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1 Introduction

Classical string theory restricted to backgrounds with d abelian isometries features a con-
tinuous O(d, d; R) symmetry [1, 2] which extends to all orders in o/ [3]. This symmetry is
closely related to T-duality. Double Field Theory (DFT) [4-6] is an attempt to formulate
the string effective action with an O(D, D) symmetry (D = 10 or 26), already before re-
stricting to backgrounds with isometries. In order to do this one has to double the number
of spacetime dimensions from D to 2D. An O(D, D) invariant “section condition” is then
imposed which reduces the number of physical coordinates down to D. While there is no
a priori reason why this should work in general, DFT does work at the supergravity level
and has proven to be a very useful tool.

Remarkably, Marques and Nunez were able to extend DFT beyond the supergravity
level by showing that a certain two-parameter modification of the transformation rules
leads to the first o/-correction to the bosonic and heterotic string effective actions [7], see
also [8, 9]. The modification of the transformation rules of DFT at order o/ leads to an
infinite series of o'-corrections. In [10] it was argued that these can all be captured by
enlarging the DFT gauge group and imposing a DFT version of a trick used by Bergshoeff
and de-Roo [11] to find o/-corrections to the heterotic string.! They dubbed this idea the
“generalized Bergshoeff de-Roo identification”. The construction is somewhat formal since
it requires and infinite-dimensional gauge group, but nevertheless, the identification can be
solved recursively order-by-order in o/, leading to specific corrections to the DFT action

and transformation rules at each order. Unfortunately, the expressions found at order o’ 2

!This idea was previously used in [12] to find the heterotic o *-correction in DFT.



in [13] take a very complicated form and it was not possible to compare them to the known
corrections to the bosonic and heterotic string.

Here we will show that many of the terms in the o/* corrected DFT action of [13] are
zero due to Bianchi identities, or can be removed by field redefinitions. In this way we are
able to show that their expressions give rise to a cubic Riemann term, plus quartic terms
which we don’t determine, in the bosonic string case and no cubic terms in the heterotic
case. This is in precise agreement with the known structure of the o’ 2_correction to the
bosonic and heterotic string (in the NS sector) [14], including the coefficient of the cubic
Riemann term.?

We should note that the fact that the DFT formalism seems to correctly capture all
the corrections up to order o/ 2 does not mean it can capture all o/-corrections. In fact,
at order o/” all string theories have quartic Riemann terms with coefficient ¢ (3). These
cannot be accounted for by the construction of [10], due to the ((3) coefficient. In fact,
a careful analysis [15] shows that they cannot be captured by the DFT formalism at all
(at least not without some drastic modification of the formalism). Therefore it seems like
the DFT formalism can account for the all-order T-duality completion of the Riemann
squared correction at order o/ (which in turn, in the heterotic case, is needed for the
Green-Schwarz anomaly cancellation mechanism [16]), but not for other o/-corrections. It
may seem strange that DFT can account for any «'-corrections at all, but in our point
of view this is because of the existence of the generalized Bergshoeff-de Roo identification
which allows the o’-corrections connected with Riemann squared to be generated for free
from an uncorrected (extended) DFT action.

The rest of this note is organized as follows. In section 2 we give a short summary
of the elements of the flux formulation of DFT which we will need. Then we describe the
main steps in the calculations at order o’ % in section 3. We end with some conclusions.
Details of the calculations are provided in the appendix.

2 Elements of the O(D, D) covariant formulation

Here we will introduce the elements of the O(D, D) covariant formulation of DFT which
we will need. We will use the so-called flux formulation of [7, 17], see also [18] for a recent
review.

