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1 Introduction

Baryon number (B) is an accidental global symmetry in the Standard Model (SM), which
explains the empirically severe experimental limits from the non-observation of the pro-
ton decay. Baryon number conservation is violated in the SM only at finite temperature
through non-perturbative instanton effects. However, B is expected to be violated in many
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well motivated ultraviolet (UV) extensions, e.g. grand unified theories (GUTs) naturally
violate B, given the fact that quarks and (anti)leptons are often placed in the same repre-
sentation(s) of the GUT gauge group. Finally, one of the big questions of particle physics
is the observed baryon asymmetry in the Universe: the overabundance of baryons over
antibaryons, quantified by the measured baryon-to-photon number density ratio [1]

ηobs
B = (6.20± 0.15)× 10−10 . (1.1)

A theoretical explanation of the dynamical generation of such a baryon asymmetry requires
the three Sakharov conditions [2] — (i) B − L violation (where L is the lepton number),
(ii) C and CP violation and (iii) a departure from thermal equilibrium — to be fulfilled,
where the first condition can be induced via B violation.

Proton decay modes, e.g. p→ e+π0, mediated via dimension-six operators, attributed
to |∆B| = 1 and |∆(B−L)| = 0 can directly probe very high scales, O(1016GeV). The sever-
ity of the experimental limits on the non-observation of the proton decay might lead to the
naïve expectation that dimension-nine |∆B| = 2 operators mediating neutron-antineutron
(n-n̄) oscillations must be even more suppressed when compared with single-nucleon decay
modes. However, this is true only when a single heavy new physics (NP) mass scale is
involved. In fact, the presence of more than one new scale beyond the SM might suppress
single-nucleon decay, while mediating n-n̄ oscillations at a level comparable to the current
experimental limits. Intriguingly, |∆B| = 2 observables such as n-n̄ oscillations or dinu-
cleon decays can be intimately connected to the baryon asymmetry of the Universe as these
processes violate B −L by two units (|∆(B −L)| = 2). Therefore, |∆B| = 2 processes like
n-n̄ oscillations can be used to verify and probe baryogenesis mechanisms through B (and
B − L) violation directly.1

During the recent years, on the one hand, lattice-QCD calculations have been im-
proved tremendously in computing the QCD matrix elements that connect amplitudes of
B-violating interactions to n-n̄ oscillations [17], on the other hand, the current experimen-
tal sensitivities and future prospects for the observation of n-n̄ oscillations have improved
significantly. Currently, the most stringent constraint from the bound n-n̄ oscillation is due
to the Super-Kamiokande experiment [18], which provides a limit on the n-n̄ oscillation
lifetime τSKn-n̄ ≥ 4.7 × 108 s. The current best limit from the free n-n̄ oscillation is due to
the ILL experiment [19] τ ILLn-n̄ ≥ 0.86 × 108 s. Experimental sensitivities from both, free
and bound n-n̄ oscillation times, are expected to be improved significantly in future experi-
ments. The DUNE experiment [20] is expected to achieve a sensitivity of τDUNE

n-n̄ ≥ 7×108 s
using 40Ar nuclei, while NNBAR [21] will exploit the Large Beam Port of the ESS facility
to search for free n-n̄ oscillations and is expected to achieve an impressive sensitivity of

1Note that in some early baryogenesis realisations in GUT theories [3–6] containing baryon number
violation, B−L is conserved while B+L is violated. In such scenarios any asymmetry generated below the
unification scale gets washed out by electroweak sphaleron interactions [7] and therefore a successful baryo-
genesis mechanism cannot be realised. Some alternatives include electroweak baryogenesis (which does not
work within the SM alone, but can potentially work in some SM extensions, see e.g. ref. [8]), leptogenesis [9]
connected to the seesaw mechanism [10–16] of neutrino masses, as well as high-scale baryogenesis. In this
work we will primarily be interested in the latter scenario.
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τNNBARn-n̄ ≥ 3×109 s. Given the current stringent limits and expected future improvements in
the experimental sensitivities for n-n̄ oscillations, a detailed study of the phenomenological
implications of such searches for baryogenesis mechanisms is timely and of high theoret-
ical importance, since n-n̄ oscillations are among very few observables which provide an
opportunity to directly probe baryogenesis mechanisms and to distinguish underlying NP
scenarios in synergy with direct searches at the high-energy frontier.

In this work, we explore the phenomenological possibility of probing baryogenesis using
n-n̄ oscillations and other complementary observables at the high-energy and high-intensity
frontiers. We commence with an effective field theory (EFT) framework for n-n̄ oscillations
and study the impact of the current and future experimental limits of the n-n̄ oscillation
lifetime on the viability of realising a successful baryogenesis mechanism. Taking into
account the latest lattice-QCD computations of the QCD matrix elements and relevant
renormalisation group (RG) running effects, we first present a general framework for esti-
mating the washout processes to derive model-independent limits on the viable scale for
baryogenesis. In order to accommodate the possibility of different hierarchies of NP within
the effective operator and an additional new source of CP violation, we explore then a
simplified set-up to perform a comprehensive phenomenological study of the viability of
baryogenesis above the electroweak scale in the context of an observable n-n̄ oscillation
lifetime. In particular, we focus on the B (and B − L) violating trilinear scalar coupling
topology for n-n̄ oscillation originally proposed in ref. [22]. In order to make our analysis
as general as possible, we consider a minimal simplified extension of the SM with diquark
scalar fields coupling to SM quark fields and a B (and B−L) violating trilinear scalar cou-
pling involving diquark scalar fields. Interestingly, a split scenario featuring some diquarks
at TeV scale and some around GUT scale leads to the interesting possibility of realising a
high-scale baryogenesis mechanism that can be readily embedded in many well motivated
UV realisations. Moreover, it can be probed using the synergy between n-n̄ oscillations and
direct searches at the colliders, where the scalar diquarks are subject to extensive searches.
The most stringent current constraints on the mass of the diquarks are already at the level
of a few TeV for order unity couplings and are expected to be improved significantly in
future searches. However, phenomenologically, diquark masses can generally also lie within
the range from a few TeV to the GUT scale.2 While there are a few instances of relevant
studies for baryogenesis for some comparable scenarios in the literature [27–29], in this
work we present for the first time a detailed and consistent prescription for the derivation
of applicable Boltzmann equations and study the different relevant cases of phenomeno-
logical interest. We include in a comprehensive manner all experimental and theoretical
constraints relevant for constraining the parameter space comprising n-n̄ oscillations, me-
son oscillations, dinucleon decay, LHC constraints, and limits from a colour preserving
vacuum. For instance, in contrast to n-n̄ oscillations, the dinucleon decay is particularly
relevant for TeV-scale masses of diquarks due to the stringent constraints on the couplings
of diquarks to first generation quarks from meson oscillations.

2Another alternative baryogenesis mechanism that can occur in a comparable set-up is post-sphaleron
baryogenesis, see e.g. [23–25]. We leave a detailed analysis of this realisation for future work [26].
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Our findings suggest that the complementarity between n-n̄ oscillations and LHC
searches for diquarks can probe the baryogenesis mechanism extensively, ruling out the pos-
sibility of successful baryogenesis in some scenarios. The current best limit from the Super-
Kamiokande experiment on the n-n̄ oscillation lifetime together with the latest CMS limits
exclude a large part of the viable parameter space for successful high-scale baryogenesis
where one of the diquarks features a GUT scale mass while another one lies in the collider-
accessible TeV scale range. However, we demonstrate that in case the future searches for
n-n̄ oscillations observe a signal, high-scale baryogenesis still remains a viable option to
generate the correct observed baryon asymmetry of the Universe. On the other hand, for a
scenario with all scalar diquark masses being in a similar mass range (. 105 TeV), the corre-
sponding washout processes prove to be too strong to create a sizeable baryon asymmetry.
Therefore, if the relevant scalar diquark fields are to be discovered by the LHC or future
collider searches to lie within a few tens of TeV, then the possibility of a viable baryogenesis
scenario featuring no additional particles at a high scale is completely ruled out. Baryo-
genesis scenarios with all diquarks having masses & 105 TeV can still work successfully,
however, remain unfortunately largely inaccessible by current and future experiments.

The paper is organised as follows: we introduce in section 2, an effective field theory
(EFT) framework for the operators mediating n-n̄ oscillations, which we then use to set
limits on the corresponding Wilson coefficients and consequently on NP mass scales and
couplings in the subsequent sections. In section 3, we first present a model-independent
analysis of the washout of a pre-existing baryon asymmetry due to the effective operators
mediating n-n̄ oscillations without introducing any new sources of CP violation. To ex-
plore the possibility of different hierarchies of NP within the effective operators and the
impact of a new source of CP violation, we present two possible topologies for realising
n-n̄ oscillations and study one of them using a simplified model set-up to perform a com-
prehensive phenomenological analysis. To conclude this section, we present the Boltzmann
equation framework that we used to study the evolution of the baryon asymmetry includ-
ing a detailed discussion of the CP violating decays and all relevant washout processes. In
section 4, we discuss all phenomenologically relevant constraints on such a set-up including
the limits from LHC and future collider searches, neutral meson oscillations, dinucleon
decay, colour preserving vacua and comment on some other observables. In section 5, we
combine all experimental constraints with the predictions for the final baryon asymmetry
for two distinct scenarios (classified by the hierarchies of the NP scales involved) to present
the parameter space for successful baryogenesis and discuss the implications for current
and future experiments. Finally, in section 6 we summarise and make concluding remarks.

2 Neutron-antineutron oscillations in effective field theory

Neutron-antineutron (n-n̄) oscillations violate baryon number by two units (|∆B| = 2), and
therefore must be induced by some NP beyond the SM in case of an observation. Given
any new physics model (e.g. the simplified model that we will consider in section 3), it is
convenient to match the new physics operators mediating n-n̄ oscillations to the effective
operators involving only light fields at the scale where the heavy NP is integrated out.
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The effect of the heavy new physics then can be encoded in the Wilson coefficients of the
effective operators, while the operators can be rundown to the scale of n-n̄ oscillation and
be identified with hadronic matrix elements, which are available from the lattice QCD
computations. Therefore, we proceed to discuss below the relevant EFT formalisms which
are of particular interest and provide an independent set of operators (and their relation
to other commonly used operator bases in the literature) and hadronic matrix elements,
which we then subsequently use for our simplified model.

At the QCD scale, the effective Lagrangian for n-n̄ oscillations (after integrating out
the heavy degrees of freedom) consists out of six SM quark fields with associated Wilson
coefficients. These operators correspond to scattering processes violating baryon number
at the temperature of interest for baryogenesis (up to the effects of RGE running of the
Wilson coefficients). Therefore, the relevant effective operators (and the associated Wilson
coefficients) are directly correlated with the washout processes which provide the possibil-
ity of probing the effectiveness of a given baryogenesis mechanism using the current and
expected future experimental limits on the n-n̄ oscillation lifetime. Since the n-n̄ oscilla-
tion operators will be important for our study, we briefly summarise the formalism for the
effective operator bases and the relevant RG running effects that we will later use for the
analysis to obtain the corresponding n-n̄ oscillation rates. In subsection 2.1, we first survey
one of the commonly used SU(3)c×U(1)EM invariant EFT bases, and comment on possible
connections of this basis with a SMEFT formalism. In subsection 2.2, we introduce the
operator basis that we use in the rest of this work. This basis is also SU(3)c × U(1)EM
invariant and additionally obeys a chiral SU(2)L ⊗ SU(2)R symmetry, which is commonly
used in the literature for lattice QCD computations of the relevant hadronic matrix ele-
ments. We also provide the relations between the operator basis in subsection 2.1 and the
one in subsection 2.2, and provide a list of independent hadronic matrix elements neces-
sary to compute the n-n̄ oscillation rate for a given NP model. Finally, in subsection 2.3,
we provide the prescription to compute the n-n̄ oscillation rate including the RG running
effects for the hadronic matrix elements.

2.1 SU(3)c × U(1)EM invariant basis

Note that an effective Lagrangian for n-n̄ oscillations relevant at scales below the elec-
troweak symmetry breaking must ensure that the relevant six-quark operators preserve
SU(3)c × U(1)EM. A complete basis of such six-quark operators of the form uudddd, rele-
vant for n-n̄ oscillations, can be constructed as follows [30–34]:

O1
χ1χ2χ3 = (uTi CPχ1uj)(dTkCPχ2dl)(dTmCPχ3dn)T SSS

{ij}{kl}{mn} ,

O2
χ1χ2χ3 = (uTi CPχ1dj)(uTkCPχ2dl)(dTmCPχ3dn)T SSS

{ij}{kl}{mn} ,

O3
χ1χ2χ3 = (uTi CPχ1dj)(uTkCPχ2dl)(dTmCPχ3dn)TAAS

[ij][kl]{mn} .

(2.1)

Hereby χ = {L,R} indicates the chirality with PL,R = 1
2(1∓γ5) being the chiral projection

operators. The contraction of the spinor indices are implicitly assumed in the parentheses,
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C is the charge-conjugation operator and the quark colour tensors are defined as

TSSS{ij}{kl}{mn} = εikmεjln + εjkmεiln + εilmεjkn + εjlmεikn,

TAAS[ij][kl]{mn} = εijmεkln + εijnεklm,
(2.2)

where { } denotes index symmetrisation and [ ] denotes index antisymmetrisation. Note
that the operators involving the diquark invariants of the vector form (qTCPχγµq) or tensor
form (qCPχσµνq) are not independent and can be expressed as linear combinations of the
operators given in eq. (2.1) by performing Fierz transformations on a relevant subset of
four fermions. Each of the operators in eq. (2.1) leads to eight distinct operators when
all possible combinations of chiralities are considered, leading to 24 operators in total.
However, imposing the relations due to antisymmetrisation

O1
χ1LR = O1

χ1RL , O2,3
LRχ3

= O2,3
RLχ3

, (2.3)

each of the operators in eq. (2.1) leads to only six distinct operators making the total
number of operators 18. Out of these 18 possible operators, four can further be eliminated
due to the relation

O2
χχχ′ −O1

χχχ′ = 3O3
χχχ′ , (2.4)

where χ, χ′ ∈ [L,R]. If the NP fields mediating the n-n̄ oscillations are much heavier than
the electroweak symmetry breaking scale, then the relevant effective six-quark operators
in the effective Lagrangian (valid above the electroweak symmetry breaking scale), after
integrating out the heavy NP degrees of freedom, must be SM gauge group invariant.

In passing we note that, since at the energy scale of n-n̄ oscillations the whole unbroken
SM gauge group need not to be respected a SU(3)c × U(1)EM invariant basis is the more
appropriate choice of EFT. In case the requirement of invariance under SU(2)L × U(1)Y
is imposed in addition to the SU(3)c × U(1)EM (e.g. in the case of a SMEFT [35–39]
formulation), then a subset of only four independent operators survive [33, 34], e.g.

OSM
1 = O1

RRR ,

OSM
2 = O2

RRR ,

OSM
3 = 2O3

LRR = (qTαi CPLq
β
j )(uTkCPRdl)(dTmCPRdn)εαβT SSS

{ij}{kl}{mn} ,

OSM
4 = 4O3

LLR = (qTαi CPLq
β
j )(qTγk CPLq

δ
l )(dTmCPRdn)εαβεγδTAAS

[ij][kl]{mn} ,

(2.5)

where q denotes SU(2)L quark doublet and the Greek indices α, β, γ, δ = 1, 2.

2.2 SU(3)c × U(1)EM invariant basis with chiral SU(2)L ⊗ SU(2)R symmetry

Most of the recent robust calculations for the hadronic matrix elements are performed
using lattice-QCD simulations including nonzero quark masses and matched to massless
chiral perturbation theory in which the chiral symmetry SU(2)L⊗SU(2)R is approximately
preserved [40]. Since the relevant latest hadronic matrix elements are readily available in
an SU(3)C ×U(1)EM invariant chiral basis with a SU(2)L⊗SU(2)R symmetry [17], we find
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it convenient to work with it for the numerical evaluation of the n-n̄ oscillation rates. In
this framework the n-n̄ oscillations can be described by the effective Lagrangian

Ln̄-neff =
∑

i=1,2,3,5

(
Ci(µ)Oi(µ) + CPi (µ)OPi (µ)

)
+ h.c., (2.6)

where Ci are the Wilson coefficients corresponding to the set of effective operators Oi
defined as [17]:

O1 =−4O3
RRR = (ψCPRiτ2ψ)(ψCPRiτ2ψ)(ψCPRiτ2τ+ψ)TAAS ,

O2 =−4O3
LRR = (ψCPLiτ2ψ)(ψCPRiτ2ψ)(ψCPRiτ2τ+ψ)TAAS ,

O3 =−4O3
LLR = (ψCPLiτ2ψ)(ψCPLiτ2ψ)(ψCPRiτ2τ+ψ)TAAS ,

O4 =−4
5O

1
RRR−

16
5 O

2
RRR

=
[
(ψCPRiτ2τ3ψ)(ψCPRiτ2τ3ψ)− 1

5(ψCPRiτ2τaψ)(ψCPRiτ2τaψ)
]

(ψCPRiτ2τ+ψ)TSSS ,

O5 =O1
RLL = (ψCPRiτ2τ−ψ)(ψCPLiτ2τ+ψ)(ψCPLiτ2τ+ψ)TSSS , (2.7)

O6 =−4O2
RLL = (ψCPRiτ2τ3ψ)(ψCPLiτ2τ3ψ)(ψCPLiτ2τ+ψ)TSSS ,

O7 =−4
3O

1
LLR−

8
3O

2
LLR

=
[
(ψCPLiτ2τ3ψ)(ψCPLiτ2τ3ψ)− 1

3(ψCPLiτ2τaψ)(ψCPLiτ2τaψ)
]

(ψCPRiτ2τ+ψ)TSSS ,

which are related to the remaining seven independent operators OPi by a parity transfor-
mation, accounting for total 14 independent operators. Here ψ corresponds to the isospin
doublet ψ = (u, d)T , C corresponds to the charge conjugation operator, τa denote the Pauli
matrices for i = 1, 2, 3 and τ± = 1

2(τ1± iτ2). We have dropped the colour subscripts of the
fields and the colour tensors TAAS(SSS) for brevity. In eq. (2.7), the first equalities pro-
vides the relation between the new basis and the SU(3)c ×U(1)EM invariant basis defined
in eq. (2.1).

As an useful remark, we note that many of the NP models (e.g. the simplified model
considered in this work in section 3), introduce two additional operators Õ1 and Õ3, given
by [40]

Õ1 = −4/3(O2
RRR −O1

RRR) = (ψCPRiτ2τaψ)(ψCPRiτ2τaψ)(ψCPRiτ2τ+ψ)TSSS ,
Õ3 = −4/3(O2

LLR −O1
LLR) = (ψCPLiτ2τaψ)(ψCPLiτ2τaψ)(ψCPRiτ2τ+ψ)TSSS .

(2.8)

However, these operators are not independent with respect to the complete basis of 14
operators included in eq. (2.7). In fact, in dimension D = 4, the operators Õ1 and Õ3
are equal to O1 and O3, respectively, by Fierz relations. However, such Fierz relations are
broken by dimensional regularisation, therefore, in addition to the operators in eq. (2.7)
one must also include O1−Õ1 and O3−Õ3 as evanescent operators (vanishing for D = 4)
for a complete treatment of the EFT at an arbitrary D. Alternatively, one can choose to
include Õ1 and Õ3 explicitly as a part of the physical basis of EFT operators.

To compute the n-n̄ oscillation rate, we will be interested in the hadronic matrix
elements associated with the operators defined in eq. (2.7). To this end, we note that the
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isospin symmetry approximation further reduces the number of the relevant n-n̄ matrix
elements, making the matrix elements associated with three of the operators in eq. (2.7)
redundant [17], as follows. The hadronic matrix element for O4 vanishes

〈n̄|O4|n〉 = 0 , (2.9)

in the approximate limit mu = md (even after including the isospin breaking effects this
matrix element is suppressed by powers of (mu −md)/ΛQCD). On the other hand, in the
presence of isospin symmetry the hadronic matrix elements for O6 and O7 are related to
that of O5 by

〈n̄|O5|n〉 = 〈n̄|O6|n〉 = −3
2〈n̄|O7|n〉 . (2.10)

Therefore, for all practical purposes we work with in total four independent hadronic
matrix elements to3 Here we will not try to construct a complete SMEFT invariant basis
but we will rather assume that the SMEFT basis is matched to the SU(3)C × U(1)EM
invariant EFT introducing the relevant electroweak vacuum expectation values (VEVs).
O1, O2, O3, O5. Given an explicit model, we first compute the relevant Wilson coefficients
corresponding to a given operator in eq. (2.7) at the scale where the heavy NP is integrated
out and then identify the operator with one of the four independent hadronic matrix
elements, which are subject to running effects between the scale where the lattice-QCD
nucleon matrix elements are available in the MS scheme and the heavy NP scale where the
effective Lagrangian is defined, as discussed in the following subsection.

