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1 Introduction

It has long been appreciated that causality and unitarity impose restrictions on the space of
allowed effective field theories (EFTs). For an EFT to arise as the low-energy approximation
to a consistent quantum theory, its Wilson coefficients must obey certain inequalities [1].
These constraints, which have a long history originating in pion physics (see for example [2–
4]), can be derived from canonical assumptions about the S-matrix: analyticity, crossing,
boundedness and a positive partial wave decomposition. While these properties have not
been rigorously established in all cases, they are believed to encode the fundamental axioms
of unitarity and causality (the notion that one cannot send information faster than light).
For quantum field theories in flat space, inequalities that follow from 2 → 2 scattering
have been systematically analyzed in a series of recent papers [5–10]. The basic strategy
is to write a (suitably subtracted) dispersion relation for the amplitude, which expresses
low-energy parameters in terms of an unknown but positive UV spectral density.

An important conclusion is that generic low-energy parameters obey two-sided bounds
compatible with dimensional analysis [6, 8]: higher dimensional operators are suppressed
by inverse powers of the cut-off. In effect, in a causal EFT, power-counting rules are
implied by causality. The incorporation of a massless spin two particle (i.e. dynamical
gravity) presents an apparent difficulty due to the singular nature of forward scattering,
which was recently overcome in [11]. The idea was to measure couplings instead at small
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impact parameter b . 1/M , where M is the UV cut-off. In this way one can derive sharp
bounds compatible with dimensional analysis, even in the presence of gravity.

In this paper, we extend this program to weakly coupled gravitational EFTs in asymp-
totically anti-de Sitter space. In the purest model, we would assume that the massless
graviton is the only light particle, with the first massive state appearing at a high scale
M � 1/RAdS. The effective action that captures the physics at energies below the cut-off
M , written in a schematic notation that ignores the various possible index contractions, is

Sgravity = 1
16πG

∫
dDx
√
−g

(
−2Λ +R+ α2R2 + α3R3 + . . .

)
, (1.1)

where Λ = −(D − 1)(D − 2)/(2R2
AdS) and where the dots indicate an infinite tower of

higher dimensional operators. For the EFT to be weakly coupled, the effective gravitational
coupling GED−2 must be small at energies E . M . We are then assuming the following
hierarchy of scales:

1
RAdS

�M �MPlanck ≡ G
1

2−D . (1.2)

Effective field theory intuition suggests that the Wilson coefficients αn should be sup-
pressed by inverse powers of the cut-off according to their naive dimension, αn ∼ 1/M2n−2,
so that the theory is local and well approximated by Einstein gravity at energies E �M . It
is a longstanding open problem to confirm this expectation with precise numerical bounds.
A beautiful approach to this problem was discussed in [12], where it was shown, at the level
of three-point couplings, that in order to maintain causality (produce time delays rather
than time advances in graviton scattering) higher derivative corrections to Einstein gravity
must be parametrically suppressed by the expected inverse powers of M .

An important task left open has been to turn these parametric estimates into sharp
bounds with precise numerical coefficients:

|α2| ∼<
1
M2 versus |α2| ≤

#
M2 . (1.3)

Besides ruling out the possibility of numerically large “O(1)” factors, sharp bounds are
important for several reasons. For example, from an experimental perspective, relating
the size of (hypothetically nonzero) EFT coefficients and the mass of new physical states
is clearly valuable. From a formal perspective, the bootstrap program taught us that
many interesting physical theories live at the boundary of the space of consistent theories;
exploring this space requires sharp bounds.

Since dealing with the graviton polarization adds an extra layer of complication or-
thogonal to the central question, we will find it to convenient to introduce an additional
light scalar. For concreteness, let us consider a model where the massless graviton and a
scalar ϕ (of mass mϕ ∼ 1/RAdS) are the only single-particle states below the cutoff M .
Schematically again,

S = Sgravity +
∫
dDx
√
−g

(
1
2ϕ(�−m2

ϕ)ϕ+
∑
n

gnD
2nϕ4 + . . .

)
. (1.4)
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We assume that all EFT interaction are weak, with the overall strength of the scalar quartic
couplings controlled by the Newton constant, gn ∼ G. The goal is to find precise bounds
for gn that reflect the expected EFT scaling, gn/G ∼M2−2n.

We focus in this paper on AdS space because the axioms of gravity are clearest: we
take the perspective that an AdS quantum gravity theory is non-perturbatively defined
by its dual CFT, and regard the program of carving out the space of consistent AdSd+1
EFTs as a special corner of the d-dimensional conformal bootstrap. We follow a boundary
CFT approach, in the same spirit as several previous works [13–22]. The lofty goal is a
derivation of bulk locality from a rigorous bootstrap perspective.

This problem was cleanly formulated in CFT language in [13]. The authors envisioned
a family of CFTs, parametrized by a small coupling ε that controls the approach to mean
field theory and abstracts the rules of large-N expansions.1 The limiting mean field theory
at ε = 0 contains “single-trace” operators with spin Ji ≤ 2 and twists τi < ∆gap, where
∆gap = MRAdS � 1 is a large scale. The central conjecture of [13] is that these are
sufficient conditions for locality of the bulk AdS theory.

There is a large body of evidence for this conjecture, from a variety of CFT arguments,
e.g. [16–22]. A common thread is to impose causality constraints on CFT four-point func-
tions, in kinematic regimes that probe bulk locality. (A precise characterization of one
such regime, the “bulk-point limit”, was given in [23].) It was argued in [16] that the stress
tensor exchange by itself violates causality unless the three-point functions are tuned to
be those of Einstein gravity; under certain assumptions about the other contributions, this
shows parametric suppression of the higher derivative terms. An approach based on com-
puting the bulk phase shift from CFT and imposing that it obeys causality was described
in [18, 19], leading again to parametric suppression.

The Lorentzian inversion formula [17] would seem like a promising start to obtain more
quantitative, sharp bounds. Indeed, it leads to a rigorous non-perturbative upper bound
for bulk contact interactions, of the form

c(∆, J) < f(∆, d)
(∆2

gap)J−2 , (1.5)

where J is the spin of the interaction (defined as the highest spin in the partial wave
expansion of the contact diagram) and f(∆, d) a computable function. These bounds
confirm a key insight of [13]: that the higher-derivative corrections that can arise at a
given order in 1/∆2

gap are supported on finitely many spins. They are however incomplete,
since the spin of an interaction is usually less than its scaling dimension. This can be
illustrated by inspecting the scattering amplitudes corresponding to the first few scalar
self-interactions (the notation follows section 2.1):

M⊃ g2
(
s2 + t2 + u2

)
+ g3stu+ g4

(
s2 + t2 + u2

)2
+ . . . . (1.6)

The first two interactions are spin-2: in the Regge limit s, t → ±∞ with u fixed, they
grow like ∼ sJ with J = 2. Therefore the bound (1.5) gives the same suppression for

1In the quintessential example of SU(Nc) N = 4 super Yang-Mills, ε = G/RD−2
AdS ∼

1
N2
c
.
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g2 and g3, whereas a trained dimensional analyst would expect g3/g2 ∼< 1/∆2
gap. The g4

interaction, being spin-4, enjoys a stronger suppression and generally only a finite number
of interactions exist below a certain spin. In weakly coupled AdS EFTs, where tree-level
interactions are suppressed by ε (which we assume to be much smaller than any power of
1/∆gap), (1.5) is also too weak to be useful. It was suggested in [17] to use stress-tensor
sum rules to bound other couplings, but this strategy has not led to sharp bounds (and
cannot, as we will see).

Finally, commutativity of lightray operators [24, 25] (local operators integrated over
a null direction) leads to interesting sum rules, known as “superconvergence sum rules”,
that to order O(ε) relate EFT couplings to the heavy single-trace data; under plausible
physical assumptions, they have been used to argue for parametric suppression of higher
derivative couplings [21] (see also [22]). Turning those estimates into sharp bounds has
however remained a stumbling block. This is what we accomplish in the present paper.

1.1 Our approach

1.1.1 Setup and assumptions

Let us state our assumptions more precisely, focusing on the CFT version of the model (1.4).
In this example, the only single-trace operators with twist τ < ∆gap are the stress tensor
Tµν and a scalar primary φ of dimension ∆φ � ∆gap.2 The conformal block decomposition
of the four-point function of φ (in any channel) takes the form

〈φφφφ〉 = G1 +
∑

G[φφ]n,` +GTµν +G[composites]︸ ︷︷ ︸
τ<∆gap

+
∑

Gheavy︸ ︷︷ ︸
τ>∆gap

. (1.7)

The exchanged primaries with τ < ∆gap comprise the identity, the double-trace composites
of φ, the stress tensor and additional multi-trace composites built out of φ and Tµν . In
the strict ε → 0 limit, only the identity and the φ double traces survive, with exact
mean field theory dimensions and OPE coefficients. We are interested in the leading O(ε)
deviation from mean field theory. At this order, the stress tensor block appears, while the
double traces acquire O(ε) anomalous dimensions and corrections to their squared OPE
coefficients. The other light composites are subleading and can be ignored. The setup could
be modified to include other light single-traces (for example, towers of Kaluza-Klein modes),
as long as they all have spin J ≤ 2. On the other hand, we make no assumptions about the
primaries with τ > ∆gap, other than that they obey the usual unitarity constraints. While
the physics below ∆gap is assumed to be weakly coupled, the physics above ∆gap can be
strongly coupled.

Our objective is to derive constraints on the O(ε) double-trace data. These data are
in one-to-one correspondence [13] with the quartic couplings gn of the AdS effective field
theory (1.4) (defined precisely in (4.12)). We will establish precise two-sided bounds that
scale with the expected inverse powers of ∆gap. In essence, we will succeed in uplifting to
AdS the flat-space bounds of our previous paper [11], with the four-point correlator of φ

2Note that ∆gap is conceptually a twist gap (not a dimension gap) for us. Still, we follow the literature
and use the name ∆gap.
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playing the role of the 2 → 2 scalar scattering amplitude. While the physical picture is
clear, its implementation has become technically possible only thanks to new advances in
the analytic conformal bootstrap. Traditional bootstrap methods (such as the standard
numerical oracle [26]) are inadequate to constrain weakly coupled AdS EFTs, due to the
dominant contributions of double-trace composites. The right tools are the recently derived
dispersive CFT sum rules [27–33], which are ideally suited to study perturbative expansions
around mean field theory.3

1.1.2 Reminder: dispersive sum rules

Dispersive CFT sum rules are rooted in Lorentzian kinematics and the notion of the double
discontinuity (dDisc) or double commutator. Let us give an informal sketch of their origin,
referring to [31] for a detailed treatment. The crossing equation for 〈φφφφ〉 is precisely the
causality constraint

〈Ω|φ(x4)[φ(x1), φ(x3)]φ(x2)|Ω〉 = 0 for x1 − x3 spacelike , (1.8)

expanded using vacuum OPEs (meaning that a complete set of states is inserted to the
left of the two rightmost operators). One might intuit that the strongest causality con-
straints stem from approaching the lightcone, and dispersive sum rules do just that. They
are derived by integrating x1 and x3 along space-like separated null rays against certain
meromorphic kernels f(x1, x3),

0 =
∫ ∞
−∞

dx+
1

∫ ∞
−∞

dx+
3 f(x1, x3)〈Ω|φ(x4)φ(x3)φ(x1)φ(x2)|Ω〉

−
∫ ∞
−∞

dx+
1

∫ ∞
−∞

dx+
3 f(x1, x3)〈Ω|φ(x4)φ(x1)φ(x3)φ(x2)|Ω〉 . (1.9)

In the absence of the kernel f(x1, x3), each term in (1.9) would become a double-commu-
tator, since null-integrated operators kill the vacuum, for example:∫ ∞

−∞
dx+

1

∫ ∞
−∞

dx+
3 〈Ω|φ(x4)φ(x3)φ(x1)φ(x2)|Ω〉

=
∫ ∞
−∞

dx+
1

∫ ∞
−∞

dx+
3 〈Ω|[φ(x4), φ(x3)][φ(x1), φ(x2)]|Ω〉 (without f(x1, x3)). (1.10)

Importantly, the double-commutator (1.10) does not get contributions from states with
double-trace dimensions ∆ = 2∆φ + 2n+ J in the 12→ 34 OPE.

However, in general f(x1, x3) is needed to suppress the endpoints of the null inte-
gral (1.9) and ensure convergence.4 The poles of f(x1, x3) then introduce additional contri-
butions not proportional to a double-commutator. Overall, expanding (1.9) using vacuum
OPEs, we obtain a sum rule ∑

∆,J
p∆,Jω[Gs∆,J ] = 0, (1.11)

3See [34, 35] for some early examples of dispersive CFT sum rules and [36–43] for their further applica-
tions.

4No kernel is needed for certain correlators of spinning operators, giving superconvergence relations [21].
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where ω is a functional and ω[Gs∆,J ] exhibits double zeros on all double-trace dimensions
above some twist τmin, ensuring that the heavy and light contributions are separately O(ε).
There are several other equivalent ways to derive dispersive sum rules [31] (notably from
dispersion relations in Mellin space [29, 31]). Here we have chosen to emphasize their
conceptual kinship with classic physical arguments underlying S-matrix crossing symmetry
and dispersion relations [44], and with superconvergence sum rules, further elaborated upon
in appendix D.

1.1.3 Application to holographic CFTs

Consider now a dispersive sum rule ω with τmin < ∆gap, and let us apply it to a holographic
family of CFTs parametrized by ε as described above. We can split the contributions to
the sum rule into the light ones with τ ≤ ∆gap and heavy ones with τ > ∆gap. Defining

ω|light =
∑

τ≤∆gap

p∆,J ω[Gs∆,J ] , ω|heavy =
∑

τ>∆gap

p∆,J ω[Gs∆,J ] , (1.12)

the sum rule reads
− ω|light = ω|heavy . (1.13)

It is easy to see that ω|light = O(ε) as ε → 0. Indeed, in mean field theory (O(ε0)), the
heavy contribution to ω vanishes. At O(ε), ω|light comes entirely from light single-trace
operators and the anomalous dimensions and OPEs of the double traces with τ < ∆gap
and can be computed from the bulk effective field theory. If we manage to construct a
functional ω that is non-negative for τ > ∆gap, we conclude from (1.13) that

− ω|light ≥ 0 . (1.14)

In this way, UV consistency gives rise to inequalities satisfied by the low-energy observables.
This is in analogy with how dispersive sum rules constrain flat-space EFTs.

A distinct advantage of the CFT approach to AdS theories is that it is fully rigorous.
The requisite analyticity and causality properties of the four-point correlator are direct
consequences of the bootstrap axioms (see [45] for a recent discussion of how Lorentzian
CFT axioms follow from the standard Euclidean axioms), while boundedness in the Regge
limit (with Regge intercept ≤ 1) is a consequence of unitarity and the OPE at the non-
perturbative level [17].

To construct dispersive functionals that will give sharp bounds for the bulk couplings,
it is helpful to develop the following physical picture. We can think of dispersive sum rules
as expressing the causality of 2 → 2 scattering in AdSd+1. A choice of ω corresponds to
choosing wavefunctions for the incoming and outgoing particles. We will choose these to
mimic the derivation of the corresponding bounds in flat space [11]. There, the key idea
was to use wavefunctions which ensure that highly energetic intermediate states scatter at
small impact parameter b ∼ 1/M . The corresponding physical picture of a high energy
collision in AdS is sketched in figure 1. The high energy (Regge) limit of the AdS/CFT
correlator localizes along two null sheets, intersecting in the transverse hyperbolic space
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4

Figure 1. A four-point function near the Regge limit. Bulk excitations localize along two null
sheets, which intersect in a transverse hyperbolic space Hd−1 (thick blue line). The red and blue
arrows show the boundary and bulk actions of SO(d− 1, 1) isometries, which we exploit to focus in
impact parameter.

Hd−1 (impact parameter space).5 In order to probe local bulk physics, we must construct
dispersive functionals whose action on heavy blocks Gs∆,J is sharply localized at small
impact parameter β ∼= 2J/∆� 1.

We will achieve this starting from the Bk,v functionals of [31]. Here k ≥ 2 denotes the
number of subtractions used in the dispersion relation, and v is an additional continuous
parameter. The action of Bk,v on the heavy states is spread over impact parameters
of order one, i.e. comparable to the AdS radius. We will explain how to construct linear
combinations of these sum rules which are localized at small impact parameter. Specifically,
we will use harmonic analysis on the transverse Hd−1 to find a basis of sum rules with a
fixed transverse momentum ν. This defines a new family of dispersive sum rules, which we
call Ck,ν . They provide a CFT version of the flat-space sum rules Ck,u introduced in our
previous paper [11], to which they will reduce in the bulk point limit J/∆� 1.

The Ck,ν sum rules are absolutely convergent integrals over a “spacelike kinematics”
region where the commutator in (1.8) vanishes. For ν large and in a certain range, strong
oscillations make the integral dominated by a complex saddle point where x1−x3 is effec-
tively timelike. On the saddle point, the kinematics are effectively timelike, and thus able
to causally focus onto a bulk point! Moments of the S-matrix can thus be measured from
spacelike kinematics. We refer to this phenomenon as spacelike scattering.

Several additional technical hurdles must be cleared. We must control the action of
the functionals also in the Regge limit J/∆ = O(1), check heavy positivity, and finally
construct “improved” versions of the sum rules to deal with the graviton pole. When the
dust settles, we are able to uplift to AdS the two-sided flat space bounds of [11]. A nice
feature of AdS is that it provides an infrared regulator, so the story goes through also in

5Previous analyses of CFT correlators in the Regge limit include [46–52].
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flat space AdS eq.
amplitude M G
discontinuity Im[M] dDisc[G]
energy s = m2 m2 = (∆− J − d+ 1)(∆ + J − 1) (2.28)
angular momentum J J

impact parameter b = 2J
m β = cosh−1(ηAdS) = log ∆+J−1

∆−J−d+1 (2.29)
transverse momentum u = −p2 u = −ν2

Regge limit m� 1 at fixed b m� 1 at fixed β
bulk-point limit m� 1 at fixed J m� 1 at fixed J
number of subtractions k k

dispersive sum rule Ck,u Ck,ν (2.54)
improved sum rule Cimp

k,u C imp
k,ν (5.25)

Table 1. A dictionary between relevant notions in flat space and AdS.

the D = 4 case. This is in contrast with the situation in flat space, where our argument is
precluded in D = 4 by soft graviton divergences.