The basic object is the generalized vielbein which we parametrize as
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The two sets of vielbeins e®) for the metric Gy, transform independently as AF)e)

(2.1)

under two copies of the Lorentz-group. The standard supergravity fields are recovered by
fixing the gauge e(t) = e(=) = ¢, leaving only the diagonal copy of the Lorentz-group. The
dilaton ® is encoded in the generalized dilaton d defined as

e 2 =22/ G (2.2)

2The first correction to the type II string is at order o’




There are two constant metrics, the O(D, D) metric n8 and the generalized metric HAB,

which take the form
Nay 0 flab O
nAB = ( S _ﬁab> : 14AB — < S ﬁab) , (2.3)

where /) = (—1,1,...,1) is the D-dimensional Minkowski metric. The O(D, D)-metric is
used to raise/lower indices. From these we build the projection operators

PAB = % (n*? £ HAP) (2.4)

We denote projected indices by over/underlining them and use lower-case letters for non-
doubled indices, e.g.3
P!PFp — F*,  PABFp - Fo. (2.5)

We define the derivative with a “flat” index as
oa = ExMoyy, (2.6)

where the standard solution to the section condition is dyr = (0, O ).
The diffeomorphism and B-field gauge transformation invariant information in the
generalized vielbein is encoded in the basic generalized diffeomorphism scalars

Fapc =30aE5MEcyy,  Fa=0PEgMExy +204d. (2.7)

These “generalized fluxes” are manifestly O(D, D) invariant and they are the basic building
blocks from which to construct an O(D, D) invariant action. Indeed, the lowest order action
takes the form

S = / dX e R, (2.8)
where the generalized Ricci scalar is defined as
_ _ — 1 —
R = 40°F; — 2F F; + FQEF@C + gFmFabc . (2.9)
By gauge-fixing e(t) = e(©) = ¢ and imposing the standard solution to the section

condition,dy; = (0, dy,), one recovers the low-energy effective action of bosonic string the-
ory, or the NS sector of the heterotic string. Note that O(D, D) symmetry and generalized
diffeomorphism symmetry are manifest in this formulation, but the (doubled) Lorentz sym-
metry is not manifest and must be checked by hand.

A sequence of higher order o/-corrections to the action (2.8) can be derived using
the “generalized Bergshoeff-de Roo identification”, i.e. extending the duality group and

3In expressions where the indices are suppressed we will use the notation

Fﬁa)c = (P)a”(P:)s"(P)c" Foer, F;(xj;j([;) = (P)a”(PL)s" (Pe)c" Fper .



double Lorentz group and then identifying the new gauge vectors with the generalized spin
connection, as described in [13]. To the order we are interested in here it takes the form

S = / dX e (ROO 4 gROD 4 RO 4 @2ROD 4 bR 4 pREO) . (2.10)

Here R(%0) = R gives the lowest order action and a,b are parameters proportional to o’
The bosonic string result is recovered by taking a = b = —a’ and the heterotic string result
by taking a = —a’ and b = 0. At the first order in o/ we have [19]

_ _ - - 1 — —
ROV = — (9" = F) [(&" - F) (FaeaFy™)| = 5 RigpogR™™ + 0" F" Fapa Fy (2.11)
+ OO0 Fyy, — gF“changgiFgf + (F“bCFabd + 2F“bczvabd> FoopFYL,

while R(19) takes the same form, but with over and underlined indices exchanged. The first
term is a total derivative, while in the second term we have introduced the “generalized

Riemann tensor”?

Ribea

= 205 Fy,4 — FrFCq — 2Fia) o “Fy0 (2.12)
The quotation marks are there to emphasize that unlike the usual Riemann tensor this
object does not transform covariantly under double Lorentz transformations. Indeed, going

to the usual supergravity fields one finds

Ripog — % (RO g+ wPeobu )Y (2.13)
where we have defined the torsionful spin connections w®) = w + %H and R(7) is the cur-
vature of w(~). This o/-correction to the action agrees with the more complicated original
expression found in [7], which was shown there to reproduce the known «'-correction to
the bosonic and heterotic string.