2.3 n-n̄ oscillation lifetime and RG running effects

The transition rate for the n-n̄ oscillations, τ−1
n-n̄, is related to the Lagrangian in eq. (2.6)

via
τ−1
n-n̄ = 〈n̄|Ln̄-neff |n〉 =

∣∣ ∑
i=1,2,3,5

(Ci(µ)Mi(µ) + CPi (µ)MP
i (µ))

∣∣. (2.11)

Here,Mi(µ) is the transition matrix element for operator Oi(µ), withMi(µ) ≡ 〈n̄|Oi|n〉.
These can be determined using lattice-QCD techniques as described in [17], which also
provides the relevant numerical values for Mi(µ) in the MS scheme at µ = 2GeV. Since
we are interested in the case where the NP scale is much higher as compared to the n-n̄
scale, i.e. where the relevant Wilson coefficients are defined at some heavy NP scale, the
running of the operators between the different scales needs to be considered.

Hence, to evolve the transition nuclear matrix elements from the relevant lattice-QCD
scale to some heavy NP scale, it is necessary to perform the RG running of the EFT
operators, for which we follow the prescription of [40], as detailed below. The running of
the operators from the lattice scale µ0 to a higher scale µNP , to first order in the strong
coupling constant αS , is described by the following equation [40]:

Oi(λ) = U ′i(µNP , µ0)Oi(µ0) ≡ UNf=6
i (µNP ,mt)U

Nf=5
i (mt,mb)U

Nf=4
i (mb, µ0)Oi(µ0),

(2.12)
3Note that the operators O1, O2, and O3 are SU(2)L ×U(1)Y singlets, while O5 (and the related O6,7)

is an SU(3)C × U(1)EM singlet, but is not invariant under SU(2)L and therefore can arise from a higher
dimensional electroweak symmetry invariant operator from the SMEFT [35–39] point of view.
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O γ
(0)
i γ

(1)
i r

(0)
i M(µ = 2 GeV) [GeV6]

O1 4 335/3− 34Nf/9 101/30 + 8/15 ln 2 −46(13)(2)× 10−5

O2 −4 91/3− 26Nf/9 −31/6 + 88/15 ln 2 95(15)(7)× 10−5

O3 0 64− 10Nf/3 −9/10 + 16/5 ln 2 −50(10)(6)× 10−5

O5 24 238− 14Nf 49/10− 24/5 ln 2 −1.06(45)(15)× 10−5

Õ1 4 797/3− 118Nf/9 −109/30 + 8/15 ln 2 —
Õ3 0 218− 38Nf/3 −79/10 + 16/5 ln 2 —

Table 1. The one- and two-loop running factors γ(0)
i and γ(1)

i , and the one-loop matching factor
r

(0)
i , for each operator Oi taken from [17] and [40].

for mc < µ0 < mb, where

U
Nf
i (q1,q2)=

(
αS(q2)
αS(q1)

)−γ0
i /8πβ0

[
1−δq2,µ0r

(0)
i

αS(µ0)
4π +

(
β1γ

(0)
i 4π

2β2
0
−γ

(1)
i

2β0

)
αS(q2)−αS(q1)

16π2

]
,

(2.13)
up to O(α2

s). Here, q1 and q2 are two mass scales, with q2 < q1, and Nf is the number of
quark flavours with masses above q2. Furthermore, the one- and two-loop MS anomalous
dimensions γ(0)

i and γ
(1)
i , and the one-loop Landau gauge Regularisation-Independent-

Momentum (RI-MOM) matching factor r(0)
i , are summarised in table 1. The scale-depen-

dent strong coupling constant αS is given, at 4-loop order, by [41]

αS(q) = 1
β0L

− 1
β3

0L
2β1 lnL+ 1

β3
0L

3

[
β2

1
β2

0
(ln2 L− lnL− 1) + β2

β0

]

+ 1
β4

0L
4

[
β3

1
β3

0

(
− ln3 L+ 5

2 ln2 L+ 2 lnL− 1
2

)
− 3β1β2

β2
0

lnL− β3
2β0

]
,

(2.14)

where
L = ln

(
q2e1/(β0αS(qα))

q2
α

)
, (2.15)

with qα corresponding to the scale (with Nf quarks on-shell) at which αS is known. The
relevant β-functions in eqs. (2.13) and (2.14) are given by

β0 = 33− 2Nf

12π ,

β1 = 153− 19Nf

24π2 ,

β2 =
77139− 15099Nf + 325N2

f

3456π3 ,

β3 ≈
29243− 6946.3Nf + 405.089N2

f + 1.49931N3
f

256π4 .

(2.16)

Using eq. (2.12), we obtain the matrix elements for each operator at a scale µNP, by
running them from the scale µ0 = 2GeV to the corresponding scale of NP µNP. For a
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Figure 1. Running of the relevant transition matrix elements with respect to the NP scale µNP.
The dashed line represents the central value, and the width shows the errors added in quadrature
as tabulated in table 1.

ready reference, we show the relevant running for the matrix elements as a function of the
NP scale in figure 1.

Neglecting the next-to-next-to-leading-order perturbative renormalisation effects the
n-n̄ transition rate can be expressed in terms of the nuclear matrix element at the scale
µ = 2GeV as [17]

τ−1
n-n̄ = 1.52×1018

∣∣∣∣∣∣
∑

i=1,2,3,5

Mi(µ)
(GeV)6

[(
Ci(µ)

(TeV)−5

)
−
(
CPi (µ)
(TeV)−5

)]∣∣∣∣∣∣
µ=µNP

×10−9 s−1 (2.17)

= 1.52×1018

∣∣∣∣∣∣
∑

i=1,2,3,5
U ′i(µ,2GeV)Mi(2GeV)

(GeV)6

[(
Ci(µ)

(TeV)−5

)
−
(
CPi (µ)
(TeV)−5

)]∣∣∣∣∣∣
µ=µNP

×10−9 s−1,

whereMi(2GeV) is given in table 1 and U ′i(µ, 2GeV) in eq. 2.12. The relevant Wilson coef-
ficients are obtained by computing the NP diagrams in a BSM scenario and integrating out
the heavy NP degrees of freedom to match Oi(µ) and consequentlyMi(µ) ≡ 〈n̄|Oi(µ)|n〉.
Notice that eq. (2.17) is expressed to make all the relative fractions involved dimension-
less. It is then straightforward to notice that for C(P )

i ∼ Λ−5, with Λ being the relevant
NP scale, and taking Mi(µ) ∼ O(10−4) we obtain a n-n̄ oscillation rate within the reach
of current and future generation of n-n̄ oscillation experiments (τn-n̄ & O(few) × 108 s)
for Λ . O(100)TeV. We further notice from figure 1 that the matrix elements run rather
moderately as a function of the NP scale keeping the order of magnitude for the matrix
elements the same across the relevant mass scales. Therefore, to demonstrate the model-
independent implications of an observable rate of n-n̄ oscillations for baryogenesis in the
following section, we will take O1 as a working example with the corresponding matrix
elementM1 shown in figure 1. As a numerical example, considering the operator O1, we
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take the Wilson coefficient to be C1(µ) ∼ Λ−5
1 , expressed in terms of a NP scale Λ1, such

that for the most stringent current experimental limit from the Super-Kamiokande exper-
iment [18] τSKn-n̄ ≥ 4.7× 108 s, we obtain Λ1 ≥ 7.04× 105 GeV. For the NNBAR experiment
with an expected improved future sensitivity by an order of magnitude τNNBARn-n̄ ≥ 3× 109

s we find the limit Λ1 ≥ 1.02× 106 GeV.

3 Implications for baryogenesis

In the following, we want to study first the model-independent consequences of a possible
observation of n-n̄ oscillations on baryogenesis models. In the second part, we then study
in particular two baryogenesis scenarios of our simplified model set-up that can lead to
successful baryogenesis and confront the resulting parameter space with current and future
constraints.

In order to generate a baryon asymmetry the three Sakharov conditions (i) B violation,
(ii) CP violation and (iii) departure from thermal equilibrium have to be fulfilled. While the
first condition is in principle fulfilled within the SM via the so-called sphaleron processes,
the latter two are not sufficiently realised: the known CP violation in the SM is not enough
and as the Higgs is too heavy in order to establish a first order phase transition, either
new physics has to alter the potential or another mechanism is required such as out-of-
equilibrium decays of heavy particles.

We will study in the following the consequences of baryon number violating operators
relevant for n-n̄ oscillations on baryogenesis. Hereby, it is important to keep in mind that
above the electroweak phase transition, electroweak sphalerons, violating B+L, are highly
active such that only

η̇sph∆(B−L) = η̇sph∆B − η̇
sph
∆L = 0 , (3.1)

is conserved. This means that when we study baryon number violating interactions, it is
convenient to consider the change in B − L

η̇∆(B−L) = η̇sph∆(B−L) + η̇new∆(B−L) = η̇new∆B , (3.2)

where ηX ≡ nX/neqγ describes the number density of quantity X normalised to the photon
density nγ , and where η̇new∆B tracks the yield of the new baryon-number-violating inter-
actions. Below around T ∼ 1012 GeV, when the electroweak sphalerons reach chemical
equilibrium, one can easily use the known relation [42]

η∆(B−L) = 79
28η∆B , (3.3)

in order to solve for the final baryon asymmetry with the collision term η̇new∆B arising from
new baryon number violating interactions

79
28 η̇∆B = η̇new∆B (η∆B) . (3.4)
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3.1 Model-independent implications of n-n̄ oscillation on baryogenesis models

In section 2, we have introduced the |∆B| = 2 effective operators that are relevant for n-n̄
oscillations. When the NP mediators are much heavier than the external quarks in the
effective operators, then at any temperature below their mass scale, the operators relevant
for n-n̄ oscillations correspond to potential washout processes for any baryon asymmetry
generated at a comparably higher scale. This mechanism can be either due to some CP-
violating decay of any of the unstable mediators or due to a completely disconnected
mechanism. Hence, an observed rate of n-n̄ oscillations at experiments directly indicate
washout effects in a model-independent way. In order to estimate their corresponding
washout effect on baryogenesis scenarios, we will use the generalised Boltzmann equation
formalism as described in ref. [43]. Hereby, we consistently account for the running of
relevant Wilson coefficients of the n-n̄ operators between the scale of n-n̄ oscillations and
the scale at which the washout effects are of relevance.

The generic form of a Boltzmann equation for a particle species X is given by (see,
e.g. refs. [44–46])

zHnγ
dηX
dz

= −
∑
a,i,j,···

[Xa · · · ↔ ij · · · ], (3.5)

where

[Xa · · · ↔ ij · · · ] = nXna · · ·
neq
Xn

eq
a · · ·

γeq(Xa · · · → ij · · · )− ninj · · ·
neq
i n

eq
j · · ·

γeq (ij · · · → Xa · · · ) ,

(3.6)
where γeq is the scattering density in thermal equilibrium. The Hubble rate H is given by

H(T ) =
1.66√g∗
mPl

T 2 , (3.7)

with the effective number of degrees of freedom g∗ ∼ 107 in the SM and the photon density

neqγ = 2ζ(3)
π2 T 3 . (3.8)

We can use this formalism to describe the evolution of baryon number over time. With the
baryon number density per comoving photon defined as

η∆B =
∑
u,d

1
3[(ηuL − ηūL) + (ηdL − ηd̄L) + (ηūc − ηuc) + (ηd̄c − ηdc)] (3.9)

where the sum over (u, d) indicates the number of generations in thermal equilibrium.
Note that we have used the left-handed fields along with the CP conjugates of the right
handed fields, which are left handed antiparticles, (ψc)L = (ψR)c. In the 2-component
Weyl spinor notation, the 4-component Dirac spinors are then given e.g. as u = (uL, ūc)T .
We summarise the notation for the SM fields in table 2. In thermal equilibrium, we can
relate the number densities with their corresponding chemical potentials

nq − nq̄ = gqµqT
2

6 , (3.10)
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Field SU(3)C SU(2)L U(1)Y

Q ≡ (u, d)TL 3 2 1
6

(uc)L 3 1 −2
3

(dc)L 3 1 1
3

L ≡ (ν, e)TL 1 2 −1
2

(ec)L 1 1 1

H ≡ (h+, h0)T 1 2 1
2

Table 2. Notation for the representations of the SM fermion and Higgs fields.

with gq = 3 being the number of degrees of freedom of the quarks. The chemical potential
of a particle species a is related to the chemical potential of its antiparticle via µa = −µā.
When the SM Yukawa interactions and the sphalerons are in equilibrium, all relevant
chemical potentials can be expressed in terms of a single chemical potential µuL [42],

µH = 4
21µ = −12

7 µuL , µūc = 5
63µ = −5

7µuL , µd̄c = −19
63µ = 19

7 µuL , (3.11)

with µ = ∑
e,µ,τ µeL .

Given the relations among the chemical potentials, we can express the baryon number
density in terms of the chemical potential of a single species (which we choose to be uL)

η∆B =
∑
u,d

gqT
2

6nγ
(µuL + µdL + µūc + µd̄c) = π2

ζ(3)
µuL
T

. (3.12)

In the following, we want to consider the n-n̄ oscillation operator O1, which corresponds
to O1 in eq. (2.7). We want to address the question, what the observation of n-n̄ oscillations
would imply for the washout of a baryon asymmetry that might have been created at a
higher scale. We can write down the Boltzmann equation for the baryon-to-photon density
by differentiating eq. (3.9)

zHnγ
dη∆B
d z

= 1
3zHnγ

[
d (ηd̄c − ηdc)

d z
+ d (ηūc − ηuc)

d z
+ d (ηuL − ηūL)

d z
+
d (ηdL − ηd̄L)

d z

]
.

(3.13)
In the presence of the operator O1 the evolution of the abundance for ūc, d̄c, and their
antiparticles can be obtained by writing the corresponding Boltzmann equation for a given
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Figure 2. Left: ratio between the width of the interaction induced by operator O1 and the Hubble
rate H, as a function of temperature T . When this fraction is greater than 1, as indicated by
shaded areas, the interaction is assumed to provide a strong washout of baryon asymmetry. Right:
temperature at which the fraction ΓW /H falls below 1 (purple), and a more accurate limit on the
out-of-equilibrium temperature coming from eq. (3.18) (green). In blue and orange shaded areas,
the experimental reach of the LHC and different n-n̄ experiments are shown, respectively.

species abundance; e.g.

zHnγ
d ηd̄c

d z
= −

[
ūcd̄cd̄c ↔ ucdcdc

]
+ (other possible permutations)

= −
(

nūcn
2
d̄c

neq
ūc

(neq
d̄c

)2 −
nucn

2
dc

nequc(n
eq
dc)2

)
γeq(ūcd̄cd̄c → ucdcdc) + · · ·

= −66µuL
7T γeq(ūcd̄cd̄c → ucdcdc) + · · ·

= −66 ζ(3)
7π2 η∆Bγ

eq(ūcd̄cd̄c → ucdcdc) + · · · , (3.14)

where we have assumed three generations of fermions and a universal chemical potential
among the three quark generations. The ellipsis denote other possible permutations of
3↔ 3 and 2↔ 4 processes. In order to arrive at the last line, we used the relation derived
in eq. (3.12). Similarly, one can write down the evolution for ūc, uc and dc. On the other
hand, in the absence of any B−L violating interactions involving uL and dL we can make
the simplifying approximation d

dz (ηuL − ηūL) ' 0 and d
dz (ηdL − ηd̄L) ' 0. The evolution of

baryon number density per comoving photon η∆B is then given by

zHnγ
d η∆B
d z

= −4
3
[
ūcd̄cd̄c ↔ ucdcdc

]
+ · · ·

= −88 ζ(3)
7π2 η∆Bγ

eq(ūcd̄cd̄c → ucdcdc) + · · · . (3.15)

Following the prescription of [43, 47, 48] for the computation of thermal rate γeq, the
total washout effect from the operator O1 can be expressed as

zHnγ
d η∆B
d z

= −5
3

2200ζ(3)T 14

7π11Λ10 η∆B ≡ −c
T 14

Λ10 η∆B , (3.16)

where we have only included the 3 ↔ 3 scatterings since the 2 ↔ 4 scatterings are phase
space suppressed. Therefore, the washout process corresponding to the n-n̄ operator O1
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with an interaction rate ΓO1
W can be regarded to be roughly in equilibrium if

ΓO1
W

H
≡ c

nγH

T 14

Λ10 = c′
ΛPl
Λ

(
T

Λ

)9
& 1, (3.17)

where c′ = π2c/(ζ(3) 3.3√g∗) ≈ 0.3 c and the Planck scale ΛPl = 1.2×1019 GeV. The Hubble
parameter H and the equilibrium photon density nγ are defined in eqs. (3.7) and (3.8),
respectively. A more accurate limit on the out-of-equilibrium temperature of the washout
process for a successful baryogenesis scenario can be obtained by integrating eq. (3.16) to
be given by

T̂ '
[
9T 9 ln

(
drec
ηobsB

)
+ v9

] 1
9

, (3.18)

where drec ≈ 1/27 is the dilution factor due to entropy conservation when the Universe cools
down from the temperature of baryon asymmetry generation T = T ∗ to the recombination
temperature T = T0, such that η∆B(T0) = gs(T0)/gs(T∗) η∆B(T∗) ' 1/27 η∆B(T∗), where
gs is a function of temperature that maintains the relation s = (2π2/45)gsT 3, where s is
the entropy density. Furthermore, v is the vacuum expectation value of the SM Higgs, and
T is the out-of-equilibrium temperature in eq. (3.17) is given by

T = Λ
( 1
c′

Λ
ΛPl

) 1
9
. (3.19)

In figure 2 left panel, we show the washout parameter ΓW /H as a function of temperature
for the operator O1 for different values of the EFT scale Λ corresponding to the integrated
out heavy new physics. As discussed in section 2, the most stringent limits from n-n̄
oscillations constrain the NP scale to Λ ≥ 2.4× 105 GeV. If in the future, n-n̄ oscillations
would be observed and not involve any CP-violating interactions, they would imply a strong
washout down to the scale indicated by the corresponding shaded area in figure 2 (left). The
implication, on the other hand, becomes more visible in figure 2 (right), where we show the
out-of-equilibrium temperature for the washout processes corresponding to O1 as a function
of the EFT scale Λ using eq. (3.17) and eq. (3.18). An observation of n-n̄ oscillations around
the scale of Λ ≈ 106 GeV, would imply a strong washout down to T̂ ≈ 1.4×105 GeV. Under
the assumption of a pre-existing, generated asymmetry at a high scale, this would imply
such a strong washout, that an asymmetry must be generated below this scale and above
the current exclusion limits from the LHC. Hence, such a discovery would hint towards
new physics possibly observable at future colliders, e.g. a 100 TeV collider.

Taking a completely agnostic approach towards the origin or flavour of the pre-existing
asymmetry, as n-n̄ oscillations strictly involve first generation quarks only, the conclusions
regarding the washout effects derived in this section are strictly applicable only in the
case of a pre-existing baron asymmetry in the first generation quarks. In order to ensure
the complete washout of a pre-existing asymmetry in all flavours, a complementary mea-
surement of new physics arising from the operator in question involving second or third
generation quarks (e.g. LHC searches, meson oscillations etc.) is needed besides an obser-
vation of n-n̄ oscillation, in the absence of flavour transitions. In order to study such a
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Figure 3. The two basic tree-level topologies realising a dimension nine n-n̄ operator. Internal
lines can be fermions (solid), or scalars / vectors (crossed wavy lines).

situation and its interplay with other experimental constraints, we will explore a simplified
model (low-scale scenario) later in more detail. However, this is a conservative assumption
as one would expect washout also in other flavours via spectator effects, as for instance
discussed for leptogenesis in [49].

3.2 A comprehensive Boltzmann equation formalism for baryogenesis in mod-
els featuring n-n̄ oscillations

While in the previous analysis, we have assumed that the new operator does not include
any source of CP violation and only contributes to the washout of the baryon asymmetry,
we want to refine our analysis by analysing a simplified set-up that allows for (a) including
a source of CP violation in the NP operator and (b) different mass hierarchies within this
operator. The latter is in particular important, as the EFT approach presented in the
previous subsection provides only an estimate of the washout within the validity of the
EFT, i.e. when the masses of all new degrees of freedom are below its cutoff scale.

