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1 Introduction

Despite the discovery of the Higgs boson in the year 2012 [1, 2] that completed the particle
spectrum in the Standard Model (SM), there exist numerous observed phenomena in astro-
physics, e.g. dark matter, dark energy and the matter-antimatter asymmetry, that do not
find their explanations within this theory framework and thus call for physics beyond the
Standard Model (BSM). Unfortunately, all direct searches in high-energy colliders have so
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far returned null results. On the other hand, precision experiments have observed several
interesting anomalies in flavor physics that point towards the possible existence of BSM
physics. This research concerns one of these observed anomalies, namely the irregularities
in the top-row Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.

The unitarity of the CKM matrix is a rigorous SM prediction [3, 4]. In particular, the
top-row CKM unitarity (which is also known as the Cabibbo unitarity) that involves the
matrix elements Vud and Vus (Vub is negligible) has received the most attention because
they can be measured to high precision in hadron and nuclear beta decays. Recently, a
series of improvements in the theory [5–8] of the electroweak radiative corrections (RC) in
the extraction of Vud led to an apparent deviation of the Cabibbo unitarity at a level of
3σ [9]. However, in this work we will not focus on Vud, but rather on Vus which possesses
yet another interesting anomaly by itself.

Let us focus on the two best determinations of the matrix element Vus, which come
from leptonic (Kl2) and semileptonic (Kl3) kaon decays respectively. From the leptonic
kaon and pion decay, the following ratio is obtained:

|Vus|fK+

|Vud|fπ+
= 0.23871(20)

[
ΓK→µν(γ)
Γπ→µν(γ)

] 1
2

, (1.1)

where fK+ and fπ+ are the K+ and the π+ decay constant, respectively, which require
lattice QCD inputs. The theory uncertainty on the right-hand side is less than 10−3,
thanks to the cancellation of the common electroweak RC to the leptonic kaon and pion
decay rate [10, 11]. Combining this expression with the Nf = 2 + 1 + 1 FLAG average of
fK+/fπ+ [12] and the recent value of Vud obtained from superallowed beta decays [5], the
following result is quoted in PDG 2020 [9]:

|Vus| = 0.2252(5) (Kµ2/πµ2 + superallowed) (1.2)

Meanwhile, in the semileptonic kaon decay process K → πl+ν(γ) one does not measure
a ratio, but obtains Vus directly from the decay rate, where the SM inputs include the
electroweak RC, the Kπ form factors and the SU(2) isospin-breaking effects (we postpone
the detailed discussions to the main text). With the most recent theory inputs of these
quantities, PDG 2020 quotes the following result:

|Vus| = 0.2231(4)exp+RC(6)lat (Kl3) (1.3)

We observe a ∼ 3σ disagreement between the numbers in eq. (1.2) and (1.3), with a ∼ 1%
difference between the two central values. This provides another interesting hint to the
existence of BSM physics [13–22] which, to some extent, is even more promising than the
top-row CKM unitarity deficit. In fact, the extraction of Vus is free from complicated
nuclear-structure uncertainties (except those that enter Vud in eq. (1.1), whose effect on
Vus is subdominant to the existing uncertainties). For instance, if the total uncertainty in
eqs. (1.2) and (1.3) is reduced to 4 × 10−4 or below, with the central values unchanged,
the discrepancy will reach 5σ which is sufficient to claim an observation of a BSM signal.
Achieving this final goal requires a careful re-analysis of all the SM inputs, not just to
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reduce their uncertainties but also to make sure that no large unidentified SM corrections
were missed in existing analyses.

In this work, we study a particularly important SM correction to the kaon semilep-
tonic decay, namely the electroweak RC. Earlier studies of this topic by Ginsberg [23–26],
Becherrawy [27] and later by Bytev et al. [28] and Andre [29] assumed specific models for
the strong and electroweak interactions which made a rigorous analysis of the theory un-
certainties rather challenging. Another class of works, e.g. by García and Maya [30] and by
Juárez-León et al. [31–33] put more emphasis on the so-called “model-independent” piece in
the long-distance electromagnetic corrections (i.e. the convection term contribution, which
we will explain in the main text) but were unable to place any constrain on the “model-
dependent” piece originating from non-perturbative Quantum Chromodynamics (QCD) at
the hadronic scale. So far, the only approach that allows a systematic error analysis in
every part of the electroweak RC has been the chiral perturbation theory (ChPT) calcula-
tion by Cirigliano et al. [34–36], where the most general electroweak interactions between
hadrons and dynamical photons [37] and leptons [38] are arranged according to increas-
ing powers of p/Λχ, where p is a typical small momentum scale in such interactions and
Λχ ' 4πFπ is the chiral symmetry breaking scale, with Fπ = 92.1MeV the pion decay
constant. Within this framework, the long-distance electromagnetic RC to Kl3 decay is
calculated to O(e2p2), and the theory uncertainty comes from two major sources: the un-
known low-energy constants (LECs) at O(e2p2), and the neglected contributions of the
order O(e2p4). Both uncertainties are estimated to be of the order 10−3. At this point it
seems formidable to make any further progress within the same theory framework, because
(1) the LECs are only calculable within phenomenological models [39, 40] with outcomes
that are highly uncertain, and (2) to reduce the higher-order corrections one needs to per-
form a full two-loop ChPT calculation which is not only technically challenging but more
importantly, involves even more unknown LECs.

A series of preparatory works were done since early 2020 in order to eventually over-
come the difficulties mentioned above. First, a new theory framework based on the hy-
bridization of the classical Sirlin’s approach [41, 42] and modern ChPT was formulated [43]
in order to resum the most important O(e2p2n) effects while retaining the full model-
independent characteristics in the traditional ChPT approach. Next, lattice QCD was
introduced to study the part of the RC in semileptonic decays that carries the largest
hadronic uncertainties, namely the axial γW -box diagram. The first calculation was done
on the pion [44], which removed the dominant theory uncertainty in the semileptonic pion
decay and also confirmed the result of the previous dispersion-relation analysis of the RC
in free neutron [45]. Shortly after that, following the suggestion in ref. [46] a new lattice
calculation of the Kπ axial γW -box in the flavor SU(3) limit was performed [47]. Up to
this point, we finally have all the necessary ingredients and are in the position to present a
fully-updated numerical analysis of the electroweak RC in kaon semileptonic decays that
eventually reduces the existing theory uncertainty by almost an order of magnitude, i.e. to
the level of 10−4.

The main results in this study were presented in an earlier paper [48], and here we
will show all the details. We concentrate on the Ke3 channel and not Kµ3 throughout this
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study for reasons that will become clear in the main text. The contents of this work are
arranged as follows. In section 2 we introduce the basic notation and set up our theory
framework. In sections 3–6 we present our update of the contributions from the “virtual”
electroweak RC; in particular, we demonstrate in section 6 how the most recent lattice
QCD results are used to constrain the hadronic uncertainties in the physical Kπ axial
γW -box diagram. The contribution from the real-photon emission process is calculated in
section 7. In section 8 we discuss how our new results should be interpreted in the ChPT
language, and show the numerical improvement against the existing calculations. Final
discussions and conclusions are provided in section 9.

2 Notation and setup

One of the most important avenues to extract Vus is the inclusive kaon semileptonic decay
Kl3, i.e. the process K(p) → π(p′) + l+(pl) + νe(pν) + nγ, where l = e, µ, and n ≥ 0
is the number of photons in the final state. It will be evident later that the case l = e

allows for a much better control of the theory uncertainties, so throughout this paper,
we will concentrate on this particular case. If all massless final-state particles are left
unobserved, the differential decay rate of the process is fully described by three independent,
dimensionless Lorentz-invariant variables:1

x ≡ P 2

M2
K

, y ≡ 2p · pe
M2
K

, z ≡ 2p · p′
M2
K

, (2.1)

where P ≡ p− p′ − pe. Notice that x is strictly zero (neglecting neutrino mass) for n = 0,
but may take a non-zero value when n ≥ 1. We may have as well introduced the usual
Mandelstam variables s ≡ (p′ + pe)2, t ≡ (p− p′)2 and u ≡ (p− pe)2, but none of them is
independent of {x, y, z}.

At O(G2
F ) (where GF = 1.1663787(6) × 10−5 GeV−2 is the Fermi constant extracted

from muon decay [49]), only the n = 0 process contributes to the Ke3 decay rate. Its
corresponding tree-level amplitude is given by:

M0 = −GF√
2
ūνγ

µ(1− γ5)veFKπµ (p′, p) , (2.2)

where the effects of the strong interaction are fully contained in the following hadronic
matrix element of the charged weak current:

FKπµ (p′, p) ≡
〈
π(p′)

∣∣ (JWµ )† |K(p)〉 = V ∗us

[
fKπ+ (t)(p+ p′)µ + fKπ− (t)(p− p′)µ

]
. (2.3)

The equation above defines the charged weak form factors fKπ± (t).2 It is also customary to
define a third form factor:

fKπ0 (t) ≡ fKπ+ (t) + t

M2
K −M2

π

fKπ− (t) , (2.4)

1In the existing literature x is more often defined as P 2, which carries a dimension.
2We wish to remind the readers that our sign convention for the form factors is fKπ+ (0) < 0, which is

also adopted in our previous works, e.g. [43, 46], but may be opposite to other existing literature. This
serves to be consistent with the sign convention of the charged weak current (JµW )† derived from ChPT.
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and call fKπ+ (t) and fKπ0 (t) the “vector” and “scalar” form factor, respectively. From the
definition above, it is obvious that fKπ0 (0) = fKπ+ (0), so another common step is to factor
out their t = 0 value:

f̄+,0(t) ≡
fKπ+,0 (t)
fKπ+ (0)

. (2.5)

There are several different ways to parameterize f̄+,0(t), e.g. Taylor expansion, monopole
parameterization and dispersive parameterization. The interested reader may consult
ref. [50] and references therein for the details, and we will also come back to this point
in section 4.

It is instructive to display explicitly the absolute square of the tree-level amplitude
above (upon summing over the lepton spin, as we will always do throughout this work):

|M0|2(x, y, z) = G2
FF

Kπ
µ (p′, p)(FKπν (p′, p))∗Tr

[
/Pγµ(/pe −me)γν(1− γ5)

]
. (2.6)

Here we purposely retain the x-dependence in the formula above despite the fact that
x = 0 when n = 0. The x-dependence becomes important later when we discuss the
squared amplitude of the bremsstrahlung process. The impact of the form factors fKπ± on
the tree-level decay rate relies heavily on the leptonic trace in eq. (2.6). Suppose we define:

H(a, b) ≡ Tr
[
/P (/p+ a/p

′)(/pe −me)(/p+ b/p
′)(1− γ5)

]
x=0

, (2.7)

then a straightforward calculation shows:

H(+1,+1) = −2M4
K

[
4(y − 1)(y + z − 1) + 4rπ − re(rπ + 4y + 3z − 3) + r2

e

]
H(+1,−1) = H(−1,+1)

= −2M4
Kre [−re + rπ + 2y + z − 3]

H(−1,−1) = −2M4
Kre [re − rπ + z − 1] , (2.8)

where rπ ≡ M2
π/M

2
K and re ≡ m2

e/M
2
K . We observe that only H(+1,+1) is not explicitly

suppressed by the factor re ≈ 10−6. Following the notations in appendix A, the decay rate
at O(G2

F ) in given by:

(ΓKe3)tree = MK

256π3

∫
D3
dydz|M0|2(0, y, z) . (2.9)

From the argument above, it is apparent that only fKπ+ (t), and not fKπ− (t), is relevant in
(ΓKe3)tree. Of course the actual value of (ΓKe3)tree depends on the specific parameterization
of f̄+(t) and the parameters therein, but the impact of the different choices is generically
of the order 0.1%. Since in this paper (ΓKe3)tree serves only as a normalization factor to
the already-small RC, such a difference is completely negligible.

The electroweak RC induces a shift of the tree-level decay rate: (ΓKe3)tree→(ΓKe3)tree+
δΓKe3 . We define the quantity:

δKe3 ≡
δΓKe3

(ΓKe3)tree
(2.10)

that represents the fractional correction to the decay rate, and we will discuss its relation
to the different quantities within the ChPT framework in section 8. To match the precision
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level of current and near-future experiments, we need a theoretical prediction of δKe3 up
to O(α). At this level, the only two contributors are (1) the O(GFα) electroweak RC to
the n = 0 decay amplitude, and (2) the tree-level contribution from the n = 1 process. We
will spend the next few sections discussing these two contributions.