Expressions for R(®2) R(LD and R(20) were found in [13], but the expressions are
very long indeed. Only R(2) and R are relevant since R(>9 is simply related to R(%:2)
by reversing all projections. They consist of about 280 and 190 terms respectively! For this
reason it is very difficult to compare the expressions of [13] with the known o/ ?_correction
to the bosonic and heterotic string. However, we will show here that many terms in these
complicated expressions vanish upon field redefinitions and using Bianchi identities so that
one eventually finds

1 = _
RO L REO L oFYy, RO~ —gnﬁ’@nﬁ R+ 0(FY). (2.14)

Since only R(%:2) enters in the heterotic case one finds no cubic Riemann terms in that case.
This is in agreement with scattering amplitude calculations [14]. For the bosonic string on
the other hand we get a cubic Riemann term from R again in agreement with the known
structure of the o/*-correction to the bosonic string, including the coefficient [14, 20].5 This

R

—eq» due to Bianchi identities.

4Reversing the projections we get the same object up to a sign, Rz =—
5The VHYV H R-terms can be removed by field redefinitions.



provides strong evidence that the expressions derived using the generalized Bergshoeff-de
Roo identification indeed reproduce also the o/ 2_corrections to the bosonic and heterotic
string.

Before we describe the calculations, we give a summary of the identities needed.

2.1 Useful identities

The following identities are used throughout the calculation:

e The section condition

dAY'Z =0. (2.15)
o Integration by parts
/ e 29,y 7 — — / ey (94— Fa) Z. (2.16)
o Commutation of derivatives
[04,08] = Fapc 0°. (2.17)
o Bianchi identities
40aFpop) = 3Fas" Fopie 20,4 Fp) = —(0° — F€)Fapc . (2.18)

« Equations of motion (terms involving these are removed by field redefinitions)®

_ _ — 1 —
40°F; — 2F°Fy + ng—cFﬂbc + gF%F“bC =0, (2.19)
O FL+ (02— FE)F, — Feleppb = 0. (2.20)

It follows from these that, up to equations of motion terms,

"R~

ea ~ OF?), "0 Ry, ~ O(F?), (2.21)

bede

or, equivalently, - B
00z F" ~ 950" F™4 + O(F?). (2.22)

3 Simplification of a’? terms

Here we will describe the main steps in our calculations. We will use the expressions given
n [13], but it is important to remember that their action differs from ours by an overall
factor of 2. Therefore, to get the result in our conventions, we have to multiply their
expressions by 2. The details are relegated to the appendix.

5The same equations with over and underlined indices exchanged also hold.



3.1 R©2) term

It is useful to split the complicated formula for R(*?) from [13] into a number of pieces.

Firstly we split it into Rg] 2 and ng/’m according to the dilaton dependence which is

encoded in the one index flux F4. Next we use a superscript in parenthesis to denote the

powers of F involved, dropping all terms of order F* and higher. Lastly, we use a subscript

to distinguish different types of terms mostly according to the projections involved.
Terms of second order in fields with no Fl4:

) _ ) _ o
[Rﬁgf)}( f__ %aﬁadF@agadFth + OO FL DOy, + %3b89Fdﬂ838QFEe ;

1 Bef ad 3. a i
+ GO F OO0, Fy  + SOPFL0g0 O, Fy, ;- (3.1)
Terms of third order in fields containing F4:
3 = . _ - _ _
[REI?’Q)}( ) 2R FUL OO g Py — 20RO 0,0,y Py — 20PF L 0 p0cFy . (3.2)
Terms of third order in fields not containing F4 and with the following projections (up to

the section condition) d(H)9H) (=) (=) p(=) p(+).

(3) 1 .- = 3 _ — 3 _ _
(0,2) _ __~acaeaf mdenf U aegeqgf mdepnf 2 ahacyicfg d
['Rﬂ; }1 = 25 0°OLF2EF deFefi 23 O°OLFACF deFefi—i— 2(“) 0°FL99.F ngch

— 20° 0L LT s, — POLFIL O g — 20°0L FASOT T 4 F

by +OOLF OB Py,

= 5 o 7 L g bef oo o F 3 i o7
cah cf d bof mede d rbef ad d raef d
+OFLIGF py Py — OPOLF O T 4 Py T Ll Oy Py o5 oy~ 50F 050 Pyl yF o

1oz = 3., o S
_ ~ af obde e f 1 2 af pade erf I f obde e o f v
SOLFMER LT gy Py — 0 F 0507 FT g, P — 200 FY0° T 1,05 Py,

+20L ™0 F 4,07 Fs ;- (3.3)

Terms of third order in fields not containing F4 and with the following projections (up to
the section condition) 999+ F(-) p(5) p(=).