For these purposes, we are interested in the most generic topologies that such an
operator could lead to. At tree level, the realisations for the short-range n-n̄ operators
given in eq. (2.7) can be classified in two possible topologies, which are shown in figure 3.
In general, for topology I the internal mediators between vertices x1−x2 and x3−x4 can be
either vector or scalar fields, while the particle between x2−x3 must be a fermionic field. On
the other hand, for topology II, all the internal mediators can be either scalars or vectors,
with all possible combinations. Topology I has been explored in the context of many
specific model realisations in refs. [50–68] and recently, has been extensively discussed in
the context of baryogenesis using a minimal simplified model set-up in [69]. The main focus
of the remaining of this work will be on topology II, which has been proposed originally
in ref. [22] and has been realised in many UV complete and TeV scale models [23–25, 27–
29, 70–73].4 While there are a few instances of studies for this scenario in the context
of baryogenesis [27–29], a phenomenologically comprehensive and in depth exploration of
the viable parameter space for baryogenesis still remained desirable. To this end, in this
work, we explore both high- and low-scale (pre-electroweak) baryogenesis in the context
of an observable n-n̄ oscillation lifetime while taking into account constraints from various

4See also refs. [74–76] for some other exotic effective operator scenarios for n-n̄ oscillation.
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Field SU(3)C SU(2)L U(1)Y Q = T3L + Y B

Xdd 6 or 3 1 +2
3 +2

3 −2
3

Xuu 6 or 3 1 −4
3 −4

3 −2
3

Xud 6 or 3 1 −1
3 −1

3 −2
3

Table 3. Transformation properties and charges under the SM gauge group of the relevant scalar
diquark fields.

complementary observables at the high-energy and high-intensity frontiers. Having already
discussed the general EFT approach, in the following sections we consider a very general
minimal set-up extending the SM with diquark scalar fields coupling to SM quark fields
and a B (and B − L) violating trilinear scalar coupling involving only the diquark scalar
fields. This simplified set-up not only allows us to develop an in-depth prescription for
the Boltzmann equation formalism but also makes the analysis very general and directly
applicable to TeV scale and UV complete model realisations of topology II.

3.2.1 The trilinear topology of n-n̄ oscillations: a simplified model with scalar
diquarks

We consider the following Lagrangian including scalar diquarks given by

LII = fddij Xddd̄
c
i d̄
c
j + fuuij Xuuūci ū

c
j +

fudij√
2
Xud(ūci d̄cj + ūcj d̄

c
i )

+λξXddXudXud + λ̃ ξXuuXddXdd + h.c. , (3.20)

where ξ is a neutral complex scalar field, whose real part acquires a VEV and can be written
as ξ = v′+ 1√

2(S+ iχ), with v′ � v. Hereby, χ corresponds to the relevant goldstone mode
associated with the symmetry broken by the VEV and is absorbed by the associated gauge
boson. Before the B − L symmetry is broken by ξ acquiring a VEV, the new fields Xdd,
Xuu, and Xud can be assigned consistently a baryon number B = −2/3 (and lepton number
L = 0), while ξ carries B − L = 2. However, once B − L is broken, the trilinear term will
violate baryon number in units of |∆B| = 2, as can be seen in the n-n̄ oscillation diagram
in figure 4. The transformation properties of the scalar diquark fields under the SM gauge
group and their associated baryon number charges are summarised in table 3. Note that
depending on the colour of the scalar diquarks, the associated Yukawa couplings are either
symmetric or antisymmetric with respect to the flavour indices. If Xdd (Xuu) transforms as
a colour triplet under SU(3)c then fddij (fuuij ) must be flavour antisymmetric. On the other
hand, if Xdd (Xuu) transforms as a colour sextet then fddij (fuuij ) must be flavour symmetric.

Another point worth noting is that given the transformations of the scalar diquark field
Xud under the SM gauge group it can also couple to a left-handed quark doublet: a colour
sextet (triplet) Xud can couple to flavour (anti-)symmetric pair of QQ. However, in the
presence of Xud couplings to both left- and right-handed quark pairs simultaneously, large
chiral enhancements can be induced for flavour changing neutral current (FCNC) ∆F = 2
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d̄c dc

uc

d̄c dc

ūc
Xdd

Xud Xud

n n̄

Figure 4. Diagram for n-n̄ oscillation with the diquark fields Xdd and Xud descibed in the text.

operators (e.g. neutral meson mixing) and ∆F = 1 operators (e.g b→ sγ), which in spite
of being loop suppressed (with Xud in the loop) can lead to overwhelming rates disfavoured
by the current stringent constraints from experiments for an Xud mass within the collider
reach. Therefore, we assume that the couplings of Xud to a QQ pair is negligible even if it
gets generated due to radiative corrections.

Furthermore, if Xud and Xuu transform as colour triplets, they can potentially also
have leptoquark couplings. Leptoquark couplings when present simultaneously with di-
quark couplings lead to rapid proton decay for low Xud (Xuu) masses in the absence of any
symmetry forbidding one of the couplings [77–79]. In this work, we mainly focus on the
case of colour sextet diquarks, implying flavour symmetric couplings fddij (fuuij ) and absence
of any leptoquark couplings (thereby avoiding any possibility of rapid proton decay). In-
terestingly, one can directly associate the Lagrangian in eq. (3.20) assuming colour-sextet
scalar diquarks with a UV complete realisation as discussed in detail in appendix A.

As we will later see in more detail, with respect to realising baryogenesis in this model,
two regimes are of particular interest:

High-scale scenario. Here, we assume mXuu � mXdd � mXud , in particular with
mXud ∼ O(TeV) and mXdd ∼ O(1013−14GeV), while mXuu ∼ mGUT. Such a choice is nat-
urally motivated by UV completions such as SO(10) to obtain gauge coupling unification,
as discussed in appendix A.

Low-scale scenario. We assume mXuu � mXdd > mXud is maintained but with both
mXud and mXdd not too far from ∼ O(TeV), while again mXuu ∼ mGUT. Even though
such a scenario might require a more complex UV completion in order to address the
colour vacuum stability as will be discussed in section 4, this phenomenological scenario is
particularly interesting as it allows for the possibility of two diquark states accessible at the
LHC and future colliders. Also a number of ongoing low-energy experiments searching for
baryon-number-violating processes e.g. dinucleon decay, are particularly relevant for such
a scenario as will be discussed in section 4.
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For both scenarios above, the Lagrangian relevant for n-n̄ oscillations can be written
in an effective form (at a scale below mXdd) as

Leff =
fddij λv

′

m2
Xdd

X∗udX
∗
udd̄

c
i d̄
c
j +

fudij√
2
Xud(ūci d̄cj + ūcj d̄

c
i ), (3.21)

where we have integrated out the heavy degrees of freedom. The relevant tree-level n-n̄ os-
cillation operator generated can be identified with O2

RRR, defined in eq. (2.1). The effective
Lagrangian for n-n̄ oscillation can be expressed, cf. eqs. (2.7) and (2.8), as

Ln̄-neff = (fud11 )2
fdd11 λv

′

m2
Xdd

m4
Xud

O2
RRR = (fud11 )2

fdd11 λv
′

4m2
Xdd

m4
Xud

(
O4 + 3

5Õ1

)

≈ 3 (fud11 )2
fdd11 λv

′

20m2
Xdd

m4
Xud

Õ1 (3.22)

where the last approximation follows from eq. (2.9) up to the uncertainties. For the numer-
ical evaluation of the transition matrix element for operator Õ1(µ), defined as M̃1(µ) ≡
〈n̄|Õ1|n〉 we take M̃1(2GeV) = M1(2GeV) given in table 1 and to obtain the running
effects in eq. (2.12), we use the one- and two-loop MS anomalous dimensions γ(0)

i and
γ

(1)
i , and the one-loop Landau gauge Regularisation-Independent-Momentum (RI-MOM)

matching factor r(0)
i , for Õ1 given in table 1.

In a realistic model, such as the one discussed above, in addition to the n-n̄ oscillation
operator Õ1, a number of additional baryon number violating two-to-two scattering pro-
cesses with NP particles (e.g. scalar diquark states) as the external states can give rise to
washout processes. These processes become in particular important, when the new degrees
of freedom feature a large hiearchy not captured within the validity of the previous EFT
analysis. Therefore, taking the simplified model discussed above as a working example,
we will explore the different relevant processes for CP violation and baryon asymmetry
washout in full detail, accounting for different mass hierarchies of new physics.

3.2.2 Derivation of the Boltzmann equation framework

We assume that the baryon asymmetry is generated by the |∆B| = 2 decay Xdd → X∗udX
∗
ud

(once ξ acquires a VEV) with the CP violation generated by the interference with loop
diagrams involving the baryon number conserving decay mode Xdd → dcdc, as shown in
figure 5. It is straightforward to check that there is no vertex correction due to charge
conservation. Only the self-energy diagram is present and it necessitates the introduction
of an additional heavier Xdd state, which we denote by X ′dd. To make our analysis as
general as possible we consider the minimal relevant interactions of X ′dd as

LX′
dd

= f ′ddij X
′
ddd̄

c
i d̄
c
j + λ′ξX ′ddXudXud + h.c. . (3.23)

The CP parameter ε is defined as [27]

ε≡ Γ(Xdd→X∗udX
∗
ud)−Γ(X∗dd→XudXud)
Γtot(Xdd)

= 1
π
Im

Tr
[
(f ′dd)†fdd

]
(λ′v′)∗(λv′)

|λv′|2

( x

1−x

)
r ,

(3.24)
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X∗
dd

Xud

Xud

X∗dd

Xud

Xud

X ′∗dd

dc

d̄c

Figure 5. Tree-level and one-loop diagrams leading to a baryon asymmetry via Xdd decays.

where Γ(Xdd → X∗udX
∗
ud) and Γ(X∗dd → XudXud) are the decay widths for the decays

Xdd → X∗udX
∗
ud and X∗dd → XudXud, respectively. The total decay width Γtot(Xdd) =

Γ(Xdd → X∗udX
∗
ud) + Γ(Xdd → dcdc), x is defined as x ≡ m2

Xdd
/m2

X′
dd

and r denotes the
branching ratio for the decay mode Xdd → X∗udX

∗
ud.

Note that an alternative baryogenesis mechanism that can occur in this construction
is the post-sphaleron baryogenesis via the decay of S contained in ξ [23–25] with S being
a real scalar field that can decay into six quarks (S → ūcd̄cūcd̄cd̄cd̄c) and antiquarks
(S → ucdcucdcdcdc) leading to |∆B| = 2. In such a scenario the relevant loop diagrams
inducing the CP violation through interference employs W± loops,5 which necessitates
flavour violation linking the CP violation directly to CKM mixing. In this scenario, it is
therefore important to include loop contributions to n-n̄ oscillations in addition to tree
level ones. A detailed discussion of the post-sphaleron baryogenesis mechanism is beyond
the scope of the current work and will be presented elsewhere [26].

Particle dynamics in the early Universe can be described using Boltzmann equa-
tions [44–46], which is well studied in particular for leptogenesis scenarios with right-handed
Majorana neutrinos. However, there are some crucial differences in this scenario, which
must be taken into account to obtain a consistent description that we will discuss in the
following.

For our simplified construction, cf. eq. (3.6), the relevant processes for baryogenesis
can be classified as

|∆B|=0: D0
d=[Xdd↔dcdc]

S0
s=[Xddd̄c

dc←→
s
Xudūc] S0

ta=[Xddu
c dc←→

t
dcXud] S0

tb
=[XddX

∗
ud

dc←→
t
dcūc]

|∆B|=2: Dd=[Xdd↔X∗udX∗ud] (3.25)

Xs=[X∗udX∗ud
Xdd←−→
s

dcdc] Xt=[X∗udd̄c
Xdd←−→
t
Xudd

c]

Ss=[XddXud
X∗ud←−→
s

d̄cūc] Sta=[Xddu
c X∗ud←−→

t
X∗udd̄

c] Stb=[Xddd
c X∗ud←−→

t
X∗udū

c],

where the Feynman diagrams for the processes are shown in figures 6 and 7. Now to
compare this scenario with respect to the standard leptogenesis scenario let us note some
key observations.

5Note that this specific scenario is a particular realisation of an exception of the Nanopoulos-Weinberg
theorem [80, 81], as has already been discussed in detail in refs. [23, 25, 82].
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D0
d S0

s

Xdd

dc

d̄c

d̄c

Xdd

ūc

Xud

dc

S0
ta S0

tb

uc

Xdd

Xud

dc

d̄c

X∗
ud

Xdd

uc

dc

d̄c

Figure 6. Baryon number conserving scattering and decay diagrams that involve the diquarks Xud

and Xdd. The diagrams are here associated with the naming convention used in the Boltzmann
equation, where the reverse processes are also employed.

Dd Ss

Xdd

X∗
ud

X∗
ud

Xdd

Xud

ūc

dc

X∗
ud

Xs Xt

X∗
ud

X∗
ud

dc

d̄c

Xdd

X∗
ud

d̄c

Xud

dc

Xdd

Sta Stb
Xdd

uc

X∗
ud

d̄c

Xud

Xdd

dc

X∗
ud

ūc

Xud

Figure 7. Baryon number violating scattering and decay diagrams that involve the diquarks Xud

and Xdd. The diagrams are here associated with the naming convention used in the Boltzmann
equation, where the reverse processes are also employed.
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Figure 8. Comparison of the different branching ratios of the Xdd decay modes.

Since Xdd can decay into either a pair of Xud or dc (after the B − L breaking), one
should include the change of the number density for both of these species in the Boltzmann
equation for the baryon asymmetry. However, baryon number is only violated in the
interaction Xdd ↔ X∗udX

∗
ud and X∗dd ↔ XudXud. This can seen from the assignments in

table 3. Note, that in our analysis, we do not consider the possibility of a three-body
decay involving this interaction term under the assumption that mξ � mXdd , leading to
an early decoupling of such a decay mode. Due to this baryon number assignment, the
decay modes Xdd ↔ dcdc and X∗dd ↔ d̄cd̄c do not violate B, cf. eq. (3.20). Therefore, in
view of the thermal decoupling of Xdd(X∗dd), the decay of a pair of Xdd and X∗dd can be
considered as the analog of the heavy out-of-equilibrium decay of the Majorana fermion
in the standard leptogenesis scenario. However, in contrast to the standard scenario, it
is important to note that in presence of a CP asymmetry between Xdd ↔ X∗udX

∗
ud and

X∗dd ↔ XudXud indirectly a CP asymmetry between Xdd ↔ dcdc and X∗dd ↔ d̄cd̄c is
generated. This is caused under the assumption of CPT invariance such that the total
decay widths for Xdd and X∗dd must be the same, as illustrated in figure 8. We note that
being coloured particles, Xdd and X∗dd can also be produced via two gluons gg → XddX

∗
dd,

however such a mode is highly phase space suppressed at a temperature below mXdd (while
the inverse process is doubly Boltzmann suppressed by mXdd/T ), which is the interesting
temperature for the out-of-equilibrium decay of X(∗)

dd and its implications for baryogenesis.
The process gg → XddX

∗
dd generally dominates for z < 1, as is also demonstrated in [29].

However, both the decay and the scattering washout channels dominate over any effect of
gg → XddX

∗
dd for z > 1, making this gauge scattering mode inconsequential for the final

baryon asymmetry and mainly relevant for bringing the Xdd density to equilibrium at the
onset of baryogenesis. The reason for this is that the rate of gg → XddX

∗
dd falls off much

earlier than the washout via scatterings, due to the different dependence on the number
density of Xdd for T < mXdd . The gauge scattering features two Xdd external legs, while
the washout processes we consider have at most a single Xdd external leg. Therefore, we
do not include gauge scatterings in our analysis.6

6This is in contrast to the type-II seesaw leptogenesis scenario, where the gauge interactions, e.g.
W aW a → ∆∆∗, constitute one of the dominant interaction channels [83]. On the other hand, from
eq. (3.27), it can be seen that a number of different scatterings affect the number density of X(∗)

dd in ad-
dition to the gauge scatterings, which are more dominant than the gauge interactions gg → XddX

∗
dd for

z & 1. Physically, the sub-dominance of gauge scatterings for the regime of baryon asymmetry generation
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In the existing literature, both Xdd ↔ X∗udX
∗
ud and Xdd ↔ dcdc modes have been taken

into account to some extent, either while calculating the CP violation (see e.g. [27] and
the references therein), or by including the Boltzmann equations for both Xud and dc [29],
however, a comprehensive formalism for the relevant Boltzmann equation for the baryon
asymmetry is lacking. Here, we present a prescription for obtaining a consistent equation
for the evolution of baryon asymmetry.

Based on the Boltzmann equations introduced in section 3.1, in particular eqs. (3.5)
and (3.6) and the definition of the baryon asymmetry in eq. (3.13), we can evaluate the final
baryon asymmetry at the electroweak scale. After X(∗)

dd goes out of equilibrium, bothXdd ↔
X∗udX

∗
ud and Xdd ↔ dcdc modes (together with their CP conjugate modes) can generate

a B − L asymmetry and their interplay dictates the final baryon asymmetry. First, we
discuss the necessary equations that describe the evolution of the out-of-equilibrium decay.

The number density of Xdd(X∗dd) per photon density at a given temperature can be
obtained by solving the relevant Boltzmann equation given by

2zH(z)nγ(z)
dη

X
(∗)
dd

dz
= −D0

d−D0
d−Dd−Dd−S0

s −S0
s −Ss−Ss−S0

t −S0
t −St−St , (3.26)

where we note that the additional factor of 2 on the left-hand side accounts for the aver-
aging factor since the right-hand side includes both Xdd and X∗dd mediated processes. The
different decay and scattering rates are defined in eqs. (3.6) and (3.25), such that eq. (3.26)
can further be expressed in terms of the rates in the following form

zH(z)nγ(z)
dη

X
(∗)
dd

dz
= −

ηX(∗)
dd

ηeq
X

(∗)
dd

− 1

(γX(∗)
dd

D + γS0
s

+ γSs + γS0
ta

+ γSta + γS0
tb

+ γStb

)
.

(3.27)
The details of the prescription for obtaining the relevant density of scatterings γ ≡ γeq is
outlined in appendix C.