3 Virtual correction: analytic pieces

We start by discussing the virtual corrections, i.e. the O(GFα) electroweak RC to the n = 0
decay amplitude. It is possible to express such corrections entirely in terms of perturbations
to the charged weak form factors, i.e.,3

δMvir = −GF√
2
V ∗usūνγ

µ(1− γ5)ve
[
(p+ p′)µδfKπ+ + (p− p′)µδfKπ−

]
. (3.1)

The only complication is that δfKπ± are complex functions of two variables, e.g. {y, z},
rather than real functions of a single variable t.

The virtual contribution to δKe3 at O(α) arises from the interference between M0 and
δMvir, i.e. |M0|2 → |M0|2 + δ|M |2vir, with δ|M |2vir ≡ 2Re {M∗0 δMvir}. Again, by restricting
ourselves to Ke3, we only need to know δfKπ+ in order to determine the perturbation to
the n = 0 squared amplitude:

δ|M |2vir(y, z) = 2|M0|2(0, y, z)
Re
{
δfKπ+

}
fKπ+ (t)

+O(re) . (3.2)

Based on the theory framework outlined in refs. [43, 46], the O(GFα) virtual corrections
to the n = 0 decay amplitude can be summarized by the following equation:

δMvir =
[
− α

2π

(
ln M

2
W

M2
Z

+ 1
4 ln M

2
W

m2
e

− 1
2 ln m2

e

M2
γ

+ 9
8 + 3

4apQCD

)
+ 1

2δ
QED
HO

]
M0

+δM2 + δM3 + δMγW . (3.3)

Let us briefly explain the notation above, all the details are given in ref. [43]. First, the
terms in the square bracket come from the “weak” RC including its O(αs) perturbative
QCD (pQCD) corrections apQCD ≈ 0.068, the electron wavefunction renormalization, and
the resummation of the large QED logs represented by δQED

HO = 0.0010(3) [51]. An in-
finitesimal photon mass Mγ is introduced to regularize the infrared (IR) divergence in the
electron wavefunction renormalization. Next, the quantities δM2,3 represent the contribu-
tions from two separate pieces of the electromagnetic RC to the charged weak form factors,
known as the “two-point function” and “three-point function”, respectively. Finally, δMγW

represents the contribution from the γW -box diagram:

δMγW = −GF e
2

√
2

∫
d4q′

(2π)4
M2
W

M2
W − q′2

ūνγ
ν(/q′γµ − 2pµe )(1− γ5)ve

[(pe − q′)2 −m2
e]
[
q′2 −M2

γ

]TKπµν (q′; p′, p) , (3.4)

3Using the on-shell condition, one can show that other leptonic bilinear structures, such as
iελµναpµp

′
νpeαūνγλ(1− γ5)ve, are linear combinations of ūν(/p± /p′)(1− γ5)ve.
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where we have introduced the so-called “generalized Compton tensor” TKπµν which plays a
central role in the upcoming analysis:

TµνKπ(q′; p′, p) ≡
∫
d4x eiq

′·x 〈π(p′)
∣∣T{Jµem(x)Jν†W (0)} |K(p)〉 , (3.5)

where T{. . .} denotes the conventional time-ordering. It satisfies the following Ward iden-
tities:

q′µT
µν
Kπ(q′; p′, p) = −iF νKπ(p′, p)

qνT
µν
Kπ(q′; p′, p) = −iFµKπ(p′, p)− iΓµKπ(q′; p′, p) , (3.6)

with q ≡ p′ + q′ − p, and

ΓµKπ(q′; p′, p) ≡
∫
d4x eiq

′·x 〈π(p′)
∣∣T{Jµem(x)∂ · J†W (0)} |K(p)〉 . (3.7)

The first line in eq. (3.6) is a consequence of the exact conservation of the electromagnetic
current, while the second line entails the partial conservation of the charged weak current.
Expressing hadronic matrix elements in terms of integrals with respect to Tµν is a classical
technique in hadron physics that appears also in, e.g., the Cottingham’s approach to the
hadronic mass splittings [52–57].

Using now the following Dirac matrix identity:

γµγνγα = gµνγα − gµαγν + gναγµ − iεµναβγβγ5 , (3.8)

(with ε0123 = −1) one splits the γW -box diagram into two pieces: δMγW = δMa
γW +δM b

γW ,
where the antisymmetric tensor is contained in the second term.4 A great simplification is
observed upon combining δM2 with δMa

γW [46]:

δM2 + δMa
γW = α

2π

[
ln M

2
W

m2
e

+ 3
4 + 1

2 ã
res
g

]
M0 + GF e

2
√

2
ūνγλ(1− γ5)ve

∫
d4q′

(2π)4
M2
W

M2
W − q′2

× 1
(pe − q′)2 −m2

e

{
2pe · q′q′λ

(q′2 −M2
γ )2T

µ
Kπµ(q′; p′, p) + 2peµ

q′2 −M2
γ

TµλKπ(q′; p′, p)

− (p− p′)µ
q′2 −M2

γ

T λµKπ(q′; p′, p) + i

q′2 −M2
γ

ΓλKπ(q′; p′, p)
}

≡ α

2π

[
ln M

2
W

m2
e

+ 3
4 + 1

2 ã
res
g

]
M0 +

(
δM2 + δMa

γW

)
int

. (3.9)

The terms in the square bracket in eq. (3.9) are exactly known as they are isolated from
the full one-loop integral with the help of the Ward identities in eq. (3.6), as well as the
operator product expansion (OPE) at leading-twist in the q′ ∼ MW region (see eq. (6.1)
in ref. [43]), and ãres

g ≈ 0.019 entails the O(αs) pQCD corrections of such terms. The
4We used to label them as δMV

γW and δMA
γW in ref. [46], but this may cause confusions with notations of

box diagrams in some literature when we further divide the contributions from the vector and axial charged
weak current in TKπµν , so here we adopt an alternative labeling.
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remaining “integral” piece requires further theoretical analysis and will be treated in the
next section. Meanwhile, the other component of the γW -box diagram reads:

δM b
γW =−iGF e

2
√

2
ūνγλ(1−γ5)ve

∫
d4q′

(2π)4
M2
W

M2
W−q′2

1
(pe−q′)2 −m2

e

1
q′2
εµναλq′αT

Kπ
µν (q′; p′, p) ,

(3.10)

which can be split into two pieces, as well: δM b
γW = δM b,V

γW +δM b,A
γW , where δM b,V

γW (δM b,A
γW )

picks up the contribution from the vector (axial) charged weak current in the generalized
Compton tensor TKπµν .

At this point, we can combine the terms in the square brackets from eqs. (3.3) and (3.9).
They are analytically known and do not require any further treatment. Their contribution
to δfKπ+ is given by

(
δfKπ+

)
I

=
{
α

2π

[
ln M

2
Z

m2
e

− 1
4 ln M

2
W

m2
e

+ 1
2 ln m2

e

M2
γ

− 3
8 + 1

2 ãg
]

+ 1
2δ

QED
HO

}
fKπ+ (t) , (3.11)

where ãg = −(3/2)apQCD + ãres
g ≈ −0.083. We use the subscript “I” to signify the fact that

it carries an IR divergence. We will see later that the remaining IR-divergent pieces in the
virtual corrections come from (δM2 + δMγW )int and δM3, and will carry the subscript “II”
and “III”, respectively.

All the remaining O(GFα) electroweak RC to the n = 0 decay amplitude not included
in eq. (3.11) are fully contained in the following quantities:

(
δM2 + δMa

γW

)
int
, δM b,V

γW , δM3

and δM b,A
γW . They will be studied in the next three sections.

4 Virtual correction:
(
δM2 + δMa

γW

)
int

and δM b,V
γW

In this section we evaluate the loop integrals in
(
δM2 + δMa

γW

)
int

and δM b,V
γW . The first

important observation is that these integrals cannot depend on physics at large virtual mo-
mentum q′ (so we could takeM2

W /(M2
W −q′2)→ 1 in the integrand). In

(
δM2 + δMa

γW

)
int
,

this is because the numerators in the integrand contain explicit factors of pe, p−p′ or quark
masses (in ΓλKπ); whereas in δM b,V

γW , it is because there is no extra antisymmetric tensor
coming from

(
TKπµν

)
V
, so the integral vanishes when q′ � (p− p′) or pe due to symmetry.

Therefore, these integrals are saturated by contributions from the intermediate hadronic
states at low energy.

All the information on the hadronic structure in these integrals is contained in the
generalized Compton tensor TµνKπ and the vector ΓµKπ. Within the former, we distinguish
two types of contributions shown in figure 1: the pole term associated with a charged
meson (initial or final, depending on the reaction channel) propagator which leads to a 1/q′
behavior in the soft photon limit, and the seagull term which is regular in that limit. The
pole term is model-independent and given in terms of the meson weak and electromagnetic
form factors, whereas the seagull term, alongside the form factors, contains information
about excited states, and is generally model-dependent. It is common to single out the
Born part of the generalized Compton tensor, defined as the pole terms complemented by
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Figure 1. Pole (left, middle) and seagull (right) contribution to TKπµν at low energy.

a part of the seagull term that ensures that the Ward identities in eq. (3.6) are satisfied. In
this way, the remaining, non-Born part is regular for q′ → 0 and also obeys Ward identities
individually.

Guided by the order O(p2) result in chiral expansion for the Compton tensor,
(
TµνK0π−

)
p2

= iV ∗us

[(2p′ + q′)µ(p+ p′ + q′)ν
(p′ + q′)2 −M2

π

− gµν
]

(
TµνK+π0

)
p2

= − iV
∗
us√
2

[
(2p− q′)µ(p+ p′ − q′)ν

(p− q′)2 −M2
K

− gµν
]
, (4.1)

and (
ΓµK0π−

)
p2

= V ∗us
M2
K −M2

π

(p′ + q′)2 −M2
π

(2p′ + q′)µ

(
ΓµK+π0

)
p2

= −V
∗
us√
2

M2
K −M2

π

(p− q′)2 −M2
K

(2p− q′)µ , (4.2)

we thus define the minimal Born contributions for the two decay channels as

Tµν,BK0π− = iV ∗usF
π−
em (q′2)

[ (2p′ + q′)µ
(p′ + q′)2 −M2

π

(
fK

0π−
+ (q2)(2p+ q)ν − fK0π−

− (q2)qν
)
−gµνfK0π−

seagull

]
Tµν,BK+π0 = iV ∗usF

K+
em (q′2)

[
(2p− q′)µ

(p− q′)2 −M2
K

(
fK

+π0
+ (q2)(2p′−q)ν−fK+π0

− (q2)qν
)
−gµνfK+π0

seagull

]
,

(4.3)

where F π−em (q′2) and FK+
em (q′2) are the electromagnetic form factors of the π− and the K+,

respectively,5 which satisfy F π−em (0) = −1 and FK+
em (0) = 1. Furthermore, the normalization

of the seagull term is fixed as:

fK
0π−

seagull = fK
0π−

+ (q2)− fK0π−
− (q2) , fK

+π0
seagull = fK

+π0
+ (q2) + fK

+π0
− (q2) . (4.4)

One can check that the electromagnetic Ward identity is satisfied upon neglecting the
q′-dependence of the form factors in q′µT

µν,B
Kπ . With the same diagrams and keeping in

5In principle the photon can also couple to K0 due to its non-zero charge radius, so FK
0

em (q′2) 6= 0
when q′2 6= 0. However, a simple ChPT calculation at O(p4) indicates that |FK

0
em (q′2)| < 0.02 when

|q′2| < 0.1GeV2 (see, e.g., ref. [59]), so to our required precision it is completely negligible. On the other
hand, Fπ

0
em(q′2) is exactly zero due to G-parity.
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mind that we must apply the equation of motion to the charged weak vertex so that it
vanishes exactly when MK = Mπ (see, e.g. the discussion in section 7 of ref. [43]), the Born
contribution to ΓµKπ reads,

Γµ,BK0π− = V ∗us
M2
K −M2

π

(p′ + q′)2 −M2
π

(2p′ + q′)µF π−em (q′2)fK0π−
0 (q2)

Γµ,BK+π0 = V ∗us
M2
K −M2

π

(p− q′)2 −M2
K

(2p− q′)µFK+
em (q′2)fK+π0

0 (q2) (4.5)

that depends on the scalar but not the vector charged weak form factor.
The Born contributions of eqs. (4.3) are defined in terms of the model-independent

pole contributions supplemented with a minimal seagull term required by gauge invari-
ance. It is easy to see that if rearranging eqs. (4.3) into two separately gauge invariant
structures (clearly reminiscent of the usual inelastic structure functions, (−gµν + . . . )F1 +
(pµpν + . . . )/(p · q)F2), one finds that only the contribution to F2 contains a pole and is
model-independent. The Born contribution to F1 is regular and cannot in principle be
distinguished from other inelastic contributions, so that eqs. (4.3) represent the minimal
Born contribution definition only, bearing residual model dependence. Fortunately, its
effect on the loop integrals turns out to be very small. In

(
δM2 + δMa

γW

)
int
, it only con-

tributes to δfKπ− , whose effect in the decay rate is further suppressed by re ≈ 10−6 (which
is yet another reason why we restrict ourselves to Ke3 throughout this study), whereas the
contribution to δM b,V

γW vanishes trivially due to symmetry.
Starting from O(p4) one expects new structures such as pµpν/Λ2 to enter, which

parametrize inelastic contributions. Observe that a new mass scale Λ is present for di-
mensional reasoning, and an obvious choice is the mass of the lowest resonances. This
means we are able to get a handle of the effect of the inelastic contributions by computing
the contributions from the resonances at low energy. We perform that calculation based
on the framework of resonance chiral theory (this is fine, as we are only dealing with
tree graphs, see details in appendix B), and find that their contribution to δKe3 through(
δM2 + δMa

γW

)
int

and δM b,V
γW is smaller than 10−4, which indicates that this contribution

is negligible. However, to stay on the safe side, we introduce a common uncertainty of
2 × 10−4, which is roughly four times the magnitude of the resonance contribution esti-
mated in appendix B, to δKe3 as a very conservative estimation of the effects from the
neglected inelastic terms.