® 1 = o L
(0,2) _ ‘1 oacqge feen [ daeafmcerm eadafmcerm fr
[R ]2 = SOOI Fe L Py 4+ 070%0T FeFe L Py 4+ 30°0°0T P e L Py

#

K J— = 3= Fo = _ _ =z 3.7 =
_ Z2H€Hc feer [ 2 gcqf pece » fm _ gcgepfeen o f 2 gcod i ce f I
2886@F Fengfg+288 F agFengfj 0°0°F &Fengfg—i—Q@aFd O=F Efng

PR _ - _ —_ 177 —_ —— —_
dafmeceqgern fm _rqgdgemcenfmn fro ~9dacpce ffm _agegdpceqfm fr
+486Fd 8F627ng 583Fd 8F€£—Ffﬂ+288Fd O=F ﬁfng 386Fd 8F5£—Ffﬁ

1 - - -
+ iafacFegaaF@iF?ef — 28b8;Ff@86Fg§iF

v+ 2000 )T B LR 4 PP RIS, P

— 2000 FP 00, Fo My, — 300 FoC0pFy, 05 F T L+ A FP 000, Fo M Fy , — 40" F 2050, F 7 2 Fy
+TORF 90, P L 0s Fy (3.4)
Terms of the same type as the previous ones, but which trivially cancel among themselves:

3 = - _ —
[RUA]Y = o Fec oL Py — 0 Fc0uFe Ly, + 200 00 Py

— QUL OGOy, + 200 F S LORF 0 Fy (3.5)



The only term with an F(*1) projection:

3 1 Tof o5 "
[R;gfq( . — S OFEL O, (3.6)

4 def

2
Using the identities from section 2 one finds that the quadratic terms, [Rﬁgf)}( )

)

reduce to cubic terms upon suitable field redefinitions and integration by parts

2 —
[Rﬁgf)}( '~ _otFhehFeg,o,F,

[ — 1 — —
o+ OFFLFP 0, Fy  + iabeﬁngAaAagFg

ef

1 bRt o <beAaAFd €f> + 3P0, (Fgy" Fyppe) + 0L o7 (deAaA 5 f>

+ PP P A0 Ry,  — 200", <FdeA8AFfbd> + 0L, (Fopad F)

— 200 F%L 9,0, (FCFfbc + chfFﬁb) +O(F*). (3.7)
While for the cubic terms one finds

0,213 0,213 0,276) 4 0213 3 ohacrifon pd. 4
[RED]™ ~ [RG }2 ~[RY }3 ~o(FY,  [RY L ~ SOMOFI9F gy gy + O(FY).
(3.8)
Finally, one finds that

R(02) _ [Rﬁgf)] (2) n {Rg)z)] (3) n {RE;){,Q)] i3) n [Rgf)]f) n {Rﬁg{,z)}f) + {Rig(,z)}f) +(’)(F4)

~O(FY). (3.9)

3.2 R®Y term

We do a similar splitting for the R

fields.
Terms of third order in fields without F4 with projections of the type 9(H)a(H)a(+)
AN AN ACHR

terms from [13]. There are no terms quadratic in

(1,1) () _4 € 7cce i b cce f
[R o L = O F 0. o0 el — 40P F*20: FY 0y L (3.10)

Terms of third order in fields without F4 with projections of the type (Ha(Ha=) .
FEORPE pH).