We would like to note that even if we initially assume ηXdd = ηX∗
dd
, an asymmetry can

be induced between ηX∗
dd

and ηXdd through the back reaction of ηX∗
ud
ηX∗

ud
and ηXudηXud

(dcdc and d̄cd̄c) because of the asymmetry generated between ηXud and ηX∗
ud

(dc and d̄c).
Since during baryogenesis we are interested in the out-of-equilibrium decay of X(∗)

dd , such
a secondary asymmetry is relevant for the Boltzmann equation for η

X
(∗)
dd

. However, such a
contribution can be easily checked to be proportional to the generated baryon asymmetry
η∆B which is very small compared to η

X
(∗)
dd

for the temperature where the baryon asymme-
try is dynamically generated (i.e. before the baryon asymmetry freezes out) cf. figures 15
and 18. Therefore, we find it a good approximation to take ηXdd = ηX∗

dd
through out

the whole regime of baryogenesis. Now, to derive the Boltzmann equation for the baryon
asymmetry one must consistently define the net baryon number density per photon density
in terms of the number densities of the relevant species carrying SM baryon number that

can be understood by noticing the fact that the gauge scattering mode is subject to double phase space
suppression of the number density of Xdd(X∗dd) for T < mXdd , as compared to scatterings like S(0)

s(t), which
are only singly phase space suppressed with respect to Xdd.
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Figure 9. A timeline (not to scale) that describes the chronology of events in the baryogenesis mech-
anism discussed in this section. Before the time of B−L symmetry breaking (T & v′), the particle
species Xdd, Xud, uc and dc, as well as their corresponding antiparticles, are in thermal and chemical
equilibrium. When X(∗)

dd has decayed away (T . mXdd
), an asymmetry has emerged in the relative

number densities of Xud, uc, dc with their antiparticles. In the subsequent decay of X(∗)
ud (at T .

mXud
), this asymmetry is translated into a baryon asymmetry of the Universe stored in SM quarks.

are in thermal equilibrium at the time of baryogenesis, see eq. (3.9). Again, we neglect
d
dz (ηuL − ηūL) and d

dz (ηdL − ηd̄L) as uL and dL do not participate in any baryon-number-
violating interactions generating or washing out the baryon asymmetry. Therefore, they
can be decoupled from the Boltzmann equation.7 Note that we include the number density
of Xud in our definition of the final baryon asymmetry, which is valid in the regime when
Xud is in thermal equilibrium. We have checked that this assumption holds for all scenarios
presented in this work. Once Xud goes out of equilibrium one would need to write a new
Boltzmann equation with the baryon number expressed in terms of only the SM quarks,
taking into account the decay modes of Xud. Since we are interested in the case where
mXdd > mXud � mu,d, the baryon asymmetry generation freezes out by z ≡ mXdd/T ∼
O(10). Therefore, for our analysis it will suffice to consider eq. (3.28) with the assumption
that the asymmetry generated in Xud −X∗ud gets redistributed into SM quarks once Xud

goes out of equilibrium (at a temperature below the baryon asymmetry generation freeze
out), see figure 9 for an illustration. Hence, we arrive at the following definition,

η∆B ≡
∑
u,d

1
3[(ηūc − ηuc) + (ηd̄c − ηdc) + 2(ηX∗

ud
− ηXud)] , (3.28)

where the sum over (u, d) is over the number N of generations in thermal equilibrium.
Then the Boltzmann equation for the baryon asymmetry per photon density can be

obtained by differentiating eq. (3.28):

zHnγ
dη∆B
d z

= 1
3zHnγ

[
N
d (ηd̄c − ηdc)

d z
+N

d (ηūc − ηuc)
d z

+ 2
d (ηX∗

ud
− ηXud)
d z

]
. (3.29)

Now each term on the right-hand side of eq. (3.29) corresponds to the standard Boltzmann
equation describing the evolution of the number density of a particle species, (cf. eqs. (3.5)

7We note that even though uL and dL do not participate in any baryon number violating interactions,
they can indirectly affect the baryon asymmetry through spectator processes, see e.g. [84–86] for some
relevant discussion. However, in the interest of simplification of analysis we ignore such secondary effects.
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and (3.6)) and is given by

zH(z)nγ(z)
dηX∗

ud

dz
= Dd −Xs −Xt − Ss + St + S0

s + S0
ta − S

0
tb
, (3.30)

zH(z)nγ(z)dηXud
dz

= Dd −Xs +Xt − Ss + St + S0
s + S0

ta − S
0
tb
, (3.31)

zH(z)nγ(z)dηd̄c
dz

= D0
d +Xs −Xt + Ss + Sta − Stb − S

0
s + S0

t , (3.32)

zH(z)nγ(z)dηd
c

dz
= D0

d +Xs +Xt + Ss + Sta − Stb − S0
s + S0

t , (3.33)

zH(z)nγ(z)dηūc
dz

= Ss − Sta + Stb + S0
s − S0

ta + S0
tb
, (3.34)

zH(z)nγ(z)dηu
c

dz
= Ss − Sta + Stb + S0

s − S0
ta + S0

tb
, (3.35)

where S0
t = S0

ta+S0
tb
and St = Sta+Stb . Using eqs. (3.30)–(3.35) we can rewrite eq. (3.29) as

3zHnγ
dη∆B
d z

= 2(Dd −Dd) +N(D0
d −D

0
d)− (N + 2)

[
(Xs −Xs) + 2Xt

]
(3.36)

+2(N + 1)
[
(Ss − Ss) + (St − St)

]
− 2

[
(S0
s − S

0
s) + (S0

t − S
0
t )
]
.

Now let us discuss the relevant terms in some detail before employing the chemical
potential relations relating all the species in chemical equilibrium. The contributions
to the baryon asymmetry originating from decays can be parameterised in terms of the
relevant decay rates as

Dd = γXddD

(r + ε

2

)
ηXdd
ηeqXdd

−
(
r − ε

2

)ηX∗
ud

2

ηeqXud
2

 ,
D0
d = γXddD

[(
1− r − ε

2

)
ηXdd
ηeqXdd

−
(

1− r + ε

2

)
ηdc

2

ηeqdc
2

]
,

Dd = γ
X∗dd
D

(r − ε

2

)
ηXdd
ηeqXdd

−
(
r + ε

2

)
ηXud

2

ηeqXud
2

 ,
D0
d = γ

X∗dd
D

(1− r + ε

2

)
ηXdd
ηeqXdd

−
(

1− r − ε

2

)
ηd̄c

2

ηeq
d̄c

2

 , (3.37)

where r corresponds to the average branching fraction for the Xdd → X∗udX
∗
ud and

X∗dd → XudXud decay modes and ε corresponds to average B asymmetry generated in
the decay of a Xdd(X∗dd), as defined in eq. (3.24). We summarise the branching ratios in
table 4. We further assume CPT invariance implying the same total decay width for Xdd

and X∗dd, and define γXddD = γ
X∗dd
D ≡ γtotD /2, where γtotD is the total decay rate of the Xdd

and X∗dd pair. Using the above parametrisation we obtain

(Dd −Dd) = γtotD

2

ε+ ε
ηXdd
ηeqXdd

− r

ηX∗ud2

ηeqXud
2 −

ηXud
2

ηeqXud
2

 ,
(D0

d −D0
d) = γtotD

2

−ε− εηXdd
ηeqXdd

− (1− r)

ηd̄c2

ηeq
d̄c

2 −
ηdc

2

ηeq
d̄c

2

 . (3.38)
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Process Branching fraction
Xdd → X∗udX

∗
ud r + ε

2

Xdd → dcdc 1− (r + ε
2)

X∗dd → XudXud r − ε
2

X∗dd → d̄cd̄c 1− (r − ε
2)

Table 4. Two-body decay modes of Xdd and the corresponding branching fractions.

Similar to the standard leptogenesis scenario, it is important to note that the s-channel
scattering mediated by Xdd must be calculated subtracting the CP-violating contribution
due to the on-shell contributions in order to avoid double-counting, as this effect is already
taken into account by successive (inverse) decays, X∗udX∗ud ↔ Xdd ↔ dcdc (real intermediate
state subtraction). Therefore, we can write

Xs =
(
ηX∗

ud

ηeq
Xud

)2[
γX∗

ud
X∗

ud
→dcdc−γon-shell

X∗
ud
X∗

ud
→dcdc

]
−
(
ηdc

ηeq
dc

)2[
γdcdc→X∗

ud
X∗

ud
−γon-shell

dcdc→X∗
ud
X∗

ud

]
,

Xs =
(
ηXud

ηeq
Xud

)2[
γXudXud→d̄cd̄c−γon-shell

XudXud→d̄cd̄c

]
−

(
ηd̄c

ηeq
d̄c

)2[
γd̄cd̄c→XudXud

−γon-shell
d̄cd̄c→XudXud

]
, (3.39)

with

γon-shellX∗
ud
X∗
ud
→dcdc = γX∗

ud
X∗
ud
→Xdd Br(Xdd → dcdc) '

(
r − r2 − ε

2

)
γtotD

2 ,

γon-shelldcdc→X∗
ud
X∗
ud

= γdcdc→Xdd Br(Xdd → X∗udX
∗
ud) '

(
r − r2 + ε

2

)
γtotD

2 ,

γon-shell
XudXud→d̄cd̄c

= γXudXud→X∗dd Br(X
∗
dd → d̄cd̄c) '

(
r − r2 + ε

2

)
γtotD

2 ,

γon-shell
d̄cd̄c→XudXud

= γd̄cd̄c→X∗
dd
Br(X∗dd → XudXud) '

(
r − r2 − ε

2

)
γtotD

2 , (3.40)

where the rightmost equalities are valid up to O(ε). Therefore, after simplifying eq. (3.39)
we obtain

Xs −Xs = εγtotD +
(
γXs − (r − r2)γ

tot
D

2

)(ηX∗ud2

ηeqXud
2 −

ηXud
2

ηeqXud
2

)
+
(
ηd̄c

2

ηeq
d̄c

2 −
ηdc

2

ηeq
d̄c

2

) . (3.41)

Correspondingly, we obtain for the t-channel scattering mediated by Xdd

Xt = γXt

(
ηX∗

ud

ηeqXud

ηd̄c

ηeq
d̄c

− ηXud
ηeqXud

ηdc

ηeq
d̄c

)
, (3.42)

for the scattering processes with Xdd in the initial or final state (for s- and t-channel,

– 26 –



J
H
E
P
1
1
(
2
0
2
1
)
1
8
5

respectively),

(Ss − Ss) = γSs

[(
ηXdd
ηeqXdd

ηXud
ηeqXud

− ηd̄c

ηeq
d̄c

ηūc

ηeq
ūc

)
−
(
ηXdd
ηeqXdd

ηX∗
ud

ηeqXud
− ηdc

ηeq
d̄c

ηuc

ηeq
ūc

)]
, (3.43)

(St − St) = (Sta − Sta) + (Stb − Stb)

= γSta

[(
ηXdd
ηeqXdd

ηuc

ηeq
ūc
−
ηX∗

ud

ηeqXud

ηd̄c

ηeq
d̄c

)
−
(
ηXdd
ηeqXdd

ηūc

ηeq
ūc
− ηXud
ηeqXud

ηdc

ηeq
d̄c

)]

+γStb

[(
ηXdd
ηeqXdd

ηdc

ηeq
d̄c

−
ηX∗

ud

ηeqXud

ηūc

ηeq
ūc

)
−
(
ηXdd
ηeqXdd

ηd̄c

ηeq
d̄c

− ηXud
ηeqXud

ηuc

ηeq
ūc

)]
, (3.44)

and similarly for the quark mediated scatterings,

(S0
s − S

0
s) = γS0

s

[(
ηXdd
ηeqXdd

ηd̄c

ηeq
d̄c

− ηXud
ηeqXud

ηūc

ηeq
ūc

)
−
(
ηXdd
ηeqXdd

ηdc

ηeq
d̄c

−
ηX∗

ud

ηeqXud

ηuc

ηeq
ūc

)]
, (3.45)

(S0
t − S

0
t ) = (S0

ta − S
0
ta) + (S0

tb
− S0

tb
)

= γS0
ta

[
ηXdd
ηeqXdd

(
ηuc

ηeq
ūc
− ηūc

ηeq
ūc

)
+
(
ηX∗

ud

ηeqXud

ηd̄c

ηeq
d̄c

− ηXud
ηeqXud

ηdc

ηeq
d̄c

)]

+γS0
tb

[
ηXdd
ηeqXdd

(
ηX∗

ud

ηeqXud
− ηXud
ηeqXud

)
+
(
ηd̄c

ηeq
d̄c

ηuc

ηeq
ūc
− ηdc

ηeq
d̄c

ηūc

ηeq
ūc

)]
. (3.46)

In order to solve the Boltzmann equations, we have to translate the different baryon den-
sities on the right-hand side of eq. (3.29) into η∆B. As a first step, we express the ratio of
the number density over the equilibrium density for different species in terms of the chem-
ical potentials, recalling the approximation ηa/η

eq
a ≈ eµa/T ≈ 1 + µa

T for a species a with
chemical potential µa. Then we can express all relevant chemical potentials in terms of
the chemical potential of a single species (following a similar prescription as in section 3.1)
under the assumption that in addition to the SM Yukawa interactions and sphalerons, the
X∗ud ↔ ūcd̄c interactions are also in thermal equilibrium. We express all appearing chemical
potentials for any particle species a in terms of

µa = xaµX∗
ud
, (3.47)

which we summarise in appendix B. Finally, we arrive at the baryon asymmetry expressed
in terms of one chemical potential µX∗

ud

η∆B
ηeqB
≡ ηb − η̄b

ηeqb
= CB

µX∗
ud

T
, (3.48)

where CB is given by (cf. appendix B)

CB = π2

3ζ(3)
6N + 4CX∗

ud

18N + 4CX∗
ud

, (3.49)

with CX∗
ud

= 6 being the colour multiplicity of X∗ud. Hence, the combination of decay terms
relevant for the evolution of baryon asymmetry in eq. (3.36) is given by (cf. eq. (3.38))

2(Dd−Dd)+N(D0
d−D

0
d) = γtotD

2

[
(N + 2)ε

(
ηXdd
ηeqXdd

+ 1
)
− 4
CB
{N(1− r)xd̄c + 2r} η∆B

ηeqB

]
,

(3.50)
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where xd̄c is given in eq. (B.9). Similarly, the various s- and t-channel scattering contribu-
tions in eqs. (3.41), (3.42), (3.43), (3.44), and (3.45) can be expressed as

Xs −Xs = εγtotD + 4
CB

(1 + xd̄c)
[
γXs − (r − r2)γ

tot
D

2

]
η∆B
ηeqB

, (3.51)

Xt = 2
CB

(1 + xd̄c)γXt
η∆B
ηeqB

, (3.52)

(Ss − Ss) + (St − St) = − 2
CB

η∆B
ηeqB

[
γ̃SB + γ̃SX

ηXdd
ηeqXdd

]
, (3.53)

(S0
s − S

0
s) + (S0

t − S
0
t ) = 2

CB

η∆B
ηeqB

[
γ̃S0

B
+ γ̃S0

X

ηXdd
ηeqXdd

]
, (3.54)

where

γ̃SB = (xd̄c + xūc)γSs + (xd̄c + 1)γSta + (xūc + 1)γStb , (3.55)
γ̃SX = γSs + xūcγSta + xd̄cγStb , (3.56)
γ̃S0

B
= (−xūc + 1)γS0

s
+ (xd̄c + 1)γS0

ta
+ (xd̄c − xūc)γS0

tb
, (3.57)

γ̃S0
X

= xd̄cγS0
s
− xūcγS0

ta
+ γS0

tb
, (3.58)

and xūc and xd̄c are given in eq. (B.9).
We then obtain the final form of the equation governing the evolution of the baryon

asymmetry per photon density using eqs. (3.50), (3.51), (3.52), (3.53) and (3.54) with
eq. (3.36) given by

3zH(z)nγ(z)dηB
dz

= γtot
D

2

[
(N+2)ε

(
ηXdd

ηeq
Xdd

−1
)
− 4
CB
{N(1−r)xd̄c +2r} η∆B

ηeq
B

]
− 4
CB

η∆B

ηeq
B

(3.59)

×

[
(N+2)(1+xd̄c)γ

sub
X

2 +
{

(N+1)γ̃SB
+ γ̃S0

B

}
+ ηXdd

ηeq
Xdd

{
(N+1)γ̃SX

+ γ̃S0
X

}]

where
γsubX ≡ 2γXs + 2γXt −

(
r − r2

)
γtotD (3.60)

is the on-shell contribution subtracted scattering rate with the on-shell part given by
γon-shellXs

= (r − r2)γ
tot
D
2 +O(ε), as can be verified from eqs. (3.40). Note that after solving

eq. (3.59), one has to include a factor dγ ≈ 1/27 for the dilution of the photon density in
order to obtain the final baryon asymmetry at the recombination epoch T0. We included
this dilution factor for the later presented numerical analysis to obtain the final η∆B(T0).
For solving the Boltzmann equations for the high-scale and low-scale scenario defined in
section 3.2.1 we make the following assumptions which we summarise below.

High-scale scenario.

• Given that the SM top Yukawa coupling is in equilibrium for T � 1013 GeV, and
bottom as well as tau Yukawa couplings come in equilibrium just below 1013 GeV,
we assume that all these Yukawas interactions as well as gauge interactions are in
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chemical equilibrium during the whole range of temperature relevant for high scale
baryogenesis. This implies that the transfer of the baryon asymmetry from SU(2)L
singlet quarks to SU(2)L doublet quarks is taken into account by imposing the
relevant chemical potential constraints due to Yukawa interactions (c.f. appendix B).
For a first exploration, we restrict ourselves to the single flavour approximation
by assuming that the (inverse) decay of X(∗)

dd and X
(∗)
ud dominantly occurs along

the third generation quarks in flavour space. The respective chemical potential
relations then correspond to the case N = 1 in appendix B. In the future, it would
be interesting to perform a detailed analysis including potential flavour correlations.

• Under the assumption that a single flavour of quarks b and t, as well as the gauge
interactions, are in equilibrium, the chemical potential relation 2µQ3−µūc3−µd̄c3

= 0
is enforced, therefore making the chemical potentials of these single flavour quarks
no longer affected by the QCD sphaleron constraint ∑3

i 2µQi − µūci − µd̄ci = 0.
However, the partial equilibriation of Yukawa interactions can lead to a change of
the final yield by little (e.g. this effect is ∼ 10% [87] for leptogenesis), which we do
not take into account as it has little bearing in our final parameter space conclusions.
For simplicity, we assume that the electroweak sphalerons are also in equilibrium
together with the QCD sphalerons from the beginning of baryogenesis.

Low-scale scenario.

• We assume that the Yukawa couplings for all three generation of quarks as well as the
gauge interactions are in equilibrium during the baryon asymmetry generation. The
species X∗ud, and the process X∗ud ↔ ūc+ d̄c are also assumed to be in equilibrium for
all three generations. We further assume that both QCD sphalerons and electroweak
sphalerons are also in equilibrium. In this case the chemical potential relation 2µQi−
µūic−µd̄ic = 0 for i = 1, 2, 3 is enforced, which takes into account the effect of transfer
of asymmetry from singlet to doublet quarks. The final chemical potential relations
correspond to the case N = 3 in the appendix B.

• To simplify the analysis we consider the case of flavour universal and diagonal cou-
plings of Xdd and Xud to three quark generations, implying that X(∗)

ud decays about
equally to all flavours and produces an equal asymmetry in all flavours. In the general
case, the Boltzmann equation in this scenario is a matrix equation in flavour space,
with the baryon-to-photon density, CP-asymmetry, decay rates and the washout rates
all generalised to matrices in the flavour space. Starting from a physical basis where
the off-diagonal elements are suppressed one can trace the matrices to obtain the
sum over flavour space. In the absence of flavour correlations, one can solve for
the final asymmetry by solving each flavour separately and adding the solutions.
However, given our assumption of equal asymmetry generation and washout in all
flavours, it suffices to simply multiply the final asymmetry by a factor 3, with the
assumption that any induced flavour off-diagonal contributions are negligible and
Tr ([γD][ηL]) = Tr[γD]Tr[ηL] is a good approximation, where the square brackets
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done matrices in flavour space. For more details, we refer to e.g. [88, 89] discussing
potential flavour effects and their implications, which is beyond the scope of this work.

• To present the numerical results for the low-scale scenario in section 5, we allow
for the possibility that Xdd and Xud Yukawa couplings fud and fdd are hierarchical
among themselves (e.g. we consider the two benchmark cases fud = fdd and
fud = 10fdd), we assume that fud and fdd are universal across all three generations.

Before discussing in detail the parameter space that leads to the observed baryon
asymmetry, we will discuss the relevant phenomenological constraints.

4 Phenomenological constraints

Diquarks are subject to different phenomenological constraints, both from experimental ob-
servables as well as theoretical conditions. The relevant constrains are particularly strong
for diquark states that are not much heavier than the electroweak symmetry breaking
scale. For instance, the LHC probes already O(TeV) mass scales and provides high preci-
sion measurements of the Flavour Changing Neutral Current (FCNC) processes in mesonic
observables. Moreover, dinucleon decays, which provide a complimentary probe to n-n̄
oscillations, are also of particular interest with the expected improvements on future exper-
imental sensitivities. Furthermore, considerations of a colour preserving vacuum provides
useful constraints on the B−L breaking scale and mass hierarchy between diquark states,
when more than one of the diquarks are light. In this section, we provide an overview of all
relevant constraints for our study of the baryogenesis parameter space and will comment
on additional constraints, which can be relevant in scenarios beyond the studied ones.

4.1 Direct LHC searches

Scalar diquarks have been studied extensively in the context of collider searches in the
literature, see e.g. [28, 90–104]. At the LHC or future colliders they can be produced
through the annihilation of a pair of quarks via an s-channel resonance decaying into two
quarks producing a dijet final state. In principle, it is also possible to produce a pair of
scalar diquarks e.g. through gluon-gluon fusion. For diquark couplings of O(0.1) and higher,
the resonant production cross section dominates over the pair production [98]. For smaller
couplings, the pair production cross section can potentially dominate over the resonant
production (the resonant production contains one power of the diquark coupling, while
the gluon fusion pair production only includes gauge couplings) [105]. As limits from the
current collider searches for the pair production mode is only available till roughly TeV
scale [106], while the resonant production search limits reach O(10)TeV [107], we consider
only the resonant production, providing a very good estimate of the current LHC reach.