Before proceeding directly with the numerical calculations, we prefer to further isolate
a particularly important piece from Tµν,BKπ and Γµ,BKπ known as the “convection term” [60],

Tµν, conv
K0π− = −

i(2p′ + q′)µF νK0π−(p′, p)
(p′ + q′)2 −M2

π

Tµν, conv
K+π0 =

i(2p− q′)µF νK+π0(p′, p)
(p− q′)2 −M2

K

, (4.6)

Γµ, conv
K0π− =

(2p′ + q′)µ(p′ − p)λF λK0π−(p′, p)
(p′ + q′)2 −M2

π

Γµ, conv
K+π0 = −

(2p− q′)µ(p′ − p)λF λK+π0(p′, p)
(p− q′)2 −M2

K

. (4.7)
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It corresponds to taking the contribution of the point electric charge in the Born term.
This contribution contains the full IR-divergent structure and is numerically the largest.
Being q′-independent, it leads to a contribution to the loop integrals that does not depend
on the specific parameterization of the hadronic form factors. Therefore it gives rise to
the so-called “model-independent” contribution emphasized in refs. [30–33], which is more
commonly known as the “outer correction” in the case of free neutron and nuclear beta
decays [61, 62]. We thus choose to split the full Born contribution to δfKπ+ into three pieces
as follows: (

δfKπ+

)
Born

=
(
δfKπ+

)
II

+
(
δfKπ+

)fin

conv
+
(
δfKπ+

)
Born−conv

. (4.8)

The first and the second piece on the right-hand side of the equation above represent the
IR-divergent and IR-finite contributions from the convection term, respectively. The last
piece,

(
δfKπ+

)
Born−conv

, represents the difference between the full Born contribution and
the convection term contribution. In what follows we provide the analytic results for the
first two pieces:(

δfK
0π−

+

)
II

= − α

4π

{
− 4pe · p′xs
meMπ(1− x2

s)
ln xs ln

(
M2
γ

meMπ

)
fK

0π−
+ (t)

+
(

5
2 − ln M

2
π

M2
γ

)(
p′ · (p+ p′)

2M2
π

fK
0π−

+ (t) + p′ · (p− p′)
2M2

π

fK
0π−

− (t)
)}

(
δfK

+π0
+

)
II

= − α

4π

{
4pe · pxu

meMK(1− x2
u) ln xu ln

(
M2
γ

meMK

)
fK

+π0
+ (t)

+
(

5
2 − ln M

2
K

M2
γ

)(
p · (p+ p′)

2M2
K

fK
+π0

+ (t) + p · (p− p′)
2M2

K

fK
+π0

− (t)
)}

, (4.9)

and

(δfK0π−
+ )fin

conv = − α

4π

{(
Cfin

00 + 4pe · p′Cfin
0 + 2pe · p′C1 − 2m2

eC2
)
fK

0π−
+ (t)

+
(
p′ · (p+ p′)fK0π−

+ (t) + p′ · (p− p′)fK0π−
− (t)

)(
C1 + 1

2C11

)
−1

2
(
pe · (p+ p′)fK0π−

+ (t) + pe · (p− p′)fK
0π−

− (t)
)
C12

+
(
pe · (p′ − p) +m2

e

) (
fK

0π−
+ (t) + fK

0π−
− (t)

)
C2

}
(δfK+π0

+ )fin
conv = − α

4π

{(
Cfin

00 − 4pe · pCfin
0 − 2pe · pC1 − 2m2

eC2
)
fK

+π0
+ (t)

+
(
p · (p+ p′)fK+π0

+ + p · (p− p′)fK+π0
−

)(
C1 + 1

2C11

)
+1

2
(
pe · (p+ p′)fK+π0

+ (t) + pe · (p− p′)fK
+π0

− (t)
)
C12

+
(
pe · (p′ − p) +m2

e

) (
fK

+π0
+ (t)− fK+π0

− (t)
)
C2

}
. (4.10)

The variables xs, xu and the loop functions are defined in appendix C. Notice that one
needs to substitute m1 = Mπ, m2 = me, and v = s = (p′ + pe)2 in the C-functions for the
case of K0

e3, and m1 = MK , m2 = me, v = u = (p− pe)2 for the case of K+
e3.
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Next, we shall study
(
δfKπ+

)
Born−conv, which is the only piece that requires a specific

parameterization of the hadronic form factors in order to perform the loop integral. Our
first observation is that the Born contribution to δfKπ+ is UV-finite even without the form
factors (it is UV-divergent for δfKπ− without the form factors, which is however irrelevant
for Ke3). Therefore, we expect the effect of the form factors to receive a regular power
suppression instead of a logarithmic enhancement.

There are different ways of parameterizing the form factors which are practically indis-
tinguishable in the region q′ ∼ pe ∼ p−p′ ∼MK−Mπ relevant to the integrals. However, in
practice a simpler parameterization allows for a more straightforward evaluation of the loop
integrals. Therefore, in this work, we shall adopt the monopole representation for both the
electromagnetic and charged weak form factors. It is advantageous because the monopole
resembles an ordinary propagator, so the q′-integral reduces to standard Passarino-Veltman
loop functions which can be integrated numerically with respect to {y, z}.6 For the elec-
tromagnetic form factors, we have:

F π
−

em (q′2) = −1
1− 1

6 〈R2
π〉 q′2

, FK
+

em (q′2) = 1
1− 1

6
〈
R2
K

〉
q′2

, (4.11)

where
〈
R2
π

〉
and

〈
R2
K

〉
are the mean-square charge radius of π− and K+, respectively.7 For

the former, we use the result in ref. [65]:〈
R2
π

〉
= (0.431± 0.010) fm2 (4.12)

because it was obtained through an experimental fit to the monopole form factor, which
is what we adopt in this work. This value is consistent with the more recent determi-
nations [66, 67] as well as the PDG average [9], and the 2% experimental uncertainty is
completely negligible in our analysis. The kaon mean-square charge radius, on the other
hand, was measured with a 15% uncertainty [68]:〈

R2
K

〉
= (0.34± 0.05) fm2 , (4.13)

which agrees with monopole-SU(3) estimates (see, e.g., ref. [93]). We will include this
uncertainty later in our error analysis. Finally, for the vector and scalar charged weak
form factor, the monopole parameterization reads:

f̄+(q2) = M2
V

M2
V − q2 , f̄0(q2) = M2

S

M2
S − q2 , (4.14)

where the fitted vector and scalar pole masses are [50]:

MV = (884.4± 7.4) MeV , MS = (1208.3± 52.1) MeV . (4.15)

The uncertainties are less than 5% and can be safely neglected in our analysis.
6Throughout this research we make extensive use of Package-X [63, 64]. It is a Mathematica package

that provides very efficiently all the analytic expressions of one-loop integrals that can be directly applied
to the numerical phase-space integration.

7A general monopole form factor would read F = 1/(1− q2/Λ2). Here, we simply express the cut-off Λ
in terms of the charge radius, as we are interested in a precise low-energy representation.
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Full O(e2p2) MK = 1.1Mπ(
δK0

e3

)fin
conv −5.0× 10−3 −5.3× 10−3 3.08× 10−2

(
δK0

e3

)
Born−conv 4.1× 10−3 3.6× 10−3 1× 10−4

(
δK+

e3

)fin
conv 9.6× 10−3 9.2× 10−3 9.9× 10−3

(
δK+

e3

)
Born−conv 1(1)〈R2

K〉 × 10−4 −1.8× 10−3 −1× 10−4

Table 1. The IR-finite Born contribution to δM2 + δMa
γW + δM b,V

γW .

To end this section, we summarize in table 1 the numerical contributions to δKe3 from
the different pieces in eq. (4.8) (except

(
δfKπ+

)
II that we need to combine with other terms

to achieve IR-finiteness). For the error analysis, we retain only the uncertainties of the
order 10−4 or larger which, in this case, only arise from

〈
R2
K

〉
. The first column represents

the physical results, but we also consider two other cases for comparison. In the second
column, we retain only the O(e2p2) contributions, which corresponds to taking f̄+ = f̄0 = 1
and F π−em (q′2) = −1, FK+

em (q′2) = 1. Comparing to the numbers in the first column, we find
the inclusion of form factors has a larger impact on the δK+

e3
than on the δK0

e3
channel.

In fact, the amount of shift in the former exceeds the estimated O(e2p4) uncertainty of
0.19% in the ChPT analysis [36]. This is understandable because the effect of the form
factors scales typically as M2

i /M
2, where M2 is the typical mass scale in the monopole

parameterization, and Mi is the mass of the charged meson. In K+
e3 we have Mi = MK

so the numerical impact is larger. Finally, in the third column, we consider an unphysical
case where MK = 1.1Mπ. We observe in this case that (δKe3)fin

conv � (δKe3)Born−conv, which
proves our previous assertion that the contribution from the convection term dominates
when the initial and final hadronic states are nearly degenerate.

5 Virtual correction: δM3

Next, we study δM3, namely the “three-point function” correction to the charged weak
form factors. It was suggested in ref. [43] to calculate such contributions in fixed-order
ChPT, and we obtain the following results at O(e2p2):

(
δfK

+π0
+,3

)
e2p2

= − α

4
√

2π
p · (p− p′)

2M2
K

[
ln M

2
K

M2
γ

− 5
2

]
+
(
δfK

+π0
+,3

)fin

e2p2

(
δfK

0π−
+,3

)
e2p2

= α

4π
p′ · (p− p′)

2M2
π

[
ln M

2
π

M2
γ

− 5
2

]
+
(
fK

0π−
+,3

)fin

e2p2
, (5.1)
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where the IR-finite pieces read:(
δfK

+π0
+,3

)fin

e2p2
= −8πZα√

2

[1
2 h̄K+π0(t) + h̄K0π−(t) + 3

2 h̄K+η(t)
]

+ Zα

2
√

2π
M2
K

M2
η −M2

π

[
1 + ln M

2
K

µ2

]
− 4πα√

2

[
−2Kr

3 +Kr
4 + 2

3K
r
5 + 2

3K
r
6

]

−8πα√
2

M2
π

M2
η −M2

π

[
−2Kr

3 +Kr
4 + 2

3K
r
5 + 2

3K
r
6 −

2
3K

r
9 −

2
3K

r
10

]
(
fK

0π−
+,3

)fin

e2p2
= −8πZα

[1
2 h̄K+π0(t) + h̄K0π−(t) + 3

2 h̄K+η(t)
]
. (5.2)

The parameter Z ≈ 0.8 represents the short-distance electromagnetic effects that causes
the Mπ± −Mπ0 mass splitting, while {Kr

i } are the O(e2p2) LECs in the chiral Lagrangian
with dynamical photons [37]. Finally, the loop functions h̄PQ(t) are defined in appendix A
of ref. [43].

The strategy above has a caveat, namely: there is an IR-divergent piece in
(
δfKπ+,3

)
that is numerically large, so its associated O(e2p4) uncertainty can also be significant.
Fortunately, it is straightforward to resum the IR-divergent piece to all orders in the chiral
power counting by appropriately putting back the charged weak form factors based on two
simple criteria as follows:

1. The combination ln(M2
i /M

2
γ )− 5/2 originates from the convection term contribution

and should stay intact after the resummation. This is apparent by noticing that the
same combination appears also in

(
δfKπ+

)
II
.

