dΩn,k invariant.
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and Pn ≡
(∏n

i=1 p
2(∆i+1)
i p̄

2(∆i−1)
i

)
. The indicator function 1>0(Ei) is defined to be one

if Ei is real and non-negative, and zero otherwise. It appears because of the integration
ranges for w’s are the positive real line.

If we now specify that, under a conformal transformation, pi and p̄i transform accord-
ing to

pi → (czi + d)1/2pi , p̄i → (c̄z̄i + d̄)1/2p̄i , (3.14)

then the Grassmannian integral In,k defined above is conformally invariant, while the pref-
actor Pn,k transforms covariantly

Pn →
(

n∏
i=1

(czi + d)∆i+1(c̄z̄i + d̄)∆i−1
)
Pn . (3.15)

Altogether, this ensures that Ãn,k transforms as expected under conformal transforma-
tions. Thus, the auxiliary parameters pi and p̄i make the transformation properties of Ãn,k
manifest.

One could, however, make any choice for pi and p̄i in order to evaluate Ãn,k, and the
result would be the same, but the transformation properties of Ãn,k might not be manifest.
For example, choosing pi = p̄i = 1, we obtain the Grassmannian integral

An,k =
∫
γ
dΩn,k

n∏
i=1

E∆i
i 1>0(Ei)

·
∏
ȧ

δ

(∑
b

cȧbz̄ȧb

)∏
a

δ

∑
ḃ

cḃaεḃεazḃa

∏
ȧ

δ4
(
τ̃ȧ +

∑
b

cȧb
τ̃b√
EȧEb

)
, (3.16)

where τ̃i are the original fermionic parameters and the energies read

Eȧ = −
∑
b

cȧb
[bχ̃]
[ȧχ̃] , Ea =

∑
ḃ

cḃa
εḃ〈ḃχ〉
εa〈aχ〉

. (3.17)

We have checked that formula (3.17) correctly reproduces the formula (6.13) in [22] when
projected onto pure gluon amplitudes.

3.1 Examples

Three-point MHV. Let us consider the case (n, k) = (3, 2) with ε1 = ε2 = −ε3 = 1.
Since this is the simplest case, we present it in full detail, with most calculations explicit.
In Minkowski signature the on-shell three-point amplitude vanishes. Thus, we assume to
be working in the (2, 2) split signature, where zi and z̄i are real, independent variables.
Consider the following gauge fixing

C =
(

1 0 c13
0 1 −c23

)
, (3.18)
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where the minus sign is chosen for convenience. Consider, first, the bosonic delta-functions
in (3.16). They are explicitly

∏
ȧ

δ

(∑
b

cȧbz̄ȧb

)∏
a

δ

∑
ḃ

cḃaεḃεazḃa

 = c−1
13 c
−1
23 z
−1
31 δ(z̄23)δ(z̄31)δ

(
c13 + c23

z23
z31

)
.

(3.19)

On the support of the last delta-function, the energies become

E1 = c23
z23
z31

, E2 = c23 , E3 = c23
z21
z31

, (3.20)

and consequently, the indicator functions simplify to

3∏
i=1

1>0(Ei) = 1>0(c23)Θ
(
z21
z23

)
Θ
(
z21
z31

)
, (3.21)

where Θ is the Heaviside step function. Notice that 1>0(c23) restricts the integral for c23,
which was originally a complex integral, to the positive reals. The fermionic delta-functions
in (3.16) simplify to

∏
ȧ

δ4
(
τȧ +

∑
b

cȧb
τb√
EȧEb

)
= δ4

(
τ̃1 −

√
z23
z21

τ̃3

)
δ4
(
τ̃2 −

√
z31
z21

τ̃3

)
= z−2

23 z
−2
31 z

−4
12 δ

8(
√
z23ξ1τ̃1 +

√
z31ξ2τ̃2 −

√
z21ξ3τ̃3) . (3.22)

Combining all of these simplifications, one obtains

Ã3,2 = z∆3−4
12 z∆1−4

23 z−1−∆1−∆3
31 δ(z̄23)δ(z̄31)Θ

(
z21
z23

)
Θ
(
z21
z31

)
· δ8(
√
z23ξ1τ̃1 +

√
z31ξ2τ̃2 −

√
z21ξ3τ̃3)

∫ ∞
0

dc23
c23

c
(∆1+∆2+∆3)−3
23 . (3.23)

Writing ∆i = iβi + 1 for βi ∈ R and defining β ≡ β1 + β2 + β3, the remaining integral
simplifies to ∫ ∞

0

dc23
c23

c
(∆1+∆2+∆3)−3
23 = 2πδ(β) , (3.24)

and on the support of this delta-function, the three-point MHV celestial superamplitude
is given by