Since we assume in our simplified framework that Xuu is very heavy, it will be beyond
the collider reach; however, Xud being around few TeV of mass is actively probed by collider
searches. The accessibility of Xdd at colliders depends on the respective baryogenesis
scenario (with a mass around the GUT scale in the high-scale scenario or around a few
TeV for the low-scale scenario).
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Depending on the generation of the quarks, we can distinguish between a resonant
dijet or a top+jet signature. The partonic differential cross section for the latter (uidj →
Xud → tdk) is given by

dσ̂(uidj → Xud → tdk)
d cos θ∗ =

|fudij |2|fud3k |2

8πŝ
(ŝ−m2

t )2

(ŝ−m2
Xud

)2 +m2
Xud

Γ2
Xud

, (4.1)

where we have neglected all quark masses except the top quark mass. Hereby, θ∗ denotes
the scattering angle and ŝ the center-of-mass energy of the partons. As will be discussed
later, spin and colour multiplicity factors depending on the spin and colour representation
of the initial and final states need to be added correspondingly. The total decay width
ΓXud of the scalar diquark Xud is given by the sum of its partial decay widths,

Γ(Xud → uidj)|ui 6=t = CXud
8π |f

ud
ij |2 mXud ,

Γ(Xud → tdj) = CXud
8π |f

ud
3j |2 mXud

(
1− m2

t

m2
Xud

)2

, (4.2)

where CXud is the colour multiplicity of Xud.
Similarly, one can obtain the relevant partonic cross section for the resonant dijet

signature (didj → Xdd → dkdl),

dσ̂(didj → Xdd → dkdl)
d cos θ∗ =

|fddij |2|fddkl |2

16π
ŝ

(ŝ−m2
Xdd

)2 +m2
Xdd

Γ2
Xdd

, (4.3)

with the relevant partial decay width,

Γ(Xdd → didj) = CXud
16π |f

dd
ij |2 mXdd . (4.4)

Given the partonic scattering cross section, the experimentally measured hadronic cross
section (e.g. at the LHC) can be obtained by employing the relevant parton distribution
functions (PDFs) f(x) and summing over all partons [108]

σ =
∑
ij

∫
dx1dx2fi(x1, µ

2
F )fj(x2, µ

2
F )σ̂ij

(
αs(µ2

R), Q
2

µ2
F

,
Q2

µ2
R

)
, (4.5)

where Q is the characteristic scale of the interaction, e.g. the invariant mass in a two-to-
two partonic scattering. Furthermore, µF corresponds to the factorisation scale, which
factorises the non-perturbative contributions from the short-distance hard scattering and
µR is the scheme-dependent renormalisation scale. Note that the scales µF,R are parameters
determined for a fixed-order calculation, while in general the total cross section should
be independent of these scales at any given order of the perturbative expansion. The
Parton Distribution Functions (PDFs) can be taken into account by introducing the parton
luminosity factor defined as [108]

dLij
dτ

=
∫ 1

0

∫ 1

0
dx1dx2fi(x1)fj(x2)δ(x1x2 − τ), (4.6)
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where
τ = x1x2 = ŝ

s
. (4.7)

In the above relations the initial partons are carrying fractions x1 and x2 of the hadron
momentum and the invariant mass of the two-parton system is defined as ŝ ≡ x1x2s,
with

√
s being the energy of the colliding hadrons in center-of-mass frame. Furthermore,

constraints are also imposed on the rapidities y of the final state partons observed at the
collider experiments as jets. It is particularly convenient to express the parton luminosity
in terms of the variables τ and ȳ as

dLij(ȳmin, ȳmax)
dτ

=
∫ ȳmax

ȳmin
fi
(√

τeȳ
)
fj
(√

τe−ȳ
)
dȳ , (4.8)

where we use the identity dx1dx2 = ∂(τ,ȳ)
∂x1,x2

dτdȳ = dτdȳ and the rapidity can be expressed
as a function of the momentum fractions as ȳ = 1/2 ln(x1/x2) in the center-of-mass frame.
Consequently, the total cross section can be expressed in terms of the parton luminosity
factor and the partonic cross section as

σhad =
∑
i,j

∫
dτ

τ

[
dLij
dŝ

]
[ŝ σ̂ij ]. (4.9)

Even though an exact calculation of the cross section or the decay widths should include
all possible Feynman diagrams, for all practical purposes, the experimental searches are
principally focused on narrow resonances, expecting resonant peaks on a smoothly falling
dijet mass spectrum corresponding to a s-channel decay mode of the resonance. Such a cross
section for a resonance decaying via s-channel can be approximated by a Breit-Wigner form

σ̂(m) (a+ b→ X → c+ d) = 16π ×N × Γ(a+ b→ X)× Γ(X → c+ d)(
m2 −m2

X

)2 +m2
XΓ2

X

, (4.10)

where ΓX and mX correspond to the total width and the mass of the resonance, and
m '

√
ŝ =
√
τs. The partial widths Γ(a + b → X) and Γ(X → c + d) correspond to the

creation of the resonance from specific initial states and the decay of the resonance to the
specific final states, respectively. The different multiplicity factors are taken into account
through N , defined as

N ≡ NSX

NSaNSb

CX
CaCb

, (4.11)

with NSX and NSa,b representing the spin multiplicities of the resonance and the initial
state particles, respectively (e.g. for scalar diquarks NSX = 1 and NSa,b = 2 for initial state
quarks). CX and Ca,b are the relevant colour multiplicities (e.g. for colour sextet diquarks
CX = 6 and for initial state quarks Ca,b = 3). It is relevant to note here that the cross
section above is obtained after integrating over cos θ∗, which in practice is constrained
by the kinematics of the experimental searches. Therefore it is convenient to express the
Breit-Wigner partonic cross section as

σ̂(m) = 16π ×N ×A× BRpar × Γ2
X(

m2 −m2
X

)2 +m2
XΓ2

X

, (4.12)
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Figure 10. Cross section of the scattering u + d → Xud → dijet (t + jet) (left column) and
d+d→ Xdd → dijet (b+b) (right column), multiplied by the corresponding experimental acceptance
A and branching ratio BR, as a function of the diquark mediator mass. In the top left (right), the
cross sections for three different values of the diquark coupling fud (fdd) at 13TeV center-of-mass
energy at LHC are shown, for f = 1.0, 0.1, and 0.01, corresponding to purple, blue, and pink lines,
respectively. The short-dashed lines correspond to the total cross section into dijet final state, and
the long-dashed lines correspond to final state with third generation quarks. In black and green
are the experimental data and corresponding SM prediction for a dijet final state search at the
CMS experiment with 13TeV center-of-mass energy and an integrated luminosity of 36 fb−1. In the
bottom row, the projected cross sections for f = 1 at LHC, HE-LHC and FCC-hh are shown.

where BRpar corresponds to the branching fraction of the partonic subprocess, and A is
the experimental acceptance factor after the cos θ∗ cut. The Breit-Wigner partonic cross
section can further be simplified in the narrow-width approximation (ΓX � mX)

1(
m2 −m2

X

)2 +m2
XΓ2

X

≈ π

mXΓX
δ(m2 −m2

X) , (4.13)

leading to the hadronic cross section

σhad(mX) = 16π2 ×N ×A× BRpar ×
[
dL(ȳmin, ȳmax)

dŝ

]
ŝ=m2

X

× ΓX
mX

, (4.14)

which, for given possibilities of initial (a, b) and final (c, d) state partons, can be expressed as

σtothad(mX) = 16π2 ×N ×A×
∑
ab

(1 + δab)BR(X → ab)
[
dLab(ȳmin, ȳmax)

dŝ

]
ŝ=m2

X

×
∑
cd

BR(X → cd)× ΓX
mX

, (4.15)
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where the factor (1 + δab) accounts for the possibility of two identical incoming partons
(which gets compensated by a factor 1/2 in the partial width of the final state phase
space Γ(X → ab) for identical partons). We follow the prescription of ref. [107] for the
estimation of the acceptance parameter: defined as A = A∆Aη, with A∆ being the
acceptance by requiring |∆η| < 1.3 for the dijet system and Aη is the acceptance factor
due to also requiring |η| < 2.5 for each jet, separately. Assuming the decay of the scalar
diquark resonances to be isotropic, one has A∆ = 0.57 for all masses and Aη ' 1 [107].
Note that in case of a single top or anti-top quark in the final state, the top quark can
decay before hadronising. This provides the possibility of tagging it to reconstruct the
invariant mass of the diquark resonance. To provide some crude benchmark estimates for
the t + b final state we use the top tagging efficiency ∼ 0.3 and bottom tagging efficiency
∼ 0.8 for the decay channels with a t or b quark in the final state [109].

Using CTEQ6L1 [110] PDFs and computing the PDF luminosity functions using the
ManeParse package [111], we show in figure 4.1 (top left) the cross sections of the scattering
u+ d→ Xud → dijet and u+ d→ Xud → t+ b as a function of the diquark mass mXud for
three different benchmark values of the coupling fud. Given that the current best limits
on the t + b final state searches [109] are at best of the order of a dijet final state search,
the limits considering the t + b final state are less stringent as compared to that of dijet
searches. While we still show the t + b (b + b) final state in our plots, we consider only
the dijet constraints in the following. Figure 4.1 (top right) shows the corresponding cross
sections of the scattering processes d + d → Xdd → dijet and d + d → Xdd → b + b as
functions of the diquark mass mXdd for three different benchmark values of the coupling
fud. Again, we show the exclusive two bottom quark final states separately, due to the
possibility of tagging the b quarks in light of recent experimental improvements in b-tagging.
For reference, we indicate the current experimental limits on dijet searches from the CMS
collaboration [107] as well as the SM prediction.

The current search limits already exclude parts of the parameter space for mass
ranges as high as 8TeV, which is expected to be improved significantly with more data
and future colliders e.g. HE-LHC with 27TeV center-of-mass energy and FCC-hh with
100TeV center-of-mass energy [112, 113]. In figure 4.1 bottom row we show a comparison
of expected cross sections at LHC, HE-LHC and FCC-hh for coupling fud (fdd) of order
unity. Given the expected several ab−1 luminosity from future LHC upgrades, the collider
searches will play a key role in probing the parameter space of baryogenesis complimenting
the n-n̄ oscillation searches.

4.2 Meson oscillations

FCNC processes such as neutral meson oscillations and flavour changing non-leptonic meson
decays provide stringent constraints on the masses and couplings of the scalar diquark
states [105]. Since we assume Xuu to be very heavy,8 we mainly focus here on constraints
on Xdd and Xud.

8For the case where Xuu is sufficiently light to be of phenomenological interest, D0 − D0 can provide
tight constraints on the masses and couplings of Xuu, see e.g. ref. [114].
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Figure 11. Tree- (left) and loop-level (right) meson oscillation diagrams mediated by the diquarks
Xdd or Xud.

The contributions to neutral meson mixing, M − M with M = Bs, Bd,K, can be
described as

〈M |Heff|M〉 =
∑
j

(CSM
j + CNP

j )〈M |Oj |M〉 , (4.16)

where Oj are the effective four-quark operators and CSM (NP)
j denotes the associated Wilson

coefficients for the SM (NP).
For the SM, the relevant operator for the |∆F | = 2 process Bq −Bq is given by

OVL = (q̄γµPLb)(q̄γµPLb) , (4.17)

with the associated SM Wilson coefficient [115]

CSM
VL

= G2
F

4π2m
2
W η̂BS0(xt)(VtbV ∗td(s))2 , (4.18)

where η̂B = 0.8393 accounts for QCD-corrections, and S0(xt) = 2.35 is the Inami-Lim
function for the SM top quark box diagram, with xt = m2

t /m
2
W .

For ∆S = 2 kaon oscillations K −K, the relevant SM operator is given by

OVL = (d̄γµPLs)(d̄γµPLs) , (4.19)

with the corresponding SM Wilson coefficient [115]

CSM
VL

= G2
F

4π2m
2
W

(
ηttS0(xt)(VtsV ∗td)2 + ηccS0(xc)(VcsV ∗cd)2 + 2ηctS0(xc, xt)VtsV ∗tdVcsV ∗cd

)
,

(4.20)
where ηtt = 0.5765, ηcc = 1.39 (1.29 GeV/mc)1.1, and ηct = 0.47 take into account QCD
corrections. The Inami-Lim functions including the charm quark are given by S0(xc) ≈ xc,
S0(xc, xt) ≈ −xc log(xc) + 0.56xc, with xc = m2

c/m
2
W .

The exchange of the diquarks Xdd and Xud gives rise to the following operator [25]

OVR = (d̄jγµPRdi)(d̄jγµPRdi) , (4.21)

where (di, dj) = (s, b), (d, b), (d, s) for Bs, Bd,K oscillations, respectively. With Xdd being
a colour sextet, it contains flavour symmetric couplings to a down quark pair and can
therefore mediate ∆F = 2 neutral meson mixing at tree level as well as at one-loop level.
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Observable Diagram Constraint

∆Bs tree-level
∣∣∣fdd22 (fdd33 )∗

∣∣∣ . 3.1× 10−4 (mXdd/TeV)2 [118]

one-loop
∣∣∣∑k f̂

ud
k2 (f̂udk3 )∗

∣∣∣ . 0.36 (mXud/TeV) [118]

∆Bd tree-level
∣∣∣fdd11 (fdd33 )∗

∣∣∣ . 1.5× 10−5 (mXdd/TeV)2 [118]

one-loop
∣∣∣∑k f̂

ud
k3 (f̂udk1 )∗

∣∣∣ . 0.08 (mXud/TeV) [118]

∆mK tree-level
∣∣∣fdd11 (fdd22 )∗

∣∣∣ . 2.2× 10−6 (mXdd/TeV)2 [119]

one-loop
∣∣∣∑k f̂

ud
k2 (f̂udk1 )∗

∣∣∣ . 0.03 (mXud/TeV) [119]

Table 5. Latest constraints on the diquark couplings from B0
s − B0

s , B0
d − B0

d, and K0 − K0

oscillations using 95% CL experimental limits.

However, in the particular case where the coupling matrix fdd in eq. (3.20) is diagonal,
the one loop contributions vanish, as can be quickly verified by considering the one-loop
diagram in figure 11 and replacing u by d and Xud by Xdd in the loop. The exchange of
Xdd at tree-level can be related to the Wilson coefficient

CNP
VR

= −1
2
fddii (fddjj )∗

m2
Xdd

. (4.22)

Furthermore, Xud cannot contribute via a tree-level contribution to the meson mixing.
However, in contrast to Xdd, it can induce neutral meson mixing at one-loop level even if
one starts with a diagonal structure for fud in eq. (3.20) (written in the flavour basis), for
instance in the presence of a right-handed analog of the CKMmixing matrix (see e.g. discus-
sion in refs. [116, 117]). The exchange of the Xud in the one-loop box diagrams lead to [25]

CNP
VR

= 3
256π2

1
m2
Xud

[
f̂udki (f̂udkj )∗

]2
, (4.23)

where we have used the fact that fudij is symmetric and we have defined f̂udij = (VR)ikfudkj ,
with VR being the right-handed quark mixing matrix diagonalising the right-handed quark
charged current (similar to the CKM matrix for left-handed currents).

Following the prescription of [115, 118–120], we define the ratio of the total contribution
to the SM for M −M oscillations as

∆M = 〈M |Heff|M〉
〈M |HSM

eff |M〉
= 1 + CNP

CSM , (4.24)

where ∆M is an experimentally determined complex parameter that depends on the re-
spective mesonM . It is experimentally constrained to ∆Bs(d) = 1.11+0.96

−0.48(1.05+1.0
−0.52) for the

B0
s − B0

s and B0
d − B0

d oscillations, and to Re(∆K) = 0.93+1.14
−0.43 and Im(∆K) = 0.92+0.39

−0.26
for the K0 −K0 oscillations [118, 119]. Using the above 95% CL experimental limits, we
derive the relevant constraints summarised in table 5. In addition to the neutral meson
oscillations, the diquark coupling can also give rise to a number of non-leptonic rare meson
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decays at tree- or loop-level, however the relevant constraints obtained are comparably
weaker [25, 105].

Generally, the latest experimental data on neutral meson oscillations provide some of
the most stringent constraints on the Xdd scalar diquark couplings with masses around
the TeV scale (see table 5). Therefore, the constraints from neutral meson oscillations will
be of great importance in synergy with the direct collider searches for probing low-scale
baryogenesis scenarios.

4.3 Dinucleon decay

In addition to n-n̄ oscillations, the dinucleon decays can also provide useful constraints for
diquark couplings to the SM quarks. For the diquark couplings to the first generation of SM
quarks both n-n̄ oscillations and dinucleon decay, e.g. nn→ π0π0, can occur at tree-level.9
Given the availability of better numerical estimates for the well studied transition matrix
elements for n-n̄ oscillations as compared to potentially large hadronic uncertainties for
dinucleon decay matrix elements, the former provides more reliable constraints in this case.
However, for the scenario where the diquark couples dominantly to the third generation SM
quarks, the dinucleon decay modes, e.g. nn→ π0π0 (induced at the two-loop level), provide
a more stringent constraint as compared to the n-n̄ oscillation (induced at the three-loop
level).10 In particular, for the scenario of low-scale baryogenesis, where both Xdd and Xud

masses lie around TeV scale, the dinucleon decays are of particular interest if the diquark
couples dominantly to the third generation SM quarks. Even though we will mainly focus
on the simplest case of flavour diagonal and universal couplings of diquarks to SM quarks
for the study of baryogenesis, below we briefly discuss the case where the dinucleon decay
mode nn→ π0π0 can occur at two-loop level, when the diquark couples dominantly to the
third generation SM quarks. A representative Feynman diagram inducing such a mode is
shown in figure 12. Given that in our simplified model the diquarks can exclusively couple
to right-handed quarks one would require mass insertions for top and bottom quarks in the
loops which we shall ignore in the following estimate in the interest of simplification and
due to the large uncertainties involved in estimating the transition matrix elements. The
relevant dinucleon decay rate is given by [54]

Γ ' 9
32π
|CDN|2

m2
n

|〈π0π0|O15
DN|nn〉|2ρn, (4.25)

where ρn ' 0.25 fm−3 is the nucleon density, and mn the neutron mass. The Wilson
coefficient CDN induced at the two-loop level is given by

CDN =
(
λ(fud33 )2fdd33 |Vub|4|Vtd|2g2

8

32

)
v′m2

t

m4
W

I , (4.26)

9Note that we take the neutral decay mode nn → π0π0 as an example case. For other modes such as
pp→ π+π+ our discussion can be straightforwardly generalised.

10We note that, in ref. [121] it has been pointed out that some EFT operators which are odd under
charge conjugation (C), parity (Pz) (and CPz) can lead to dinucleon decay, but not n-n̄ transition. In our
simplified model the relevant operator correspond to the C, (Pz), and CPz even case, which can a priory
lead to both dinucleon decay as well as n-n̄ transition simultaneously.
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dL

ūL

uL

dL uL

dL uL

uL

ūL

dL

t̄c

b̄c

W−

Xud
b̄L

Xdd

b̄L

W−

W−

Xudb̄c

t̄c

W−

Figure 12. A representative diagram giving rise to the dinucleon decay mode nn → π0π0 at
two-loop level with the scalar diquarks dominantly coupling to third generation quarks.

where under the simplifying assumption of vanishing external momenta the relevant two-
loop integral I can be written as

I =
∫

d4k1
(2π)4

∫
d4k2
(2π)4

2∏
i=1

(
1

k2
i −m2

t

1
k2
i −m2

b

1
k2
i −m2

Xud

1
k2
i −m2

W

)
1

(k1 + k2)2 −m2
Xdd

.