2. As we will show in section 7, the IR-divergent piece from the bremsstrahlung contri-
bution takes the following form:

δ|M |2brem = α

π

( 1
βi(0) tanh−1 βi(0)− 1

)
ln
[
M2
K

M2
γ

]
|M0|2(0, y, z) + . . . , (5.3)

(the definition of δ|M |2brem is given in eq. (A.13)) where βi(0) is the speed of the
positron in the rest frame of the charged meson (i.e. π− in K0

e3 and K+ in K+
e3). The

Mγ-dependence above must be canceled exactly by the correspondingMγ-dependence
in
(
δfKπ+

)
I
,
(
δfKπ+

)
II
and the IR-divergent piece in δfKπ+,3 .

The arguments above lead straightforwardly to the following expression for δfKπ+,3 :

δfKπ+,3 =
(
δfKπ+

)
III

+
{(
δfKπ+,3

)fin

e2p2
+O(e2p4)

}
, (5.4)

where the fully-resummed IR-divergent terms read:

(
δfK

+π0
+

)
III

= α

4π
p · (p− p′)

2M2
K

[
fK

+π0
+ (t)− fK+π0

− (t)
] [

ln M
2
K

M2
γ

− 5
2

]
(
δfK

0π−
+

)
III

= − α

4π
p′ · (p− p′)

2M2
π

[
fK

0π−
+ (t) + fK

0π−
− (t)

] [
ln M

2
π

M2
γ

− 5
2

]
, (5.5)
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(δKe3)fin
3

K0
e3 0.5(1)e2p4 × 10−3

K+
e3 1.4(3)e2p4(8)LEC × 10−3

Table 2. The IR-finite contribution from the three-point function.

while the IR-finite terms stay unchanged as in eq. (5.2). A significant advantage of eq. (5.4)
over the O(e2p2) expression in eq. (5.1) is that now only the {. . .} term involves a chiral
expansion and must be associated with an O(e2p4) uncertainty.

We end this section by summarizing the numerical contribution from
(
δfKπ+,3

)fin

e2p2
to

the decay rate in table 2. The O(e2p4) uncertainty is obtained by multiplying the central
value by M2

K/Λ2
χ. The numerical values of the LECs {Kr

i } at µ = Mρ are obtained from
refs. [40, 69] (also summarized in ref. [70]), and we assign a 100% uncertainty to the sum
of the LEC contributions.

6 Virtual correction: δM b,A
γW

The last piece of the virtual corrections to fKπ+ (t) comes from δM b,A
γW , which is fundamen-

tally different from those we studied in section 4 and 5 in the sense that it probes the strong
interaction physics in TµνKπ from Q2 ≡ −q′2 = 0 all the way up to Q2 ∼M2

W . At large Q, one
could perform a leading-twist, free-field OPE that gives us the large electroweak logarithm,
but this treatment breaks down at small Q. Also, due to parity, there is no Born contri-
bution in δM b,A

γW that can be easily accounted for as in the previous two sections. Instead,
one needs to deal with contributions from inelastic intermediate states residing at Q ∼ Λχ
that are governed by non-perturbative QCD. In the language of ChPT, their corresponding
uncertainties are buried in the poorly-constrained LECs X1 and X̄phys

6 [34–36, 46].
As we mentioned in the Introduction, an important breakthrough happened in early

2020 as lattice QCD started to pick up its role in this subject. A series of first-principles
calculations were performed to study the so-called “forward axial γW -box” defined as
follows:

�V A
γW (φi, φf ,M) ≡ ie2

2M2

∫
d4q′

(2π)4
M2
W

M2
W − q′2

1
(q′2)2 ε

µναβq′αpφβ
T ifµν(q′; pφ, pφ)

F if+ (0)
, (6.1)

where φi and φf are two degenerate hadrons with mass M , and carry the same external
momentum pφ, and F if+ (0) is the form factor f if+ (0) multiplied by the appropriate CKM
matrix element. The first calculation of �V A

γW (π+, π0,Mπ) in ref. [44] led to the reduction
of the RC uncertainty in the pion semileptonic decay by a factor of three. Shortly after
that, a new calculation of �V A

γW (K0, π−,Mπ) in the flavor SU(3) limit was performed [47]
following the suggestion in ref. [46]. These two calculations together provided an improved
determination of the LECs X1 and X̄phys

6 that agrees with the values quoted in the earlier
ChPT papers [34, 36, 71] within error bars, which suggests that the error assignment in
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the latter is reasonable. However, in the pure ChPT representation, the major source
of theory uncertainty in the long-range electromagnetic corrections to Ke3 comes from
O(e2p4) instead of the LECs. Therefore, the significance of the calculations above was not
fully revealed within the traditional framework.

In this section, we will demonstrate how the above-mentioned lattice QCD results play
a decisive role within the new theory framework, namely to pin down δM b,A

γW . We start by
splitting the forward axial γW -box into two pieces:

�V A
γW (φi, φf ,M) = �V A>

γW + �V A<
γW (φi, φf ,M) (6.2)

which come from the integral in eq. (6.1) at Q2 > Q2
cut and Q2 < Q2

cut, respectively, where
Qcut is a scale above which the leading-twist, free-field OPE is applicable. Throughout this
work we choose Q2

cut = 2GeV2, in accordance with the original lattice QCD paper [44].8
The first term, �V A>

γW , contains a large electroweak logarithm and is independent of the
external states {φi, φf} as well as the mass M . It is given by:

�V A>
γW = α

8π ln M
2
W

Q2
cut

+ . . . , (6.3)

where “+ . . .” denotes the pQCD corrections, which are at present calculated to O(α4
s) [72],

leading to a very precise determination: �V A>
γW = 2.16×10−3. Meanwhile, �V A<

γW (φi, φf ,M)
depends {φi, φf ,M} and probe the details of the strong interaction at Q ∼ Λχ.

To proceed further, we perform the same splitting to the integral in δM b,A
γW :

ie2
∫

d4q′

(2π)4
M2
W

M2
W − q′2

1
(pe − q′)2 −m2

e

1
q′2
εµναλq′α

(
TKπµν (q′; p′, p)

)
A

=
{∫

Q2>Q2
cut

+
∫
Q2<Q2

cut

}
(. . .) , (6.4)

where
(
TKπµν

)
A

represents the component in TKπµν that involves the axial charged weak

current. The contributions from these two terms to δfKπ+ are denoted as
(
δfKπ+

)b,A>
γW

and(
δfKπ+

)b,A<
γW

, respectively, and will now be related to the different components of the forward
axial γW -box. First, since at Q2 > Q2

cut � |pe|2 we can set pe → 0 in the integrand, one
can show using OPE that,

(
δfKπ+

)b,A>
γW

= �V A>
γW fKπ+ (t) . (6.5)

Adding this piece to (δfKπ+ )I in eq. (3.11) reproduces the full electroweak logarithm in the
total RC.

8The validity of this choice is justified by the observation that the difference between the pQCD cor-
rections to O(α3

s) and to O(α4
s) is negligible above 2GeV2 [45], which demonstrates the convergence of the

perturbative series.
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Next, we can parameterize the integral at Q2 < Q2
cut as:

ie2
∫
Q2<Q2

cut

d4q′

(2π)4
M2
W

M2
W − q′2

1
(pe − q′)2 −m2

e

1
q′2
εµναλq′α

(
TKπµν (q′; p′, p)

)
A

≡ V ∗us
[
g+(M2

K ,M
2
π ,m

2
e, s, u)(p+ p′)λ + g−(M2

K ,M
2
π ,m

2
e, s, u)(p− p′)λ

+ge(M2
K ,M

2
π ,m

2
e, s, u)pλe

]
, (6.6)

so it is obvious that: (
δfKπ+

)b,A<
γW

= g+(M2
K ,M

2
π ,m

2
e, s, u) . (6.7)

To relate this quantity to the recent lattice QCD results, we set p → p′ and pe → 0 on
both sides of eq. (6.6). That gives:9

g+(M2
π ,M

2
π , 0,M2

π ,M
2
π) = ie2

2M2
π

∫
Q2<Q2

cut

d4q′

(2π)4
M2
W

M2
W − q′2

1
(q′2)2 ε

µναλq′αp
′
λ

(
TKπµν (q′; p′, p′)

)
A

V ∗us

= �V A<
γW (K,π,Mπ)fKπ+ (t). (6.8)

Since the lattice community has computed �V A<
γW (K,π,Mπ), we can obtain g+(M2

π ,M
2
π , 0,

M2
π ,M

2
π) which is not exactly the same as g+(M2

K ,M
2
π ,m

2
e, s, u) that we seek. However,

remember that the integral in eq. (6.6) is dominated by the physics at the scale q′ ∼ Λχ
(e.g. Regge physics [45]), it is then possible to simply take g+(M2

π ,M
2
π , 0,M2

π ,M
2
π) together

with an appropriately-assigned uncertainty:

g+(M2
K ,M

2
π ,m

2
e, s, u) = g+(M2

π ,M
2
π , 0,M2

π ,M
2
π) +O

(
E2

Λ2
χ

)
, (6.9)

where E is an energy scale that characterizes the non-forward (NF) kinematics in eq. (6.6),
e.g. MK −Mπ, (s−Mπ)1/2 or (u−Mπ)1/2. Since they are all smaller than MK , we can
take E → MK as a conservative estimation of the uncertainty due to the NF effects. So,
combining eqs. (6.5), (6.7) and (6.9), we obtain:

(
δfKπ+

)b,A
γW

=
{
�V A>
γW +

[
�V A<
γW (K,π,Mπ) +O

(
M2
K

Λ2
χ

)]}
fKπ+ (t) . (6.10)

Notice that only the term in the square bracket is associated to an O(M2
K/Λ2

χ) uncertainty.
The recent lattice calculations provided the forward axial γW -box in the charged pion

and neutral kaon decay:

�V A<
γW (π+, π0,Mπ) = 0.671(28)lat × 10−3, �V A<

γW (K0, π−,Mπ) = 0.278(44)lat × 10−3 .

(6.11)
9In the last line we made two implicit approximations: (1) we do not distinguish the value of fKπ+ (0)

between the case of MK > Mπ and MK = Mπ, and (2) we add the t-dependence to the form factor.
Both approximations only lead to changes of a few percent in fKπ+ , which is completely negligible after
multiplying with �V A<γW (K,π,Mπ).

– 17 –



J
H
E
P
1
1
(
2
0
2
1
)
1
7
2

J
H
E
P
1
1
(
2
0
2
1
)
1
2
4

(δKe3)b,AγW > < Total

K0
e3 4.3× 10−3 0.6(1)lat(1)NF × 10−3 4.9(1)lat(1)NF × 10−3

K+
e3 4.3× 10−3 2.1(1)lat(4)NF × 10−3 6.4(1)lat(4)NF × 10−3

Table 3. Contribution from δM b,A
γW .

The box diagram in charged kaon decay is not yet computed, but can be related to the
first two through a matching to the O(e2p2) ChPT expression:

�V A<
γW (K+, π0,Mπ) = 2�V A<

γW (π+, π0,Mπ)−�V A<
γW (K0, π−,Mπ) = 1.064(71)lat × 10−3 .

(6.12)
The higher-order ChPT corrections to the expression above scales as O(M2

π/Λ2
χ) and can be

safely neglected in our error analysis.10 With the numbers above, we obtain the numerical
correction to the Ke3 decay rate from δM b,A

γW , as summarized in table 3. Notice that the
NF uncertainty is obtained by simply multiplying 2�V A<

γW (K,π,Mπ) with M2
K/Λ2

χ.
To end this section, we briefly discuss the future role of the lattice QCD. The estimation

of the NF uncertainty in eq. (6.9) is physically sound but can be further improved with an
extra lattice calculation. This can be seen by considering the following relations:

−8
3X1 + X̄phys

6 (Mρ)

= − 1
2πα

(
�V A
γW (K0, π−,Mπ)− α

8π ln M
2
W

M2
ρ

)
+ 1

8π2

(5
4 − ãg

)
+O

(
M2
π

Λ2
χ

)

−8
3X1 + X̄phys

6 (Mρ)

= − 1
2πα

(
�V A
γW (K+,K0,MK)− α

8π ln M
2
W

M2
ρ

)
+ 1

8π2

(5
4 − ãg

)
+O

(
M2
K

Λ2
χ

)
. (6.13)

Both equations are obtained through a matching between the calculation of the RC based
on Sirlin’s approach and ChPT; the first line was given in ref. [46] and the second line can
be derived accordingly. We see that both �V A

γW (K0, π−,Mπ) and �V A
γW (K+,K0,Mk) are

matched to the same combination of LECs, except that the latter is subject to larger higher-
order corrections because the involved meson mass is MK which is larger. That means,
the difference in the numerical values between �V A

γW (K0, π−,Mπ) and �V A
γW (K+,K0,Mk)

provides an estimation of the size of the NF corrections in eq. (6.9). This strategy is very
similar to the standard lattice QCD technique to estimate the size of the chiral power
corrections through the variation of the quark masses.