For concreteness, we carry out detailed calculations in the model (1.4) of a single
light scalar coupled to gravity. Additional intermediate light states of spin J ≤ 2 would
have minor effects: adding J = 0 states is of no consequence, because they drop out
of any twice-subtracted sum rules, while additional light J = 2 states would change the
precise numerical bounds. The analysis will turn out to be controlled by saddle points with
transparent physical interpretation, suggesting that the method would straightforwardly
generalize to spinning external operators.

The remainder of the paper is organized as follows. In section 2, we overview the
ingredients of our argument. In particular, we review the derivation flat-space bounds
of [11] based on the dispersive sum rules Ck,u. We also explain how to construct the
analogous dispersive CFT sum rules Ck,ν . In section 3, we develop techniques to evaluate
actions of dispersive functionals on heavy operators, and apply these techniques to Ck,ν .
Section 4 is in turn devoted to the computation of the light contributions to dispersive
sum rules. The pieces are put together in section 5, where we explain how to uplift the
flat-space bounds to AdS bounds. We conclude in section 6. Several technical appendices
complement the main text.

A dictionary summarizing the translation between relevant quantities in flat space and
AdS appears in table 1.

Note. While this work was being completed, [53] appeared which has some partial over-
lap, for example with the non-gravitational bounds from the forward limit discussed in
section 5.1.
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2 CFT sum rules and their flat space limit

Our key object of study will be a correlation function of four identical scalar operators in
a d-dimensional CFT: 〈

φ(x1) · · ·φ(x4)
〉

= G(u, v)
(x2

13x
2
24)∆φ

, (2.1)

which is a function of two cross-ratios

u = zz̄ = x2
12x

2
34

x2
13x

2
24
, v = (1−z)(1−z̄) = x2

23x
2
14

x2
13x

2
24
. (2.2)

The correlator is equal to a sum of conformal blocks in any of the three channels s, t, u

G(u, v) =
∑
∆,J

p∆,J G
s
∆,J(z, z̄) =

∑
∆,J

p∆,J G
t
∆,J(z, z̄) =

∑
∆,J

p∆,J G
u
∆,J(z, z̄) , (2.3)

where importantly all coefficients p∆,J are positive. We use the following normalization
conventions for s-channel conformal blocks,

Gs∆,J(z, z̄) ∼ (zz̄)−∆φ × z
∆−J

2 z̄
∆+J

2 for 0 < z � z̄ � 1 . (2.4)

The t- and u-channel blocks are defined by

Gt∆,J (z, z̄) = Gs∆,J (1− z, 1− z̄)

Gu∆,J (z, z̄) = [(1− z) (1− z̄)]−∆φ Gs∆,J

(
1

1−z ,
1

1−z̄

)
.

(2.5)

The spectrum of a holographic CFT (we take this to define a holographic CFT) contains
single-trace operators of low spin J ≤ 2, double-trace operators of any spin and twist
∆ − J ≈ 2∆φ + 2m, together with “heavy” higher-spin operators with twist above some
large gap τ = ∆−J > ∆gap. In the holographic picture, the low-spin single-traces represent
light fields whose interactions are expected to be controlled by a local effective theory up
to a length scale RAdS/∆gap. When attempting to relate the light and heavy sectors,
however, one runs into the difficulty that double-trace exchanges contribute strongly to
any correlator. A solution to this problem was presented in [29, 31], which constructed
“dispersive” sum rules:

0 =
∑
∆,J

p∆,Jω
[
Gs∆,J

]
(2.6)

with the property that the action ω[Gs∆,J ] has double-zeros in ∆ on all but a finite number
of double-trace families.

The idea of holographic sum rules is to rewrite (2.6) by separating out the contribution
of heavy states with twist τ = ∆− J > ∆gap:

ω|heavy ≡
∑

τ>∆gap

p∆,Jω
[
Gs∆,J

]
= − ω|light .

(2.7)

The second line collects together terms with τ ≤ ∆gap.
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The light contribution to (2.7) can be computed using low energy effective field theory
(EFT) in the bulk, as will be detailed in section 4. The heavy contribution is in general
unknown and the idea is to look for functionals such that ω|heavy is manifestly a sum of
positive terms: any such ω gives an inequality that the bulk EFT must satisfy. In this
section, we review the flat-space sum rules Ck,u as used in [8, 11] and Bk,v CFT sum rules
from [31], and we outline the various steps which will relate them in the next section.

The key concept will be that the s-channel blocks for heavy operators decay expo-
nentially away from the u-channel Regge limit. Thus, the action of ω on heavy blocks is
determined by the expansion of its kernel around the Regge limit. We characterize this
expansion in terms of Regge moments. We will show that, order by order in 1/∆gap, the
Bk,v sum rules provide a complete basis of moments, and furthermore, that they exist in
sufficient number that each can be localized at small AdS impact parameters. These local-
ized sum rules will be direct analogs of familiar flat space sum rules, which we begin by
reviewing.

2.1 Review of S-matrix sum rules

We consider 2→ 2 scattering of identical real scalars in D = d+ 1 spacetime dimensions.
For an EFT to be relevant, the scalar must be light compared to the cutoff scale M and we
will thus treat it as massless. The amplitudeM(s, t) is a function of the usual Mandelstam
invariants satisfying s + t + u = 0. It is strongly constrained by causality and unitarity,
which together imply analyticity, positivity, and boundedness properties.

Specifically, for fixed momentum transfer u < 0, the amplitude is analytic for suf-
ficiently large complex |s| and enjoys spin-2 convergence in the Regge limit |s| → ∞,6
meaning that the following limit vanishes along any line of constant argument:

lim
|s|→∞

M(s, u)
s2 = 0 (u < 0) . (2.8)

These conditions amount to convergence of k-subtracted dispersion relations with k ≥ 2,
and can be summarized by the Ck,u sum rules defined as:

Ck,u ≡ −
∮
∞

ds′

2πi
1
s′
M (s′, u)

[s′ (s′ + u)]k/2
= 0 , u < 0, k = 2, 4, . . . . (2.9)

These naturally split into low- and high-energy contributions as in (2.7): using a standard
contour deformation argument, one can replace arcs at infinity by real segments at s > M2

and u > M2, proportional to the imaginary part of the amplitude, plus a light contribution
from arcs with |s| ∼ M . One usually doesn’t know the amplitude at s > M2 except that
it should admit a partial wave expansion; this gives (see for example [8] for details):

−Ck,u|light ≡
∮
|s|∼M2

ds′

2πi
1
s′
M (s′, u)

[s′ (s′ + u)]k/2
=
〈

2m2 + u

m2 + u

PJ
(
1 + 2u

m2

)
(m2 (m2 + u))k/2

〉
≡ Ck,u|heavy ,

(2.10)

6Exchange of a particle of spin J grows likeM∼ sJ in the Regge limit.
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where the averaging symbol denotes a sum over all heavy states of energy m and spin J :

〈(· · · )〉 ≡ 1
π

∑
J even

∫ ∞
M2

dm2

m2 m
4−DnJρJ

(
m2
)

(· · · ) , (2.11)

in which, crucially, the spectral density is positive by unitarity (conservation of probability):

0 ≤ ρJ
(
m2
)
≤ 2 . (2.12)

The remaining ingredients are kinematical: 1 + 2u/m2 = cos θ represents the scattering
angle in the rest frame of the pair, nJ is a normalization, and PJ(x) are proportional to
Gegenbauer polynomials which we will sometimes refer to as Legendre polynomials (they
are Legendre polynomials in D = 4):

PJ (x) = 2F1
(
−J, J +D − 3, D−2

2 , 1−x
2

)
, (2.13)

nJ = 2DπD−2
2

Γ
(
D−2

2

)(J + 1)D−4(2J +D − 3) . (2.14)

Thus, in short, the heavy contribution (2.10) is a sum of Legendre polynomials with positive
but unknown coefficients. The polynomials themselves are not positive in the region u < 0
in which the spin sum converges.

2.2 Review of EFT constraints from S-matrix sum rules

Let us illustrate in a concrete example how these sum rules constrain EFTs. Suppose our
scalar is weakly interacting at energies below M . To tree-level accuracy, including gravity
and possible self-interactions, the amplitude can be parametrized as

Mlow (s, t) = 8πG
[
st

u
+ su

t
+ tu

s

]
− λ2

3

[1
s

+ 1
t

+ 1
u

]
− λ4

+ g2
(
s2 + t2 + u2

)
+ g3 (stu) + . . . , (2.15)

where g2, g3 and . . . represent higher-derivative corrections to φ4 self-interactions. The
light contribution to (2.10) can be readily computed by residues:

−C2,u|light = 8πG
−u

+ 2g2 − g3u+ . . . (2.16)

and the heavy action (2.10) can be similarly expanded in small u. The first few terms will
be useful below:

Ck,u|heavy =
〈

2
m2k

(
1− u

m2

[
− 2J 2

d− 1 + k + 1
2

]
+

+ u2

m4

[
2J 4

d2 − 1 −
(d(k + 3) + k − 1)J 2

d2 − 1 + (k + 2)2

8

]
+ . . .

)〉
, (2.17)

where J 2 = J(J + d− 2) is the rotation Casimir invariant, and D = d+ 1.
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In principle, both sides are infinite series, however we would like to constrain just the
first few terms in C2,u|light. In the absence of gravity, one could simply expand around
the forward limit u = 0 and match eqs. (2.16)-(2.17) term-by-term. For example this
expresses g2 = 〈 1

m4 〉 as a positive sum rule [1, 3] and suggests that all higher-derivative
corrections must disappear as g2 → 0. Remarkably, by combining sum rules involving
different subtraction degrees, one finds two-sided bounds on ratios gk/g2 which justify the
EFT power-counting logic from the sole principle of causality [6–8, 10].

It is important to note that the method applies to interactions which grow like s2 or
faster in the Regge limit. In the multi-field case (see [54, 55] for recent applications), this
leaves a finite number of exceptions, for example a two-derivative self-interaction (Φ∗∂Φ)2

for a complex scalar field. (For a single real scalar field, this interaction did not appear
because it is proportional to equations of motion.) One might of course impose parametric
upper bounds on these coefficients, to ensure that EFT loops remain under control below
the cutoff, but in this paper we focus on sharp bounds that are homogeneous in couplings.

The detailed results are modified in the presence of gravity. The graviton, a massless
spin-2 particle, causes spin-two sum rules to diverge in the forward limit!

From the viewpoint of (2.10) the pole means that the partial wave expansion diverges
at large spins. This is physically meaningful: the fact that the divergence is a sum of
positive terms readily fixes the sign of G to be positive: gravity is universally attractive.
But just subtracting the pole will not yield reliable conclusions about higher order terms
since the sign of divergent sums cannot be reliably predicted.

Various work-around strategies have been proposed. In [11], we pointed out that there
is in fact no need to expand around u = 0, because all the “. . .” couplings in (2.16) can be
eliminated using the forward limit of the Ck≥4 sum rules or the first u-derivative around
them (which are nonsingular since our EFT, by assumption, doesn’t contain light higher-
spin particles):

Cimproved
2,u ≡ C2,u −

∞∑
n=2

(
nu2n−2C2n,0 + u2n−1C′2n,0

)
. (2.18)

Explicitly, the light and heavy contributions give

8πG
−u

+ 2g2 − g3u =
〈

2m2 + u

m2 + u

PJ
(
1 + 2u

m2

)
m2 (m2 + u) −

u2

m6

[(
4m2 + 3u

)
PJ (1)

(m2 + u)2 + 4uP ′J (1)
m4 − u2

]〉
≡
〈
Cimproved

2,u

[
m2, J

]〉
. (2.19)

The key is that the left-hand-side is exact (when acting on any rational amplitudeM).
Exchange of other light spin-2 particles of mass mi, if the EFT contains them, would

add terms proportional to 1/(m2
i − u) on the left-hand-side. The method would be un-

changed but the O(1) coefficients in the bounds would be modified.
Liberated from small-u series, we can create a new class of functionals by integrating

Cimproved
k,u against various functions of u and search for functions which make the heavy

contribution manifestly positive. Given the singularities of the integrand, a natural range
is −M2 < u < 0. It is not obvious how to analytically construct suitable functions on this
range, but a numerical search algorithm was presented in [11]. Polynomials of surprisingly
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Figure 2. Allowed region (shaded) for g2 and g3 from [11], in a theory of a scalar coupled to
gravity in flat space in dimensions D = 5 and heavy mass scale M . Asymptotically to the right,
the region is a cone which matches the non-gravitational bounds; note the offset to the left. The
solid lines show the non-optimal bounds from the simple functionals (2.20).

low degree turn out to work, although their coefficients are hard to interpret. For the
purposes of this paper, we will simply record two simple polynomials found with this
method in D = 5:7

C(1) ≡
∫ 1

0
dp Cimproved

2,−M2p2 × p2(1− p)2
[
2280− 665p+ 2964p5 − 8280p6

]
,

C(2) ≡
∫ 1

0
dp Cimproved

2,−M2p2 × p2(1− p)2
[
1785− 3468p− 18785p5 + 26187p6

]
.

(2.20)

We claim that the heavy actions of both these functionals are rigorously positive in D = 5:

C(i)
[
m2, J

]
≥ 0 ∀m ≥M,J even . (2.21)

Positivity of the left-hand-side of (2.19) then gives the following inequalities:

− 8.96 g2
M2 − 54.78πG

M4 ≤ g3 ≤ 3.06 g2
M2 + 1888πG

M4 (D = 5) , (2.22)

which are shown in figure 2 alongside with the optimal bounds found in [11].
Positivity of the functionals is verifiable by exhaustion: in figure 3 we plot the action

of C(1) on various states of different masses m ≥M and spin J up to 500, grouped in terms
7The numbers show rational approximants to numerical results: no attention should be paid to their

number-theoretic properties.
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Figure 3. Action of the C(i) functionals in (2.20) for i = 1, 2 respectively, on various heavy states
with m ≥ M in units where M = 1. Individual points, representing different spins J , are lined
up with constant impact parameter b = 2J

m in order to highlight the regularity as m → ∞ and
J →∞. This helps confirm positivity on all heavy states. The blue outliers (at J = 2 and J = 0, 4
respectively) are caused by single zeros slightly below threshold m = M .

of their impact parameters b = 2J
m . The infinite mass limit at fixed impact parameter can

be computed for arbitrary J using

lim
m,J→∞

PJ

(
1− 2p2

m2

)
= Γ(D−2

2 )
JD−4

2
(pb)

(pb/2)D−4
2
≡ J̃(pb) . (2.23)

The plots reveal a clear trend where the infinite-mass limit is approached from above.
The bounds in (2.22) show that, once the value of g2 is fixed, the value of g3 lies in a

range that conforms with dimensional analysis. Furthermore, while g2 isn’t strictly positive
due to gravity’s attractive force, the magnitude of this effect is bounded and conforms with
dimensional analysis at the scale M . Our goal in the rest of the paper will be to uplift
these bounds to EFTs in AdS; the methods will be general and will apply to any other
dispersive sum rule on 2→ 2 scattering.

2.3 What does it mean to probe local physics in AdS?

There are at least two ways to study the geometric dependence of a scattering process.
Perhaps the most obvious is to scatter wavepackets that are designed to localize near a
particular configuration — for example near impact parameter b. An alternative approach,
which will be crucial in the following, is to characterize the geometry of a process using
the quantum numbers of intermediate states.

For example, consider a 2 → 2 scattering process of massless scalars. If the particles
create an intermediate massive state with mass m and angular momentum J , then by
conservation of energy and angular momentum, we deduce that the particles scattered
with impact parameter b = 2J

m , see figure 4: the asymptotic trajectories are translated
perpendicularly by the amount b. In other words, we can use the ratio b = 2J

m to track
contributions from different impact parameters. The relationship to wavepackets used in
scattering is apparent in (2.23): at large m and J , the transverse momentum p becomes
Fourier conjugate to b.
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b

m/2

m/2

x

z

(a)

β
time

(b)

Figure 4. Relation between impact parameter and angular momentum in the Regge limit. (a)
In flat space, a pair of massless particles with center-of-mass energy m and transverse separation
b carries total angular momentum J = m b

2 . (b) In a holographic CFTd, the Regge limit of the
four-point function localizes along two null sheets. They intersect in the transverse hyperbolic space
Hd−1 depicted by the blue line. A pair of massless particles with center-of-mass energy ∆/RAdS
separated in Hd−1 by geodesic distance βRAdS carries total angular momentum J = ∆ tanh β

2 .

For our purposes, it will be useful to understand the analogous correspondence between
conserved quantities and geometry in AdS. We write the AdS metric as

ds2
AdSD = −dt2 cosh2 β + dβ2 + dΩ2

d−1 sinh2 β . (2.24)

Consider a massless particle in AdS, with action

S =
∫
dλL , L = 1

2e
(
cosh2 β ṫ2 − β̇2 − sinh2 β θ̇2

)
, (2.25)

where e(λ) is a 1-dimensional tetrad, λ is a worldline parameter, and dots denote derivatives
with respect to λ. For simplicity, we have restricted the particle to a single angular degree
of freedom θ on the sphere Sd−1. The energy and angular momentum of the particle are

pt = ∂L

∂ṫ
= cosh2 β ṫ

e
, pθ = ∂L

∂θ̇
= sinh2 β θ̇

e
. (2.26)

When the radial velocity β̇ vanishes, the equations of motion imply cosh β ṫ = sinh β θ̇, so
that pθ/pt = tanh β.

Consider now a pair of particles with large center-of-mass energy ∆/RAdS, scattering
with AdS impact parameter βRAdS, as shown in figure 4. At the point of closest approach
(along their extrapolated asymptotic trajectories, not necessarily actual trajectories), each
particle has radial position β/2. Thus, their ratio of angular momentum and energy is

J

∆ = 2pθ
2pt

∣∣∣∣
β/2

= tanh β2 . (2.27)

This is an key conceptual result, and it allows us to identify two important limits of the
heavy operator spectrum:
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• We define the Regge limit as large ∆ with J/∆ fixed and order 1. This corresponds
to high-energy bulk scattering with impact parameter comparable to RAdS.

• We define the bulk point limit as large ∆ with small J/∆ � 1. This corresponds to
scattering at impact parameters much smaller than RAdS.

We would ultimately like to probe small impact parameters in AdS. Thus, we should
construct observables that are dominated by heavy states in the bulk point limit.