(4.27)
Using partial fraction and rescaling all the masses by the scalar mass mXdd , the integral I
can further be expressed as [122, 123]

I = 1
(2π)8

1
(m2

t −m2
b)2

1
(m2

Xud
−m2

W )2
1

m2
Xdd

[(Jt,Xud;t,Xud +Jt,Xud;b,W +Jt,W ;t,W +Jt,W ;b,Xud

+Jb,Xud;t,W +Jb,Xud;b,Xud +Jb,W ;t,Xud +Jb,W ;b,W )−(Jt,Xud;t,W +Jt,Xud;b,Xud +Jt,W ;t,Xud

+Jt,W ;b,W +Jb,Xud;t,Xud +Jb,Xud;b,W +Jb,W ;t,W +Jb,W ;b,Xud)] , (4.28)

where the integral Jα,β;µ,ν is defined as

Jα,β;µ,ν =
∫
d4k1

∫
d4k2

1
(k2

1 − rα)(k2
1 − tβ)(k2

2 − rµ)(k2
2 − tν)([k1 + k2]2 − 1) , (4.29)

with r{α,µ} = (mF{α,µ}/mXdd)2 for fermionic and t{β,ν} = (mB{β,ν}/mXdd)2 for bosonic
masses. Note that the momenta k{1,2} are rescaled with respect to eq. (4.27). Now, the
integral Jα,β;µ,ν can be reduced in terms of the standard integral as

Jα,β;µ,ν = π4

(tβ − rα)(tν − rµ) [−g(tβ , tν) + g(rα, tν) + g(tβ , rµ)− g(rα, rµ)] , (4.30)

where in general D = 4 + ε dimensions we have

g(a, b) = µε
∫
dnk1

∫
dnk2

1
(k2

1 − a)(k2
2 − b)[(k1 + k2)2 − 1] , (4.31)
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which includes an infinite and a finite piece [122]. After collecting the different terms in
eq. (4.28), the divergent pieces in g(a, b) drop out, leaving the finite piece

g(a, b) = a

2 ln a ln b+
∑
±
±a(1− a) + 3ab+ 2(1− t)x±

2ω (4.32)

×
[
Sp
(

x±
x± − a

)
− Sp

(
x± − a
x±

)
+ Sp

(
b− 1
x±

)
− Sp

(
b− 1
x± − a

)]
,

with the argument of the Spence’s function containing the parameters

x± = 1
2(−1 + a+ b± ω), ω =

√
1 + a2 + b2 − 2(a+ b+ ab) . (4.33)

In order to estimate the dinucleon decay rates numerically for the relevant matrix
element of the dimension-15 operator O15

DN in eq. (4.25), we take |〈π0π0|O15
DN|nn〉| ∼ Λ11,

where Λ corresponds to a scale between ΛQCD and mn. To be conservative we take the
most stringent possible constraint corresponding to Λ = mn.

The most stringent current experimental constraint on the nn→ π0π0 partial lifetime
due to Super-Kamiokande is τ > 4.04 × 1032 years [124], which improved over the earlier
limit from the Frejus experiment of τ > 3.4 × 1030 years [125]. The future experiments,
such as Hyper-Kamiokande, is expected to improve on the current results by up to an order
of magnitude [126]. In figure 13 we show the relevant current and future experimental
constraints on the parameter space spanned by the coupling and diquark masses. The
current constraints are relevant for masses of Xud and Xdd around a few TeV. For more
robust constraints, a more accurate estimation of the relevant matrix elements is desirable.

4.4 Colour preserving vacuum

From a phenomenological point of view, in the absence of a specified UV completion, the
effective trilinear coupling of the form µXddXudXud (e.g. induced by the vacuum expecta-
tion value of ξ in eq. (3.20)) can be constrained by the requirement of colour preserving
vacua. As shown in figure 14, the effective trilinear coupling of the form µXddXudXud leads
to effective quartic interactions for the Xud and Xdd fields given by

− Leff = λeff(Xud)2(X†ud)
2 + λ′eff(Xdd)2(X†dd)

2 + λ′′eff(XudX
†
ud)(XddX

†
dd) . (4.34)

The relevant induced effective corrections are given by [127]

λeff ∼ −
1

2π2
µ4

(m2
Xdd
−m2

Xud
)2

[
m2
Xdd

+m2
Xud

m2
Xdd
−m2

Xud

log
(
m2
Xdd

m2
Xud

)
− 2

]
, (4.35)

λ′eff ∼ −
1

4π2
µ4

6m4
Xud

, (4.36)

λ′′eff ∼ −
1
π2

µ4m2
Xdd

2(m2
Xdd
−m2

Xud
)3

[
m2
Xdd

m2
Xud

−
m2
Xud

m2
Xdd

− 2log
(
m2
Xdd

m2
Xud

)]
. (4.37)
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Figure 13. Contours in the coupling-mass plane demonstrating the potential reach of different
dinucleon decay experiments. The red lines correspond to the case fdd = fud, the blue lines to
fud = 10fdd.
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Xud
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Figure 14. Diagrams giving rise to the effective quartic interaction terms of the fields Xud and Xdd.
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In the particular limit in which two masses are similar (mXdd ∼ mXud) the following relation
holds

2λeff ≈ λ′′eff ≈ 4λ′eff = − 1
π2

µ4

6m4
Xud

.

With the effective couplings being negative (in the absence of a UV embedding), the tree-
level Lagrangian must contain terms similar to the effective quartic couplings λeff , λ

′
eff , λ

′′
eff ,

which are positive and greater in their absolute value to ensure a stable colour preserving
vacuum.

Moreover, the requirement that the theory has to be perturbative (λeff , λ
′
eff , λ

′′
eff < 1)

imposes the following constraints on the µ parameter:

µ <

mXud × (6π2)1/4 for mXdd ∼ mXud ,

mXud × (24π2)1/4 for mXdd > mXud ,
(4.38)

which provide important benchmark constraints fixing the hierarchy between mXud , mXdd

and µ = λv′ in eq. (3.20). Consequently we fix λv′ ∼ mXdd to a few times mXdd for the
subsequent numerical study of the baryogenesis scenarios where the hierarchymXdd > mXud

is maintained but with both mXud and mXdd not too far from each other to ensure a stable
colour preserving vacuum.

For the high-scale scenario on the other hand, a given UV completion must take into
account the relevant Higgs multiplet in which the scalar fields are embedded. In the
presence of a field at a particularly low scale, one must assure that the relevant interactions
involving that field in the low-energy theory preserves the vacuum with a perturbative
coupling. For example, when mXud is around few TeV and mXdd is around the GUT scale,
then for a low-energy theory at a temperature T < mXdd one can integrate out Xdd, leaving
all its effects encoded in the couplings of Xud. In order to make sure that in such a scenario
the low-energy theory is in the perturbative regime, one requires λeff < 1 in eq. (4.35). This
is ensured by the condition

µ ∼ O (mXdd) for mXdd � T > mXud . (4.39)

Besides, the couplings of the heavy state Xuu with Xdd can effectively ensure that the
other radiative corrections λ′eff and λ′′eff in eqs. (4.36) and (4.37) do not exceed the tree-
level terms [27].

To conclude, for the high-scale scenario the conditions for a colour preserving vacuum
can be naturally satisfied in a UV completion where the diquark field Xud lies around TeV
scale and the other diquark fields Xdd and Xuu are significantly heavy with masses around
the GUT scale. On the other hand, for the phenomenologically driven low-scale scenario,
where Xud and Xdd masses are not fixed by a UV completion, one requires a very mild
hierarchy between mXud , mXdd and λv′ to satisfy the conditions from colour preserving
vacua: λv′ ∼ O(few)×mXdd ∼ O(few)×mXud . Therefore, we use the benchmark choices
λv′ = 1.2mXdd and mXdd = 3mXud for our subsequent numerical analysis of this type of
scenario to satisfy the conditions given in eq. (4.38).
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4.5 Comments on other possible constraints

In addition to the constraints discussed above, Xdd diquark couplings can also contribute to
the neutron electric dipole moment (in the presence of complex phases in diquark couplings)
and to electroweak precision observables (e.g. related to Z → dcd̄c) as discussed in [105].
In the presence of Xdd couplings to both left- and right-handed down-type quark pairs
these loop observables can in particular be sizeable due to chiral enhancement and in
particular when heavy quarks can be in the loop due to flavour antisymmetric couplings.
However, given that in our scenario Xdd couples only to the right-handed quarks and
flavour symmetrically, one would require additional quark mass insertions to realise such
observables leading to both chirality and loop suppressed contributions.

5 Results and discussion

Using the formalism described in section 3, in this section we present our findings regarding
the viability of successful baryogenesis for the simplified model described in section 3.2.1,
and confront the results with the experimental constraints discussed in the previous section.
Hereby, we distinguish two distinct scenarios, which we will refer to as the high- and low-
scale scenarios. Assuming the mechanism that generates the BAU is the out-of-equilibrium
decay of theXdd diquark, as described in section 3, both the high- and low-scale scenario can
lead to a baryon asymmetry close to the observed value, but with very different detection
prospects. We furthermore define, for both scenarios, a model-dependent CP-violation
parameter ε, originating from the interference between the tree-level decay of Xdd and
the 1-loop decay with X ′dd, another generation of Xdd, as introduced in eq. (3.24), and
simplified here by selecting as a benchmark scenario,11 f ′dd = fdd and λ′ = λ, such that

ε = 1
π
Tr
[
(fdd)†fdd

] ( x

1− x

)
r , (5.1)

where x = (mXdd/m
′
Xdd

)2, and r is the branching ratio for Xdd → X∗udX
∗
ud. Hereby, to

simplify the forthcoming baryogenesis parameter space analysis, we will assume a flavour
diagonal and universal structure for (in general 3×3 coupling matrices) fud(dd)

ij (neglecting
any flavour effects for baryogenesis) and henceforth will denote them as fud(dd) for brevity.
The maximal value of ε is ε = 2r and is the most optimistic scenario, for the other cases
we select as a benchmark scenario x = 0.2.

For the numerical evaluation of the final baryon asymmetry in two different baryo-
genesis scenarios, we take into account the appropriate SM processes in equilibrium, as
tabulated in table 6. The green ticks show the SM processes which are taken into account
at the corresponding temperature while solving the Boltzmann equations. During the com-
putation of the baryon asymmetry in the high-scale baryogenesis scenario, we assume that
only the Yukawa couplings of the third generation quarks are in chemical equilibrium, while
all three generations are assumed to be in chemical equilibrium in the low-scale baryoge-
nesis scenario. All quark generations are considered to be in thermal equilibrium in both

11Note that we assume in writing eq. (5.1) that one of the couplings is purely imaginary to maximise
the CP violation without any loss of generality.
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T (GeV) Process High-scale Low-scale

� 1013 Gauge interactions + t Yukawa 3 3

> 1013 QCD sphaleron 3 3

∼ 1013 EW sphaleron + b Yukawa 3 3

∼ 1012 τ Yukawa 3 3

∼ 1012 c Yukawa 7 3

∼ 1010 µ, s Yukawa 7 3

� 108 u, d, e Yukawa 7 3

Table 6. Approximate temperatures at which different SM processes come into equilibrium in the
early Universe [87]. Green ticks mark the processes that are assumed to be in equilibrium in the
high- and low-scale scenarios, and red crosses mark the interactions that are assumed to not be in
equilibrium.

scenarios. Furthermore, we also assume that during high-scale baryogenesis, only the de-
cay of Xdd to third generation quarks are relevant, since other two lighter generations do
not come into equilibrium with the thermal bath of the Universe until much later than
the temperature relevant for high-scale baryogenesis. On the other hand, for the low-scale
baryogenesis scenario, we consider the decay of Xdd to all three generations of quarks.
In the following, we proceed to discuss the two scenarios in more detail and present the
numerical results of the baryogenesis mechanism of section 3.

High-scale scenario. In the high-scale baryogenesis scenario, the Xdd diquark has a
mass O(1013−14)GeV, while the mass of Xud is around O(103−4)GeV. From a theoretical
perspective, the large hierarchy between the masses of Xdd and Xdd is naturally motivated
by gauge coupling unification in the context of a GUT embedding of the model as discussed
in appendix A. Having a mass near the GUT scale, Xdd would remain inaccessible at the
direct collider searches; however, conspiring together with a TeV scale Xud it can still lead
to an observable rate of n-n̄ oscillations, therefore making the scenario phenomenologically
exciting. For instance, taking λ ≈ O(1)× (mXdd)/v′ and fud,dd ≈ O(0.1− 1) together with
the above discussed combination of masses, one finds that the n-n̄ oscillation rate is very
close to the current experimental bound. On the other hand, since mXud isO(103−4)GeV, it
can potentially be directly produced at the LHC and future colliders providing complemen-
tarity between collider searches and n-n̄ oscillation in constraining parts of the parameter
space for a successful high-scale baryogenesis scenario.

For illustration, we present an example of the typical dynamics of the baryon asymme-
try generation for the high-scale baryogenesis scenario in figure 15. We show the evolution
of η∆B with respect to z, for the benchmark choices fud = fdd = 0.05, mXud = 5TeV and
λv′ = 1.5mXdd . The plots in the top row correspond to the case of zero initial abundance
of Xdd, the plots in bottom row corresponds to the case of an initial thermal abundance of
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Figure 15. High-scale scenario. Evolution of baryon asymmetry η∆B with respect to z = mXdd
/T

with fud = fdd = 0.05, λv′ = 1.5mXdd
, and mXud

= 5TeV, for both the maximal value of ε (orange
line) and the value ε ≈ 4.0×10−4 given by eq. (5.1) with x = 0.2 (red line). The blue line shows the
number density of Xdd (normalised to the photon number density) and the dashed green line shows
the equilibrium number density of Xdd. Top row: number density evolution with Xdd starting in
equilibrium. Bottom row: no initial abundance of Xdd. Left column: mXdd

= 1014GeV. Right
column: mXud

= 1013 GeV.
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Figure 16. Equilibrium decay and scattering rates with respect to z = mXdd
/T and fud = fdd =

0.05 for the high-scale scenario with mXdd
= 1014 GeV, mXud

= 5TeV and λv′ = 1.5mXdd
. The

solid orange line shows the decay rate of Xdd, while the solid (dashed) blue, green, and purple lines
show the scattering rates Ss (St), Xs (Xt), and S0

s (S0
t ) respectively. For the notation see section 3.

Xdd. The plots in the left and right columns correspond to the choices mXdd = 1014 GeV
and mXdd = 1013 GeV, respectively. Furthermore, a final baryon asymmetry greater than
the one observed in the Universe is achieved for a maximal CP violation ε = 2r, as well
as for the case where ε is given by eq. (5.1) with x = 0.2. The evolution that occurs for
mXdd = 1014 GeV (left column) and mXdd = 1013 GeV (right column) are similar, with the
difference that the asymmetry generation starts earlier and gets more severely washed out
in the latter case, since both decay rates and washout processes are less suppressed with
respect to the Hubble rate. Whether the initial number density of Xdd is in equilibrium or
not has little effect on the final baryon asymmetry, as can be seen by comparing the top
and bottom plots in figure 15.

To illustrate the evolution of the relevant decay and scattering processes leading to the
evolution of the baryon asymmetry with z in the high-scale scenario, we show figure 16 the
decay rates and different scattering rates for the same choice of parameters as in the plots
in the left column of figure 15. We note that in the high-scale scenario, quark and Xud

mediated washout processes S(0)
s(t) are subdominant and the Xdd mediated Xs(t) processes

provide the most dominant washout for z & 10. This can be understood as follows. The
quark and Xud mediated scatterings S(0)

s(t) contain heavy Xdd as one of its external legs
and leads to large Boltzmann (or phase space) suppression of these scattering rates for
T � mXdd . On the other hand, the Xdd mediated Xs(t) scatterings are much less-severely
suppressed due to Xdd mass in the propagator for T � mXdd . One particular caveat to the
above discussion is the situation when fud > fdd and the coupling fud is large, O(1). In such
a case the washout processes St, Ss, S0

t and S0
s processes can still be quite effective for large
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Figure 17. High-scale scenario. Yellow shading indicates the number density of baryon num-
ber η∆B (normalised to photon number density) at the time of electroweak symmetry breaking in
the mXud

–fud plane under the assumption of fud = fdd and λv′ = 1.5mXdd
. Top row: the CP-

violating parameter ε (as defined in eq. (5.1)) is chosen with x = 0.2 . Bottom row: the maximum
value ε = 2r is used. Left column: mXdd

= 1014 GeV. Right column: mXdd
= 1013 GeV. The red line

marks the observed value for the baryon asymmetry ηobs
B = 6.2× 10−10, the blue lines correspond

to exclusion limits from n-n̄ oscillation set by Super Kamiokande (solid) and future exclusion limits
set by NNBAR (dashed). The black lines correspond to the exclusion limit from dijet production
at the LHC based on CMS-searches with

√
s = 13TeV and 36 fb−1 integrated luminosity.
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z and can potentially be comparable to Xs(t). As a benchmark, as long as the coupling fdd
does not exceed values of O(0.1) the dominant washout processes Xs and Xt remain modest
leading to the generation of a sizeable final baryon asymmetry. With the washout processes
being modest in the high-scale scenario set-up for fdd . O(0.1), a baryon asymmetry close
to the observed value can be found over a wide parameter range of phenomenological
interest, as shown in figure 17. This statement holds for both cases, a vanishing initial Xdd

number density, and a non-zero initial Xdd number density in equilibrium.
In figure 17, we show the parameter space of the high-scale baryogenesis scenario in the

mXud–fud plane with fud = fdd. The generated final baryon asymmetry is shown in yellow
with deeper shades corresponding to higher yields. The red lines indicate the observed
value.12 Note that in figure 17, we take the diquark couplings fud and fdd to be equal,
ranging from fud = fdd = 10−3 to unity. In general fud and fdd couplings could be treated as
independent parameters; however, we note that for a large hierarchy between fud and fdd,
the connection of baryogenesis to the relevant experimental observables gets weakened.
This is because on the one hand the LHC direct searches for Xud and n-n̄ oscillation
rate largely depend on a high value for the coupling fud, on the other hand the baryon
asymmetry depends to a large degree on fdd. Therefore, we find that fixing the ratio of fud
and fdd to unity in figure 17 illustrates the interplay between the final baryon asymmetry
and the reach of experiments more clearly. While in figure 17 the tri-linear scalar diquark
coupling is taken to be λv′ = 1.5mXdd , we have found that a lower or higher value can
also impact the final baryon asymmetry. A lower value for λv′ would generally result
in a larger baryon asymmetry at the cost of lowering the experimental reach of the n-n̄
oscillations, in contrast to a higher value which can run into problems with the constraints
from colour preserving vacua (see section 4.4). However, if we relax the constraints from
colour preservation of the vacuum, then a higher value of the tri-linear coupling λv′ would
lead to an increased decay and washout rate, leading to an asymmetry generation at later
times and a more effective washout, resulting in a lower final asymmetry. In all four plots
of figure 17, the baryon asymmetry is generally lower for very high values of fud (i.e. when
this coupling is O(1)) as the consequence of an increased washout from Xs and Xt. This
effect is more pronounced in the right plots, as mXdd is an order of magnitude lower as
compared to the left plots. For lower values fud . O(0.1), the asymmetry again gets smaller
for smaller couplings in the top plots of figure 17, while it remains rather constant in the
bottom plots. This effect is due to the CP-asymmetry parameter ε being smaller for small
couplings in the top plots.13 This is in contrast to the plots in the bottom row, where the
maximal CP asymmetry ε = 2r is used.

The reach of n-n̄ oscillations and collider experiments, which provide important con-
straints for the high-scale baryogenesis parameter space, do however, depend on the mass
scales mXdd and mXud . As can be seen in the left column of figure 17, for mXdd = 1014 GeV,
the LHC proves to be a better probe than n-n̄ oscillation experiments in parts of the pa-

12The bottom left plot in figure 17 contains no red line, since the whole parameter space that is shown
leads to an asymmetry greater than the observed one.

13The CP-asymmetry parameter ε does not depend on fud, but rather fdd. However, since fud = fdd in
figure 17, ε changes along the vertical direction in the top plots by the variation of fud.
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rameter space. In contrast, for a slightly smaller mass, mXdd = 1013 GeV, (figure 17, right
column) n-n̄ oscillations almost completely dominate in sensitivity. Furthermore, consid-
ering that both the LHC and n-n̄ oscillation rate depend non-trivially on the smallness
of mXud and the generated baryon asymmetry is largely insensitive to small changes in
mXud , a large part of the parameter space in which baryogenesis is successful (e.g. when
mXud � O(10)TeV) remains unreachable by any current or near future experiments.

Note that the final baryon asymmetry shown in figure 17 was calculated under the
assumption that Xdd and Xud dominantly decay into to third generation quarks, while the
n-n̄ oscillation requires Xdd and Xud couplings to first generation quarks. In general both,
the SM quark Yukawa coupling matrix and the Xdd (and Xud) Yukawa coupling matrix
need not to be diagonal in the same basis. Moreover, the inverse decays and washout
processes can lead to the generation of an asymmetry in all flavours even if the initial
asymmetry is generated in only one of the flavours. If an initial asymmetry is generated
in a the third flavour of quarks together with an equal and opposite asymmetry in an
unflavoured Xud (comparable to the Higgs asymmetry generated in the leptogenesis [49]),
then through inverse decay or washout processes the Xud asymmetry will induce asymmetry
in all three quark flavours realising a thermal contact among flavours such that asymmetry
in one flavour induces an asymmetry in the other flavours. Therefore, the asymmetry
that will “leak” into the first generation will be subject to washout effects from the first
generation Yukawa couplings of Xdd and Xud inducing n-n̄ oscillations. In a full two-flavour
treatment of the high-scale scenario we expect that the first generation interactions relevant
for n-n̄ oscillation operators will therefore at least partially washout the asymmetry along
the perpendicular direction to the third generation quarks.