10Nevertheless, a direct lattice calculation of �V AγW (K+, π0,Mπ) in the future is still very much desirable
as it provides an excellent test of the convergence speed of the chiral expansion in the SU(3) limit.
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Figure 2. The real photon emission diagrams.

7 Bremsstrahlung contribution

After going through all the virtual corrections, we switch to the contribution from the n = 1
process, which is simply known as the “bremsstrahlung contribution”. According to the
discussions in appendix A, the bremsstrahlung process contributes to the differential decay
width dΓKe3/dydz not only in the D3 region but also in the D4−3 region, the latter has no
correspondence in the n = 0 process. Therefore, it is eventually up to the experimentalists
to decide in which region of {y, z} will the data be taken, and whether or not a veto will be
applied to exclude decay events with hard photons. Of course, the simplest choice is to not
apply any veto, and to collect data from all available regions of {y, z}. This corresponds
to a fully-inclusive prescription of the real photon emission process, or in other words, we
should calculate the sum of the full n = 0 and n = 1 decay width. This prescription was
adopted in ref. [36] and will be followed in this work.

The bremsstrahlung amplitude, depicted by the two diagrams in figure 2, reads:

MK→πe+νγ = −GF e√
2
ūνγ

µ(1− γ5)
{
pe · ε∗(k)
pe · k

+
/k/ε∗(k)
2pe · k

}
veF

Kπ
µ (p′, p)

+ iGF e√
2
ūνγ

ν(1− γ5)veεµ∗(k)TKπµν (k; p′, p) . (7.1)

We observe that the generalized Compton tensor TKπµν appears again, only that now one
deals with a real photon. Unlike in the loop diagrams, here we only need to know TKπµν

for small (due to the phase-space constraint) and on-shell photon momentum k, so instead
of exhausting the contributions from all intermediate states, it is possible to adopt a low-
energy effective expression TKπµν . It should, however, satisfy three basic criteria:

• It must contain the full convection term contribution to ensure an exact cancellation
of the IR-divergence from the virtual corrections.

• It should include the seagull term, as the effect of the latter is not particularly
suppressed in the decay rate, unlike in the loop diagrams.

• It should satisfy exact electromagnetic gauge invariance, so that one could perform
the usual replacement ∑s ε

µ
s (k)εν∗s (k) → −gµν in the sum of the outgoing photon

polarizations.
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The simplest effective expression that satisfies all these criteria is:

TµνK0π−(k; p′, p) =−
i(2p′ + k)µF νK0π−(p′, p)

(p′ + k)2 −M2
π

+
{
iV ∗us

[ (2p′ + k)µkν
(p′ + k)2 −M2

π

− gµν
]
+O(p4)

}
TµνK+π0(k; p′, p) =

i(2p− k)µF νK+π0(p′, p)
(p− k)2 −M2

K

+
{
iV ∗us√

2

[
(2p− k)µkν

(p− k)2 −M2
K

+ gµν
]

+O(p4)
}
. (7.2)

The first term on the right-hand side in the expressions above is just the convection term,
whereas the remainders are the seagull term and the extra pieces from the Born contribution
needed to recover gauge invariance. Notice that the convection term is exact, and only the
terms in the curly bracket undergo a chiral expansion. In fact, if we expand the convection
term to O(p2), the LO ChPT expression in eq. (4.1) is recovered. In fact, the existing
ChPT calculation uses exactly eq. (4.1) in their calculation of the bremsstrahlung effect,
but now our expression allows a resummation of the most important terms in TµνKπ to all
chiral orders.

With the above, the bremsstrahlung amplitude splits into two pieces: MK→πe+νγ =
MA+MB that are separately gauge-invariant (i.e. we can write MA,B = ε∗µ(k)M̃µ

A,B, where
kµM̃

µ
A,B = 0). For K0 → π−e+νeγ we have:

MA = −eGF√
2
FK

0π−
µ (p′, p)ε∗ν(k)

×
{(

pe
pe · k

− p′

p′ · k

)ν
ūνγ

µ(1− γ5)ve + 1
2pe · k

ūνγ
µ(1− γ5)/kγνve

}

MB = −eGF√
2
V ∗usε

∗
µ(k)ūν

{
p′µ

p′ · k
/k − γµ

}
(1− γ5)ve , (7.3)

and for K+ → π0e+νeγ,

MA = −eGF√
2
FK

+π0
µ (p′, p)ε∗ν(k)

×
{(

pe
pe · k

− p

p · k

)ν
ūνγ

µ(1− γ5)ve + 1
2pe · k

ūνγ
µ(1− γ5)/kγνve

}
MB = eGF

2 V ∗usε
∗
µ(k)ūν

{
pµ

p · k
/k − γµ

}
(1− γ5)ve . (7.4)

The significance of such a splitting is that MA is an exact expression and only MB involves
a chiral expansion. Therefore, in the computation of the decay rate, only the contribution
from 2Re{M∗BMA} + |MB|2 acquires an O(e2p4) uncertainty, while the contribution from
|MA|2 is exact. As we will show later, this brings an advantage over the existing treatment
as the latter is numerically the largest.

Now we proceed to the phase space integration of the bremsstrahlung contribution.
We first discuss the integration in the D3 region. To isolate the IR-singular term, we first
split |MA|2 into two pieces:

|MA|2 = −e2
(

pe
pe · k

− pi
pi · k

)2
|M0|2(0, y, z) + |MA|2res, (7.5)
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(δKe3)I,II,III+brem(D3) From 2Re {M∗AMB}+ |M2
B | Remainder Total

K0
e3 0.10(2)e2p4 × 10−2 2.41(3)HO × 10−2 2.51(3)HO(2)e2p4 × 10−2

K+
e3 −0.03(1)e2p4 × 10−2 0.44(3)HO × 10−2 0.40(3)HO(1)e2p4 × 10−2

Table 4. Sum of the IR-divergent one-loop contribution I, II, III and the bremsstrahlung contri-
bution in the D3 region.

where pi = p (p′) in K+
e3 (K0

e3). The integration of the first term with respect to {~pν , ~k, x}
produces an IR-divergence:∫ α+(y,z)

0
dx

∫
d3k

(2π)32Ek
d3pν

(2π)32Eν
(2π)4δ(4)(P − k − pν)

(
pe
pe · k

− pi
pi · k

)2

= IIR
i (y, z) + Ifin

i (y, z) , (7.6)

where the explicit expressions of IIR
i and Ifin

i can be found in appendix D, and with this,
we verify our previous assertion about the IR-divergent structure of the bremsstrahlung
contribution in eq. (5.3). We can now combine the IR-divergent contributions from the
virtual corrections (which we previously labeled as I, II, III) with the bremsstrahlung
contribution in the D3 region to obtain the following shift of the Ke3 decay rate:

(δΓKe3)I,II,III+brem(D3) = MK

256π3

∫
D3
dydzδ|M |2I,II,III+brem(D3)(y, z) , (7.7)

where

δ|M |2I,II,III+brem(D3)(y, z) =
{
α

2π

[
2 ln M

2
Z

m2
e

− 1
2 ln M

2
W

m2
e

+
(

1− 2
βi(0) tanh−1 βi(0)

)
ln M2

i

M2
K

+ 1
βi(0) tanh−1βi(0) ln M

2
i

m2
e

− 13
4 +ãg

]
+ δQED

HO −
e2M2

K

2π Ifin
i (y, z)

}

×|M0|2(0, y, z) + M2
K

2π

∫ α+

0
dx

∫
d3k

(2π)32Ek
d3pν

(2π)32Eν
×(2π)4δ(4)(P − k − pν)

{
|MA|2res + 2Re {M∗AMB}+ |MB|2

}
,

(7.8)

which is now explicitly IR-finite. We observe that the expression above still contains a
residual integral with respect to {~pν , ~k, x}, but it is IR-finite and therefore can be straight-
forwardly carried out with the method outlined in appendix E. The numerical result is
summarized in table 4. The HO uncertainty comes from δQED

HO , while the O(e2p4) uncer-
tainty is obtained by multiplying the contribution from 2Re {M∗AMB}+ |MB|2 byM2

K/Λ2
χ.

We see that these uncertainties are as small as 10−4, which is a clear success of our strategy
in the splitting of TµνKπ(k′; p′, p) in eq. (7.2).

Finally, we also need to compute the bremsstrahlung contribution in the D4−3 region:

(δΓKe3)brem(D4−3) = M3
K

512π4

∫
D4−3

dydz

∫ α+(y,z)

α−(y,z)
dx

∫
d3k

(2π)32Ek
d3pν

(2π)32Eν
(2π)4δ(4)(P − k − pν)

×
{
|MA|2 + 2Re {M∗AMB}+ |MB|2

}
. (7.9)
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(δKe3)brem(D4−3) From 2Re {M∗AMB}+ |M2
B| From |MA|2 Total

K0
e3 0.2× 10−3 5.6× 10−3 5.8× 10−3

K+
e3 −0.1× 10−3 5.3× 10−3 5.2× 10−3

Table 5. The bremsstrahlung contribution in the D4−3 region. Uncertainties are of order 10−5

and are not displayed.

The integrals are IR-finite and can be carried out similarly using the method in appendix E.
The numerical results are given in table 5. In principle one also acquires an O(e2p4)
uncertainty by multiplying the contribution from 2Re {M∗AMB} + |MB|2 by M2

K/Λ2
χ, but

the outcomes are of the order 10−5 and so are not displayed in the table.

8 Comparing with the ChPT result

We have now finished calculating all components of the O(G2
Fα) electroweak RC to the

Ke3 decay rate. The total result is simply given by:

(δKe3)tot = (δKe3)fin
conv + (δKe3)Born−conv + (δKe3)fin

3 + (δKe3)b,AγW
+ (δKe3)I,II,III+brem(D3) + (δKe3)brem(D4−3) , (8.1)

where the numerical values of different components can be found in tables 1–5. On the
other hand, in the existing standard ChPT treatment the full electroweak RC is broken
down into “short-distance” and “long-distance” pieces, and are allocated to several different
quantities, some of which are somewhat implicitly hidden. This section serves to perform a
rigorous matching between our result and the values quoted in the existing ChPT literature,
with special attention paid to the so-called “long-distance electromagnetic corrections” δKeEM.

In the standard ChPT framework, the photon-inclusiveKe3 decay rate is parameterized
as [9]:

ΓKe3 = G2
F |Vus|2M5

KC
2
K

192π3 SEW|fK
0π−

+ (0)|2I(0)
Ke(λi)

(
1 + δKeEM + δKπSU(2)

)
, (8.2)

where CK is a simple isospin factor. Apart from the quantity |fK0π−
+ (0)| that requires

a lattice input, all the small QCD and electroweak corrections to ΓKe3 are distributed
into the following four quantities: SEW, I(0)

Ke(λi), δKπSU(2) and δKeEM. We shall take a serious
look at each of these quantities, and study their relations to the different components of
electroweak RC we calculated in this work.

8.1 SEW

The quantity SEW was first introduced by Marciano and Sirlin in ref. [73] as a process-
independent factor that accounts for the large electroweak logarithm in the electroweak
RC [41, 74] including the O(αs) pQCD corrections on top of it, as well as the resummation
of the QED logs (i.e. δQED

HO in our notation). It was often quoted schematically in the
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literature as [36, 75]:

SEW = 1 + 2α
π

(
1− αs

4π

)
ln MZ

Mρ
+O

(
ααs
π2

)
, (8.3)

where the ρ-mass appears as a low-energy scale. It is not straightforward to infer its
exact value from the expression above because some of the important components (e.g.
δQED

HO ) are not explicitly shown, and it is also not clear what scale one should choose for
αs. Fortunately, as a common consensus, the value SEW = 1.0232(3)HO was always used
for all practical purposes in the recent years (see, e.g. refs. [34, 35] and the FLAVIAnet
global analysis, ref. [76]), where the central value comes from ref. [73] and the estimated
uncertainty of the QED log resummation comes from ref. [51]. Notice that although ref. [75]
quoted a slightly different value of SEW = 1.0223(5), but that number was never used in
any subsequent analysis.