To be more precise, we define the mass and AdS impact parameter of a heavy
operator by

m2 = αᾱ , (2.28)

ηAdS ≡ cosh β ≡ α2 + ᾱ2

2αᾱ , (2.29)

where

α ≡ ∆− J − d+ 1 , ᾱ ≡ ∆ + J − 1 . (2.30)

For large ∆, these reduce to m2 ≈ ∆2− J2 and ηAdS ≈ ∆2+J2

∆2−J2 .8 The latter is equivalent to
J
∆ ≈ tanh β

2 . Although the AdS geodesic distance is β, we sometimes abuse terminology and
refer to ηAdS as an “impact parameter” as well, since it encodes the same information as β.

Given a functional ω, it is useful to define the heavy density associated to ω as its
action on s-channel blocks Gs∆,J , divided by some positive factors:

ω [∆, J ] ≡ (−1)J

q∆,J

ω
[
Gs∆,J

]
2 sin2

(
π
τ−2∆φ

2

) . (2.31)

The sin2(π τ−2∆φ

2 ) factor in the denominator cancels the sum of phases introduced by the
dDisc. The positive factor q∆,J is defined by

q∆,J ≡
1

πpMFT
∆,J

2nJ
m2d−4

Γ(∆− 1)(2∆− d)
Γ(∆− d+ 2) , (2.32)

where m is given by (2.28), nJ is given by (2.14), and we have divided by the OPE
coefficients of Mean Field Theory [58]:

pMFT
∆,J =

2Γ (∆− 1) Γ
(
J + d

2

)
Γ (∆φ)2 Γ

(
∆φ − d−2

2

)2
Γ
(
∆− d

2

)
Γ (J + 1)

Γ
(
J+∆

2

)2
Γ
(

∆−J−d+2
2

)2

Γ (J + ∆− 1) Γ (∆− J − d+ 1)

×
Γ
(∆−J−2d+2∆φ+2

2

)
Γ
(∆+J−d+2∆φ

2

)
Γ
(∆−J−2∆φ+2

2

)
Γ
(∆+J+d−2∆φ

2

) . (2.33)

8The constant terms in our definition of m2 differ from others in the literature, e.g. [56, 57]. Our choice
of constants is motivated by the conformal group: they are the unique choice such that the set (±α,±ᾱ)
closes under all Weyl reflections. (The Weyl group of SO(d, 2) is generated by shadow reflections ∆ 7→ d−∆,
spin shadow J 7→ 2 − d − J , and “light transform” ∆ ↔ 1 − J . These transformations preserve Casimir
eigenvalues.) This will prove convenient for calculations and will effectively remove odd powers of 1/m in
large-mass expansions.
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The sign (−1)J will not affect our applications (we focus on identical scalars where only
even-spin operators will enter the OPE) but we include it for completeness. We can define
a heavy expectation value by the positive measure

〈f(∆, J)〉 ≡
∑

τ>∆gap

2 sin2
(
π
τ−2∆φ

2

)
q∆,Jp∆,Jf(∆, J) . (2.34)

The holographic sum rule (2.7) corresponding to ω then takes the form

−ω|light = ω|heavy = 〈ω[∆, J ]〉 . (2.35)

Our discussion of the relationship between conserved quantities and bulk geometry
gives us a way to understand which bulk quantities a dispersive functional ω measures. We
should study the heavy density ω[∆, J ] at large m as a function of β. If the heavy density
is localized in β, then ω probes local physics in AdS.

2.4 Physical CFT functionals and the Bk,v sum rules

The Bk,v functionals introduced in ref. [31] are double integrals:

Bk,v [F ] =
Γ
(
k
2

)2

Γ(k−1)

∫∫
C−×C+

dwdw̄

(2πi)2
(w̄−w)(v′−u′)

(u′v′)
k
2
[
v2−2(u′+v′)v+(u′−v′)2

] 3−k
2
F(w,w̄) . (2.36)

Here, u′ = ww̄ and v′ = (1−w)(1− w̄) are conformal cross ratios that are being integrated
over. The integral has the following properties:

• It is antisymmetric under swapping the s and t channels, i.e. (w, w̄)→ (1−w, 1− w̄).

• The integrand decays with Regge spin k, so for k > 1 the contour can be swapped
with the conformal block expansion in a physical correlator.

We refer to functionals satisfying these conditions as physical.
The contour C− × C+ wraps the left- and right cut w < 0 and w̄ > 1. The kernel

however has the remarkable property that the contour can be deformed so that both
variables wrap the left-cut, in such a way that one finds a double-discontinuity of the
correlator:

Bk,v [F ] =
Γ
(
k
2

)2

π2Γ(k−1)

∞∫
v

dv′
(
√
v′−
√
v)2∫

0

du′
(v′−u′) dDiscs [F (u′,v′)]

(u′v′)
k
2
[
v2−2(u′+v′)v+(u′−v′)2

] 3−k
2
. (2.37)

This is what makes these sum rules “dispersive” and is crucial for our applications.
A technical subtlety is that the collinear limit is singular, which is dealt with easily by

applying the sum rule to F = G − 1. The result is then [31]9∑
∆,J

p∆,J Bk,v
[
Gs∆,J

]
= (−1)

k
2−1 . (2.38)

9This result relies on the technical assumption that (G − 1) vanishes in the u-channel collinear limit
even on the second sheet, which has never been rigorously proven [45, 59]. However, we do not expect this
assumption to affect the results of the present paper, as long as the right-hand-side can be computed from
the EFT correlator.
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When splitting between light and heavy contributions (see (2.7)), we assign the right-hand-
side to the light sector and view it as part of the computable low-energy EFT. The sum
rule (2.38) exists for all even k = 2, 4, . . . and real v > 0.

Intuitively, within AdSd+1, the Bk,v sum rules are localized in light-cone times because
they originate from the Regge limit; that is they localize to a codimension two impact
parameter space Hd−1. However, they are still smeared over AdS-size impact parameters,
and to fully localize will require some amount of harmonic analysis on Hd−1.

2.5 Regge moments

Given dispersive functionals like Bk,v, we would like to understand what aspects of bulk
physics they measure. As discussed in section 2.3, we can get a geometric picture for
different functionals by studying their heavy density at large m as a function of the AdS
impact parameter β.

Note that s-channel blocks Gs∆,J(w, w̄) with largem are exponentially suppressed away
from the u-channel Regge limit w, w̄ → ∞. Thus, we expect the action of a dispersive
functional on heavy blocks to be controlled by its expansion around this limit.10 We will
organize this expansion in terms of Regge moments: weighted integrals of the double-
discontinuity along rays of constant angle of approach to the u-channel Regge limit:

Πk,η[G] ≡
∫ rmax(η)

0
dr rk−2dDiscs G(r, η) , (2.39)

r ≡
√
ρρ̄ , η ≡ ρ+ ρ̄

2
√
ρρ̄

, (2.40)

where ρ, ρ̄ are the radial coordinates of [60] adapted to the u-channel:

ρ = 1(√
1− w +

√
−w

)2 , ρ̄ = 1(√
1− w̄ +

√
−w̄

)2 . (2.41)

In terms of r, η, the u-channel Regge limit is r → 0 with fixed η. In (2.39), rmax(η) =
η −

√
η2 − 1 is determined from the condition that ρ ≤ 1. We refer to k as the spin of

the Regge moment.11 Regge moments will be a useful organizational tool for the following
reasons:

• Any dispersive functional ω can be expanded in Regge moments.

• The action of ω on heavy blocks is determined order-by-order in 1/m2 (up to non-
perturbative corrections) by its expansion in Regge moments.

• Surprisingly, as we explain in section 4, the contribution of light states ω|light is also
determined by the expansion of ω in Regge moments.

10We will see shortly that dispersive functionals with large ν, defined in (2.49), can probe a finite dis-
tance away from the u-channel Regge limit, though still within the radius of convergence of the Regge
moment expansion.

11Note that Πk,η is not a physical functional — specifically Πk,η[G] does not vanish in general when G is
a physical four-point function.
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Let us explain how to expand a dispersive functional ω in Regge moments. We first
write ω as a weighted integral of the double-discontinuity

ω[G] =
∫ ∞

1
dη

∫ rmax(η)

0
drK(r, η) dDiscs[G] + . . . , (2.42)

where K(r, η) is a distribution. Here, “. . . ” represents non-dDisc contributions that do not
contribute in the u-channel Regge limit. The expansion of ω in Regge moments is defined
by expanding K(r, η) in powers of r. For example, if

K (r, η) = a (η) + b (η) r +O
(
r2
)
, (2.43)

then we write

ω ∼
∫ ∞

1
dη a(η)Π2,η +

∫ ∞
1

dη b(η)Π3,η +O(Π4) . (2.44)

The notation O(Πn) indicates Regge moments with spins greater than or equal to n. In
general, functionals with spin-k Regge decay as defined in [31] have moment expansions
starting with Πk,η.

It turns out that physical functionals span the space of Regge moments with even
k ≥ 2 and η ∈ [1,∞).12 To see this, consider the Bk,v functional, which in r, η coordinates
takes the form

Bk,v [G] =
23k−2Γ

(
k
2

)2

π2Γ(k−1)

∞∫
√
v

ηdη

(η2−v)
3−k

2

rmax(η)∫
0

drrk−2
(
1−r4

) ((1+r2)2−4vr2
) k−3

2(
(1+r2)2−4η2r2

)k−1 dDiscs [G] .

(2.45)
Expanding the kernel at small r, we have (see (2.39))

Bk,v ∼
23k−2Γ

(
k
2

)2

π2Γ (k − 1)

∫ ∞
√
v

ηdη

(η2 − v)
3−k

2
Πk,η +O (Πk+2) . (2.46)

Recall that the continuous variable v > 0 labels physical sum rules. The claim is that,
remarkably, the integral over η in (2.46) is invertible.

To see this, we note that it is a convolution in η2, which in a conjugate Fourier space
is proportional to multiplication by |p| 1−k2 . Its inverse is then division by the same thing.
This can be written as the following convolution:

(−1)
k
2 πΓ (k)

23k−2Γ
(
k
2

)2

∫ ∞
η2

dv[
(v − η2)

k+1
2

]
+

Bk,v ∼ Πk,η +O (Πk+2) . (2.47)

12The fact that odd k does not appear is a consequence of antisymmetry under exchanging the s and
t channels.
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The + distribution on the left-hand side is defined by subtracting singular terms in the Tay-
lor series around v = η2.13 Swappability [61] of the resulting functional will be confirmed
directly in examples.

2.6 Road map: harmonic transforms and the flat-space limit

Using the inverse transform (2.47), we can construct physical functionals that are pure
Πk,η moments to leading order in the Regge moment expansion. However, such functionals
are not localized in the bulk. Specifically, as we will see shortly, the Πk,η moment of a
heavy block Gs∆,J is delocalized as a function of ηAdS = ∆2+J2

∆2−J2 . To localize in ηAdS, we
need functionals that carry large momentum ν along the transverse Hd−1. More precisely,
we seek functionals whose action on heavy blocks takes the form

ω[∆, J ] ∼ P 2−d
2 +iν(ηAdS) , (2.48)

where P 2−d
2 +iν(ηAdS) is a Gegenbauer function (2.13), which in this case plays the role of

a harmonic function on Hd−1.
Fortunately, symmetries provide a connection between bulk and boundary variables.

Note that the stabilizer subgroup of the Regge limit is SO(1, 1)× SO(d− 1, 1) ⊂ S̃O(d, 2).
The radial variable r is essentially conjugate to the SO(1, 1) generator (which moves us
toward or away from the Regge limit). Meanwhile, η is an hyperbolic cosine conjugate to
the generators of the Lorentz group SO(d − 1, 1). This same Lorentz group acts as the
isometry group of the transverse Hd−1 in the bulk, that is, on ηAdS. Thus, by performing
harmonic analysis with respect to SO(d − 1, 1), we can project onto particular momenta
along the transverse Hd−1, as illustrated in figure 5.

These considerations suggest that we study the harmonic transforms of Πk,η with
respect to η, defined by

Π̂k,ν =
∫ ∞

1
[dη]P 2−d

2 +iν (η) Πk,η , where [dη] ≡ 2d−2
(
η2 − 1

) d−3
2 dη , (2.49)

with inverse14

Πk,η =
∞∫
0

dν

2πρ(ν)P 2−d
2 −iν

(η) Π̂k,ν . (2.50)

13For example, for k = 2:

−π
16

∫ ∞
η2

dv (B2,v −B2,η2 )
(v − η2) 3

2
∼ Π2,η +O(Π4) .

14To determine the relative normalization of the Gegenbauer transform and its inverse, one can use:

P 2−d
2 −iν

(η)P 2−d
2 +iν′(η) ∼ (2η)i(ν−ν

′)

q 2−d
2 −iν

q 2−d
2 +iν′

+ (ν ↔ ν′), for η →∞ .
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The measure ρ(ν) is given by

ρ (ν) = q 2−d
2 −iν

q 2−d
2 +iν , where qJ ≡

Γ
(
d−2

2

)
Γ (J + d− 2)

Γ (d− 2) Γ
(
J + d−2

2

) . (2.51)

A calculation will show that the action of Π̂k,ν on a heavy block reads, up to ν-independent
factors:

Π̂k,ν [∆, J ] ∝ γ2∆φ+k−1(ν)2P 2−d
2 +iν(ηAdS) , (2.52)

where

γa (ν) ≡ Γ
(

1+a− d2−iν
2

)
Γ
(

1+a− d2 +iν
2

)
. (2.53)

Comparing with (2.48), the functional we seek is thus Π̂ divided by the factors in (2.52).
We can then use (2.47) to turn it into a physical functional. We are led to define the Ck,ν
functional as a double integral transform:

Ck,ν ≡
a∆φ

γ2∆φ+k−1 (ν)2
(−1)

k
2 πΓ(k)

23k−2Γ
(
k
2

)2

∫ ∞
1

[dη]P 2−d
2 +iν (η)

∫ ∞
η2

dv[
(v−η2)

k+1
2

]
+

Bk,v , (2.54)

where we included a convenient normalization

a∆φ
≡
π
d−3

2 Γ (∆φ)2 Γ
(
∆φ − d−2

2

)2

2d−5Γ
(
d−1

2

) . (2.55)

The Ck,ν functional will be key to our studies. While the double transform may seem
daunting, it has the virtue of being conceptually transparent: it will lead to a simple
dictionary between flat-space dispersion relations and holographic sum rules. The pair
(ν, ηAdS) will play the same role for bulk AdS physics as the pair (p, b) plays in flat space.

By construction, Ck,ν has the Regge moment expansion

Ck,ν ∼
a∆φ

γ2∆φ+k−1(ν)2 Π̂k,ν +O(Πk+2) . (2.56)

This can be interpreted as follows. Multiplication by γ2∆φ+k−1(ν)2 in (2.52) represents
convolution by a smoothing kernel: the CFT angle-of-approach η is a smeared version of
the bulk impact parameter ηAdS, as depicted in figure 5. This smearing arises because in
Rindler kinematics (the causality sum rules Bk,v exploit that commutators vanish when
operators 1 and 3 are spacelike-separated), correlators do not exhibit any sharp feature
attributable to bulk scattering; in holographic models, the boundary-to-bulk propagator
of a light field is spread all over the transverse Hd−1 in the Regge limit [46]. This is in
contrast with the “bulk point” singularity of refs. [23, 62] where operators 1 and 4 are in
the future of 3 and 2. The role of the factors in (2.56) is to undo that smearing and enable
bulk focusing. This is discussed formally below, along with limitations, in (3.21).

It will turn out that Ck,ν is conveniently computable. In the next two sections, we
show the following:
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ηAdS

η

3

1

2

4

Figure 5. In the CFT, the angle of approach η to the Regge limit (in which operators 3 and 4
become null from 1 and 2, respectively) acts as a smeared version of the bulk impact parameter
ηAdS = cosh β. Since both variables transform like hyperbolic cosines under SO(d− 1, 1) transverse
isometries, shown as blue and red arrows, harmonic analysis can be used to “undo” the smearing
and achieve bulk focusing. The operators always stay within the “Rindler wedge” in which 1 is
spacelike from 3 (and 4 is spacelike from 2).

• Regge limit: For ν � ∆, the action of Ck,ν on heavy blocks in the Regge limit
(large ∆ with fixed ηAdS) is:

Ck,ν [∆, J ] =
2P 2−d

2 +iν(ηAdS)
m2k ×

(
1 +O

(
ν2

m2 ,
1
m2

))
. (2.57)

Recall that the heavy density Ck,ν [∆, J ] is defined by (2.31), andm is given by (2.28).
The presence of the AdS harmonic function P 2−d

2 +iν(ηAdS) confirms that ν plays the
role of transverse momentum in AdS.

• Bulk point limit: The action of Ck,ν on heavy blocks in the the bulk point limit
(large ∆ with small AdS impact parameter β ∼ 2J

∆ ) is:

Ck,ν [∆, J ] = 2m2 − ν2

m2 − ν2

PJ
(
1− 2ν2

m2

)
(m2 (m2 − ν2))k/2

×
(

1 +O

(
J2

m2

))
, (2.58)

Unlike (2.57), equation (2.58) is valid for all ν ∈ [0,m). The right-hand side of (2.58)
is precisely the contribution of a massive state to the Ck,u dispersion relation in flat
space (2.10), via the dictionary

uR2
AdS = −ν2 . (2.59)

Here, we have temporarily reintroduced RAdS, which we set to 1 in subsequent sec-
tions. Large ν will afford us high resolution at small impact parameters, correspond-
ing to flat-space physics.
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• Light contributions: Finally, consider a bulk EFT given by gravity plus a sum of
contact interactions. The contribution of light states to Ck,ν at large ν is

− Ck,ν |light = Res
s=0

[
2s− ν2

s (s− ν2)
Mflat

(
s,−ν2)

[s (s− ν2)]k/2

]
×
(

1 +O

( 1
ν2

))
, (2.60)

whereMflat(s, u) is the flat-space amplitude corresponding to the AdS interactions.
(This amplitude is unique up to 1/RAdS corrections.) Up to corrections in 1/ν2, (2.60)
precisely matches the low-energy contribution to the flat-space sum rule Ck,u (2.10) in
the case of a tree-level low energy amplitude, again with the identification uRAdS =
−ν2.

In terms of the heavy expectation value (2.34), the holographic sum rule corresponding
to Ck,ν has the form

Ck,ν : Res
s=0

[
2s− ν2

s (s− ν2)
Mflat

(
s,−ν2)

[s (s− ν2)]k/2

]
+ · · · =

〈
2m2 − ν2

m2 − ν2

PJ
(
1− 2ν2

m2

)
(m2 (m2 − ν2))k/2

〉
+ . . .