Ã3,2 = 2πδ(β)z∆3−4
12 z∆1−4

23 z∆2−4
31 δ(z̄23)δ(z̄31)Θ

(
z21
z23

)
Θ
(
z21
z31

)
· δ8(
√
z23ξ1τ̃1 +

√
z31ξ2τ̃2 −

√
z21ξ3τ̃3) , (3.25)

in agreement with [18, 19].
The three-point MHV celestial superamplitude can be calculated in a similar way,

where this time the gauge-fixed C-matrix reads C =
(
1 c13 c23

)
.
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Four-point MHV. For the case (n, k) = (4, 2), and ε1 = ε2 = −ε3 = −ε4 = 1, we only
present a few features as the computation is involved and tedious, nevertheless it can be
performed straightforwardly. In this case the matrix C reads

C =
(

1 0 c13 c14
0 1 c23 c24

)
. (3.26)

The bosonic delta-functions give the following expression

∏
ȧ

δ

(∑
b

cȧbz̄ȧb

)∏
a

δ

∑
ḃ

cḃaεḃεazḃa


= 1
c24|z13z24|2

δ(r − r̄)δ
(
c13 + c24(r − 1) |z24|2

z14z̄23

)
δ

(
c14 + c24

z24
z14

)
δ

(
c23 + c24

z̄24
z̄23

)
,

(3.27)

where the cross-ratios r and r̄ are, respectively, r = z12z34
z13z24

and r̄ = z̄12z̄34
z̄13z̄24

. As already
noticed in, e.g. [2], the factor δ(r − r̄) ensures that in the four-particle scattering the
momenta of all particles lie on the same plane. The intersection of this plane with the
celestial sphere forces the cross-ratio r to be real. The energies on the support of the above
delta-functions become

E1 = (r − 1) |z24|2

|z14|2
E2 = c̃24(r − 1) |z24|2

|z14|2
, E3 = (r − 1) |z24|2

|z23|2
E4 = c̃24r

|z24|2

|z34|2
, (3.28)

where c̃24 = c24
z̄34
z̄23

. In particular, E2 = c̃24. The indicator functions require these energies
to be real and positive which forces r > 1, producing Θ(r − 1), and c̃24 to be real and
positive, producing 1>0(c̃24). With a little effort, one can show that the fermionic delta-
functions can be written as∏

ȧ

δ4
(
τ̃ȧ +

∑
b

cȧb
τ̃b√
EȧEb

)

= z−4
12

∣∣∣∣z23z24
z13z14

∣∣∣∣2 δ8
(
ξ1τ̃1 +

∣∣∣∣z13z14
z23z24

∣∣∣∣1/2 ξ2τ̃2 −
∣∣∣∣z12z14
z23z34

∣∣∣∣1/2 ξ3τ̃3 −
∣∣∣∣z12z13
z24z34

∣∣∣∣1/2 ξ4τ̃4

)
, (3.29)

and it is clearly independent of c̃24. The product of all energies, each raised to the power
of their respective weight, evaluates to

4∏
i=1

E∆i
i = (−1)∆1+∆2 c̃∆1+∆2+∆3+∆4

24

(
z14z23
z2

34

)2
(

z̄2
12

z̄14z̄23

)2

·
(
z13
z̄42

)∆2+∆4−4 ( z̄12
z34

)∆3+∆4−4 ( z̄14
z23

)∆2−2 (z14
z̄23

)∆3−2
. (3.30)

Collecting all factors of c̃24 and integrating over all c̃2 (on the support of 1>0(c̃24)) produces
the delta-function ∫ ∞

0

dc̃24
c̃24

c̃
(∆1+∆2+∆3+∆4)−4
24 = 2πδ(β) , (3.31)
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where, again, ∆i = iβi + 1 for βi ∈ R and β ≡ β1 + β2 + β3 + β4. Finally, the four-point
MHV celestial superamplitude is given by

Ã4,2 = 2πδ(β)(−1)∆1+∆2

(
z13
z̄42

)∆2+∆4−4 ( z̄12
z34

)∆3+∆4−4 ( z̄14
z23

)∆2−2 (z14
z̄23

)∆3−2

· δ(r − r̄)Θ(r − 1)
z12z23z34z41|z13|2|z24|2

δ8
(
ξ1τ̃1 +

∣∣∣∣z13z14
z23z24

∣∣∣∣1/2 ξ2τ̃2 −
∣∣∣∣z12z14
z23z34

∣∣∣∣1/2 ξ3τ̃3 −
∣∣∣∣z12z13
z24z34

∣∣∣∣1/2 ξ4τ̃4

)
,

(3.32)

in agreement with [19].
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