Now, the process-independent physics included in our (δKe3)tot are not only those
described by SEW but even more. For example, the most important pQCD correction
contained in (δKe3)b,AγW is calculated to O(α4

s) instead of just O(αs) in SEW. Therefore,
it is not the most natural choice to remove SEW − 1 analytically from (δKe3)tot in order
to compare our result with the ChPT result. Instead, it is more convenient to take the
above-mentioned numerical value of SEW simply as its definition, i.e.,

SEW − 1 ≡ 0.0232(3)HO , (8.4)

and remove this value numerically from (δKe3)tot for the comparison. This prescription
keeps us on the same track with all the recent literature mentioned above.

8.2 I
(0)
Ke(λi)

The quantity I(0)
Ke(λi) is formally defined as the “phase space integral depending on slope

and curvature of the form factors fKπ± (t)” according to ref. [75], but in practice it is treated
not just as a pure QCD factor, but also contains a part of the short-distance electromagnetic
effects. This can be seen in, e.g., refs. [34, 35]: the t-dependence of fKπ± (t) at O(p4) is
given by the mesonic loop functions HPQ(t), and we observe that in these functions the
masses of the charged mesons (e.g. π±) and their neutral counterparts (e.g. π0) are kept
distinct. Since we know that this mass splitting is partially induced by short-distance
electromagnetic effects, or more specifically, the O(e2) term in the chiral Lagrangian [38]:

Le2 = Ze2F 4
0

〈
QemUQemU

†
〉
, (8.5)

so the observation above implies that a part of the short-distance electromagnetic effect
proportional to Z is actually assigned implicitly to I

(0)
Ke(λi) through HPQ(t) within the

ChPT framework. In our notation, this residual effect is represented exactly by the h̄PQ(t)
terms in

(
δfKπ+,3 (t)

)fin

e2p2
, since the h̄PQ(t) functions are simply consequences from the Taylor

expansion of HPQ(t) to O(Z).
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δKeEM This work Ref. [36]

K0
e3 1.16(2)inel(1)lat(1∗)NF(2)e2p4 × 10−2 0.99(19)e2p4(11)LEC × 10−2

K+
e3 0.21(2)inel(1)〈R2

K〉(1)lat(4∗)NF(1)e2p4 × 10−2 0.10(19)e2p4(16)LEC × 10−2

Table 6. Comparison between the value of δKeEM obtained from this work and from the ChPT
calculation.

8.3 δKπSU(2)

The isospin-breaking correction factor δKπSU(2) is formally defined as:11

δKπSU(2) ≡
(
CK0

CK

fKπ+ (0)
fK

0π−
+ (0)

)2

− 1 , (8.6)

that is only present in K+
l3 . According to the definition above, it contains not only

the strong isospin breaking effect resulting from the u–d mass difference, but also the
electromagnetically-induced isospin breaking. Indeed, according to eq. (4.42) in ref. [75],
one has:

δK
±π0

SU(2) = 2
√

3
(
ε(2) + ε

(4)
S + ε

(4)
EM + . . .

)
, (8.7)

where ε(4)
EM originates from the electromagnetically-induced π0–η mixing. In our notation,

this correction simply comes from
(
δfK

+π0
+,3 (t)

)fin

e2p2
after removing the h̄PQ(t) terms.

8.4 δKeEM

After all the discussions above, it is now apparent that the most convenient way to discuss
δKeEM is to simply refer it as “the sum of all electroweak RC that are not already contained
in SEW, I(0)

Ke(λi) and δKπSU(2)”. This means

δKeEM = (δKe3)tot − (SEW − 1)− (δKe3)fin
3 (8.8)

in our notation, where SEW − 1 is defined by eq. (8.4) as we discussed earlier. Apart
from SEW − 1, the quantity (δKe3)fin

3 is also subtracted out because its contribution is
redistributed into I(0)

Ke(λi) and δKπSU(2) according to the ChPT prescription, as we discussed
above. In fact, δKeEM is also the only meaningful quantity to be compared between this work
and the existing literature, because we are taking an O(e2p2) approximation to (δKe3)fin

3
and thus have made no new improvement on this term.

The comparison between our result of δKeEM and the ChPT result is given in table 6.
Let us explain all the different types of uncertainties that appear in our new evaluation:

• inel: this represents our conservative estimation of the effects from the inelastic term
in
(
δM2 + δMa

γW

)
int

and δM b,V
γW . See the discussions after eq. (4.5).

11The existence of the isospin factor CK0/CK in the formula above is simply due to our choice of nor-
malization of fKπ+ (0).
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•
〈
R2
K

〉
: this is the uncertainty originated from the experimental error of the K+ charge

radius (see eq. (4.13)) that enters
(
δM2 + δMa

γW

)
int

and δM b,V
γW in K+

e3.

• lat: this is the total lattice QCD uncertainty in the calculation of �V A
γW (see eq. (6.11)).

• NF: this represents our estimation of the uncertainty due to the non-forward kine-
matics in δM b,A

γW at small loop momentum q′. We include an asterisk to remind the
reader that this error estimation can be made more rigorous with an extra lattice
QCD calculation, as we discussed at the end of section 6.

• e2p4: this is the chiral expansion uncertainty of the non-convection term contribution
(i.e. 2Re {M∗BMA}+ |MB|2, see the discussions after eq. (7.4)) in the bremsstrahlung
process.

From table 6 we find that our results are consistent with the ChPT estimation within
the error bars, but with a significant reduction of the total uncertainty by almost an order
of magnitude. This improvement is mainly due to two reasons:

1. Our calculation permits a much better control of the O(e2p4) effects, which are the
main source of uncertainty in the ChPT treatment. With the new theory framework
introduced in refs. [43, 46], all the hadron physics are contained in quantities such
as TµνKπ and ΓµKπ, from which the full convection/Born contribution can be explicitly
isolated. These contributions govern the full IR-divergent structure of the decay
process, are numerically the largest and, most importantly, do not involve any chiral
expansion. The size of the non-Born/non-convection term contributions are in general
an order of magnitude smaller (see, for example, table 4 and 5), so the O(e2p4)
uncertainties attached to them are even tinier. On the other hand, in the traditional
ChPT treatment one must multiply the full result by M2

K/Λ2
χ to obtain the O(e2p4)

uncertainty, so it is much larger.

2. We used latest lattice QCD results to pin down δM b,A
γW , which corresponds to the

LECs X1 and X̄phys
6 in ChPT. In the existing literature, these LECs were calculated

within resonance models and were assigned a 100% uncertainty. On the other hand,
the highly-precise lattice results of �V A

γW would correspond exactly to δM b,A
γW if K and

π were degenerate. We investigated the region of integration in δM b,A
γW where this

non-degeneracy starts to take effect, and assigned a reasonable NF-uncertainty to the
contribution from this region on top of the lattice results. In the ChPT language,
our treatment above simultaneously take into account the uncertainties of the LECs
themselves as well as the O(e2p4) uncertainties on top of the LEC contributions.

9 Final discussions

The 3σ discrepancy in the extraction of Vus from Kµ2 and Kl3 decays has triggered re-
newed interest within the particle physics community about its possible implications on
the existence of BSM physics. However, the current level of significance is not sufficient
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to claim a discovery so one needs further reduction of not just the experimental errors but
also the SM theory uncertainties. Our re-analysis of the SM electroweak RC in Ke3 there-
fore, serves as a crucial step along this direction. We successfully overcome the natural
limitations in traditional ChPT by adopting a new computational framework that allows
for a resummation of the numerical largest components in the RC, and also utilizing the
most recent lattice QCD outcomes to reduce the uncertainties from the non-perturbative
QCD at the chiral symmetry breaking scale. Our work reduces the existing uncertainties
in the Ke3 RC by almost an order of magnitude, and finds no large shift in the central
values. This suggests that we should remove the electroweak RC from the “list of culprits”
responsible for the Kµ2–Kl3 discrepancy.

Is it evident now that the Vus anomaly cannot be explained by SM effects? We would
say that it is still too early to decide at this stage. Further investigations must also be
made on other SM inputs, just to mention a few:

• Based on the analysis of a newly-constructed ratio RV = ΓKe3/Γπe3 , ref. [77] suggested
that a shift of the lattice QCD input of |fK0π−

+ (0)/fπ+π0
+ (0)| from its current value of

0.970(2) to a smaller value of 0.961(4) would reconcile the Kµ2 and Kl3 results, and
encouraged the lattice community to examine this possibility. Lattice calculations of
|fK0π−

+ (0)| with Nf = 2+1 [78, 79] and Nf = 2+1+1 [80–82] in the recent years have
so far been consistent with each other, which led to the FLAG 2019 averages [12]:

Nf = 2 + 1 : |fK0π−
+ (0)| = 0.9677(27)

Nf = 2 + 1 + 1 : |fK0π−
+ (0)| = 0.9706(27) . (9.1)

However, a new calculation by the PACS collaboration with Nf = 2 + 1 returned
|fK0π−

+ (0)| = 0.9603(16)(+14
−4 )(44)(19)(1) that is significantly lower than the existing

average [83]. This calculation utilized only one lattice spacing a = 0.085 fm and thus
should be carefully reexamined.

• The quantity I(0)
Kl (λi) probes the t-dependence of the form factors f̄+,0(t). Adopting

a Taylor-expansion parameterization:

f̄+,0(t) = 1 + λ′+,0
t

M2
π+

+ 1
2λ
′′
+,0

(
t

M2
π+

)2

+ . . . , (9.2)

the parameters λ′+,0 and λ′′+ are fit to the experimental distributions of the Kl3 decays
to obtain f̄+,0(t) in the physical region of t. The resulting uncertainties are 0.13%
for I(0)

Ke and 0.31% for I(0)
Kµ (see table 21 in ref. [84]), which look well under control;

other forms of parameterization were also investigated [85–89]. However, it is known
for some time that some disagreements occur in the extracted values of the slope
parameter λ′0 of the scalar form factor from different experiments [75]. Also, since
f̄+,0(t) are pure QCD quantities, their fitting to the Kl3 distributions can only be
done after removing the effects of the electroweak RC from the experimental data.
Now since we have updated the RC analysis, the fitting procedure should in principle
also be updated accordingly. Although in this paper we only present our updates of
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δKeEM, but the electromagnetic corrections to the Ke3 Dalitz plots can also be derived
with the same method.

• Although the SU(2) isospin breaking correction factor δKπSU(2) exists only in the K+

channel by construction, its associated theory uncertainty is the largest. Upon ne-
glecting the electromagnetic contributions, it is given by:

δKπSU(2) = 3
2

1
Q2

[
M2
K

M2
π

+ Q
2

R
χp4

]
(9.3)

in ChPT to O(p4), where Q2 ≡ (m2
s − m̂2)/(m2

d − m2
u) ≡ R(ms/m̂ + 1)/2 and

χp4 = 0.219 [90]. The main uncertainties therefore come from Q and R. For in-
stance, disagreements are observed between the values of Q and R extracted from
phenomenology [91]

η → 3π : Q = 22.1(7), R = 34.4(2.1) (9.4)

and from lattice QCD [12]

Nf = 2 + 1 : Q = 23.3(0.5), R = 38.1(1.5)
Nf = 2 + 1 + 1 : Q = 24.0(0.8), R = 40.7(2.7) (9.5)

which must be sorted out in order to pin down the isospin breaking correction precisely.
Finally, we want to mention that we present in this work only our updates on the

electroweak RC but not a new value of Vus. A part of the reason is that we work exclusively
on Ke3 and not on Kµ3, given that the latter involves more sources of uncertainty (e.g.
from δfKπ− ) and will be a subject of future study. But more importantly, we realize that the
physics of kaon decay is a dynamically progressing field from where the knowledge in both
experiment and theory, including our understanding of the issues above, is being constantly
updated. Therefore, rather than quoting a new value of Vus upon every single improvement,
it is more preferable to have a commonly agreed value that results from a collaborative
work between experimentalists and theorists based on the most updated inputs from their
respective fields, similar to the FLAVIAnet evaluation in the past decade [76]. We hope
that our research may serve as a useful input for a possible future collaboration of such kind.