(2.61)

On the left-hand side, “. . . ” refers to O(1/ν2) corrections; on the right-hand side, “. . . ”
refers to O(J2/m2) corrections as well as contributions from other regimes besides the bulk
point limit. To obtain bounds on AdS interactions, we must treat these details with care;
we do this in section 5. However, the general outline of (2.61) is clear: in an appropriate
flat space limit, the CFT sum rule Ck,ν (2.54) becomes the flat space sum rule Ck,u (2.9).

In the following sections, we derive these results in detail, starting with the Regge
limit (sections 3.1 and 3.3), then the bulk point limit (section 3.4), and finally the light
contributions (section 4).

3 Action of functionals on heavy blocks

3.1 Integrals against heavy blocks and AdS impact parameters

Our first step will be to find an effective way to compute integrals of kernels against s-
channel blocks Gs∆,J , and in particular to see the simplifications at large twist τ = ∆− J .
To this end, we consider an integral with a generic kernel:

IΩ
∆,J = 1

4

∫ −∞
0

∫ −∞
0

dw dw̄ |w − w̄|d−2Ω
(
u′, v′

)
Gs∆,J

(
u′, v′

)
, (3.1)

where u′ = ww̄ and v′ = (1−w)(1− w̄). The factor 1
4 was introduced for later convenience.

We will see that large ∆ pushes the integral toward the u-channel limit u′, v′ → ∞.
Instead of trying to approximate the heavy s-channel blocks in this limit (a difficult task),
we will find a geometric realization of (3.1) as an integral over spacetime. We first do so
in a simple way that is sufficient for understanding the Regge limit of large ∆ with fixed
∆/J . We will subsequently change to a more sophisticated spacetime integral to analyze
the bulk-point limit.

– 23 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
4

−e∞ −e 0

x4x2 x1 x3
x5

x

t

(a)

=⇒
−e∞ −e 0

x4x2 x1 x5

x3

(b)

Figure 6. The “wavefunction trick” to act with a functional on a conformal block. (a) The
conformal block 〈φ1 · · ·φ4〉s∆,J is written as an integral over an auxiliary point x5, restricted to
a causal diamond, while x4 is itself integrated over the future lightcone of x3. (b) The same
integral after a conformal transformation that brings x5 to the origin. In the heavy block limit,
∆ − J ∼ ∆gap � 1 the integration points x3 and x4 repel each other as indicated by the arrows,
and the integral reduces to a Laplace transform of the functional (see eq. (3.13)).

Denoting e=(1,~0) a unit vector in the time direction, we set (x1, x2, x3)=(−e,−∞e, 0),
so that we may view the remaining point x4 as parametrizing the cross-ratios: u′ = −x2

4,
v′ = −(x4 + e)2. It is then straightforward to verify directly that the cross-ratio inte-
gral (3.1) is equivalent to an x4 integral:

IΩ
∆,J = 2d−2

∫
0<x4

ddx4
volSd−2

Ω (u′, v′)(
−x2

13
)∆̃φ

(
−x2

24
)∆̃φ

〈φ1 · · ·φ4〉s∆,J , (3.2)

where the notation xj < xi means that xi is in the future of xj .15 The bracket denotes the
contribution of an s-channel block to the correlator:

〈φ1 · · ·φ4〉s∆,J =
Gs∆,J (u′, v′)(

−x2
13
)∆φ

(
−x2

24
)∆φ

. (3.3)

We now evaluate the block using the Lorentzian shadow representation [24]. This
involves integrating a fifth point over the causal diamond x3 < x5 < x4 and also integrating
over a null polarization vector n in index-free notation:16

〈φ1 · · ·φ4〉s∆,J = 1
b∆,J

∫
x3<x5<x4

ddx5D
d−2n |〈φ1φ2O(x5, n)〉||〈OS(x5, n)φ3φ4〉| . (3.4)

The measure Dd−2n is the standard Lorentz-invariant measure on the projective null cone
in Rd−1,1 [64], which is equivalent to an ordinary integral over the orientation of the spatial
components of n:∫

Dd−2nf (n) =
∫ 2ddnδ

(
n2)

volR+ f (n) =
∫
dd−2Ωf (n)

∣∣
n=(1,~Ω) . (3.5)

15Note that we have chosen x2 < x1 < x3 < x4, which is a different set of causal relationships points from
the ones shown in figure 5. A change in causal relationships introduces phases into three-point functions,
which we keep track of explicitly in our calculation.

16The Lorentzian shadow representation (3.4) converges for J on the principal series J ∈ 2−d
2 + iR,

and can be analytically continued away from there. For integer spin J , there is an alternative shadow
representation that involves contracting indices between two integer-spin three-point structures, which goes
back to Polyakov [63]. We could use either representation, but (3.4) will be more convenient.
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The operator O has dimension ∆ and spin J . The quantum numbers of OS are related to
those of O by the (Lorentzian) shadow S: (∆, J) 7→ (d−∆, d− 2− J). The constant b∆,J
is given by

b∆,J =
πd−2Γ (∆ + 2− d) Γ

(
J + d−2

2

)
Γ
(
J+∆

2

)2
Γ
(

∆+2−d−J
2

)2

2Γ
(
∆ + 2−d

2

)
Γ (J + d− 2) Γ (J + ∆) Γ (∆ + 2− d− J)

. (3.6)

The absolute values in (3.4) indicate that all distances should be computed as −x2
ij , so as

to avoid phases since all distances are timelike. Explicitly, the three-point structures are
given by

|〈φ1φ2O (x5, n)〉| =
(
−x2

12
)∆

2 −∆φ(
x2

15x
2
25
)∆

2

2nµ
[
x2

15x
µ
25 − x2

25x
µ
15
]√

−x2
12x

2
15x

2
25

J , (3.7)

and similarly for |〈φ3φ4OS(x5, n)〉|.
Substituting (3.4) into (3.2) computes the functional in terms of a triple integral

ddx4d
dx5D

d−2n, where coordinates satisfy the causal ordering x2 < x1 < x3 < x5 < x4.
The n integral is in fact redundant after integrating over x4, x5, so we can fix n = (1, ~ez)
and cancel the factor 1

volSd−2 . The kinematics are shown in figure 6.
More abstractly, we have now expressed IΩ

∆,J as a gauge-fixed version of a conformal
integral over five causally-ordered points:

IΩ
∆,J = 22d−2

b∆,J
vol SO (d− 2)

∫
x2<x1<x3<x5<x4

ddx1d
dx2d

dx3d
dx4d

dx5D
d−2n

vol S̃O (d, 2)

× Ω (u′, v′)(
−x2

13
)∆̃φ

(
−x2

24
)∆̃φ

|〈φ1φ2O (x5, n)〉||〈OS (x5, n)φ3φ4〉| .
(3.8)

The meaning of 1/ vol S̃O(d, 2) is that we must gauge-fix the action of the conformal
group on all points and n, and introduce a Faddeev-Popov determinant. In the present
gauge-fixing, the determinant is [24] 1/2d divided by the volume of the stabilizer group
of (0, 1,∞), namely SO(d − 1), which again leads to (3.2) after using vol SO(d − 1) =
vol SO(d− 2)× vol Sd−2.

The key idea is to now use conformal symmetry (only Lorentz transformations and
rescalings about −e are actually needed in this case) to gauge-fix the position of the auxil-
iary point x5 to the origin, so that the integration variables now become x3 and x4, instead
of x4 and x5. The range of x4 is the future lightcone of the origin, and that of x3 is the
causal diamond −e < x3 < 0. We may parametrize these in terms of positive timelike
vectors x, y:

(x1, x2, x3, x4;x5) 7→
(
−e,−∞e, −(e+ y)

−(e+ y)2 ,
x

−x2 ; 0
)
, x, y > 0 . (3.9)

Evaluating explicitly the three-point structures in (3.8) we find

IΩ
∆,J = (−1)J

b∆,J

∫
x,y>0

ddx

(−x2)∆̃φ

ddy

(−y2)∆̃φ

Ω
(
u′, v′

) [−n· (e+ x+ y)]2−d−J[
− (e+ x+ y)2

]∆−J
2 +∆φ+1−d

, (3.10)
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where the cross-ratios are now given by

u′ = −(e+ x+ y)2

x2y2 , v′ = (e+ x)2(e+ y)2

x2y2 . (3.11)

Equation (3.10) is an exact rewriting of the integral (3.1), where the s-channel block has
been replaced by elementary factors at the cost of extra integrations. Note that both square
brackets and cross-ratios are positive because all vectors are future-directed timelike or null.

The key feature of (3.10) is that, for large twist, the last factor localizes the integral
to small x, y ∼ 1

∆ . More precisely, if we take ∆ ∼ J (but still ∆− J � 1) and x, y small,
we find the simple limit:

[−n· (e+ x+ y)]2−d−J[
− (e+ x+ y)2

]∆−J
2 +∆φ+1−d

→ e(∆−J)e·(x+y)+Jn·(x+y)

= e−∆(x0+y0)+J~ez ·(~x+~y) ≡ ep·x+p·y ,

where
p = (∆, J~ez) . (3.12)

Thus:
lim

∆,J�1
IΩ

∆,J = (−1)J

b∆,J

∫
x,y>0

ddxddy

(x2y2)∆̃φ

Ω
(
u′, v′

)
ex·p+y·p . (3.13)

The integral of a kernel against a heavy block is the Laplace transform of the kernel!
Equation (3.13) is closely related to the impact parameter representation of refs. [47,

49, 65]. Note however that here we are not transforming correlators — instead we are
transforming functionals that act on correlators. The action localizes to the Regge limit
w, w̄ → −∞ with angle of approach

η ≈ −x·ȳ
|x||y|

, (3.14)

where ȳ ≡ −y − 2e(y · e) denotes the spatially-reflected vector. The integral then depends
on ∆ and J only through the hyperbolic angle between p and p̄:

−p·p̄
|p||p̄|

= ∆2 + J2

∆2 − J2 ≈ ηAdS . (3.15)

Our task is now clear: as explained in subsection 2.3, to probe the flat space limit of a
holographic theory, we must find physical sum rules Ω(u′, v′) such that the integral (3.13) is
localized as much as possible around ηAdS → 1. This will be achieved using the functional
Ck,ν in (2.54), which uses harmonic analysis to inject momentum ν conjugate to ηAdS,
thereby providing a crucial link between AdS and CFT quantum numbers.

3.2 Regge moments of heavy blocks in the Regge limit

To the leading order in the Regge limit, the physical functional Ck,ν is proportional to
the Regge moment Π̂k,ν (see (2.56)) defined in (2.39) and (2.49), which fits the template
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in (3.1). The kernel Ω corresponding to Π̂k,ν is found by computing the Jacobian between
dr dη and dw dw̄:

Π̂k,ν

[
Gs∆,J

]
2 sin2

(
π
τ−2∆φ

2

) = IΩ
∆,J with Ω

(
u′, v′

)
=

4d (ρρ̄)
k+d−1

2 P 2−d
2 +iν

(
ρ+ρ̄

2
√
ρρ̄

)
(1− ρρ̄)d−2 (1− ρ2) (1− ρ̄2)

. (3.16)

The 2 sin2(· · · ) factor, with τ = ∆− J , accounts for the double-discontinuity of the block.
Let us first focus on the leading term as τ → ∞. It can be computed by substituting
into (3.13) and taking small x, y → 0 (where |x||y| → 4

√
ρρ̄) which gives the Laplace

transform

lim
∆,J�1

Π̂k,ν [Gs∆,J ]
2sin2(π τ−2∆φ

2 )
= (−1)J41−k

b∆,J

∫
x,y>0

ddxddy (|x||y|)k−d−1+2∆φP 2−d
2 +iν

(−x·ȳ
|x||y|

)
ex·p+y·p ,

(3.17)

where p = (∆, J~ez).
This integral can be done readily because the Fourier-Laplace transform of a Gegen-

bauer function (times a power) is again a Gegenbauer (times a power) [18, 51, 65]:∫
x>0

ddx|x|a−dP 2−d
2 +iν

(−x · y
|x||y|

)
ex·p = 2a−1π

d−2
2 γa(ν)× |p|−aP 2−d

2 +iν

(−p · y
|p||y|

)
, (3.18)

where γa(ν) the product of Γ-functions defined in (2.53). The proportionality is guaran-
teed by rotational and scale symmetry of the transform, and a simple derivation of (3.18)
using the “split representation” is presented in appendix B.1. Using this result twice, we
essentially replace x and y with p and p̄ in (3.17):

lim
∆,J�1

Π̂k,ν

[
Gs∆,J

]
2sin2

(
π
τ−2∆φ

2

) = 42∆φ−1πd−2 (−1)J

b∆,J
×γ2∆φ+k−1 (ν)2×

P 2−d
2 +iν

(
−p·p̄
|p||p̄|

)
(|p||p̄|)k+2∆φ−1 . (3.19)

Equation (3.19) is a crucial result: up to factors that depend only on (∆, J), it shows (com-
pare with (2.50)) that the Regge angle-of-approach η is related to the impact-parameter
ηAdS by multiplication by γ2∆φ+k−1(ν)2 in AdS momentum space. Our ability to localize
in ηAdS is tantamount to our ability to invert that factor. This is precisely what we do in
the definition of Ck,ν (2.54).

The factors in the above explain the normalization in (2.32). Using the expression for
the MFT coefficients (2.33), the formula simplifies to:

lim
∆,J�1

Π̂k,ν [∆, J ] =
γ2∆φ+k−1(ν)2

a∆φ

2P 2−d
2 +iν(ηAdS)
m2k . (3.20)

It is straightforward to check that this agrees with (2.57) quoted previously, using the
Regge moment expansion (2.56).

Interestingly, we can formally define functionals that are δ-function localized in ηAdS
to leading order in the Regge limit by inverting the harmonic decomposition of Ck,ν :

Ψk,γ ≡
∫ ∞

0

dν

2πρ(ν)P 2−d
2 −iν

(γ)Ck,ν . (3.21)
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Figure 7. (a) Symmetrical frame (3.23) with −x1 = x3 = y, −x2 = x4 = x
−x2 . It simplifies

subleading terms in the Regge limit compared with figure 6. (b) The same coordinates on the
cylinder, with x, y → 0 interpreted as displacements away from the Regge limit (compare with [48]).
In holographic theories, injecting a large momentum ν into x, y effectively flows a large transverse
momentum through the bulk AdSd−1 shown as a thick blue line. This is key to probing small-impact
parameter scattering. (The shown coordinates are on a different Poincaré patch compared with (a);
the double commutator in the right kinematics is proportional to block computed on the left.).

They satisfy

lim
∆,J�1

Ψk,γ [∆, J ] = 2
m2k ×

δ (γ − ηAdS)
2d−2 (γ2 − 1)

d−3
2
. (3.22)

Thus, Ψk,γ gives information about the density of heavy states with fixed ηAdS ≈ ∆2+J2

∆2−J2 in
the heavy limit. We expect that (3.22) is valid only for cosh−1 γ � 1/m, since it involves
an integral over large ν, and subleading 1/m2 corrections can be enhanced at large ν, as
we will see in the next section. We will see an application of (3.22) in section 4.4. There
is an additional technical caveat that makes Ψk,γ a distribution which must be paired
with an appropriate test function: it would impossible to perfectly “unsmear” and localize
to infinite accuracy. Yet, the space of test functions, described precisely in appendix A,
contains narrowly-peaked functions.

3.3 Higher orders in the large-m expansion

It will be important to understand the structure of higher order terms in the large-m2

expansion of the action of Ck,ν . For one thing, these can be enhanced at large-ν. To study
these corrections, let us choose a slightly different conformal frame from (3.9) with nicer
symmetry properties (figure 7):

(x1, x2, x3, x4;x5) =
(
−y, −x
−x2 , y,

x

−x2 ; e
)
, x, y > 0 . (3.23)

An advantage of this frame is that the radial coordinates defined in (2.40) are extremely
simple:

r = |x||y| , η = − x · y
|x||y|

, (3.24)

where |x| = (−x2)1/2 and |y| = (−y2)1/2.
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We perform the Faddeev-Popov procedure for the frame (3.23) in appendix C, and
derive the following exact expression for the Regge moment of an s-channel block:

Π̂k,ν [Gs∆,J ]
2sin2(π τ−2∆φ

2 )
= 42∆φ

(−1)J
b∆,J

∫
ddxddy

(
|x||y|

)k+d−1P 2−d
2 +iν

(−x·y
|x||y|

)
T (x,y) , (3.25)

where the product of three-point functions T (x,y) is now given by

T (x,y) = 1

(x2y2)∆̃φ

(
1+2x·y+x2y2)d−1−2∆φ

(e−x)2 (e−y)2

(
(e−x)2 (e−y)2

(e+x)2 (e+y)2

)∆+J
2

× [−n·Ve]J

[n·V−e]J+d−2 ,

Ve =
(
(1−2e·x)(1−2e·y)−x2y2

)
e+(e+y)2x+(e+x)2 ȳ ,

(3.26)
where ȳ = −y − 2e(y · e) denotes the space-reflected vector. In the integral (3.25), both x
and y range over the diamond 0 < x, y < e.

To expand in the Regge limit, we simply rescale (x, y) 7→ (x/m, y/m) and express
(∆, J) in terms of (m, ηAdS) (see (2.29)). The integrand then becomes a simple exponential
times a tower of 1/m corrections, multiplying polynomials in x and y. The convenient
feature of the symmetrical frame is that only even powers appear! The polynomials can be
integrated straightforwardly by taking derivatives with respect to p. The procedure can be
carried systematically to rather high order.

Results for the Regge moments Π̂k,ν can be immediately translated into results for the
physical sum rules Ck,ν using the series in appendix C.2. For illustration we record the
first subleading correction:

m2k

2 Ck,ν [∆,J ] =

P (ηAdS)+ 1
6m2

{
P ′ (ηAdS)

[(
ηAdS

2−1
)(
ν2−3a2+6a(2∆φ−d)−2

)
−(d−4)(d−2)

]
+ηAdSP (ηAdS)

[(
ν2−a(a+d−2)

)(
7d
2 +3a−1−6∆φ

)
−2(∆φ−d−1)3

−2
(
a+ d−2

2

)(
1−a2−ad−2

2

)]}
+O

( 1
m4

)
, (3.27)

where a = 2∆φ+k−d/2, and we omitted the subscript on P 2−d
2 +iν for readability. This for-

mula is tested numerically in figure 10 below, and a similar series to order 1/m8 is attached
in the supplementary material. The expansion has the following important features:

• The dependence on ηAdS occurs only through the harmonic function P(ηAdS) and its
derivatives, with coefficients that are polynomial in ηAdS. The coefficient of P(n)/m2j

does not grow faster than (ηAdS)j+n at large ηAdS.