@ 1,5 = 1 3ot r50F S
(1,1) _ d ne de d e de b rbe e
R v L = SOLO TRy Fopy 4 SO0 0PIy P+ 07 0L, O L P

1dEEef? facmdeaemf f o€ pfde ad bbe of ef
+§876 FELO FEQF?ﬁ—H?fa F2e0°F dingﬁafa Fle€p FE@FQiJr(?fF Q(*) %Fng?ﬁ
_ — 1 _ _ = - =
b rrae ref of — of pade epf @ f pbde ge o f T
+ O2F Q(‘)gFef(‘) Ffﬁ+287F 050°F diFefi+6*F O°F diagFefi. (3.11)



Terms of the same projection, but with a contraction between the derivatives:

1,1 () 1 c C d 3 c C d 3 c cd h
RG] = OV OF LI g gy - T0MO0F IR By + DO P D Py,
adaCchda FAFy, + acabegha jox g T b0, Pl 4, Fan
acahFcfga N ZaﬁaéF@agﬂfiFaﬁ + 0oL F L9 Py
abadFdef O F 4 F et ;aCFCf 991F 0, Py, — aiF@aEFf aeO5Feg (3.12)
Using identities from section 2 one finds that
(3) o =
[Rgfl)} v T 3Rﬁbd Riges Ry + O(F*), (3.13)
@3 1 —
RG], ~ SRRy R+ O(FY), (3.14)
(1,1)13) 4
R } ~O(FY), (3.15)
so that finally
1,1 (3) 1,113 ) (3) . —
R _ [R} >]1 [R} >] [Rﬁg )] + O(F*) ~ —fRJ’d Ripe R4+ O(FY).
(3.16)

Recall that due to the difference in conventions compared to [13] the expression in our
conventions should be twice this.

4 Conclusions

We have shown that the o/ contributions to the DFT action (2.10) computed in [13]
simplify to (in our conventions)

R(O,Z) ~ R(2’0) ~ O(F4) ’ R(l’l) *R*bdeR*

bcefnﬁig +O(FY). (4.1)

Going to the usual supergravity description using (2.13) and retaining only terms involving
the Riemann tensor we get”

b ab
I = 6—2{) (R a—g RabcdRa bed + R bdeRbcechafd 4. ) ) (42)

This agrees precisely with the known expressions [14] up to cubic order in fields, both
for the bosonic string (a = b = —a’) and the heterotic string (a = —a/, b = 0), since
the Gauss-Bonnet combination appearing there is a total derivative at this order. But we
glossed over an important point here. The supergravity fields G and B are related to those
coming from DFT, G and B, by non-covariant field redefinitions [7]. In particular we have

"To get the signs right one must take into account the extra signs coming from the lower right block of
AB
7" in (2.3).



G =G+ dGY + GO plus higher order terms, where GW is quadratic in the spin
connection. However, this does not actually affect the result since these extra terms are
only there to make the end result covariant. To see explicitly that they go away we note
that under a variation of the metric the Riemann tensor changes as

OR;ji = —Vkv[i(st]l + V[V[Z@Gﬂk — 6Gm[iRj]mkl . (4.3)

It is easy to see from this that since G is quadratic in fields there are no o 2_terms cubic
in fields generated from terms with two G1)’s in the lowest order action. This leaves the
terms coming from the G?) correction in the lowest order action and those coming from
the G correction in the order o action. Since we ignore terms of fourth order or higher
the latter are just

/SRR = —20”°V, VGO RIM 4~ 40?V,VIGY R 4L (4.4)

where the ellipsis denotes higher order terms. Since they are proportional to the Ricci

tensor these terms can be canceled by a term in G®) of the form GZ(-JZ-) = V(ZV’“GE;,)C.

fact, such a term must be present in G2 since otherwise the action at order o/ 2 would not

In

be Lorentz invariant.

There is therefore little doubt that the expressions found in [13] will reproduce the
full o/*-corrections. In fact the latter has been shown to be uniquely fixed by requiring
invariance under T-duality on a circle [20]. However, to show this will require an enormous
amount of work due to the complicated form of the expressions in [13]. However, as we
have seen here, these expressions are highly redundant and we believe there should exist
much simpler expressions for the o %_correction to the DFT action. We plan to report on
this in the near future.
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A Calculation

Here we give the details of the calculations described in section 3. Throughout this section

we use “~” to mean equality up to total derivative terms, equation of motion terms and
terms quartic and higher in fields.