Note added. Awaiting the review outcome of this manuscript, some of us published a
new global analysis of Vus from Kl3 based on the improvements in this work [92]. The
values of |Vus| extracted from Ke3 and Kµ3 are currently consistent with each other within
error bars, therefore we do not see a noticeable violation of lepton flavor universality within
Kl3. This requires further check from theory improvements of the Kµ3 RC as well as future
experiments.
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A Three- and four-body phase space in Ke3

In this appendix we derive the phase space formula for the K → πe+ν(γ) process. We
start from the following master formula: suppose A(x, y, z) is an arbitrary Lorentz-invariant
function of the three dimensionless variables {x, y, z} defined in eq. (2.1), then its integra-
tion with respect to ~p′ and ~pe can be expressed as

1
2MK

∫
d3p′

(2π)32E′
d3pe

(2π)32Ee
A(x, y, z) = M3

K

512π4

∫ ∞
2√rπ

dz

∫ ∞
2√re

dy

∫ α+(y,z)

α−(y,z)
dxA(x, y, z) ,

(A.1)
where

α±(y, z) ≡ 1− y − z + rπ + re + yz

2 ±
1
2

√
y2 − 4re

√
z2 − 4rπ . (A.2)

We can apply the master formula above to derive the expressions for the K → πe+ν(γ)
phase space. First, for K(p)→ π(p′)e+(pe)ν(pν), we can identify:

A(x, y, z) =
∫

d3pν
(2π)32Eν

(2π)4δ(4)(P − pν)|M |2K→πe+ν

= 2π
M2
K

δ(x)|M |2K→πe+ν . (A.3)

When plugging the expression above into eq. (A.1), the x-integral is non-zero only when
α−(y, z) < 0 < α+(y, z), which imposes constraints on the integration region of {y, z}.
Solving these inequalities gives the well-known formula:

ΓK→πe+ν = MK

256π3

∫
D3
dydz|M |2K→πe+ν , (A.4)

where the integration region D3 can be represented in two equivalent ways, namely:

c(z)− d(z) < y < c(z) + d(z) , 2√rπ < z < 1 + rπ − re

c(z) = (2− z)(1 + re + rπ − z)
2(1 + rπ − z) , d(z) =

√
z2 − 4rπ(1 + rπ − re − z)

2(1 + rπ − z) , (A.5)

or

a(y)− b(y) < z < a(y) + b(y) , 2√re < y < 1 + re − rπ

a(y) = (2− y)(1 + rπ + re − y)
2(1 + re − y) , b(y) =

√
y2 − 4re(1 + re − rπ − y)

2(1 + re − y) . (A.6)
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Next, we discuss the phase space of K(p)→ π(p′)e+(pe)ν(pν)γ(k). In this case we can
identify:

A(x, y, z) =
∫

d3k

(2π)32Ek
d3pν

(2π)32Eν
(2π)4δ(4)(P − k − pν)|M |2K→πe+νγ . (A.7)

Without performing the integral, one already sees that the δ-function imposes the con-
straint x ≥ 0 because P 2 = M2

Kx = (k + pν)2 is just the invariant squared mass of the νγ
system, which cannot be negative. With that one splits the x-integral into two terms:∫ α+(y,z)

α−(y,z)
dxΘ(x) = Θ (α+(y, z)) Θ (−α−(y, z))

∫ α+(y,z)

0
dx+ Θ (α−(y, z))

∫ α+(y,z)

α−(y,z)
dx ,

(A.8)
and the different step functions in front of each term impose different constraints on the
integration region of {y, z}. The first term requires α−(y, z) < 0 < α+(y, z), which simply
gives the D3 region we discussed above. Meanwhile, the second term requires α−(y, z) > 0,
and solving this inequality yields a different integration region which we may call D4−3. It
can again be represented in two equivalent ways:

2√re < y < c(z)− d(z) , 2√rπ < z < 1−√re + rπ
1−√re

(A.9)

or

2√rπ < z < a(y)− b(y) , 2√re < y < 1−√rπ + re
1−√rπ

. (A.10)

There is no overlap between the region D3 and D4−3 (see figure 3). With the above, the
K → πe+νγ decay rate can be written as:

ΓK→πe+νγ = M3
K

512π4

{∫
D3
dydz

∫ α+(y,z)

0
dx+

∫
D4−3

dydz

∫ α+(y,z)

α−(y,z)
dx

}∫
d3k

(2π)32Ek
d3pν

(2π)32Eν
×(2π)4δ(4)(P − k − pν)|M |2K→πe+νγ . (A.11)

In the study of a fully-inclusive kaon semileptonic decay rate up to O(G2
Fα), one should

add the K → πe+ν and K → πe+νγ decay rate to give:

ΓK→πe+ν+ΓK→πe+νγ = MK

256π3

∫
D3
dydz

{
|M |2K→πe+ν + δ|M |2brem

}
+ M3

K

512π4

∫
D4−3

dydz

×
∫ α+(y,z)

α−(y,z)
dx

∫
d3k

(2π)32Ek
d3pν

(2π)32Eν
(2π)4δ(4)(P−k−pν)|M |2K→πe+νγ ,

(A.12)

where

δ|M |2brem ≡
M2
K

2π

∫ α+(y,z)

0
dx

∫
d3k

(2π)32Ek
d3pν

(2π)32Eν
(2π)4δ(4)(P − k − pν)|M |2K→πe+νγ .

(A.13)
Both |M |2K→πe+ν and δ|M |2brem possess IR-divergences that eventually cancel other. Mean-
while, the term with the integration over the D4−3 region is by itself IR-finite.
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Figure 3. Illustration of the D3 region (dark blue) and D4−3 region (light green) in K0
e3.

B Resonances at low energy

In this appendix, we briefly review the basics of the resonance chiral theory that includes
the 1−− and 1++ resonances as dynamical DOFs in the chiral Lagrangian [93–95]. Based on
this formalism we calculate the contribution of these resonance to δM2 +δMa

γW and δM b,V
γW .

In most of the literature on resonance chiral theory, the massive spin-1 particles are
described by a totally-antisymmetric tensor field instead of a vector field [96], so we start
by introducing the formalism. First, the free Lagrangian of a (real) massive spin-1 particle
is written as:

L = −1
2
(
∂λRλµ

)
(∂νRνµ) + 1

4M
2
RRµνR

µν , (B.1)

where Rµν is the antisymmetric tensor field. It satisfies the following classical equation of
motion:

∂µ
(
∂λR

λν
)
− ∂ν

(
∂λR

λµ
)

+M2
RR

µν = 0 . (B.2)

The quantized field takes the form:

Rµν(x) =
∑
s

∫
d3k

(2π)32ER(~k)
i

MR

{(
kνε

s
µ(~k)− kµεsν(~k)

)
âs(~k)e−ik·x

−
(
kνε

s∗
µ (~k)− kµεs∗ν (~k)

)
â†s(~k)eik·x

}
, (B.3)

where εs(~k) is the polarization vector of the spin-1 particle that satisfies the following
relations:

k · εs(~k) = 0 ,
∑
s

εsµ(~k)εs∗ν (~k) = −gµν + kµkν
M2
R

, (B.4)

and â+
s (~k), âs(~k) are the creation and annihilation operators. Finally, by inverting the free

Lagrangian one obtains the covariant propagator of the antisymmetric tensor field:

∆R
µναβ(p) = − i

p2 −M2
R + iε

1
M2
R

(gµαpνpβ − gµβpνpα − gναpµpβ + gνβpµpα)

+ i

M2
R

(gµαgνβ − gναgµβ) . (B.5)
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We can now construct the chiral Lagrangian with dynamical vector and axial reso-
nances. The 1++ octet resonances are represented by Vµν which is a traceless, Hermitian
matrix in the flavor space. Its chiral covariant derivative is given by:

∇λVµν = ∂λVµν + [Γλ, Vµν ] , (B.6)

where
Γµ ≡

1
2
{
u† [∂µ − i(vµ + aµ)]u+ u [∂µ − i(vµ − aµ)]u†

}
(B.7)

is the standard connection vector, with vµ, aµ the vector and axial external sources. Sim-
ilarly, the 1−− resonances are represented by the matrix Aµν . Other elementary building
blocks of the ordinary ChPT. include the “vielbein”:

uµ ≡ i
{
u† [∂µ − i(vµ + aµ)]u− u [∂µ − i(vµ − aµ)]u†

}
, (B.8)

and the anti-symmetric tensors fµµR,L built from the vector and axial external sources:

fµνR,L ≡ ∂
µ(vµ ± aν)− ∂ν(vµ ± aµ)− i [vµ ± aµ, vν ± aν ] , (B.9)

and finally, fµν± ≡ ufµνL u† ± u†fµνR u. With the above we can now write down the chiral
Lagrangian with 1++ and 1−− resonances. The LO Lagrangian scales as O(p4):

L(4)
R = −1

2

〈
(∇λVλµ)(∇νV νµ)− 1

2M
2
V VµνV

µν
〉
− 1

2

〈
(∇λAλµ)(∇νAνµ)− 1

2M
2
AAµνA

µν
〉

+ FV

2
√

2
〈
Vµνf

µν
+
〉

+ iGV√
2
〈Vµνuµuν〉+ FA

2
√

2
〈
Aµνf

µν
−
〉
, (B.10)

where 〈. . .〉 represents the trace over the flavor space, MV and MA are the vector and axial
resonance masses in the chiral limit, while FV , FA and GV are real coupling constants.

The leading resonance contribution to TµνKπ scales as O(p4) and enters through the
s- and u-channel diagrams as depicted in figure 4. Since all the couplings in eq. (B.10)
have even intrinsic parity, it is evident that only the axial resonances can exist in the
intermediate state. They give rise to the following expressions:(

TµνK0π−(q′; p′, p)
)

R
= −F

2
A

F 2
0
V ∗usq

′
α(p− p′ − q′)β∆αµβν

A (p′ + q′)

(
TµνK+π0(q′; p′, p)

)
R

= F 2
A√

2F 2
0
V ∗usq

′
α(p− p′ − q′)β∆αµβν

A (p− q′) , (B.11)

where F0 is the pion decay constant in the chiral limit. For numerical estimation, we choose
FA = 123MeV, MA = 968MeV following ref. [93], and F0 ≈ Fπ = 92.1MeV. Meanwhile,
since ΓµKπ vanishes in the flavor SU(3) limit, it cannot be generated by the resonance
Lagrangian in eq. (B.10) at tree level because the latter is SU(3)-symmetric.

We then plug the expressions above into eq. (3.9), (3.10) and evaluate the integrals.
Of course, upon setting M2

W /(M2
W − q′2) → 1 the integrals are UV-divergent, but this

is expected because the expressions above are only supposed to work at small q′ so the
integral should be cut off at q′ ∼MA. As our main purpose here is just to have an order-of-
magnitude estimation of the resonance contribution, we shall adopt a simple prescription as
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Figure 4. The resonance contribution to TKπµν at low energy.

follows: we first regularize the UV-divergence using dimensional regularization, and discard
the usual divergent combination 2/(4 − d) − γE + ln 4π. The result is then a function of
the renormalization scale µ, which we vary from MA to 2MA as a crude estimation of the
uncertainty. With the above, we obtain the following resonance contribution to δKe3 :

(
δK0

e3

)
resonance

= (−0.6± 2.0)× 10−5(
δK+

e3

)
resonance

= (5.9± 0.8)× 10−5 . (B.12)

They are both smaller than 10−4.

C Loop functions in the convection term contributions

In this appendix we provide the analytic formula for the loop functions that enter the
convection term contribution δM2 + δMa

γW and δM b,V
γW . We start by parameterizing the

relevant loop integrals:

(2πµ)4−d

iπ2

∫
ddk

kµkν

[(p1 − k)2 −m2
1][(p2 − k)2 −m2

2]k2 = gµνC00 + (pµ1pν2 + pν1p
µ
2 )C12

+pµ1pν1C11 + pµ2p
ν
2C22 , (C.1)

1
iπ2

∫
d4k

kµ

[(p1 − k)2 −m2
1][(p2 − k)2 −m2

2]k2 = −C1p
µ
1 − C2p

µ
2 , (C.2)

and
1
iπ2

∫
d4k

1
[(p1 − k)2 −m2

1][(p2 − k)2 −m2
2][k2 −M2

γ ] = C0 . (C.3)

The first expression is UV-divergent and is regularized using dimensional regularization,
while the third expression is IR-divergent and is regularized by a small photon mass Mγ .
All the Cs above are functions of m2

1 = p2
1, m2

2 = p2
2 and v = (p1 − p2)2. The analytic
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expressions for the Cij functions are as follows:

C00 = 1
4

(
2

4− d − γE + ln 4π + ln µ2

m2
1

+ 3
)

+ Λ(v,m1,m2)
4 + −m

2
1 +m2

2 + v

8v ln m
2
1

m2
2

≡ 1
4

(
2

4− d − γE + ln 4π + ln µ2

m2
1

+ 3
)