• The ν-dependence at each order in 1/m is an entire function of ν. When expanded
around ηAdS → 1, the coefficient of 1/m2j does not grow no faster than ν2j at large ν.
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The first property ensures that the 1/m series remains applicable in the Regge limit no
matter the spin of the heavy operator: the combination ηAdS

m2 ≈ ∆2+J2

(∆+J)2(∆−J)2 is always
small as long as the twist is large.

The second property ensures that the regimes of ν → 0 and ν ∼ m are smoothly
connected by a series in ν/m, as long as impact parameters are not large (in AdS units),
ηAdS − 1� 1.

Let us elaborate on this second property, focusing on the bulk-point limit, where
m → ∞ with spin J held fixed. In this limit, ηAdS − 1 = 2J 2+(d−2)2/2

m2 → 0, where
J 2 = J(J +d− 2), and the action of Ck,ν on heavy blocks with fixed ν and J has the form

m2k

2 Ck,ν [∆, J ] = 1 + Qk,2(ν)
m2 + Qk,4(ν)

m4 + . . . (m� 1; fixed ν, J) , (3.28)

where each Qk,n(ν) is a polynomial of degree n in ν2. For example,17

Qk,2 (ν) = ν2
(
− 2J 2

d− 1 + k + 1
2

)
− (d− 2)2 J 2

2 (d− 1) + 2 (d+ k − 1) ∆φ (∆φ − d)

+ 1
24
(
8d3 + 3d2 (k + 1)− 4d

(
3k2 − 3k + 8

)
− 4

(
k2 + 2

)
(k − 3)

)
. (3.29)

To make contact with flat space physics, the regime of large AdS momentum ν ∼ m is
particularly significant. In this regime, one finds a series in ν/m by keeping the leading
term of each Qk,m, and we find, for example:

Qk,2 (ν) = ν2
(
− 2J 2

d− 1 + k + 1
2

)
+O (1) ,

Qk,4 (ν) = ν4
(

2J 4

d2 − 1 −
(d (k + 3) + k − 1)J 2

d2 − 1 + (k + 2)2

8

)
+O

(
ν2
)
, (3.30)

where J 2 = J(J + d− 2).
Amazingly, (3.30) agrees precisely with the forward-limit expansion of the flat-space

expressions (2.17)! This is the first hint that the physical functional Ck,ν indeed provides
a direct link to flat space physics.

We will now explain a shortcut to compute the leading terms at large ν, bypassing the
cumbersome Regge limit expansion.

3.4 The bulk point limit and spacelike scattering

We now study the action of dispersive functionals in the bulk-point limit of small 2J
∆ . We

will be interested in finding a formula that works for both small ν and ν ∼ m, as that will
allow us to mimic the construction of positive functionals in flat space by integrating over
ν. This requires us re-sum the leading terms at large ν of the polynomials Qk,2n(ν). We
will do so by identifying a saddle-point of integrals like (3.25).

17We expect that it should be possible to understand the ∆φ-dependence in (3.29) by comparing to
dispersion relations for massive scalars in flat space. To derive it, one could generalize the saddle point in
section 3.4 to include large ∆φ. Note that ∆φ-dependence does not appear in the leading large-ν terms of
Qk,n(ν), which are our main focus.
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We begin by studying Π̂k,ν [∆, J ] at large ν; after we identity the saddle point, it
will be straightforward to modify the result to find Ck,ν [∆, J ] at large ν. We start from
formula (3.25) for the Π̂k,ν moment of a heavy block and plug in the split representa-
tion (B.3) for the Gegenbauer function P 2−d

2 +iν(· · · ) as an integral over a null vector z.
Using SO(d− 1) invariance, we can trade the integral over z for an integral over n, and fix
z = (1, 1, 0, . . . , 0). The integral over n can then be done using (B.3), leaving

Π̂k,ν

[
Gs∆,J

]
2 sin2

(
π
τ ′−2∆φ

2

) =

42∆φ (−1)J

b∆,J

∫
ddxddy

(|x||y|)k+d−1

(x2y2)∆̃φ

(
1 + 2x · y + x2y2)d−1−2∆φ

(e− x)2 (e− y)2

×
(
x−

|x|

) 2−d
2 +iν (

y−

|y|

) 2−d
2 −iν

(
(e− x)2 (e− y)2

(e+ x)2 (e+ y)2

)∆+J
2 |Ve|J

|V−e|J+d−2PJ
( Ve · V−e
|Ve||V−e|

)
,

(3.31)

where we’ve defined lightcone coordinates x = (x+, x−, ~x) with x− = −z · x (similarly
y− = −z · y). The Gegenbauer function PJ is as expected for the spin-J index contraction
between two three-point functions in the conventional shadow representation [63].

If ∆ were large but not ν, this integral would reduce to a Laplace transform similar
to (3.13). Instead, when both ∆ and ν are large (and ∆ ∼ m), the integral gets pushed
away from the x, y → 0 limit and develops saddle points. The most important x-dependent
factors in (3.31) are (

x−

|x|

)iν ((e− x)2

(e+ x)2

)m
2

. (3.32)

These factors lead to four saddle points for the x integral at (in lightcone coordinates)

p±,± =
(
−im±

√
m2 − ν2

ν
, i
m±

√
m2 − ν2

ν
,~0
)
. (3.33)

Similarly, there are four saddle points q±,± for the y-integral, given by replacing ν → −ν
in (3.33). To find a saddle-point approximation for our integral, we would like to express the
integration contour as a linear combination (in an appropriate relative homology group) of
steepest-descent flows from saddle points.18 This is easiest to analyze in d = 2 dimensions,
where the function (3.32) factorizes. For example, the x− integral takes the form

∫ 1

0
dx−(x−)

iν
2

(
1− x−
1 + x−

)m
2

× (· · · ) . (3.34)

By plotting steepest-descent flows, we find that for ν < m, the saddle point p−•,− dominates
the integral over x− (here • can be either + or − since this sign choice does not affect the

18See [66] for a pedagogical introduction to these methods.
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Figure 8. Steepest-descent flows for the absolute value of the function (x−) iν2 ( 1−x−
1+x− )m2 , for ν < m

and ν > m respectively. The two saddle points p−
•,− and p−

•,+ are shown in red, and the branch
points −1, 0, 1 are in black. The desired integration contour in (3.34) runs between 0 and 1. In
green, we show deformations of this contour to pass through saddle points. For ν < m, the contour
is homologous to a steepest descent contour (Lefschetz thimble) through p−

•,− (the lower saddle
point). Near the origin, we choose the contour to spiral many times around 0, so that the function
becomes arbitrarily small due to the factor (x−)iν/2 ∝ e−ν arg x−/2. (This is similar to contours
described in [67].) In the case ν > m, the dominant saddle is the rightmost one. One of the flows
from that saddle ends at the subdominant left saddle. From there, the contour approaches the
origin and spirals around 0 in a similar way to the case ν < m.

− component in (3.33)), see figure 8. This conclusion holds for the other variables as well:
for ν < m, the saddle points p−,− and q−,− dominate the x and y-integrals, respectively.
These are the saddles which approach the origin as ν → 0. Plugging in their values and
computing the Gaussian determinant in general d, we find

lim
∆,ν�1

Π̂k,ν

[
Gs∆,J

]
2sin2

(
π
τ−2∆φ

2

) =
(−1)J γ2∆φ+k−1 (ν)2

b∆,Jm
4∆φ−2

42∆φ+k−2πd−2PJ
(
1− 2ν2

m2

)
(m2−ν2)

(
m+
√
m2−ν2

)2k−2

(ν <m) , (3.35)

where with some foresight we have re-expressed the value at the saddle point in terms of
γ2∆φ+k−1(ν)2.

When ν = m, the saddle points p±,± collide (and similarly for q), and then separate
again for ν > m. After this collision, a single saddle still dominates each of the x- and
y-integrals, but the values at the saddles change, so that the formula (3.35) is no longer
valid. Thus, in order to apply (3.35), we must consider functionals with compact support
in ν space: ν ∈ [0,∆gap]. As stated before, ν will play an analogous role to the flat-space
transverse momentum p. Fortunately, in our flat space bounds, we chose to consider func-
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tionals with compact support p ∈ [0,M ]. Thus, formula (3.35) is perfectly adapted to uplift
flat-space bounds to the CFT case. It would be nice to better understand the relationship
between flat-space and CFT functionals outside the ranges ν ∈ [0,∆gap] and p ∈ [0,M ].

To compute the action of Ck,ν (instead of Π̂k,ν) in the limit m, ν � 1, we need
to account for any additional factors in the kernel defined by (2.54), evaluated on the
saddle-point

r∗ = ν2(
m+

√
m2 − ν2

)2 , η∗ = 1 . (3.36)

The fact that the integral is dominated by η ≈ 1 is physically intuitive because of the large
momentum ν in AdS space. Fortunately, the kernel for Ck,ν simplifies dramatically at large
ν, and one finds (see (D.16)) that the above simply gets multiplied by:

a∆φ

γ2∆φ+k−1 (ν)2

(
1− r4)(

(1 + r2)2 − 4r2η2
) k+1

2
, (3.37)

evaluated at the saddle-point (3.36). The result, after rewriting the prefactor in terms of
pMFT

∆,J and nJ in the limit ∆� 1, is

lim
∆,ν�1

Ck,ν [∆, J ] = 2m2 − ν2

m2 − ν2

PJ
(
1− 2ν2

m2

)
(m2(m2 − ν2))k/2

. (3.38)

This gives (2.58). One can expand in ν/m to reproduce the terms of degree ν2n in each
polynomial Qk,2n(ν), as recorded in (3.30).

Equation (3.38) holds for large ν and fixed spin J . As visible from the structure of the
Qk,j polynomials introduced in (3.28), finite-spin corrections involve the ratio J2/m2 but
not J2/ν2: the result remains valid as long as the AdS impact parameter is small compared
to the AdS radius (ηAdS − 1� 1).

An interpretation of the saddle point is presented in figure 9: the fact that (3.33)
is pure imaginary implies an interchange of (one direction of) space and time, in effect
a double Wick rotation. This allows to reach the bulk scattering process 34 → 12 from
kinematics where 1 and 3 are spacelike! Qualitatively similar complex coordinates were
used in [16, 68] to localize in the bulk down to distances parametrically ∼ 1

∆gap
, but there

is a crucial difference: since we start with an integral over real spacetime, we know exactly
when the saddle point is valid, namely for |ν| < ∆gap. This will enable us in the next
section to find sharp bounds involving ∆gap. It is remarkable that one can access moments
of the S-matrix while remaining in spacelike kinematics. We refer to this phenomenon as
spacelike scattering. We refer the reader to [69–71] for interesting recent work on recovering
the flat-space S-matrix from CFT correlators.

Interestingly, (3.33) coincides precisely with the saddle point found in the flat-space
limit of light-light-heavy three-point functions [72]. This makes us confident that the
dictionary between CFT and flat-space will straightforwardly extend to spinning operators.
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Figure 9. Interpretation of the complex saddle point (3.33) and spacelike scattering. We start
with the commutator squared 〈[3, 4][1, 2]〉 ∼ dDiscs[G] in the Rindler positive kinematics of fig-
ure 7(b). The s-channel OPE inserts a basis of intermediate states along the dashed line, which
propagate horizontally along a spacelike direction. This explains why a real exponent appears in
the block (3.13). Integrating the block against the oscillatory function P 2−d

2 +iν(η) with ν large
creates the complex saddle point which effectively interchanges space and time, thus realizing a
bulk-focused scattering process 34→ 12.

3.5 The Ck,ν sum rule in Mellin space: numerical validations

A remarkable feature of dispersive sum rules is that they are natural in all spaces: as
emphasized in [31], the position space dispersion relation is the same as the natural Mellin
space one. As was further explained in [33], it is also a standard dispersion relation in
momentum space. It is thus easy to convert between spaces. Here we discuss the Ck,ν sum
rule from the Mellin perspective; we show in appendix D that it is also simply related to
Lorentzian inversion sum rules.

The Mellin representation for identical operators takes the form

G (u, v) =
∫∫

ds dt
(4πi)2 u

s
2−∆φv

t
2−∆φΓ

(
∆φ − s

2
)2 Γ

(
∆φ − t

2
)2 Γ

(
∆φ − u

2
)2
M (s, t) . (3.39)

Here s, t, u are the Mellin variables, which are constrained to satisfy s + t + u = 4∆φ. (We
use non-italicized letters s, t, u to distinguish Mellin variables from flat-space Mandelstam
variables s, t, u.) The Mellin amplitude is a meromorphic function with poles encoding the
spectrum, and bounded in the Regge limit (|M/s2| → 0 as s→∞ with fixed u). Dispersive
sum rules in Mellin space are defined as19

B̂k,t [M (s, t)] = (−1)
k
2

∮
|s′|=∞

ds′
2πi

1
2∆φ − s′

M (s′, t′ = t + 2∆φ − s′)(
∆φ − s′

2

)
k
2

(
∆φ − t′

2

)
k
2

, (3.40)

which converges (to zero) for k ≥ 2. The denominators play the role of subtractions and
improve large-s convergence; as discussed in [29, 31], it is physically natural to put the
subtraction points at double-twist locations, as this simply cancels naive zeros caused by
the gamma-functions in the representation (3.39). The Bk,v sum rules we used above are
Mellin conjugate to the B̂k,t (see equation (4.85) of [31]):

Bk,v = Γ
(
k
2

) ∫ dt
4πiv

t
2−∆φΓ

( t
2
)2 Γ

(
∆φ − t

2
)

Γ
(
∆φ − t

2 + k
2

)
B̂k,t . (3.41)

19The normalization used here differs from that of B̂2,t in ref. [31] by a factor ( t
2 −∆φ).
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Figure 10. Convergence in the Regge limit: m → ∞ with ν and ηAdS fixed. The dots show
numerical evaluation of the Mellin representation (3.46), divided by the leading order formula
C

(0)
2,ν [∆, J ] = 2

m4P 2−d
2 +iν(ηAdS), so as to asymptote to 1. The solid line shows the leading 1/m2

correction from (3.27), which is seen to track the exact result even at moderate m ≈ 10.

On the other hand, the action of B̂k,t on a heavy block can be calculated directly in Mellin
space. The Mellin amplitude has poles ∼ p∆,JQn∆,J (t)

s−∆+J−2n for each descendant n of an exchanged
conformal primary, where Q is a Mack polynomial and n ≥ 0 is an integer. Therefore, we
can write the heavy contribution to the sum rule as

B̂k,t [G]
∣∣∣
heavy

=
∑

τ>∆gap

p∆,J B̂k,t
[
Gs∆,J

]
, (3.42)

where

B̂k,t
[
Gs∆,J

]
= (−1)

k
2

∞∑
n=0

Qn∆,J (t+2∆φ−τ−2n)(2∆φ−τ
2 −n

)
k
2

(
τ−t

2 +n
)
k
2

[
1

2∆φ−τ−2n+ 1
t−τ−2n

]
. (3.43)

In the square bracket we added the s and t poles, assuming symmetry of the correlator,
as before. Eqs. (3.41) and (3.43) together provide a numerically stable formula to evaluate
the action of Bk,v on conformal blocks [31]. We will now deduce a similar Mellin-space
representation directly for the Ck,ν functional.

We compute the two transforms in (2.54) one after the other. First, the transform
from v to the angle η gives simply a power of η:

(−1)
k
2 πΓ (k)

23k−2Γ
(
k
2

)2

∫ ∞
η2

dv v
t
2−∆φ[

(v − η2)
k+1

2

]
+

=
π

3
2 Γ
(
∆φ + k−t−1

2

)
22k−1Γ

(
k
2

)
Γ
(
∆φ − t

2
)ηt−2∆φ−k+1 . (3.44)

– 35 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
4

Out[!]=

20 30 40 50 60 70

10-8

10-5

0.01

Figure 11. Residual errors in the Regge limit, for the functional in figure 10 after subtracting
various partial sums of the 1/m2 series from high-precision Mellin-space numerics. Including the
1/m8 term yields 10−9 relative accuracy at m = 70, nontrivially validating both the analytic
and numerical formulas. Although the coefficient of 1/m8 is anomalously small in this particular
example, the residual is well fitted by a 1/m10 power law.

Second, the η-integral then reduces to a moment of the Gegenbauer function:

∫ ∞
1

[dη]PJ (η) η−X =
2X+d−4Γ

(
d−1

2

)
√
πΓ (X) Γ

(
X+J

2

)
Γ
(
X+2−d−J

2

)
(3.45)

with X = 2∆φ + k − 1− t. Combining these with (2.54) and (3.41) we find:

Ck,ν =
2d−2−2kπ

3
2 Γ
(
d−1

2

)
a∆φ

γ2∆φ+k−1 (ν)2

∫
dt
4πiΓ

( t
2
)2
γ2∆φ+k−1−t (ν) B̂k,t . (3.46)

We used (3.46) with (3.43) (together with standard expressions for the Mack polynomials
Q [50]) to evaluate numerically the action of Ck,ν functionals.

While the Mellin amplitude is often regarded (with reason) as a CFT analog to the S-
matrix, it is important to stress that sum rules with prescribed Mellin-t are not directly the
ones with simple flat-space limit. Rather, the sum rules with definite transverse momentum
ν are the t- integrals in (3.46).

Comparison between numerical and analytical results in the Regge and bulk point
limits are reported in figures 10, 11, and 12. For heavy operators m� 1, we find that the
Mellin numerics require including many descendants n, however the dependence on n is
fairly smooth and can be accurately modelled using polynomial interpolation. For example,
to obtain the 10−9-accurate data points in figure 11, we evaluated the t integral to high
accuracy at 2000 values of n between 0 and 106; reliable results to lower accuracy require
much fewer n-evaluations. At large ν, the Mellin integrand becomes highly oscillatory but
remains numerically stable since it is only one-dimensional.
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Figure 12. Convergence of functional action in the bulk-point limit: m → ∞ with J and ν/m

fixed. The dots, connected to guide the eye, show the exact action computed using the Mellin
representation; the dashed line shows the saddle-point result from (3.38). The slower convergence
near ν

m = 1 is compatible with the observed collision of saddle points.

These comparisons confirm that the main results of this section: the 1/m2 series
in (3.27) and bulk-point saddle point in (3.38), indeed accurately approximate the action
on heavy blocks of a well-defined functional Ck,ν .