A1 R©2) term

2
We start with showing how to eliminate O(F?) contributions from [Rﬁy)}( : in (3.1).

Using the section condition we combine —%898@7 @aganggh + %8589F aﬁﬁgé)QFae s and
then integrate by parts and get o o

HLF 90Dy Fy, — O F00,Fy . (A.1)



The first term will combine with other terms from (3.1) and the second we keep for O(F?)
terms. We have three terms left from (3.1)

OO0, Fy, + %aéF@aEa;agFg + abeef 40 0 Fy s
~ P PR 9Py, + OPFS (adag + 2deAaA) s - (A.2)
We rename dummy indices and we have now only two terms left at order O(F?),
PFL 0.0 Fy,  + L OO0 Fy, (A.3)
We commute derivatives and use the Bianchi identity (2.18) in the second term to get

3beefac8 ab et + abeefad&ab et + 8beef8da R, o = abeef8d8 Rbdef . (A4

by using the section condition. The last remaining term can be shown to be zero at leading
order as follows

0 Ry of = —289638[2%@ = 2040, (aﬂ Fy+ ade]bd) + 20401071 F; — 20y ( ADaF g d) .

(A.5)
Collecting all the O(F3) terms generated so far we get the expression in (3.7). We now
want to simplify this and then compare with other terms of order O(F3). First we can
notice that

BOLEYL 900, (Fgg® Fepp) ~ 30°0,0MF" (B Fopp) ~ ababndbef (Fga"Fep) ~ 0,
(A.6)
due to the fact that >R ~ 0, (2.21). Then we use equations of motion to eliminate all the
terms with Fy, these are

— O F Q04 Fy , + OPFL 0 0y Fy,  + 0Py (Fopad Fy) — 200 F*L 040, (F ’ fb6> |

(A.7)
The first term is zero after integration by parts and using the equations of motion 9.F¢ =
O(F?). The other terms can be put into the following form

OF LS,y O Fp + 2070 L7 F,° P (A.8)

using the identities (2.18), (2.20) and (2.22). Now we have eliminated all F4 terms. We
split the remaining terms into types depending on their projections. First we can show
that the terms with projections 8(H9()9(-) F(-) F(=) F(=) vanish, these terms are

abeefad< F;, 20,5, f> + R ol (F ( Fy7,0°F;, f) + PP P20, R,
d ab b b b d b b d
~ LR Fy 00,y + OFELE, 7,004, ;+ OLFrL b0 R

~ OLFYS F_ gaR abe@de 320, R

bda dbe f bdef ~ (A.9)

~10 -



The terms with projection 89+ F(-) () F() also vanish,

200 F L0y (F* " 0aF ) + 20" F L0 F5aF

200 L F7 0 F ; + 2070 L 0P 5oy ~ —20%00" Pl 7 Fjg ~ 0.

(A.10)

Now we have 9 terms left, but these are not as easy to simplify,

OLFYL 10 0,0, F e T 5 abeefFf 200 I f+abeefad( Q&FM>

+ oo (F, ( Fygn0" Fy, f> + PP FY T 0 R, ; + 200, (FO 120, F 55
+ 200 FPL 9,0, ( Fygo 9 )+&Fd6fabFe WO Fe + 8be€fF daauab . (A1)

Using Bianchi identities and integration by parts we can combine and simplify these into
the following form

1 et g ad f0aF

— P9, R 0Pt - abeefFf 0w On 5, f—adebefF "Riger 5

ade

+ O F 0, Py O F — fabeefF 40Oy Fy, s (A.12)

Now we turn to the O(F?3) terms and then combine the result with these six terms we have