To this end, the synergy of LHC searches for a tb vs. dijet final state searches with the
n-n̄ oscillation will provide valuable hint towards the underlying flavour dynamics of the
high-scale scenario. A comprehensive analysis of these interesting flavour effects is beyond
the scope of the present work and will be addressed in the future.

In summary, the high-scale scenario is a case where baryogenesis can be successful,
while at the same time, the baryon-number-violating mechanism can be potentially dis-
covered by n-n̄ oscillation experiments. Moreover, the Xud diquark is close to the current
reach of the LHC. In case a signal is observed in either of these experiments, the other
experiment can be used to set further constraints, perhaps rejecting or confirming this
mechanism as the one responsible for baryogenesis.

Low-scale scenario. In the low-scale baryogenesis scenario, we consider the case where
the diquark Xdd mass is a few times the mass of Xud, with mXud varying in the range
O(103−9)GeV. The phenomenological choice of a mild hierarchy between mXdd andmXud is
primarily driven by the constraints from colour preserving vacua as discussed in section 4.
To illustrate the typical dynamics of the baryon asymmetry generation in the low-scale
baryogenesis scenario, in figure 18, we show the evolution of η∆B with z for two different
coupling hierarchies fud = fdd = 0.05 (left figure) and fud = 10fdd = 0.05 (right figure).
The rest of the parameters are fixed to the benchmark values mXud = 108 GeV, mXdd =
3mXud and λv′ = 1.2mXdd . The evolution of the baryon asymmetry for the maximum ε
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Figure 18. Low-scale scenario. Evolution of baryon asymmetry η∆B (red lines) for the maximal
value of ε with respect to z = mXdd

/T . We fix λv′ = 1.2mXdd
, mXud

= 108 GeV, and the diquark
couplings are chosen as follows: Left: fud = fdd = 0.05. Right: fud = 10fdd = 0.05. The orange
solid line indicates the baryon asymmetry for ε = 2r, and the red solid line assumes ε ≈ 3.6× 10−3

(left) and ε ≈ 3.6 × 10−5 (right) as given by eq. 5.1 with x = 0.2. Blue solid and green dashed
lines depict the number density and equilibrium number density of Xdd (normalised to the photon
number density), respectively.

case (orange curve) as well as ε corresponding to eq. (5.1) with x = 0.2 (red curve) are
shown in each plot. An illustration of the evolution of the decay rates and scattering rates
in the low-scale baryogenesis scenario is shown in figure 19, using the same parameters as
in the left plot in figure 18. Similar to the high-scale case (cf. figure 16), figure 19 shows
for the low-scale case the overall dominance of the decay rate until some high z when the
Xs(t) washout takes over.

In figure 20, we present the parameter space for low-scale baryogenesis scenario in the
mXud–fud plane for the maximum value of ε, being ε = 2r. The final baryon asymmetry
is shown in yellow contours, where the low-mXud end of the plots is stretched out in order
to show the complementary sensitivity of the dinucleon decay, neutral kaon oscillation,
and collider searches with respect to n-n̄ oscillations. We show two different coupling
hierarchies: fud = fdd (figure 20 top) and fud = 10fdd (figure 20 bottom). The tri-linear
coupling is chosen as λv′ = 1.2mXud , and the mass ratio between Xdd andXud is taken to be
mXdd/mXud = 3. Our findings suggest that in the low-scale baryogenesis scenario, even for
the case of maximal CP violation, successful baryogenesis can only occur when the mass
scales mXdd ∼ mXud are sufficiently heavier (at least O(108)GeV) than the electroweak
scale such that the washout processes remain largely subdominant as compared to the
baryon asymmetry generation through Xdd decays. Since in this scenario mXdd is not very
heavy as compared to mXud , the quark and Xud mediated washout processes S(0)

s(t) do not
receive any relative suppression with respect to Xdd mediated Xs(t) processes, in contrast
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Figure 19. Equilibrium decay and scattering rates with respect to z = mXdd
/T and fud = fdd =

0.05 for the low-scale scenario with mXdd
= 3 × 108 GeV, mXud

= 108 GeV, and λv′ = 1.2mXdd
.

The solid orange line shows the decay rate of Xdd, while the solid (dashed) blue, green, and purple
lines show the scattering rates Ss (St), Xs (Xt), and S0

s (S0
t ) respectively.

to the high-scale scenario where the heaviness of Xdd leads to Boltzmann suppression of
the washout processes S(0)

s(t) as compared to Xs(t). For large fud and fdd couplings and
small Xdd(Xud) masses, the washout processes become too strong to generate any sizeable
asymmetry. In particular, for a fixed hierarchy of Xud and Xdd masses (e.g. our benchmark
choice mXdd = 3mXud) the final baryon asymmetry gets reduced for smaller masses mXud ,
as can be noticed in figure 20. This can be understood to be due to Xdd being less massive
(being related to Xud masses by a fixed hierarchy), thereby falling out-of-equilibrium at
a later time when the washout rates are less suppressed with respect to the Hubble rate.
Furthermore, a larger coupling fud should lead to an increased washout via Xs and Xt, and
therefore a lower final baryon asymmetry; however, since the Xs and Xt washout processes
also depend on the coupling fdd, such an effect is noticeably less strong in the bottom
plot in figure 20, in which fdd is an order of magnitude smaller as compared to the top
plot. On the other hand, a higher value of λv′ would (as in the high-scale scenario) lead
to an increase in both, the rate of the decay for Xdd as well as in the scattering rate for
washout processes Ss(t) and Xs(t). While this leads to more asymmetry being generated
at an earlier time, it finally would lead to a larger washout for large z once the baryon
asymmetry generation freezes out, leading to a smaller final baryon asymmetry.

From figure 20, it is very clear that if mXdd ∼ O(few)mXud lies below O(108)GeV then
the washout processes are too strong to generate any sizeable asymmetry, even if the CP
violation is maximal. Therefore, an observation of Xdd and Xud at the LHC together with a
signal for n-n̄ oscillations would imply that the low-scale baryogenesis scenario is completely
ruled out as a mechanism behind the observed baryon asymmetry. On the other hand, for
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mXdd ∼ O(few)mXud > O(108)GeV the low-scale baryogenesis mechanism remains a viable
option, however, the small couplings required together with the mass scale make this part
of the parameter space inaccessible to all current and near-future experimental efforts. In
this region, all washout processes involving scatterings are small because of the Boltzmann
suppression due to the heaviness of Xdd (and Xud) and the smallness of the couplings.
For instance, the dominant washout processes Xs and Xt are small due to the Boltzmann
suppression coming from the two Xud in the outer legs. Therefore, an initially generated
asymmetry due to the CP violating decay of Xdd can survive. In the contrary, if the
hierarchy between mXdd and mXud is larger (mXdd/mXud & 4), then the Boltzmann (or
phase-space) suppression of the washout processes (e.g. Xs and Xt), due to Xud in the
external legs, get lifted making the washout very strong, and consequently the baryon
asymmetry gets rapidly wiped out.14

In case the CP-violating parameter ε would be given by eq. (5.1) rather than being
fixed to the maximum value as in figure 20, we find that the entire parameter space of
the low-scale baryogenesis scenario cannot reach the observed baryon asymmetry of the
Universe. The asymmetry is particularly small for lower values of the coupling fdd, as a
consequence of less asymmetry being initially generated due to ε being smaller. Apart from
this effect, ε given by eq. (5.1) shows a similar behavior as in figure 20 for the low-scale
scenario with respect to a decreased asymmetry for lower masses mXud . This is caused by
the washout rates being larger than the Hubble rate for low masses of Xdd.

To summarise, if mXdd ∼ O(few)mXud is less than O(108)GeV, then the baryon num-
ber washout processes are too strong to generate any sizeable asymmetry even if the CP
violation is enhanced to its theoretically allowed maximal value. Consequently, the pos-
sibility of a low-scale baryogenesis to explain the correct baryon asymmetry can be ruled
out in this scenario if both the diquark states Xdd and Xud are discovered at the LHC
or future colliders together with a positive signal for n-n̄ oscillations. On the other hand,
successful baryogenesis can be achieved for some parts of the parameter space of the low-
scale baryogenesis scenario, however, then the corresponding masses of both diquarks are
generally too high and the couplings are too small to probe such a scenario at the LHC,
dinucleon decays or n-n̄ oscillation searches.

6 Conclusions

Within the SM, baryon number is an accidental global symmetry and only violated at
finite temperature via non-perturbative sphaleron interactions. On the other hand, new
physics is required in order to explain the observed baryon asymmetry via a mechanism

14Naively the Boltzmann suppression is independent of the mass hierarchy. However, in the low-scale
scenario, the successful generation of a baryon asymmetry relies on the minimisation of the Xdd-mediated
washout processes Xs and Xt, which generally come into effect after the most active decay of Xdd, but
before the temperature has dropped sufficiently low for the Boltzmann suppression from Xud to play a
major role. The window of washout due to Xs and Xt is therefore proportional to the mass hierarchy
between Xdd and Xud. This window can be seen as a small kink appearing in the red line in the bottom left
of figure 18, where for a short period of time, the washout is prominent (this effect is also present, although
less visibly so, in the orange line of the same figure, corresponding to maximal CP violation).
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1

Figure 20. Low-scale scenario. Yellow shading indicates the final baryon asymmetry η∆B at
the time of electroweak symmetry breaking in the mXud

–fud plane. The diquark couplings are
chosen as follows: Top: fud = fdd. Bottom: fud = 10fdd. In both plots, we chose λv′ = 1.2mXdd

,
mXdd

= 3mXud
, and the maximal CP asymmetry ε = 2r is used. The red line indicates the observed

value of the baryon asymmetry ηobs
B , while the orange, green, black, and blue lines correspond to

experimental constraints coming from dinucleon decay, meson oscillations, the LHC, and n-n̄ oscil-
lations respectively. For the dinucleon and n-n̄ oscillation constraints, solid lines represent current
experimental bounds, while dashed lines show projected future sensitivities. For the meson oscilla-
tion constraints, dotted and dot dashed lines correspond to tree-level oscillation via a Xdd mediator,
and box-diagram oscillation involving an Xud diquark, respectively (see section 4 for details). For
the LHC limit CMS data with

√
s = 13TeV and 36 fb−1 integrated luminosity was used [107].
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that complies with the three Sakharov conditions by violating B − L, C and CP while
leading to a departure from thermal equilibrium. Hence, it is natural to search for new B-
violating interactions that might have far-reaching implications on the mechanism behind
the baryon asymmetry.

While the dim-6 operators with |∆B| = 1 and |∆(B − L)| = 0 are tightly constrained
by limits from proton decay, dim-9, |∆B| = |∆(B−L)| = 2 interactions are less stringently
constrained. However, in the future, new facilities such as the Deep Underground Neutrino
Experiment and the European Spallation Source, will probe those interactions via n-n̄ os-
cillation experiments to an unprecedented sensitivity and make this possibility timely to be
reconsidered. As a discovery of n-n̄ oscillations would directly imply baryon-number viola-
tion, it might have a tight link to the mechanism of baryogenesis. Moreover, its oscillation
time τn-n̄ would give us a hint on the scale of new physics ΛNP of the effective interaction.

In this work, we have studied the implications of such a discovery for baryogenesis in a
comprehensive manner. First, we performed a model-independent EFT analysis of the new
dim-9, |∆B| = 2 operator uudddd. Assuming no inherent CP violation source connected
to this new operator, its interaction would lead to washout processes that could wipe out a
potential pre-existing baryon asymmetry. Under the assumption of a discovery with a given
oscillation time τn-n̄, we estimated the corresponding NP scale ΛNP and calculated the cor-
responding washout strength ΓW /H. In order to relate the low scale, where n-n̄ oscillations
are expected to occur, with the high scale, where the NP is active and the washout takes
place, we considered the running of the Wilson coefficients from the scale of NP down to
the scale µ0 = 2 GeV, where the nuclear matrix elements are provided by lattice calcula-
tions. We demonstrate that the observation of n-n̄ oscillations at future experiments such
as DUNE or NNBAR, would imply a strong washout down to around 100 TeV. With the
LHC already probing scales up to 1− 10 TeV, we would predict, under the made assump-
tions, new physics between 10− 100 TeV, possibly detectable at a future 100 TeV collider.

In order to accommodate the possibility of different hierarchies of NP within the ef-
fective operator uudddd and an additional new source of CP violation, we explored a
simplified set-up that realises one of the two possible UV-complete topoligies, featuring
two new types of scalar diquarks Xud and Xdd with couplings fud and fdd to SM quarks,
respectively. After B − L breaking, both carry a baryon number −2/3 such that the
out-of-equilibrium decay of the heavier one, Xdd → XudXud, violates baryon number and
generates (together with a new CP phase) a baryon asymmetry. Due to CPT invariance,
also the decay Xdd → dcdc contributes indirectly to this asymmetry. In order to describe
the final amount of the baryon asymmetry, we presented a comprehensive framework of
Boltzmann equations.

Moreover, we discussed in detail all experimental constraints which this set-up could
be subject to. We performed a dedicated study of current LHC, but also future HE-LHC
and FCC-hh limits on the scalar sextet diquarks. While current LHC limits exclude these
new particles for fud,dd ≈ O(1) up to around 10 TeV, smaller couplings (fud,dd ≈ O(0.01))
allow for masses heavier than 6 − 7 TeV. Depending on the mass scale of the diquarks,
meson oscillations can strongly constrain the respective couplings. As Xud can contribute
to meson oscillations only via loop diagrams, limits on the coupling fud are generally weak.
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In contrast, due to the direct tree-level contribution of Xdd, the coupling fdd & O(10−3)
is strongly constrained for mXdd ≈ TeV. In particular for third generation couplings and
comparable masses of Xud and Xdd, the dinucleon decay can set more stringent limits
than n-n̄ oscillations, as they contribute at the two-loop instead of the three-loop level.
This leads with current limits from Frejus to fud33 < 1 for mXud ≈ mXdd/3 ≈ 2 TeV
and is expected to improve to fud33 < 0.3 for mXud ≈ mXdd/3 ≈ 2 TeV or fud33 < 1 for
mXud ≈ mXdd/3 ≈ 4 TeV with Hyper-Kamiokande. Moreover, we discussed considerations
from colour preserving vacua and commented on further limits from electroweak precision
observables and electric dipole moments from which we do not expect any major constraints
due to chirality and loop suppression.

Finally, we compared the prospects to generate the observed baryon asymmetry with
the allowed parameter space from all considered experimental constraints. In our first
scenario, we assumed a heavy mXdd ≈ 1013 GeV and a lighter mXud ≈ O(TeV). Depending
on the actual size of the CP violation, the observed baryon asymmetry can be produced with
respective couplings, e.g. fud = fdd ≈ 0.3 for ε = 0.01 or fud = fdd ≈ 0.4 for maximal ε.
In this scenario, an interesting interplay between the LHC and future n-n̄ experiments can
take place: in order to account for the observed baryon asymmetry, a discovery of a diquark
at the LHC tb final state would still allow for a successful high-scale baryogenesis scenario.
If the diquark is also discovered at the LHC in the lighter generation quark dijet final states,
a signal at n-n̄ oscillation experiments would give valuable insight into the flavour dynamics
of a possible high-scale baryogenesis scenario, and would motivate a comprehensive study
of flavour effects. However, if a corresponding signal at both the LHC and n-n̄ oscillation
experiments is discovered and naively applying the maximal washout corresponding to the
first generation n-n̄ oscillations to our single flavoured analysis suggests that the high-scale
scenario will still remain a viable option.

In our second scenario, we analysed a less hierarchical set-up with mXud = mXdd/3. In
this case, the observed baryon asymmetry can only be generated with mXud = mXdd/3 ≈
105 TeV, which is out of reach of all experiments. This confirms our naïve EFT estimate
of a strong washout ΓW /H even in the presence of a CP violating source at low scales.
However, we have shown that the future NNBAR experiment will set stringent limits on
the parameter space ranging from fud = fdd = 1 for mXud = mXdd/3 ≈ 700 TeV to
fud = fdd = 0.001 for mXud = mXdd/3 ≈ 10 TeV. This demonstrates the excellent future
prospects of this experiment, making it possible to directly observe |∆B| = 2 interactions
up to an unprecedented scale.

In summary, the discovery of n-n̄ oscillations can have far-reaching consequences on
our understanding of physics beyond the Standard Model. Not only would it point to
new B-violating interactions, it could also have significant implications on the mechanism
behind the baryon asymmetry. The studied less hierarchical set-up confirms the naïve EFT
estimate of a too strong washout in order to generate the observed baryon asymmetry in
case of an observation. Moreover, it even demonstrates that a possible CP violation of the
new low-scale interactions could not balance out this strong washout. Hence, in order to
generate the observed baryon asymmetry, we would expect some other new physics between
the LHC exclusion and the scale of strong washout in case the |∆B| = 2 interaction does
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not involve any new CP-violating interaction. In contrast, the analysis of our high-scale
scenario demonstrates that for a large hierarchy of new degrees of freedom that feature
additionally a new CP phase, absorbed in the effective |∆B| = 2 interaction uudddd, we
are actually able to generate the observed baryon asymmetry in case of some new physics
being at a low scale. This would imply that an observation of n-n̄ oscillations might point
towards new physics experimentally reachable at the LHC or future colliders.
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A A possible UV completion motivated from GUTs

Diquarks can naturally arise in many UV completion of the SM gauge group, e.g. in Grand
Unified Theory (GUT) embeddings such as the Pati-Salam group GPS ≡ SU(2)L×SU(2)R×
SU(4)c, SO(10), or E6. Here, we will mainly focus on one of the extensively studied example
of SO(10).

The effective Yukawa couplings and quartic scalar interactions given in eq. (3.20) can
naturally arise in SO(10) as discussed in ref. [27]. There are a number of possibilities for the
breaking route of SO(10) to the SM gauge group. Some of them rely on the intermediate
gauge symmetry GPS, which provides the possibility of unifying quarks with leptons with
the extended colour gauge group SU(4)c accommodating leptons as a fourth colour. Also
using the left-right symmetric gauge subgroup GLR ≡ SU(3)c×SU(2)L×SU(2)R×U(1)B−L
as an intermediate symmetry in SO(10) GUT is fairly common. In order to discuss the
realisations of the effective diquark couplings in the context of SO(10), we write down the
decomposition of some relevant SO(10) multiplets under GPS:

10 = (2, 2, 1) + (1, 1, 6)
16 = (2, 1, 4) + (1, 2, 4)
45 = (3, 1, 1) + (1, 3, 1) + (1, 1, 15) + (2, 2, 6)
54 = (1, 1, 1) + (3, 3, 1) + (1, 1, 20) + (2, 2, 6)

120 = (2, 2, 1) + (1, 1, 10) + (1, 1, 10) + (3, 1, 6) + (1, 3, 6) + (2, 2, 15)
126 = (1, 1, 6) + (3, 1, 10) + (1, 3, 10) + (2, 2, 15)
210 = (1, 1, 1) + (1, 1, 15) + (3, 1, 15) + (1, 3, 15) + (2, 2, 6) + (2, 2, 10) + (2, 2, 10) . (A.1)

All SM fermion fields (for a given generation or family) can be accommodated within the
multiplet 16 of SO(10), as can be seen from table 7. In addition it contains a SM singlet,
which can be associated with a right-handed neutrino. Note that the Higgs multiplets which
can couple to the fermion bilinears of interest 16i16j (containing all the SM fermions)
are 10H , 126H and 120H , with the couplings of the 10H and 126H being symmetric in
flavour indices (i, j) and those of the 120H being antisymmetric. In general, the SM Higgs
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GPS GLR GSM

(2, 1, 4)
(
3, 2, 1, 1

3

) (
3, 2, 1

6

)
(1, 2, 1,−1)

(
1, 2,−1

2

)
(
2, 1, 4

) (
3, 1, 2,−1

3

) (
3, 1, 1

3

)
⊕
(
3, 1,−2

3

)
(1, 1, 2, 1) (1, 1, 1) ⊕ (1, 1, 0)

Table 7. Decomposition for the representation 16 of SO(10) under GPS ≡ SU(2)L × SU(2)R ×
SU(4)c, GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L and the SM gauge group GSM ≡ SU(3)c ×
SU(2)L ×U(1)Y .