4 Light contributions to holographic sum rules

4.1 Light contributions and Regge moments

The heavy side of a holographic sum rule

ω|heavy = − ω|light (4.1)

is determined by the Regge moments of the functional ω. A surprising and useful simpli-
fication is that ω|light is also entirely determined by the Regge moments of ω! This allows
us to discuss heavy and light contributions to the sum rule (2.7) in the same language.

The contribution of light states to a holographic sum rule is

ω|light =
∑

τ≤∆gap

p∆,Jω
[
Gs∆,J

]
+ subtractions , (4.2)

where “subtractions” denotes possible additional terms such as (−1) k2−1 in (2.38) arising
from subtracting known functions to ensure convergence of ω. We assume that the light
OPE data agrees with a tree-level AdS effective field theory (EFT) with a derivative ex-
pansion. Naively, to compute ω|light, we must sum the contributions of light single-trace
operators, as well as any double-trace trajectories for which ω is nonzero. In particular,
this requires computing OPE data coming from exchanges and contact diagrams.

However, there is an efficient shortcut to computing ω|light that bypasses these steps
and gives a result that depends only on the Regge moments of ω. Suppose ω is a dispersive
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functional that vanishes on all double-trace families with τ > 2∆φ + 2p for some p ≥ 0.
We assume that the OPE data of double-traces with τ ≤ 2∆φ + 2p is well-approximated
by a bulk EFT with a truncated derivative expansion. We denote the four-point function
computed using this EFT by GEFT. The important properties of GEFT are that it has
approximately the same low-lying double-trace OPE data as G, and that it is crossing-
symmetric. Generically, GEFT will grow with spin n for some n > 1 in the Regge limit, and
hence cannot itself be a physical correlator.

Suppose that ω has the Regge moment expansion

ω ∼ Πk,η +O(Πn+1) . (4.3)

That is, ω is a pure spin-k Regge moment, up to moments with Regge spin greater than n
(the Regge spin of GEFT). Then for a tree-level bulk EFT, ω|light can be computed from
the following contour integral:

−ω|light = 1
4

∮
dr rk−2GEFT

+ (r, η) = 2πi
4 GEFT

+ (r, η)
∣∣∣
r1−k

(tree level) . (4.4)

The r-contour encircles the u-channel Regge limit r = 0. It simply picks out the r1−k term
in the Laurent expansion of the integrand around r = 0. The + subscript on GEFT

+ indicates
that we should approach the Regge limit by taking w, w̄ in the upper half plane (and ana-
lytically continuing from there as we go around the r-contour). In order for (4.4) to make
sense, GEFT

+ must be single-valued near r = 0, with a Laurent expansion containing only
integer powers of r. This is indeed the case for tree-level bulk EFTs. More generally, when
loops are included, ω|light can still be computed from its Regge moments via a contour inte-
gral close to the Regge limit; however the integral doesn’t necessarily localize to a residue.

The intuitive reason for (4.4) is as follows. The failure of ω|light to vanish comes from
the fact that GEFT grows in the Regge limit with spin n > k. Thus, the value of ω|light
should come from an “arc at infinity” that is sensitive to the growing terms in the Regge
limit. We make this intuition precise and prove (4.4) in appendix E.

More generally, suppose that ω is a physical functional with Regge expansion

ω ∼
∞∑
k=2

∫ ∞
1

dη ak(η)Πk,η . (4.5)

By linearity, we have

−ω|light = 1
4

n∑
k=2

∫ ∞
1

dη

∮
dr rk−2ak(η)GEFT

+ (r, η) . (4.6)

The sum truncates at k = n, where n is the Regge spin of GEFT, since the highest power
of 1/r appearing in the Laurent expansion of GEFT is r1−n.

As a sanity check on (4.6), note that if n < 2, then ω|light vanishes. This is a general
consequence of the fact that ω is s ↔ t antisymmetric and has at least spin-2 Regge
decay, as explained in [31]. As an example, scalar exchange diagrams and φ4-type contact
interactions do not contribute to ω|light.
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Since ω|light is entirely determined by the expansion of ω in Regge moments, it is
convenient to introduce the following notation

Πk,η|light ≡ ω|light , where ω is any physical functional such that ω ∼ Πk,η +O(Πn+1) .
(4.7)

Here, n is the Regge spin of GEFT. Note that Πk,η|light is not equal to a sum over light
operators of OPE coefficients times Πk,η[Gs∆,J ] (since the expansion in Regge moments does
not necessarily converge on light operators). In this sense, (4.7) is an abuse of notation —
we hope it does not cause confusion.

The fact that ω|light is controlled by an expansion in the Regge limit is true in any
space — in particular it is true in Mellin space. In the next section we use this fact to
efficiently compute the contribution of contact diagrams. We return to the position-space
formula (4.6) in section 4.3 to aid in interpreting the Mellin results.

4.2 Light contributions from Mellin space

Our main goal is to prove bounds on couplings of effective field theories in AdS. In order to
do that, we must first choose a parametrization of the EFT couplings. We will parametrize
them using their Mellin representation. We will then compute the light contributions
Ck,ν |light for specific EFT correlators. The Mellin representation for identical operators
takes the form (3.39). A basis for contact interactions consists of the following symmetric
polynomials

Ma,b (s, t) = c2a+3b
(
s2 + t2 + u2

)a
(stu)b , (4.8)

where

cn =
2n−3Γ

(
2∆φ − d

2 + n
)

π
d
2 Γ (∆φ)2 Γ

(
∆φ − d−2

2

)2 . (4.9)

The normalization is chosen so that the AdS bulk interaction which gives rise to Ma,b(s, t)
would give rise to the following S-matrix when used in flat space

Mflat (s, t) =Ma,b (s, t) ≡
(
s2 + t2 + u2

)a
(stu)b + subleading , (4.10)

where the corrections are subleading in the high energy limit s, t, u→∞ with ratios fixed.
Note that following [73], the normalization (4.9) is equivalent to the following relationship
between M(s, t) andM(s, t)

M (s, t) = 1

8π d2 Γ (∆φ)2 Γ
(
∆φ − d−2

2

)2

∞∫
0

dββ2∆φ− d2−1e−βM (2βs, 2βt) . (4.11)

Using the labelling scheme introduced in flat space in subsection 2.2, let us parametrize
the Mellin amplitude of the EFT as follows

MEFT = Mnon-growing + 8πGMgravity+
+ g2M1,0 + g3M0,1 + g4M2,0 + g5M1,1 + g6M3,0 + g′6M0,2 + g7M2,1 + . . . .

(4.12)
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Here Mnon-growing consists of terms which do not grow in the Regge limit. In the present
context, it receives contributions only from the exchange of light scalars and from the scalar
contact interaction M0,0. Mgravity is the sum of graviton exchanges in the three channels.20

The second line is an infinite tower of higher-derivative contact interaction g2a+3bMa,b,
where gn denotes the strength of an interaction with 2n derivatives.

We would now like to compute the contribution of each term in the EFT expan-
sion (4.12) to Ck,ν |light. This can be done by combining the Mellin representation of Ck,ν
in (3.46) with the definition of B̂k,t in (3.40). We start by calculating B̂k,t[Ma,b] directly
as the residue at s′ = ∞ in (3.40). This gives B̂k,t[Ma,b] as a polynomial in t. Ck,ν [Ma,b]
can then be found by doing the t integral in (3.46) using the formula

+i∞∫
−i∞

dz

2πiΓ(z − a)Γ(z − b)Γ(c− z)Γ(d− z) = Γ(c− a)Γ(d− a)Γ(c− b)Γ(d− b)
Γ(c+ d− a− b) , (4.13)

valid for Re(a, b) < Re(c, d), with the contour passing to the right of the poles at z = a, b

and to the left of those at z = c, d.
The simplest nonvanishing case is C2,ν [M1,0], for which the above procedure gives the

simple answer
− C2,ν |g2 = 2 , (4.14)

which exactly agrees with the 2g2 term in the flat-space sum rule C2,u in (2.16). We can
repeat the exercise for the stu and (s2 + t2 + u2)2 couplings, finding

−C2,ν |g3 = ν2 −
(
2∆φ − d−4

2

) (
2∆φ + d−4

2

)
−C2,ν |g4 = 8ν4 + 4

(
d2 − 4d∆φ − 8d+ 8∆φ + 16

)
ν2 −

(
2∆φ − d−4

2

)
×

×
[
16(3d− 16)∆2

φ − 4d(d− 4)∆φ + (d− 4)3 − 192∆3
φ

]
−C4,ν |g4 = 4 .

(4.15)

These results agree again with the flat-space formulas for C2,u at the leading order at
large ν as expected. Let us record several more general results for the leading moments
(k = 2a+ 2b)

−C2a,ν [Ma,0] = 2a

−C2a+2,ν [Ma,1] = 2a
[
ν2 −

(
2∆φ − d−4a−4

2

) (
2∆φ + d−4a−4

2

)]
.

(4.16)

It is possible to check that in general Ck,ν [Ma,b] is a polynomial in ν2 of degree at most
2a+ 3b− k, and that the leading behavior at large ν is

− Ck,ν [Ma,b] =
2a
(
k−2b+2

2

)
2a+2b−k

2(
2a+2b−k

2

)
!

ν2(2a+3b−k) +O
(
ν2(2a+3b−k−1)

)
. (4.17)

In particular, the ν2(2a+3b−k) term is absent unless b ≤ k/2. Note that he leading term (4.17)
comes from the maximal power of t in B̂k,t[Ma,b], which allows us to find the closed form.

20An explicit formula for the graviton exchange in Mellin space was found in [57].
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Note that Ck,ν receives contributions only from anomalous dimension on the first k/2
double-trace trajectories, as well as anomalous OPEs on the leading trajectory. It fol-
lows that Ck,ν identically vanishes on all contacts which have a zero at s = 2∆φ, 2∆φ +
2, . . . , 2∆φ + k − 2 and a double zero at s = 2∆φ.

It remains to evaluate the contribution of the graviton exchange Mgravity to the light
moments. The graviton exchange grows as spin two in the Regge limit and therefore
contributes only to the k = 2 moments. Using the explicit form of Mgravity given in [57],
we find

Mgravity (s,u)∼−8πG
∞∑
m=0

∆2
φ sin2 [π

2 (d−2∆φ)
]
Γ
(
d−2∆φ

2 +m
)2

4π d2 +2m!Γ
(
d
2 +m+1

) s2

u−(d−2+2m) , (4.18)

as s → ∞ at fixed u. Here G is measured in units of the AdS radius. The contribution
to C2,ν of each term with fixed m in (4.18) can be evaluated in terms of a hypergeometric
function 3F2. The resulting sum over m takes a remarkably simple form (as we checked
numerically21)

− C2,ν |gravity = 8πG
ν2 + (d/2)2 . (4.19)

This also agrees precisely with the flat-space formula (2.16) at large ν:

−C2,u|gravity = 8πG
−u

(4.20)

under u→ −ν2.

4.3 Light contributions from position space

Remarkably, both (4.17) and (4.19) are consistent with a simple formula in terms of the
flat-space amplitude

− Ck,ν |light = Ress=0

[
2s− ν2

s (s− ν2)
Mflat

(
s,−ν2)

[s (s− ν2)]k/2

]
×
(
1 +O

(
1/ν2

))
. (4.21)

The physical reason is clear: either in Mellin space or position space, Ck,ν |light comes from
an expansion around the Regge limit. However, the nontrivial transform (4.11) relating the
Mellin amplitude andMflat somewhat obscures the simplicity of (4.21). Next, we describe
a direct position-space computation of the large-ν limit of contact diagram contributions,
showing that (4.21) is controlled by a saddle point analogous to the one we encountered in
the bulk point limit in section 3.4.

We begin with a general contact diagram

G(Xi) =
∫

AdS
dd+1Q

4∏
i=1

iD
C∆φ

(−2Xi ·Qi + iε)∆φ

∣∣∣∣∣
Qi=Q

, (4.22)

21Alternatively, one can derive (4.19) analytically using (4.4) and computing the Regge limit of the
graviton exchange diagram using its u-channel partial wave expansion continued to the Regge limit.
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where we have written the integral in the embedding space formalism, where the metric is

X ·X = −X+X− +XµX
µ . (4.23)

The Xi, satisfying X2
i = 0 are boundary points, and Q satisfying Q2 = −1 is a bulk point.

D is a differential operator in the Qi, coming from the bulk Lagrangian. The constant C∆φ

is given by

C∆φ
= Γ (∆φ)

2πd/2Γ
(
∆φ − d−2

2

) . (4.24)

We take the boundary points to be in the causal configuration 2 < 1 and 3 < 4, with the
remaining pairs of points spacelike separated.

The Π̂k,ν moment of the diagram is a conformally-invariant integral

−Π̂k,ν

∣∣∣
light

= −22d−2 vol SO(d− 2)
∮

2<1
3<4

ddx1d
dx2d

dx3d
dx4

vol S̃O(d, 2)
Ω(u′, v′)G(Xi)

(−2X1 ·X3)∆̃φ(−2X2 ·X4)∆̃φ

,

(4.25)

where Ω(u′, v′) is the kernel defining the functional. The symbol
∮
indicates that we must

compute the light moment using a contour integral in cross-ratio space∫
dr rk−2 dDiscG → −

∮
dr rk−2 G . (4.26)

We explain how to implement this prescription shortly.
To compute (4.25), let us first gauge-fix the conformal symmetry in the same way as

in our computation of heavy moments in the bulk-point limit in section 3.4. Because of
the causal configuration, we cannot place all of the points in the same Minkowski patch.
The correct embedding coordinates for our problem are

X1 = −
(
1, y2,−y

)
X2 =

(
x2, 1, x

)
X3 =

(
1, y2, y

)
X4 = −

(
x2, 1,−x

)
. (4.27)

After choosing the boundary positions (4.27), the remaining conformal symmetries are a
Lorentz symmetry SO(d− 1, 1) and dilatation symmetry. The Lorentz group SO(d− 1, 1)
acts as the group of isometries on a transverse hyperboloid Hd−1 in AdS. We can use it
to set the transverse position of Q to the center of Hd−1. In embedding coordinates, this
corresponds to

Q =
(
Q+, Q−, Qµ

)
=
(
ξ+, ξ−, e

√
1− ξ+ξ−

)
= Q0 , (4.28)
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where e is a unit vector in the time direction. The SO(d − 1) of rotations around e

remains unfixed. Meanwhile, dilatation symmetry acts on the boundary points by (x, y)→
(λx, λ−1y). We fix it by inserting

1
2δ
( |x|
|y|
− 1

)
. (4.29)

Finally, to implement the contour prescription (4.26), we insert a δ-function δ(r − |x||y|)
and perform the contour integral over r at the end. Overall, we find

−Π̂k,ν

∣∣∣
light

=
∮
dr

∫
ddxddy

volSd−2
dξ+dξ−(1−ξ+ξ−) d−3

2

2 δ(r−|x||y|)1
2δ
( |x|
|y|
−1
) 25d−2rk+d−1

(16r2)∆̃φ

×P 2−d
2 +iν

(
− x·y
|x||y|

) 4∏
i=1

iD 1
(−2Xi ·Qi+iε)∆φ

∣∣∣∣∣
Qi=Q0

. (4.30)

Our goal is to compute this integral at large ν, where it will be dominated by flat-space
physics.

The next step is to rewrite the boundary to bulk propagators using a Laplace transform

1
(−2Xi ·Qi + iε)∆φ

= e−i
π
2 ∆φ

2∆φΓ(∆φ)

∫ ∞
0

dωi
ωi

ω
∆φ

i e−iQi·ωiXi . (4.31)

We can now define

iMAdS ≡
(
e−i

∑
i
Q0ωiXi

)−1 (
iDe−i

∑
i
Qi·ωiXi

)
Qi=Q0

. (4.32)

This is a potentially complicated function of the boundary positions and depends on our
conventions for defining bulk contact interactions. However, in the flat space limit, the
exponential e−i

∑
i
Qi·ωiXi becomes a plane wave with momentum

pAi ∼ ωi
(
XA
i − (Xi ·Q0)QA0

)
. (4.33)

MAdS then becomes simply the flat space amplitude evaluated on the momenta pi

MAdS =Mflat(s, u) + subleading at large ν , (4.34)

where s = −(p1 + p2)2 and u = −(p1 + p3)2.
Now to compute (4.30), we first rescale

x→ x

ω2 + ω4
, y → y

ω1 + ω3
(4.35)

and use the δ functions to solve for ω3 and ω4. We then insert the split representation of
the Gegenbauer (B.3), using SO(d− 1) symmetry to set z = (1, 1, 0, . . . , 0), so that we can
make the replacement

P 2−d
2 +iν

(
− x · y
|x||y|

)
→
(
x−

|x|

) 2−d
2 +iν (

y−

|y|

) 2−d
2 −iν

, (4.36)

where we use lightcone coordinates x± = x0 ± x1.
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In the large ν limit, the remaining integral over x, y, ξ±, ω1, ω2 can be done by saddle
point. The important factors are(

x−

|x|

)iν (
y−

|y|

)−iν
e−i

∑
i
Q0·ωiXi , (4.37)

where x and y have been rescaled and ω3, ω4 solved for as before. Explicitly, the argument
of the exponential becomes

−i
∑
i

Q0 ·ωiXi→−
iξ−

(
−r|x|−|y|+2r1/2(rω2+ω1)

)
2
√
r

−
iξ+

(
r|y|+|x|−2r1/2(rω1+ω2)

)
2
√
r

−i(e·x+e·y)
√

1−ξ−ξ+ . (4.38)

Extremizing (4.37), we find a saddle at(
x−, x+, y−, y+, ξ−, ξ+, ω1, ω2

)
=
(
eiπν, ν, ν, eiπν, 0, 0, iν

2
√
r
,
iν

2
√
r

)
, (4.39)

with vanishing transverse coordinates for x and y. We have written the phases eiπ =
−1 explicitly to indicate the direction one must analytically continue the corresponding
variables to reach the saddle.

In evaluating the gaussian determinant, we must be careful: when deforming the con-
tour to pass through the saddle point, we must rotate all the x and y coordinates by an
overall factor of i, resulting in an extra phase eiπd.

The result after the saddle point integral is

−Π̂k,ν

∣∣∣
light

=
γ2∆φ+k−1 (ν)2

(ν/2)2k a∆φ

∮
dr

2πi
rk−1

1− r2Mflat

(
s = −(1− r)2

4r ν2, u = −ν2
)

× (1 +O
(
1/ν2

)
. (4.40)

To compute the result for Ck,ν , we must insert the factors (3.37) into the integrand. We
then change variables from r to s, expressing the result as a contour integral around
s = ∞. Finally, bringing the contour in from infinity, we use crossing symmetry in the
form s→ ν2 − s to express the answer purely as a residue at s = 0 up to an overall factor
of 2. The result is (4.21). Note that even though we have derived (4.21) for contact Witten
diagrams, it works for the contribution of gravity (4.19) as well.