3
left. The [REI? ’2)}( ) terms in (3.2) are quite simple,

— 208 FIL O, Frp Fy — 200 F°L 00y F oy Py — 200 FPEL 9, F Y, ;0. F;
~ 20PFL Gy P 0o Fy — 208 FEL 9, F 0 F ~ 0. (A.13)
: 0,2)13) . . (0,2)13)
We have split the {R % } fields into four. First we show that the [R " }3 terms

in (3.5) actually vanish. The first two cancel after commutation of the derivatives. The
other three are

2agFaefadah aef h*28qFaef&5hFd€fF h+23qFaef3hFd€f& gh

~ 209 F L 9Dl s dgh—QagF“efE)Lé)hFdef NagFaefahR@ede (A.14)

OLFy), ~ 0PI R 0UF, ~ — 080T R Fy ~ fang“efR— Fy~0.

g rae.f
~ —OCF SRy daef daef daef

daef

The last step gives zero via integration by parts and using the equations of motion 02F; =
O(F?). Using integration by parts and commutation of derivatives we can reduce the

3
[Rﬁg}m}i : terms in (3.3) down to three

8‘&6fFfdeF “f Fege — afaC&deeFedche,+ 3 ohoeptisg g P Sih (A.15)

~ 2Fae Frry (050100 Fote — 0501 07 PP 4 3 phoeFetag, Py, Py ~ 7ahaCFCfga F g o
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3
Analogously the {Rﬁg}m};) terms in (3.4) become, after using integration by parts and

commutation of derivatives,

cof recen 1 fr  _ 1RACAHE L  f codpmcen f frn  _qadagemcenfm f
80°07 F agFengfﬁ 1688Ef@85Fe£7Ffif—|—1268Fd O=F E*Ffzf 80“0°F; 8F897ng

~ 80" P}, OcFe L Fy,  + 4070 FyeocF T 1Py +40%0T Peo" Fo L Py,

¢ ad 1 ce f f dof 1 ceqe f
+ A0 F0F T LF, |+ 4007 PO F

~ 2 nll C 1 f 1
8O°F;, 0°0:Fs L F el Py,

fee fef

~ 4090 ey L dgf peegep [
40°0" Fy0c k! Ly, ; +40°0) Preed® Fe L Py

d 1 ceaenf < 0d 1_ce f
~ )P0 Fe Ly, — 4050 F0cF L Fy,

~ A P00 F T LFy  — A0P0 0 FT L~ 40 0P FT L0 P~ 0. (ALL6)

Having simplified these let us combine them with the terms (A.12) from the previous cal-

3
culation. We have six terms left from O(F?) and just two terms from {Rﬁg}m}( ). We have

5 ad 1oy bef Toef o @ 1
— F*L 9, R o5 F g + iaéFbﬁFEd@agagFg op — OPRVLF " Reg. + 5

b ad
adi 2F Q%Ra j aQF a%

d
+ %F gaﬁFEef

_ 3 I 1 : —~
O P+ SOREF 100, F 1y Py~ — = PO YL 0, R%

L% ad b ad bpdbef . @ brpdbef 1 @
+5F LO;RY p0,F gy — FPLO, R 0P g — PRV Py "R ~ PR "R,

1, s o pad 1 Gef o pad & a @ a

— Q0P OR o — PO R O PRV 0y "y — OR3Py
— _ J— 1 — J— p— _ [— _

+ FPLOTRY 00 Py — S FPLO, R o 05 F e PR™LOGF}, Ty, — PRV OGFy, Frey

— _ N _ 1 — JE—
— PRy (9eF g + 20 F ) — S F*Lo,R™ 057 47

1

— P*L ;R 5 0:F " — 5 R

b1 db a
~ "R ﬁé%F Ega def

~ RcbiaaRbdeaE _ FbﬁagRadiagFa% _ aﬁRdbﬂagngE e

cda

J— N _ 1 J— J—
~ RVLOGRY g Fof ~ S RVIRY 05 F g~ 0. (A.17)

The last step is due to the Bianchi identity (2.18). This completes the proof that
REZ0) ~ O(FY).