GPS GLR GSM

(1, 3, 1) (1, 1, 3, 0) (1, 1,+1) ⊕ (1, 1, 0) ⊕ (1, 1,−1)
(3,1,1) (1,3,1,0) (1,3,0)
(2, 2, 6)

(
3, 2, 2,−2

3

) (
3, 2,+1

6

)
⊕
(
3, 2,−5

6

)
(
3, 2, 2,+2

3

) (
3, 2,+5

6

)
⊕
(
3, 2,−1

6

)
(1, 1, 15) (1, 1, 1, 0) (1, 1, 0)(

3, 1, 1,+4
3

) (
3, 1,+2

3

)
(
3, 1, 1,−4

3

) (
3, 1,−2

3

)
(8, 1, 1, 0) (8, 1, 0)

Table 8. Decomposition for the representation 45 of SO(10) under GPS, GLR, and GSM. We
highlight the representations relevant to the discussion in the main text in bold.

doublet (1, 2, 1/2) is a possible linear combination of h: (1, 2, 1/2) and h†: (1, 2,−1/2)
which belongs to the 10 and 126 multiplets of SO(10). In tables 8, 9 and 10, we present
the decomposition of the three representations 45, 54 and 126 of SO(10) via the breaking
chain GPS → GLR → GSM, which will be essential for our discussion. In what follows we
will briefly highlight how the criterion of gauge coupling unification can naturally motivate
one of the choices for diquark mass scales that we subsequently use to study the scenario
of high-scale baryogenesis.

Before moving onto the discussion of gauge coupling unification let us briefly summarise
the possibility of intermediate symmetries which can be realised by choosing appropriate
scalar multiplets (which will also contain the scalar diquark fields) relevant for realising a
given symmetry breaking chain. The possibility of realising an intermediate gauge sym-
metry group is dictated by the choice of Higgs multiplets of SO(10) used for symmetry
breaking. In particular, a real 45, a real 54, or a real 210 can be used along with a complex
126 to achieve the breaking to the SM gauge group. Using the 210 leads to the intermediate
symmetry GPS but with a broken discrete parity symmetry (subsequently, leading to an
asymmetric gauge couplings for SU(2)L(R): gL 6= gR ), often referred to as D-parity, while
54 can break SO(10) down to GPS symmetry preserving D-parity. On the other hand,
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GPS GLR GSM

(1, 1, 1) (1, 1, 1, 0) (1, 1, 0)
(3,3,1) (1,3,3,0) (1, 3,−1) ⊕ (1,3,0) ⊕ (1, 3,+1)
(2, 2, 6)

(
3, 2, 2,−2

3

) (
3, 2,+1

6

)
⊕
(
3, 2,−5

6

)
(
3, 2, 2,+2

3

) (
3, 2,+5

6

)
⊕
(
3, 2,−1

6

)
(1, 1, 20′)

(
6,1,1,+4

3

) (
6,1,+2

3

)
(
6,1,1,−4

3

) (
6,1,−2

3

)
(8, 1, 1, 0) (8, 1, 0)

Table 9. Decomposition for the representation 54 of SO(10) under GPS, GLR, and GSM. We
highlight the representations relevant to the discussion in the main text in bold.

GPS GLR GSM

(1, 1, 6)
(
3, 1, 1,+2

3

) (
3, 1,+1

3

)
(
3, 1, 1,−2

3

) (
3, 1,−1

3

)
(3, 1, 10) (1, 3, 1,−2) (1, 3,−1)(

3, 3, 1,−2
3

) (
3, 3,−1

3

)
(
6, 3, 1,+2

3

) (
6, 3,+1

3

)
(
1,3,10

)
(1, 1, 3,+2) (1,1,0) ⊕ (1, 1,+1) ⊕ (1, 1,+2)(
3, 1, 3,+2

3

) (
3, 1,−2

3

)
⊕
(
3, 1,+1

3

)
⊕
(
3, 1,+4

3

)
(
6,1,3,−2

3

) (
6,1,−4

3

)
⊕
(
6,1,−1

3

)
⊕
(
6,1,+2

3

)
(2, 2, 15) (1, 2, 2, 0)

(
1, 2,−1

2

)
⊕
(
1, 2,+1

2

)
(
3, 2, 2,−4

3

) (
3, 2,−7

6

)
⊕
(
3, 2,−1

6

)
(
3, 2, 2,+4

3

) (
3, 2,+7

6

)
⊕
(
3, 2,+1

6

)
(8, 2, 2, 0)

(
8, 2,−1

2

)
⊕
(
8, 2,+1

2

)
Table 10. Decomposition for the representation 126 of SO(10) under GPS, GLR and GSM. We
highlight the representations relevant to the discussion in the main text in bold.

the intermediate symmetry corresponds to a left-right symmetric gauge group GLR with a
broken D-parity [128].

Effective (B − L)-violating interactions can naturally occur in GUT theories like
SO(10), GPS or GLR, where (B − L) is part of the local gauge symmetry and broken
by the vacuum expectation value of a scalar field carrying non-vanishing (B − L) charge.
In SO(10) and GPS the effective (B − L)-violating couplings can arise, when the (B − L)-
symmetry is broken by giving a vacuum expectation value to the complete SM singlet field.
For instance, it can be contained in the 126H multiplet of SO(10) transforming as (1,1,0)
under the SM gauge group GSM while transforming as (1, 3, 10) under GPS, see bold-print
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in table 10. Note that this field, denoted by ξ in our Lagrangian in eq. (3.20) carries
(B − L) = −2. In SO(10) GUT ξ can potentially also generate large Majorana masses for
the right-handed neutrinos through the couplings of the form νcνcξ. Note that we assume
the scale of B−L breaking and consequently any intermediate symmetry like GPS or GLR
to lie around the unification scale to simplify the RG running. In case of a low-scale (few
TeV) breaking of such intermediate symmetries the running will be affected and additional
care must be taken to include the effects of new light degrees of freedom (e.g. a right handed
WR gauge boson that can lead to large washout effects in baryogenesis [47, 129–134]).

The effective Yukawa couplings given in our Lagrangian in eq. (3.20) can be obtained
from the Yukawa coupling 16i16j126H in the SO(10) GUT theory, where the 126H contains
the scalar diquark fields of interest Xuu :

(
6, 1,−4

3

)
, Xud :

(
6, 1,−1

3

)
and Xdd :

(
6, 1,+2

3

)
.

These fields belong to the
(
6, 1, 3,−2

3

)
of GLR and

(
1, 3, 10

)
multiplet of GPS. Hence, the

quartic scalar coupling in eq. (3.20), can be generated through λ1264
H .

Note that the multiplet 54 of SO(10) also contains the field Xdd :
(
6, 1,+2

3

)
, see

table 9. Therefore, it can mix with the aforementioned other copy of the field with the
same quantum number, µ126254, at a scale below the SO(10) breaking and can hence play
an essential role in providing a second copy of Xdd that, together with a CP-violating
coupling, can fulfil the three Sakharov conditions needed for successful baryogenesis (see
section 3 and the discussion around eq. (3.23)).

The possibility of achieving a gauge coupling unification with in a GUT framework
can be verified by using the RGEs governing the evolution for running coupling constants
gi. At one-loop level the RGEs for the gauge couplings can be expressed as

µ
∂gi
∂µ

= bi
16π2 g

3
i , (A.2)

which can be expressed as

1
αi(µ2) = 1

αi(µ1) −
bi
2π ln

(
µ2
µ1

)
, (A.3)

where αi = g2
i /4π corresponds to the coupling of the i-th gauge group, µ1, µ2 are the energy

scales with µ2 > µ1. The relevant beta-coefficients bi at one-loop order can be obtained
using [135]

bi = −11
3 C2(G) + 2

3
∑
Rf

T (Rf )
∏
j 6=i

dj(Rf ) + 1
3
∑
Rs

T (Rs)
∏
j 6=i

dj(Rs) , (A.4)

where C2(G) corresponds to the quadratic Casimir operator for the gauge bosons in their
adjoint representation

C2(G) ≡

N if SU(N) ,
0 if U(1) .

(A.5)
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T (Rf ) and T (Rs) correspond to the Dynkin indices of the irreducible representation Rf,s
for a given fermion and scalar field, respectively, e.g.

T (Rf,s) ≡


1
2 if Rf,s is fundamental,
N if Rf,s is adjoint,
0 if Rf,s is singlet,

(A.6)

and d(Rf,s) is the dimension of the representation Rf,s under all gauge groups except the
i-th gauge group under consideration. An additional factor of 1/2 is multiplied to T (Rs)
in the case Rs is a real Higgs representation.

Let us now consider a SO(10) GUT scenario where Xud is the only light field
(mXud ∼ O(TeV) scale) affecting the running of gauge coupling constants at one-loop
level (in addition to the SM field content), while the remaining diquarks (Xdd and Xuu)
and other new fields lie around the unification scale. This scenario is particularly interest-
ing because it allows for a high-scale baryogenesis scenario to be realised through the decay
Xdd → X∗udX

∗
ud as discussed in section 3. Additionally, a relatively light Xud can lead to a

sizeable contribution to the n-n̄ oscillation rate and can be directly searched for at the LHC
and future colliders. To simplify the discussion, let us first assume that (if present) the in-
termediate gauge symmetry GPS also lies very close to the SO(10) unification scale. In such
a scenario where Xud is the only light field with a mass around O(TeV), the gauge couplings
do not unify. However, if one also includes two copies of ∆ : (1, 3, 0) around aO(TeV) scale a
successful SO(10) unification can be achieved as first pointed out in [27]. Note that the field
∆ : (1, 3, 0) can be obtained from a 45 or 54 representation of SO(10), see table 8 and 9. In
figure 21 (left panel), we show the evolution of the gauge couplings formXud ∼ m∆ = 3TeV.
With increasing mXud ∼ m∆ (beyond a few TeV) a unification triangle starts to develop
(not visible in the figure due to the scaling). However, subject to the threshold corrections,
unification can still be considered as a marginally successful. This leads to mXud . 10TeV
as a necessary condition for a successful SO(10) gauge coupling unification.

Another alternative scenario that provides successful unification is Xud as the only
light field with mass O(TeV) and an additional field Σ :

(
6, 3, 1

3

)
at an intermediate scale

mΣ ∼ 104 TeV. In figure 21 (right panel), we show the evolution of the gauge couplings for
mXud = 3TeV and mΣ = 104 TeV.

B Chemical potential relations

In the early Universe, the chemical potential of a particle species a can be related to the
ratio of number density ηa to equilibrium number density ηeqa , such that [42, 43]

ηa
ηeqa
≈ eµa/T ≈ 1 + µa

T
, (B.1)

where µa is the chemical potential of the species a and T is the temperature of the Universe.
Furthermore, in writing eq. (B.1), we have assumed that the number density of the particle
species is close to equilibrium such that |ηa − ηā| � ηeqa , where ā is the antiparticle of a,

– 59 –



J
H
E
P
1
1
(
2
0
2
1
)
1
8
5

2 4 6 8 10 12 14 16

0

10

20

30

40

50

60 αY

-1

α 2 L
-1

α 3C
-1

5 10 15

0

10

20

30

40

50

60 αY

-1

α 2 L
-1

α 3C
-1

Figure 21. Evolution of SM gauge couplings with a colour sextet Xud and two copies of ∆ : (1, 3, 0)
both around the TeV scale (left), or a colour sextet Xud at the TeV scale and a SU(2)L triplet field
Σ :
(
6, 3, 1

3
)
at an intermediate scale (right) demonstrating a possible gauge coupling unification.

and where the chemical potential of a particle species a is related to the chemical potential
of its antiparticle via the relation µa = −µā. If an interaction is in equilibrium, a relation
can be found between the chemical potentials of the particle species involved. For example,
the reaction W− ↔ ūL+dL being in equilibrium leads to the relation µW +µuL = µdL . At
temperatures above the scale of electroweak symmetry breaking T & ΛEW, the total electric
charge Q and the z-component of isospin T3 must both be zero. The latter constraint leads
to µW = 0 [42], such that (suppressing flavour indices)

µuL = µdL ≡ µQ. (B.2)

Similarly, from the reactions W− + νL ↔ eL and W− ↔ h− + h0, we find the relations

µνL = µeL ≡ µL, µh0 = −µh− ≡ µH . (B.3)

From the Yukawa interactions h0 + ēc ↔ eL, h0 + uL ↔ ūc, and h0 + d̄c ↔ dL, we obtain

µH = µL − µēc , µH = −µQ + µūc , µH = µQ − µd̄c , (B.4)

and the electroweak sphaleron interaction in equilibrium leads to the relation

3
∑
i

µQi = −
∑
i

µLi , (B.5)

where i denote the flavour indices. Assuming flavour universality, henceforth we replace
the sum over flavours by the number of SM quark generations in thermal equilibrium N .
Lastly, since we are interested in the evolution of the number density of the diquark X∗ud
in section 3, we will consider the reaction X∗ud ↔ ūc + d̄c to be in equilibrium, thereby
obtaining the relation

µX∗
ud

= µūc + µd̄c . (B.6)

In terms of chemical potentials, the total electric charge Q of the Universe can then be
expressed as

Q = 2N (µQ + µūc)−N (µQ + µd̄c)−N (µL + µēc) + 2µH + 2
CX∗

ud

3 µX∗
ud
, (B.7)
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where CX∗
ud

is the colour multiplicity of X∗ud, N is the number of fermion generations in
thermal equilibrium.15 Since the total electric charge Q and the z-component of isospin
T3 of the Universe must be zero above the scale of electroweak symmetry breaking, the
individual chemical potential relations can be combined with equation (B.7) to relate the
chemical potential of the quark singlets ūc and d̄c to the diquark X∗ud. Using the notation

µa = xaµX∗
ud
, (B.8)

for any particle species a, we obtain the relations

xūc =
3− 6N − 2CX∗

ud

12N + 6 , xd̄c =
3 + 18N + 2CX∗

ud

12N + 6 . (B.9)

To define the net baryon number density of the Universe, we include the particle species
Xud, d̄c and ūc as well as their corresponding antiparticles, and assume that the other SM
fields do not contribute to a baryon number asymmetry generation or washout.16 Such
a prescription leads to the net baryon number difference of the Universe, cf. eq. (3.28),
given by

nb − n̄b ≡
T 2

6

(
Nµd̄c +Nµūc + 2NµQ + 4

3CXud∗µX
∗
ud

)
= T 3

6
6N + 4CX∗

ud

3
µX∗

ud

T
. (B.10)

Under similar assumptions, the equilibrium baryon number density then can be defined in
terms of the number densities of the relevant species as

neqb ≡
2
3CX

∗
ud
neqX∗

ud
+Nneq

d̄c
+Nneq

ūc
+NnequL +NneqdL = ζ(3)T 3

π2
8CX∗

ud
+ 36N

12 . (B.11)

To derive the two above equations, we have used

neq
i = giT

3

π2 ×

 ζ(3) + µi
T ζ(2) + . . . (bosons)

3
4ζ(3) + µi

T
ζ(2)

2 + . . . (fermions)
(B.12)

with ζ(s) denoting the Riemann zeta function. Combining equations (B.10) and (B.11),
we finally obtain a relation between baryon-to-photon density and the chemical potential
of X∗ud

nb − n̄b
neqb

= ηb − η̄b
ηeqb

= CB
µX∗

ud

T
, CB ≡

π2

3 ζ(3)
6N + 4CX∗

ud

18N + 4CX∗
ud

. (B.13)

For the relevant cases in our analysis, we have CX∗
ud

= 6, and depending on the number
of generation in thermal equilibrium (N), CB takes the values

CB = π2

3 ζ(3) ×


5
7 (N = 1)
7
13 (N = 3) .

(B.14)

15We keep the number of generations of the SM fermions as a free parameter since, depending on the
scale of baryogenesis, different numbers of the SM fermion generations can be in thermal equilibrium at
different temperatures [86].

16We note that even though uL and dL do not participate directly in any baryon number violating
interactions for our scenario, they can indirectly affect the baryon asymmetry through spectator processes,
which are taken into account by a final sphaleron conversion factor [84–86].
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C Details of the Boltzmann equation for the evolution of number density

The equilibrium number density of a particle species X is given by

ηeqX (z) = gX
gγ
z2K2 (z) , (C.1)

where K2(z) is the modified Bessel function of the second kind and z = mX/T . For a two-
body decay and inverse decay channel X ↔ ai + bi, the reaction density γDi is given by

γXDi = ηeqX n
eq
γ

K1 (z)
K2 (z)Γi, (C.2)

where the decay width is given by

Γi = 1
1 + δab

m2
X −m2

ai −m
2
bi

16πm3
X

|Mi|2, (C.3)

with Mi denoting the matrix element corresponding to the process and the symmetry
factor in front with δab takes care of identical initial (final states), and the full reaction
rate for (inverse) decays is the sum of all allowed channels,

γXD =
∑
i

γXDi . (C.4)

The reaction rate γ1,2↔3,4 due to the s- and t-channel scattering 1, 2↔ 3, 4 is given by

γ1,2↔3,4 = mX

64π4z

∫ ∞
smin

ds
√
sσ̂1,2↔3,4 (s)K1

(
z

√
s

mX

)
, (C.5)

with smin = max((m1 +m2)2, (m3 +m4)2), and σ̂ (s) is given by [136]

σ̂ (s) = 1
8πs

∫ t-

t+
dt|M|2, (C.6)

where the limits on t can be obtained as

t± = (m2
1 −m2

2 −m2
3 +m2

4)2

4s −

√(s+m2
1 −m2

2)2

4s −m2
1 ±

√
(s+m2

3 −m2
4)2

4s −m2
3

2

,

(C.7)
and where s and t denote the usual Mandelstam variables.

D Matrix elements

In this appendix we provide the expressions for the matrix elements that are relevant for the
decay and scattering processes discussed in relation to the Boltzmann equation in section 3.
Here we will follow the same notation as figures 6 and 7, where the Feynman diagrams of
the different relevant processes are shown. For the decays, the matrix elements are given by

|MD0
d
|2 = 4f ij2dd

(
m2
Xdd
− (mdi +mdj )2

)
(D.1)

|MDd |
2 = λ2v′2, (D.2)
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where f ijdd and λv′ are Yukawa and trilinear scalar coupling constants respectively, and mi

is the mass of particle i. For scattering processes mediated by X(∗)
ud the matrix elements

are given by

|MSS |
2 =

2(λv′f ijud)2
(
s−

(
mui +mdj

)2
)

(
s−m2

Xud

)2
+ Γ2

Xud
m2
Xud

, (D.3)

|MST |
2 =

2(λv′f ijud)2
(
t−

(
mui +mdj

)2
)

(
t−m2

Xud

)2 , (D.4)

where t and s are the usual Mandelstam variables, and Γi is the decay width of particle
i. Similarly, for the diagrams meditated by X(∗)

dd the matrix elements are given by

|MXS |
2 =

2(λv′f ijdd)2
(
s−

(
mdi +mdj

)2
)

(
s−m2

Xdd

)2
+ Γ2

Xdd
m2
Xdd

, (D.5)

|MXT |
2 =

2(λv′f ijdd)2
(
t−

(
mdi +mdj

)2
)

(
t−m2

Xdd

)2 . (D.6)

Finally, the matrix elements corresponding to scatterings with a quark mediator are given
by

|MS0
S
|2 = (f ikddf

kj
ud)2(

s−m2
dk

)2

{
m2
Xdd

(
m2
Xud
−muj (muj +mdk)− s

)
+m2

di

(
muj (muj +mdk)−m2

Xud

)
+mdimdk

(
−m2

Xud
+m2

uj + 2mujmdk + s
)

+ s
(
−m2

Xud
+mujmdk + s+ t

)}
, (D.7)

|MS0
T
|2 = (f ikddf

kj
ud)2(

t−m2
dk

)2

{
m2
Xdd

(
mdi(mdk −mdi) +m2

Xud

)
+ t

(
m2
di −mdk(mdi +muj ) +m2

uj − s
)

+muj

[
mdk

(
m2
Xud
−mdi(mdi +muj )

)
+muj (mdi −mXud)(mdi +mXud) + 2mdim

2
dk

]}
. (D.8)
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