4.4 Interlude: gravity in impact parameter space and eikonalization

Having computed both the heavy and light contributions to Ck,ν , we can now consider
some simple consequences of the Ck,ν sum rules. The contribution of gravity to C2,ν is
special because it is delocalized in impact parameter space under the transform (3.21),
which goes from C2,ν to Ψ2,γ . By contrast, contact diagrams contribute polynomials in ν,
which become distributions localized near γ = 1. Thus, in this section, we will consider
the consequences of the Ψ2,γ sum rule

−Ψ2,γ |light = 〈Ψ2,γ [∆, J ]〉 , (4.41)
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for γ > 1. This discussion is outside the main thread of this paper, so an impatient reader
should feel free to skip to section 5.

To obtain Ψ2,γ |gravity, we use (4.19) together with the identity

∫ ∞
0

dν

2πρ(ν)
P 2−d

2 −iν
(γ)

ν2 + (d/2)2 = volSd−2

2d−2 hd−1(γ − 1) , (4.42)

where h∆0(u) is the bulk-to-bulk propagator in AdSd−1 for a field of dimension ∆0 with
chordal distance u = η − 1:

h∆0(u) = Γ(∆0)
2π d−2

2 Γ
(

2−d
2 +∆0+1

)(2u)−∆02F1

(
∆0,∆0−

d−3
2 ;2∆0−d+3;−2

u

)
. (4.43)

The function hd−1(u) is precisely the propagator for a graviton in the transverse Hd−1
space. Overall, we find

− Ψ2,γ |light = 8πG volSd−2

2d−2 hd−1(γ − 1) + contacts , (4.44)

where “contacts” are distributional terms near γ = 1.
Via (3.22), this gives a universal prediction for the k = 2 moment of the double-

discontinuity of heavy states in the Regge limit in any holographic CFT:

8πGvolSd−2

2d−2 hd−1(γ − 1) =
〈

2
m4

δ(γ − ηAdS)
2d−2(γ2 − 1) d−3

2

〉
× (1 +O(1/∆gap))(

cosh−1 γ � 1/∆gap
)
, (4.45)

where the expectation value on the right-hand side is defined by (2.34). The condition
cosh−1 γ � 1/∆gap comes from the fact that we expect large-ν corrections to the heavy
density to become important at smaller impact parameters.

Positivity of the right-hand side implies that G > 0, so gravity must be attractive.
One may also try to turn the equation around and use low-energy gravity to constrain
light-light-heavy couplings at a given impact parameter ηAdS. How constraining is that?

It turns out that the sum rules are rather easy to fulfill, and can be satisfied by
very different physical models. Perhaps the simplest “UV completion” is the just eikonal
exponentiation of the tree-level phase shift. The anomalous dimensions of double-trace
states due to tree-level graviton exchange in the Regge regime are [47, 49]

Γtree(∆, J) = 8G∆2hd−1(ηAdS − 1)
ηAdS + 1 . (4.46)

Of course the full anomalous dimension gets corrected at loop level. The eikonal approxima-
tion amounts to trusting the result (4.46) even when Γtree(∆, J) is O(1), which is generally
expected at large enough impact parameter where nonlinear curvature effects and tidal
excitations can be ignored. Plugging (4.46) into the right-hand side of (4.45), expanding
in the Regge limit and performing the integral over J (including a factor of 1/2 because
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only even spins appear, and another factor of 1/2 because tree-level twists of double-trace
families are spaced by 2), we find

volSd−2

2d−2

∫
d∆
4

16(η + 1)
π∆3 2 sin2

(
πΓtree(∆, ηAdS)

2

)
. (4.47)

The 2 sin2(. . . ) factor represents the double-discontinuity of the exchanged double-twist
operators. Naively expanding the integrand in small Γtree would result in a divergent
integral ∼

∫
d∆ ∆. Instead, in accordance with the eikonal approximation, we do not

expand the exponentials in small Γtree, and the large phases regulate the integral. We
obtain the left-hand side of (4.45). It is a nice consistency check of our calculations that
the eikonal model satisfies the sum rules.22

However, this success cannot by any means be used to justify the eikonal approxima-
tion. Very different models of the heavy sector also satisfy the sum rules. For example, in
tree-level string theory, we expect (4.45) to be saturated by stringy states in the weakly
coupled regime.

5 Holographic sum rules and local physics in AdS

We now combine the results of the previous sections to derive bounds on couplings of EFTs
in AdS. Recall that our principal tools in flat space are the dispersive sum rules Ck,u and
their improved versions Cimp

k,u . These sum rules relate EFT couplings to massive states. If
a sum rule gets nonnegative contributions from states with m ≥ M and J = 0, 2, . . . , we
say that it is “heavy-positive”, and it leads to nontrivial bounds on EFT couplings.

The central observation of this section is:

(?) Generic heavy-positive flat-space sum rules can be directly translated to give heavy-
positive CFT sum rules, via the dictionary Ck,u → Ck,ν and u→ −ν2, up to possible
relative corrections suppressed by positive powers of 1/∆gap.

We will show this by translating various classes of flat space sum rules to CFT, with
increasing levels of sophistication.

Each CFT sum rule obtained in this way places bounds on low-energy EFTs in AdS.
The interpretation of these individual bounds depends subtly on conventions for defining
bulk coupling constants, but we believe that the interpretation of the infinite set is clear
and transparent.

To make our physical set up clear, let us elaborate here on this point, beginning with
non-gravitational bounds (that is, bounds on CFTs without a stress tensor or equivalently
cT = ∞). In flat space, there exists an infinite series of functionals which prove lower
and upper bounds on EFT couplings, in term of a cutoff scale M . The corresponding
heavy-positive CFT sum rules will prove an infinite set of bounds on the CFT interactions

22Note that the k = 2 moment of the double-discontinuity determines the stress-tensor pole in the
Lorentzian inversion formula. Our calculation shows that this pole can be produced by eikonalization
(among other mechanisms).

– 46 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
4

defined in (4.12):

0 ≤ g2 , (5.1a)

−#g2 +O
(∑

g/R2
AdS

)
≤ g3∆2

gap ≤ #g2 +O
(
1/R2

AdS

)
, (5.1b)

0 ≤ g4∆4
gap ≤ #g2 +O

(
1/R2

AdS

)
, (5.1c)

−#g2 +O
(∑

g/R2
AdS

)
≤ g5∆6

gap ≤ #g2 +O
(
1/R2

AdS

)
, (5.1d)

· · ·

Crucially, such two-sided inequalities exist for all EFT parameters beyond g2 [6, 8]. The
O(1) constants # depend on spacetime dimension but do not grow with derivative order
(see table 3 of [8]).

The error terms in eqs. (5.1) are of two different types. The first type of error, denoted
O(1/R2

AdS), originates from the mentioned “small deformations” that restore positivity.
These are needed because the optimal functionals in flat space typically have zeros, so
there is a danger that 1/m2 corrections in going from Ck,u to Ck,ν cause negative dips.
Conceptually, this issue is easily solved by starting with non-optimal flat space functionals,
which are strictly positive everywhere. For large enough ∆gap < m, we are then guaranteed
that 1/m2 corrections will not spoil positivity, provided they do not grow in some kinematic
limits, which we will check. As exemplified in subsection 5.2, this “de-extremalization” step
only changes result by a relative 1/∆2

gap.
The second type of error, denoted O(∑ g/R2

AdS), involves the use of IR crossing sym-
metry or “null constraints”. For example, the lower bound on g3 from [6, 8] exploits that
two distinct IR experiments can measure the same EFT coupling g4 (see (5.12) below) to
bound couplings to heavy spinning states. The difficulty is that the straightforward uplift
of a flat space null constraint is not a CFT null constraint. Rather, it measures infinitely
many EFT couplings, albeit with suppressed coefficients:

−#g2 +O
(∑

g/R2
AdS

)
≡ −#g2 + #′

g3∆2
gap

∆2
gap

+ #′′
g4∆4

gap
∆2

gap
+ #′′′

g5∆6
gap

∆2
gap

+ . . . . (5.2)

The various coefficients #′ are computable for example from the subleading terms in (4.17)
and they may have any signs. The key point is that all terms are parametrically suppressed
by 1/∆2

gap compared to the first, if one assumes the scaling implied by eqs. (5.1). In other
words, by substituting into (5.2) the subsequent functionals (5.1) which prove upper and
lower bounds on g3, g4, g5 . . ., one gets a better functional in which the error is reduced
term-by-term in k and order-by-order in 1/∆2

gap, and the first term is left to dominate.
In the following, we thus make the following technical assumption: that the infinite

collection of bounds (5.1) implies

O
(∑

g/R2
AdS

)
= O

(
1/R2

AdS

)
. (5.3)

This seems reasonable, since the pattern of the bounds suggests that neglected terms get
smaller and smaller with k; this is further discussed in 5.4. It seems utterly implausible to
us that a counter-example to (5.3) could be found.
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The inclusion of gravity does not significantly affect the above: as long as the EFT
contains only particles of spin 2 or less, all higher-subtracted sum rules smoothly expand
around the forward limit and only spin-2 sum rules require the improvement Cimp

2,u from
section 2.2. Thus, although g2 can be negative with gravity [11], one can still show that
g4 ≥ 0 and that all ratios of the form gkM

2(k−4)/g4 with k ≥ 4 admit two-sided bounds of
the form in (5.1).

With this technical assumption, the calculations in this section establish effective field
theory scaling, in the same sense that it is established in flat space. That is, any EFT
bound which can be proved in a flat space assuming weak interactions between particles of
spin J ≤ 2 at energies less than M , yields a corresponding bound in a CFT with a large
higher-spin gap. For example, if the CFT contains a real scalar operator with dimension
∆φ � ∆gap, and a stress tensor, the flat-space results of [11] uplift to yield bounds on the
relative strength of all scalar self-interactions:

0 ≤ g̃2 ≡ g2 + #/
(
cT∆2

gap

)
, (5.4a)

−#g̃2
(
1 +O

(
1/R2

AdS

))
≤ g3∆2

gap ≤ #g̃2
(
1 +O

(
1/R2

AdS

))
, (5.4b)

0 ≤ g4∆4
gap ≤ #g̃2

(
1 +O

(
1/R2

AdS

))
, (5.4c)

−#g̃2
(
1 +O

(
1/R2

AdS

))
≤ g5∆6

gap ≤ #g̃2
(
1 +O

(
1/R2

AdS

))
. (5.4d)

· · ·

The optimal finite constants # in CFT are thus at least as good as in flat space. The
numerical offset between g2 and g̃2 on the first line, as well as the optimal value of other
coefficients, can depend on interactions between the scalar and light spin-2 particles besides
the graviton, if they exist.

With our physical setup and assumptions hopefully clear, we now describe the CFT
translates of various sum rules.

Notation and conventions. In the following, we use a mixture of flat-space and CFT
notation, depending on what is being emphasized in the discussion. We use M to refer to
the flat-space cutoff and ∆gap to refer to the CFT twist gap. In units where RAdS = 1,
they are equal: M = ∆gap.

We use β to refer to the AdS impact parameter. Recall that β ≈ log ∆+J
∆−J . In the

flat-space region β � 1, this becomes β ≈ 2J
∆ ≈

2J
m . In the context of flat space physics,

we sometimes write b = 2J
m .

The contribution of gravity in flat space is naturally expressed in terms of Newton’s
constant G. In CFT, it is natural to use the stress-tensor two point coefficient cT . They
are related by

8πG
dΓ
(
d
2

)3

4π d2 Γ(d+ 2)
= cfree

T

cT
, (5.5)
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where cfree
T is the stress tensor two-point coefficient for the free boson.23

Finally, we set RAdS = 1 throughout. However, we use the notation O(1/R2
AdS) to

indicate a quantity that vanishes in the flat-space limit if the RAdS-dependence were re-
stored. For example, O(1/R2

AdS) can be read as O(1/∆2
gap) or O(1/M2), depending on the

context. We hope this does not cause confusion.

5.1 Positive functionals from the forward limit

Perhaps the simplest heavy-positive flat space sum rules are the forward limits of Ck,u:

Ck,u=0[m,J ] = 2
m2k . (5.6)

In non-gravitational EFTs, we expect Ck,0 to converge for k = 2, 4, . . . , while in gravitational
EFTs, Ck,0 converges for k = 4, 6, . . . .24

By analogy, in CFT we should consider the functionals Ck,ν=0. We claim that these
are indeed heavy-positive, assuming all single-trace operators satisfy τ ≥ ∆gap ≡ M and
M is sufficiently large. To see this, note that since ν = 0 � ∆ for heavy operators, the
Regge limit formula (2.57) applies, giving

Ck,0[∆, J ] =
2P 2−d

2
(cosh β)
m2k ×

(
1 +O

( 1
M2

))
, (5.7)

where the heavy density Ck,0[∆, J ] is defined by (2.31). Furthermore, we see by inspec-
tion that

P 2−d
2

(cosh β) = 2F1

(
d− 2

2 ,
d− 2

2 ,
d− 1

2 ,
1− cosh β

2

)
(5.8)

is positive for all impact parameter β. (Recall from (2.29) that cosh β ≈ ∆2+J2

∆2−J2 .)
It follows that Ck,0 gives a bound

0 ≤ − Ck,0|light = 2k/2gk +O
(∑

g/R2
AdS

)
(k even) , (5.9)

where the error is an infinite sum of couplings, each suppressed by an additional 1/R2
AdS

compared with the expected dimensional analysis scaling. Alternatively, in this case
it would be reasonable to define the bulk coupling 2k/2gk as the forward limit of the
Ck,ν sum rule:

0 ≤ − Ck,0|light ≡ 2k/2gclean
k . (5.10)

Assuming that the coefficients in the EFT series in (4.12) each satisfy the anticipated
bounds, the difference between gk and gclean

k is indeed negligible. This is the technical
23The value of cT depends on the convention for the two-point function, but cfree

T /cT is convention-
independent. In the convention of [74], we have cfree

T = d/(d− 1).
24C2,0 may “converge” in a technical sense in CFT since, unlike in flat space, the forward limit of the

graviton pole contribution (4.19) is finite ∼ 8πGR2
AdS

(d/2)2 , where we restored RAdS. We nonetheless treat it as

divergent since it diverges quadratically in the flat space limit, and the resulting bound 8πGR2
AdS

(d/2)2 + 2g2 ≥ 0
does not possess the expected EFT scaling with M . We obtain bounds on g2 with the expected M -scaling
in section 5.3.
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assumption stated in (5.3). However, since we are on our way to justifying this assumption,
we stay clear of circular reasoning by distinguishing between the Mellin couplings g and
the “easy to bound” couplings gclean.

Since the dependence on ηAdS is the same for all k, the collection of 2k/2gclean
k for even

k satisfy the same properties as moments of 1
m2k in a positive distribution [1, 7, 53]. In

particular, the following two-sided bounds hold:

0 ≤ 2k/2gclean
k ∆2k−4

gap ≤ 2gclean
2 ×

(
1 +O

(
1/∆2

gap

))
(k ≥ 4 even) . (5.11)

The sole source of error here is the fact that the optimal combination of C2,0 and Ck,0
which proves the flat space version of this bound, vanishes at threshold m = ∆gap. One
then needs to give oneself a little bit of breathing room to deal with 1/m2 effects in (5.7),
for example by slightly increasing the coefficient of C2,0.

As discussed below (3.27), 1/m2 corrections are uniform in β (the expansion parameter
is coshβ

m2 , which is less than 1
2∆2

gap
if we have a twist gap ∆gap). Therefore, a small finite

shift suffices at once to obtain positivity on all heavy states.
In this example, positivity of Ck,0 in the bulk point limit β � 1 was actually guaranteed

by positivity in flat space, since Ck,ν in the bulk point limit (2.58) agrees with Ck,u in flat
space (up to 1/m2 corrections). However, positivity in the Regge regime β ∼ O(1) was not
guaranteed and depended on the behavior of the function P 2−d

2
(cosh β). This is a general

feature of functionals obtained from flat space. Most of the work in showing positivity
involves controlling the Regge regime, given that the bulk point regime is automatic.

5.2 Derivatives around the forward limit and general EFT scaling

Additional heavy-positive sum rules can be obtained via derivatives around the forward
limit. As an example, let us explore the simplest flat-space sum rules that yield two-sided
bounds on g3/g2 in non-gravitational theories. The minimal analysis in flat space (we
follow section 3.1 of [8]) uses three sum rules:

ω
(a)
flat ≡

1
2C2,0, ω

(b)
flat ≡ −M

2∂uC2,u
∣∣
u=0, ω

(c)
flat ≡M

4(d2 − 1)
[

1
4(∂u)2C2,u − C4,u

]
u=0

.

(5.12)

These are directly uplifted to CFT by setting u 7→ −ν2:

ω(a) ≡ 1
2C2,0, ω(b) ≡ ∆2

gap∂ν2C2,ν
∣∣
ν=0, ω(c) ≡ ∆4

gap(d2 − 1)
[

1
4(∂ν2)2C2,ν − C4,ν

]
ν=0

.

(5.13)

We normalized the three sum rules so that they are homogeneous in M = ∆gapRAdS and
RAdS. The combinations of interest in the flat space limit will have relative coefficients of
order unity, and we say that such combinations have manifest dimensional analysis scaling.