A.2 RO term

3
We start with [R;}l)};)

integration by parts to simplify these as follows,

in (3.12). We can use only commutation of derivatives and

— OLOUFT o ey, — 00 F o BT (P~ 0ROl

_ = 1 _ —
~ —O°F),Fe! 0Ly, ~ —589}76@726 s fOLF g ~ 0. (A.18)
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Next we consider {R % } in (3.10). We have
1
gz—y‘meaLF O Foe — 40" Fo0,F! ;0 F;
NfEE@ T ff_ _pff b rcce
30°F 0cFy; (0eF! L = Rel L) — 40P Fo20:F 0y

8 iz pice 1 4 o7 peeeq T
N _gachgaaFfjaéchi — fachg&chefReigi

4
~ g(’avczfe‘fengcfagF aEFcce&Ffefne 2L

4R &Ff f achce 8EFEce RecceR R ec A.19
™ 3 et e ( *) 3 Tef T £ (A.19)

Lastly the [R}l)}( ) terms in (3.11) simplify to

T+ 0dFef afaLF dep Vg adaeFfdeafF +adFef O Fe denf pr

d e de
9 6fF ! &F F; dde — 92 eff dde

dde

d ef d d d
~ _58 F j0e0 Fe Py, — 2Feff8 OFFIELE,
(A.20)
To show that these two terms are actually proportional to R? it is simpler to work in
the opposite direction, by taking R*bdeRbce chaf 4 and showing that it is equal to the two
terms at this order of fields. We have

*R*bdeRaefRaid ~ %FE@Rﬁgingﬁ ~ _Fg@RﬁgiaaRbgﬁ

1 1
~ By Fy o A 5 Freals F)Ra? . (A.21)

Taking the first term here and integrating by parts we get

ae ab. ae ab ac d
a Fy oy Py 0" Rz bech PO RzL . (A.22)

The the second term here is

1

b ae cd
1 Frea® Fy 0T Rz (A.23)

1 = —
4Fbch 10 0! Rige? ~ =0 Fygg Fy " 0L R —

The second term here is precisely one of the two that we wanted, and we have two terms
unaccounted for:

1 — 1.5 _
— 5O Py Fy 0" Ragh — 0" Fy g Fy 0T Rzt (A.24)

We also have
Fbcda FY R ~ af Fy PO Rz ~ &F ea PP R — a By P 0 Rae.
(A. 25)

The second term here is the same as the second term we wanted, namely —2 sFy fadaEFf depl Fay,
However, we have three terms left over which have to cancel

8CF FaeabRJf fabF Fy

b. dj
bed bed Razl . (A.26)
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The second term becomes after, using the Bianchi identity,

1.3 o 1 aE 1 —
= O FyogFy 0 R ~ £ 0P Fya Fy 0L Riag™ + 0 FaF " 0L Ras. (A.27)

The second term here combines with the first term from (A.26),

1 o 1 _ 1 _ 1 _
— 5O Py Fy O Rt S0Py Fy 0 R~ S 0. FyFy ™ 0°Riae L+ S OcFa Fy "0 Rz

1 - 1 - 1 -
5 cFuFy™ OLF L o — S 0cFuFy ©PLo P - 5 0cFuFy CHILF e

1 _
~ gagFgFfeaEaiF%—

1
2

1

O FyFy™ 0 Rzt ~ — 5

FyO Fy™ 0% Rz ~ —i@ngﬁainﬁiwo. (A.28)
And we have two terms which are left,
iaéF@FﬁaiR%@ - %aéFM FeapOyR™Y ~ — EFM&F@&%@H + iFﬂagF%aéRﬁﬂ
~— %FM OPFz0°R™ ¢ iFw O FyasOR™L %FQ dRaae0“R*L
~ —%aEFbﬁR@R%ﬁzo, (A.29)

where we used the Bianchi identity 0 Fyzq = O(F 2.
Putting this together we have shown that

2_ - Fe 1_ 3% = 1_ % o
RID ~ — SRR, R eig+§7za@7zae SR AO(FY) = _ERE@R@ SR HO(FY).
B B B (A.30)
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