+ Cfin
00

C11 = −m
4
1 − 2m2

1m
2
2 +m4

2 − 2m2
1v + v2

2vλ(m2
1,m

2
2, v) Λ(v,m1,m2) + m2

1 −m2
2 − v

4v2 ln m
2
1

m2
2
− 1

2v

C22 = −m
4
1 − 2m2

1m
2
2 +m4

2 − 2m2
2v + v2

2vλ(m2
1,m

2
2, v) Λ(v,m1,m2) + m2

1 −m2
2 + v

4v2 ln m
2
1

m2
2
− 1

2v

C12 = −−m
4
1 + 2m2

1m
2
2 −m4

2 +m2
1v +m2

2v

2vλ(m2
1,m

2
2, v) Λ(v,m1,m2)− m2

1 −m2
2

4v2 ln m
2
1

m2
2

+ 1
2v ,

(C.4)

where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca is the triangle function, and

Λ(v,m1,m2) ≡ λ1/2(m2
1,m

2
2, v)

v
ln
(
λ1/2(m2

1,m
2
2, v) +m2

1 +m2
2 − v

2m1m2
+ iε

)
. (C.5)

The analytic expressions for the Ci functions read:

C1 = 1
2v ln m

2
1

m2
2
− m2

1 −m2
2 − v

λ(m2
1,m

2
2, v) Λ(v,m1,m2)

C2 = − 1
2v ln m

2
1

m2
2

+ m2
1 −m2

2 + v

λ(m2
1,m

2
2, v) Λ(v,m1,m2) . (C.6)

And finally,

C0 = xv
m1m2(1− x2

v)

{
ln xv

[
− ln

(
M2
γ

m1m2

)
− 1

2 ln xv + 2 ln(1− x2
v)
]
− π2

6

+Li2(x2
v) + 1

2 ln2
(
m1
m2

)
+ Li2

(
1− xv

m1
m2

)
+ Li2

(
1− xv

m2
m1

)}
≡ − xv

m1m2(1− x2
v)

ln xv ln
(

M2
γ

m1m2

)
+ Cfin

0 , (C.7)

with

xv ≡ −
1−

√
1− 4m1m2

v−(m1−m2)2

1 +
√

1− 4m1m2
v−(m1−m2)2

. (C.8)

D Dimensional regularization of the IR-divergent integral in the
bremsstrahlung contribution

The only IR-divergent integral in bremsstrahlung process K(p) → π(p′)e+(pe)ν(pν)γ(k)
reads:

Ii(y, z) ≡
∫ α+(y,z)

0
dx

∫
d3k

(2π)32Ek
d3pν

(2π)32Eν
(2π)4δ(4)(P − k − pν)

(
pe
pe · k

− pi
pi · k

)2

= 2π
∫ α+(y,z)

0
dx

∫
d3k

(2π)32Ek
δ(M2

Kx− 2k · P )
(

pe
pe · k

− pi
pi · k

)2
, (D.1)
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where i = K or π (obviously, pK = p and pπ = p′). Here, we can use the single delta
function in the second line to integrate out Ek, so the IR-divergence comes from the final
integration with respect to x, where the integrand behaves as x−1 at small x. A common
prescription to regularize this IR-divergence is to introduce a non-zero photon mass such
that k2 = M2

γ . This sets a lower bound of M2
γ/M

2
K for the x-integral that regularizes

the IR-divergence, but also introduces a complicated Mγ-dependence in the integrand that
needs to be carefully taken into account in order to correctly reproduce all the IR-finite
terms in the Mγ → 0 limit.

A more elegant way to deal with the IR-divergence is to use dimensional-regulariza-
tion [97, 98]. With this prescription, we first generalize the three-dimensional k-integral to
d− 1 dimension:

d3k

(2π)32Ek
→ µ4−d dd−1k

(2π)d−12Ek
(D.2)

= µ4−d

2(2π)d−1E
d−2
k sind−3 θ1 sind−4 θ2 . . . sin θd−3dEkdθ1dθ2 . . . dθd−3dθd−2 ,

where 0 ≤ θ1, θ2, . . . , θd−3 ≤ π and 0 ≤ θd−2 ≤ 2π. The spatial components of k are
parameterized as:

k1 = Ek cos θ1

k2 = Ek sin θ1 cos θ2
...

kd−2 = Ek sin θ1 sin θ2 . . . sin θd−3 cos θd−2

kd−1 = Ek sin θ1 sin θ2 . . . sin θd−3 sin θd−2 . (D.3)

With the prescription above, the IR-divergent integral over x can now be simply performed:∫ α+(y,z)

0
dxxd−5 = (α+(y, z))d−4

d− 4 , (D.4)

assuming d > 4. Meanwhile, the angles can be integrated using the formula:

∫ π

0
sinm θdθ =

√
π

Γ
(

1
2(m+ 1)

)
Γ
(

1
2(m+ 2)

) . (D.5)

And finally, one expands the result to O
(
(d− 4)0). It is also customary to switch the result

back to the expression with the Mγ-regularization. For that purpose one simply performs
the following matching:

2
4− d − γE + ln 4π → ln

M2
γ

µ2 . (D.6)

Next, we discuss some useful tricks in the evaluation of Ii(y, z) with dimensional regu-
larization. First, the full integral can be split into three terms, with the integrand propor-
tional to: 1

(pe · k)2 ,
1

(pi · k)2 ,
1

(pe · k)(pi · k) (D.7)
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respectively. The integration with respect to the first term is most easily done in the ~pe-rest
frame, while the next two terms should be done in the ~pi-rest frame. The following identity
is also useful in performing the integration of the third term:
∫ α+(y,z)

0
dxxd−5f(d, x) =

∫ α+(y,z)

0
dxxd−5f(d, 0) +

∫ α+(y,z)

0
dxxd−5 (f(d, x)− f(d, 0))

= (α+(y, z))d−4

d− 4 +
∫ α+(y,z)

0
dx

1
x

(f(4, x)− f(4, 0)) +O(d− 4) .

(D.8)

We are now ready to write down the full result of the integral:

Ii(y, z) = IIR
i (y, z) + Ifin

i (y, z) , (D.9)

where

IIR
i (y, z) = 1

2πM2
K

{(
1− 1

βi(0) tanh−1 βi(0)
)

ln
[
M2
K

M2
γ

]
− 1

2 ln
[
M2
K

m2
e

]}
(D.10)

is the IR-divergent piece after switching back to the Mγ-prescription using eq. (D.6), and

Ifin
i (y, z) = 1

4πM2
K

{(
1− 2

βi(0) tanh−1 βi(0)
)

ln
[
M2
Kα

2
+

4P 2
0 (0)

]
+ ln

[
α2

+(y, z)
(1− z + rπ − re)2

]

− 1
βi(0)Li2

[ 2βi(0)
1 + βi(0)

]
+ 1
βi(0)Li2

[
− 2βi(0)

1− βi(0)

]
+ 2
βi(0)Li2

[
βi(0)

1 + βi(0)

(
P1(0)
P0(0) + 1

)]
− 2
βi(0)Li2

[
βi(0)

1− βi(0)

(
P1(0)
P0(0) − 1

)]}
− 1

2πM2
K

∫ α+(y,z)

0
dx

1
x

{ 1
βi(x) ln

[1 + βi(x)
1− βi(x)

]
− 1
βi(0) ln

[1 + βi(0)
1− βi(0)

]}
(D.11)

is the IR-finite piece, with

βi(x) ≡
√

1− M2
i m

2
e

(pi · pe)2 , P0(x) ≡ pi · P
Mi

, P1(x) ≡ 1
βi(x)

(
P0(x)− pe · P

pi · pe
Mi

)
. (D.12)

Of course all the quantities in eq. (D.12) are functions of {y, z} as well. Their physical
meanings are apparent: βi(x) is the speed of the positron, P0(x) is the zeroth component
of Pµ, and P1(x) is the spatial component of Pµ along the direction of ~pe, all in the ~pi-rest
frame. Notice that the residual, IR-finite integral in the last line of eq. (D.11) vanishes for
i = K, because βK(x) = βK(0).

The correct analytic expression for IK(y, z) and Iπ(y, z) first appeared in ref. [25] and
ref. [35] respectively (notice that ref. [24] also attempted to calculate Iπ(y, z), but the
result there is wrong even with the Errata). It is easy to check the numerical equivalence
between eq. (D.9) and those expressions, after accounting for the difference in the overall
normalization.
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E IR-finite integrals in the bremsstrahlung contribution

In this appendix, we outline the general strategy to evaluate the IR-finite numerical inte-
grations from the bremsstrahlung process, in both the D3 and D4−3 region. We start by
providing the expressions of the relevant integrands. In K0

e3 we have:

|MA|2res =−e2
(

pe
pe · k

− p′

p′ · k

)2 {
|M0|2(x, y, z)− |M0|2(0, y, z)

}
+e2G2

FFµF
∗
ν

(
pe
pe · k

− p′

p′ · k

)2
Tr
[
/kγµ(/pe −me)γν(1− γ5)

]
−e2G2

FF
∗
µFν

1
pe · k

(
pe
pe · k

− p′

p′ · k

)
α

ReTr
[
(/pe−me)γµ(/P−/k)γν/kγα(1−γ5)

]
+e2G2

FFµF
∗
ν

1
pe · k

Tr
[
(/P − /k)γµ/kγν(1− γ5)

]
2Re{MAM

∗
B}=−2e2G2

FVusFµ

(
pe
pe · k

− p′

p′ · k

)
α

×ReTr
[
(/P − /k)γµ(/pe −me)

{
p′α

p′ · k
/k − γα

}
(1− γ5)

]
−e2G2

FVusFµ
1

pe · k
ReTr

[
(/P − /k)γµ/kγα(/pe −me)

{
p′α
p′ · k

/k − γα
}

(1−γ5)
]

|MB|2 =−e2G2
F |Vus|2Tr

[
(/P−/k)

{
p′µ

p′ · k
/k−γµ

}
(/pe−me)

{
p′µ
p′ · k

/k − γµ

}
(1−γ5)

]
,

(E.1)

and similarly for K+
e3,

|MA|2res =−e2
(

pe
pe · k

− p

p · k

)2 {
|M0|2(x, y, z)− |M0|2(0, y, z)

}
+e2G2

FFµF
∗
ν

(
pe
pe · k

− p

p · k

)2
Tr
[
/kγµ(/pe −me)γν(1− γ5)

]
−e2G2

FF
∗
µFν

1
pe · k

(
pe
pe · k

− p

p · k

)
α

ReTr
[
(/pe−me)γµ(/P−/k)γν/kγα(1−γ5)

]
+e2G2

FFµF
∗
ν

1
pe · k

Tr
[
(/P − /k)γµ/kγν(1− γ5)

]
2Re{MAM

∗
B}=

√
2e2G2

FVusFµ

(
pe
pe · k

− p

p · k

)
α

×ReTr
[
(/P − /k)γµ(/pe −me)

{
pα

p · k
/k − γα

}
(1− γ5)

]
+e2G2

F√
2
VusFµ

1
pe · k

ReTr
[
(/P − /k)γµ/kγα(/pe −me)

{
pα
p · k

/k − γα
}

(1−γ5)
]

|MB|2 =−e
2G2

F

2 |Vus|2Tr
[
(/P − /k)

{
pµ

p · k
/k − γµ

}
(/pe −me)

{
pµ
p · k

/k − γµ
}

(1−γ5)
]
.

(E.2)

In the above, we have used Fµ as a shorthand of FKπµ (p′, p). We do not display the explicit
results after taking the spinor trace, as the latter can be done with, e.g., various packages
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in Mathematica such as Tracer or Package-X. After taking the trace, all the expressions
above are functions of {x, y, z} as well as two of the three following dot products involving
k: {k · p, k · p′, k · pe} using the identity 2k · (p− p′ − pe) = M2

Kx.
The integration can be performed with the following strategy. Take |MA|2res in K0

e3 as
an example: we first express the squared amplitude as a finite sum:

|MA|2res =
∑
m,n

cm,n(x, y, z) 1
(k · p′)m(k · pe)n

, (E.3)

where −2 ≤ m,n ≤ 2 and cm,n(x, y, z) are known scalar coefficients. The pν and k-
integrations return the following functions:

Im,n(p1, p2) ≡ 1
2π

∫
d3k

Ek

d3pν
Eν

δ(4)(P − k − pν)
(p1 · k)m(p2 · k)n , (E.4)

of which analytic expressions are given in the appendix of ref. [25] (we have checked their
correctness). With this, we obtain:∫

d3k

(2π)32Ek
d3pν

(2π)32Eν
(2π)4δ(4)(P − k − pν)|MA|2res = 1

8π
∑
m,n

cm,n(x, y, z)Im,n(p′, pe) ,

(E.5)
where the right-hand side is now a function of {x, y, z}, so the remaining three-fold in-
tegration with respect to these variables are completely regular and can be performed
numerically. The same strategy applies to the IR-finite integrals in K+

e3, except that one
should choose 1/ {(k · p)m(k · pe)n} as the basis.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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