The flat space sum rules ω(i)
flat, to tree-level accuracy in the EFT, measure respectively

g2, M2g3 and 0 — the third is a “null constraint” which compares two IR measurements
of g4. Their CFT uplifts measure infinite combinations of the couplings defined in (4.12).
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Like we did in the preceding subsection, we can conveniently use a sum rule to define a
coupling gclean

3 :

−ω(a)
∣∣∣
light
≡ gclean

2 , −ω(b)
∣∣∣
light
≡ ∆2

gapg
clean
3 , −ω(c)

∣∣∣
light

= O(
∑

g/R2
AdS) . (5.14)

The null constraint ω(c)|light, remains an infinite sum of couplings of the form discussed
in (5.2), where each coefficient is suppressed by an extra factor 1/R2

AdS that we anticipate
will turn into 1/∆2

gap upon using other bounds, as argued below (5.3).
In the bulk point limit, the heavy actions of these functionals are, from (2.58):ω

(a)

ω(b)

ω(c)

 [∆, J ]→ 1
m4


1

M2

m2

(
3− 4J 2

d−1

)
M4

m4 J 2(2J 2 − 5d− 1)

×
(

1 +O

(
1
m2 ,

J2

m2

))
, (5.15)

with J 2 ≡ J(J + d − 2) the Casimir. In this approximation, it is easy to see that the
functional 3ω(a) − ω(b) is nonnegative on all states with m ≥ M . It vanishes at threshold
for J = 0. This could potentially cause problem if the 1/m2 correction has the wrong
sign. However, the sign of that correction won’t be important for our story because we can
always simply increase the coefficient of ω(a) by a small amount:

ω(ε) ≡ (3 + ε)ω(a) − ω(b) ≥ 0 on all heavy states ⇒ ∆2
gapg

clean
3 ≤ (3 + ε)gclean

2 . (5.16)

Because we started with a sum rule with manifest dimensional analysis scaling, the ε ∼ 1
∆2

gap
correction has a negligible impact: this strategy allows us to prove a small perturbation of
the flat space bound.

To complete the proof that the left-hand-side of (5.16) is positive, we must consider
those heavy states that are outside the reach of (5.15): those with J/m not small. We use
the Regge limit formula in (2.57), reproduced here for convenience:

Ck,ν [∆, J ]→ 2
m2kP 2−d

2 +iν(cosh β) (m� 1, ν ∼ 1, β ∼ 1) . (5.17)

In this limit, ∂ν2 is no longer parametrically scales like 1/∆2
gap: the combination (5.16) is

thus dominated by the term with the largest number of derivatives,

ω(ε) [∆, J ]→ −∆2
gap∂ν2C2,ν [∆, J ]

∣∣
ν=0 (5.18)

= 2
∆2

gap
m4

[
(−∂ν2)P 2−d

2 +iν(cosh β)
]
ν=0

. (5.19)

Importantly, the β → 0 limit of the Regge limit overlaps with the bulk point limit. Substi-
tuting cosh β = 1+ 2J 2+(d−2)2/2

m2 into (5.19) and expanding at large m, we indeed reproduce
the J →∞ limit of (5.15):

ω(ε) [∆, J ]→ M2

m6
4J 2

d− 1

(
m,J � 1, J

m
� 1

)
. (5.20)

This implies that the expression in (5.19) is automatically positive at β → 0. Interestingly,
it never changes sign! It is plotted in figure 13, and this completes the proof of the upper
bound in (5.16).
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Figure 13. Derivatives around zero momentum transfer (−∂ν2)nP 2−d
2 +iν(cosh β)

∣∣
ν=0 are positive

for all impact parameters, even beyond the AdS radius (β ∼ 1). At small impact parameters, they
reproduce the flat space behavior ∼ β2n.

Physically, β � 1 means that we are in the flat space limit where the impact param-
eter is small compared to RAdS. Meanwhile, J � 1 or β � 1

M means that the impact
parameter is large compared to the energy scale of the scattering process. The strategy
of establishing positivity by exploiting the overlap between these regimes works in many
examples. We will apply it in section 5.3 to show positivity of functionals constructed using
the algorithm of [11].

For now, let us study one more example involving derivatives around the forward limit:
the lower bound on g3/g2. By adding an ε-correction to the flat space functional from [8],
we can construct a CFT functional which is strictly positive on all states with m > ∆gap
in the bulk point limit:

ω′
(ε) =

(
κd+1 + ε, 1, (d− 1)κd+1 − 5d− 3

2d(d2 − 1)

)
·

ω
(a)

ω(b)

ω(c)

 , (5.21)

where again ε ∼ 1
∆2

gap
, and κd+1 is a constant given in [8] which ensures that ω′(ε)[∆, J ] > 0

for all heavy states in the bulk point limit.
In the Regge regime, the heavy density is dominated by the maximal derivative term,

(−∂ν2)2C2,0:

ω′
(ε) [∆,J ] = M4

m4
(d−1)κd+1−5d−3

4d

[
(−∂ν2)2P 2−d

2 +iν (coshβ) |ν=0+O
( 1
m2

)]
. (5.22)

Equation (5.22) is a good approximation for 1/M � β. The agreement between the bulk
point and Regge formulas in the overlap regime 1/M � β � 1 is readily verified using that:

(−∂ν2)2PJ

(
1− 2ν2

m2

)∣∣∣∣∣
ν=0
≈ 4J 4

m4(d2 − 1) ≈ (−∂ν2)2P 2−d
2 +iν(cosh β)

∣∣∣
ν=0

. (5.23)

Therefore, to complete the proof of positivity of (5.21) in CFT, it suffices to show that the
bracket in (5.22) never changes sign. In appendix B we prove at once that all derivatives
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(−∂ν2)nP around ν = 0 are positive; for illustration, a few cases are plotted in figure 13.
Equating the light and heavy contributions in eqs. (5.14) and (5.21), and including the
previous upper bound, we find the following two-sided bound :

− κd−1g
clean
2 +O

(
ε,
∑

g/R2
AdS

)
≤ ∆2

gapg
clean
3 ≤ 3gclean

2 +O (ε) . (5.24)

The error includes the “de-extremalization” step to keep the functional positive in the bulk-
point limit, as well as the fact that null constraints have become infinite sums of couplings
each with small coefficients.

The arguments in these examples generalize to any functional ωflat constructed from
a finite number of derivatives around the forward limit: the dominant behavior at ∼
RAdS impacts is entirely determined by the J → ∞ limit of the bulk-point limit. Thus,
positivity for all spins in the bulk-point regime implies positivity at all impact parameters.
In particular, all flat-space sum rules constructed in [8] give rise to heavy-positive CFT
functionals via this construction, thus giving two-sided bounds on all higher-derivative
contact interactions that can appear in four-point correlators.

The error on the left of (5.24) is expected to be small according to dimensional analysis
scaling, which is what we are trying to establish here. As stressed above (5.3), bounds of
this form, taken individually, do not justify dimensional analysis scaling: they only confirm
that it is self-consistent. However, as also argued below (5.3), we believe that the infinite
collection of these bounds leaves dimensional analysis scaling as the only plausible option.

5.3 Impact parameter localized functionals

In flat space, expanding dispersive sum rules around u = 0 fails in the presence of gravity.
Instead, a working strategy is to integrate the Cimp

2,−p2 sum rule against a suitably-chosen
wavefunction f(p) to create a functional that is localized in impact parameter space [11].
In this section, we mimic this construction in CFT. We show that a positive flat-space
sum rule obtained by integrating Cimp

2,−p2 can be translated to give a positive CFT functional
that proves the same bounds in the limit M →∞.

We can construct an improved version of C2,ν by replacing Ck,u → Ck,ν and u→ −ν2

in the definition (2.18) of Cimp
2,u :

C imp
2,ν = C2,ν −

kmax/2∑
n=2

(
n ν4n−4C2n,0 + ν4n−2 ∂ν2C2n,ν |ν=0

)
= Cunimproved

2,ν + C improvement
2,ν . (5.25)

Note that we have truncated the sum over k = 2n, since formulas from the preceding
sections are not valid for k ∼ ∆gap; this is expected to have a negligible impact, as discussed
in section 5.4.

Consider now a flat-space sum rule

ωflat ≡
∫ M

0

dp

M
f

(
p

M

)
Cimp

2,−p2 , (5.26)
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and the analogous CFT sum rule

ωAdS ≡
∫ M

0

dν

M
f

(
ν

M

)
C imp

2,ν . (5.27)

Suppose that ωflat[m,J ] is heavy-positive. We will argue that, for sufficiently large M ,
ωAdS[∆, J ], or perhaps a small correction to it, is heavy-positive as well. Furthermore, the
contributions of light states to ωflat and ωAdS agree as M → ∞, so ωAdS proves the same
bounds on EFT couplings as ωflat in that limit.

By construction, ωflat[m,J ] and ωAdS[∆, J ] agree up to 1/M2 corrections in the bulk
point regime of fixed J ; hence ωAdS[∆, J ] is automatically positive in that regime for
sufficiently large M . Our task is to show that ωAdS[∆, J ] is additionally positive outside
the bulk point regime.

Our strategy will use the following observation about the functional ωflat: at large
impact parameters (but still within the AdS radius), 1

M � β � 1, the “unimproved” and
“improvement” terms dominate in different limits, and they are thus separately positive.
Our task will be to ensure that separate positivity continues to hold at larger β.

For fixed m and large impact parameter (or large J), the improvement term dominates
for the simple reason that forward derivatives of Gegenbauer polynomials grow with spin;
on the other hand, at large spin, the C2,u (or C2,ν) contribution tends to decay because it
is an integral over highly oscillatory Gegenbauer polynomials. The later thus only matters
where the former vanishes. This happens as m → ∞ because the improvement is built
from higher-subtracted sum rules. To summarize, the key regimes are:

β � 1
M
, m fixed : C improvement dominates ,

β fixed, m�M : Cunimproved dominates .
(5.28)

Together, these regions cover all cases not already covered by the bulk-point regime β ∼ 1
M ,

see figure 14.
For reasons that will become clear shortly, to prove positivity of ωAdS, we will need to

assume that f(p) is sufficiently regular near p→ 1:

f(p) ∼ (1− p)l + . . . (p→ 1) , with l > n+ 1− d

2 , (5.29)

where n is an exponent controlling the p → 0 limit: f(p) ∼ pn. It is straightforward in
practice to find flat-space functionals obeying these conditions, see for example (2.20).25 In
addition, we assume that ωflat[m,J ] is everywhere strictly positive. This can be ensured by
performing a small deformation of a nonnegative functional. The example functionals (2.20)
are strictly positive.

5.3.1 Positivity of the improvement term

We begin with the contribution to (5.27) from C improvement
2,ν . Since this involves derivatives

around the forward limit, the analysis is similar to that in subsection 5.2 and relies on the
matching region 1

M � β � 1.
25Based on experience with numerics, we expect that the conditions (5.29) do not affect the optimal

bounds that would be obtained by scanning over an infinite-dimensional space of functions f(p).
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β ∼ 1/M β � 1

m

β

τ > ∆gap
M

m�M

ωunimproved
AdS

ωimprovement
AdSflat

Figure 14. A cartoon of the regions used in the proof of positivity of ωAdS. In the blue-shaded
region ωimprovement

AdS dominates; in the red-shaded region ωunimproved
AdS dominates; in the purple overlap

they are comparable. The gray-hatched region is the bulk-point regime, where positivity follows
from agreement with ωflat. To establish positivity of ωAdS, we will show positivity of ωimprovement

AdS in
the region β � 1/M bounded by the solid blue lines, and positivity of ωunimproved

AdS in Regge region
m�M bounded by the solid red lines.

The contribution of improvement terms in flat space is

ωimprovement
flat [m,J ] = A(m)P ′J(1) +B(m)PJ(1) , (5.30)

where

A(m) ≡
∫ 1

0
dpf(p) 4M6p6

m6(m4 −M4p4) ,

B(m) ≡ −
∫ 1

0
dpf(p)M

4p4(4m2 − 3M2p2)
m6(m2 −M2p2)2 , (5.31)

and

PJ(1) = 1 , P ′J(1) = J 2

d− 1 , J 2 = J(J + d− 2) . (5.32)

At large J with fixed m, the term proportional to P ′J(1) overwhelms all other terms in
ωflat. Since ωflat must be positive at large J , it follows that A(m) ≥ 0 for all m ≥ M . By
a small deformation of f(p), we can assume that A(m) is strictly positive.

Since we already showed in section 5.2 that the extension of P ′J(1) into AdS is positive
at all impact parameters, we must only show is that it retains its dominance over PJ(1).
In fact, already in flat space, there always exists a minimum impact parameter b0 ∼ 1

M

beyond which A(m)P ′J(1) uniformly dominates over B(m)P(1) for all m. To see this, note
that the dimensionless ratio −M

2B(m)
m2A(m) is bounded from above for all m ≥ M , as can be
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Figure 15. Contributions from the improvement (from top to bottom: m/∆gap = 1.01, 3, 5, 10, 20)
and unimproved (with m =∞) terms for the AdS version of the flat space functional C(1) in (2.20).
At large impact parameters β � 1/∆gap, the total functional ω(1)

AdS[∆, J ], is well approximated by
the sum of the two panels and is therefore positive (and qualitatively similar to figure 3). The
dashed line on the right panel shows the Q3 contribution from formula (5.44). The width of the
peak in (b) is proportional to 1/∆gap.

argued by studying its limits as m → M and m → ∞, and using that A(m) is strictly
positive. Thus, the following quantity exists:

M2b20 ≡ max
m>M

max
(

0,−4(d− 1)M
2B(m)

m2A(m)

)
. (5.33)

In flat space, the improvement contribution is strictly positive for all b > b0.
Now consider the Regge limit of m � 1 with fixed β = cosh−1 ηAdS. Using (2.57)

and (5.25) we have

ωimprovement
AdS [∆,J ] =A(m)

(
−m2

2 ∂ν2

)
P 2−d

2 +iν(coshβ) |ν=0+B(m)P 2−d
2

(coshβ)+O
(
1/m2

)
,

(5.34)

where A(m) and B(m) are the same as in flat space (5.31). Similarly to (5.23), this
smoothly matches onto (5.30) in the overlapping regime 1

M � β � 1, which always contains
the minimum impact parameter b0 at which the A(m) term takes over. The proof is
completed by noting, by inspection, that the ratio(

−1
2∂ν2

)
P 2−d

2 +iν (cosh β) |ν=0

P 2−d
2

(cosh β) (5.35)

is a monotonically increasing function of β.26 Thus, once established, dominance of A(m)
can’t be lost, and ωimprovement

AdS [∆, J ] is positive for all β > b0.
Figure 15 shows this behavior, and also illustrates the fact that while the improvement

terms grow with spin, the unimproved contribution decays. In the region b < b0 where
improvement is not positive on its own, positivity of the total functional was already
guaranteed by positivity in flat space.

26For example, in d = 4 equation (5.35) is equal to β2/24.
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5.3.2 Positivity of the unimproved contribution in the Regge limit m→∞

We now analyze positivity of the unimproved contribution. We focus on the limit m→∞
where it is relevant according to (5.28). Although positivity will not always automatically
follow from that in flat space, we will find that it can always be ensured by a small
deformation of the original functional f(p).

We begin with bulk-point/flat-space expressions. Given J ∼ βm
2 � 1, we can use the

impact parameter approximation (2.23) for PJ(1− 2ν2/m2). Writing ν = Mp, we have

lim
m→∞

m4ωflat[m,J ] = 2
∫ 1

0
dpf(p)J̃(Mβp) (1/M � β � 1) , (5.36)

where J̃(x) is the Bessel function defined in (2.23). Here we do not distinguish ω from
ωunimproved, because the improvement contributions vanish in this limit.

In the large-βM limit, J̃(Mβp) oscillates rapidly with frequency Mβ � 1. These
oscillations exponentially damp contributions from the interior of the integration region p ∈
(0, 1). The integral is then dominated by the endpoints p = 0 and p = 1. To determine their
contributions, we expand the non-oscillatory part of the integrand around each endpoint
and extend the integral to infinity. For example, if f(p) ∼ f0p

n, the contribution near
p = 0 is

m4ωflat [m,J ]
∣∣
p=0 → 2

∫ ∞
0

dp f0 p
nJ̃ (Mβp) = 2

2nΓ
(
d−1

2

)
Γ
(
n+1

2

)
Γ
(
d−n−2

2

) f0

(Mβ)n+1

(1/M � β � 1) . (5.37)

To determine the contribution near p = 1, we use f(p) ∼ f1(1 − p)l together with the
large-x expansion of J̃(x). Throwing away unimportant constants, we find

m4ωflat [m,J ]
∣∣
p=1∝ f1

cos
(
βM− π(d+2l)

4

)
(βM)

d
2 +l

×
(

1+O
( 1
βM

))
(1/M�β� 1) . (5.38)

The oscillatory contribution (5.38) is subdominant to the non-oscillatory contribution (5.37)
in the large-M limit, since we have assumed l > n+ 1− d

2 in (5.29).
The result (5.37) is precisely the large impact parameter limit of the transverse Fourier

transform f̂(b) of f(p), evaluated at b = Mβ. The function f̂(b) is everywhere positive
otherwise ωflat[m,J ] would not be positive [11]. This leaves two options:

either f0

Γ
(
d−n−2

2

) > 0 or n = d− 2 , (5.39)

where in the second case, a subleading term as p → 0 must contribute with the correct
sign (its exponent should then be used for n in (5.29)). We have examples of flat-space
functionals which are positive due to either of these mechanisms; for example, the d = 4
functional in (2.20) behaves like f (1)(p)→ 2280p2 − 5225p3 + . . . and it is the second term
which ensures positivity at large b.
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βn+1  sinh(β)
β


d-2
2 n(β) with d=5
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n=1.25
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Figure 16. The function βn+1( sinh β
β ) d−2

2 Qn(β) in d = 5 for various values of n. In each case, it is
everywhere positive and smoothly interpolates between the limits (5.44).

The analysis of ωAdS[m,J ] is similar: one simply substitutes J̃(βp) 7→ P 2−d
2 +iν(cosh β)

following (2.57). Before proceeding, let us note that in certain spacetime dimensions this
substitution is trivial. For example, in CFT4,

J̃(βp) = sin(βp)
βp

= sinh(β)
β

P−1+iν(cosh β) (d = 4) . (5.40)

Thus, in d = 4 positivity at all β is immediate. In other cases, however, the limit turns
out to be controlled by different coefficients.

The functional C2,ν [∆, J ] is rapidly oscillating with ν, so the integral over ν is again
dominated by its endpoints at ν = 0 and ν = M :

lim
m→∞

m4ωAdS[∆, J ]→ 2
∫ ∞

0

dν

M
f0

(
ν

M

)n
P 2−d

2 +iν(cosh β) + osc. (1/M � β) . (5.41)

The first term comes from the endpoint ν ∼ 0. To obtain it, we used f(ν/M) ∼ f0(ν/M)n
and (2.57), which are both valid for ν � M . The term “osc.” is an oscillatory con-
tribution from the endpoint ν = M . At large ν, the Gegenbauer behaves like eiνβ (see
equation (A.3)), which leads to an integral similar to (5.38) that is subleading to the first
term in (5.41), again assuming l > n+1− d

2 .27 Dropping the oscillatory terms, we thus have

m4ωAdS[∆, J ]→ 2f0
Mn+1Qn(β) , (1/M � β) , (5.42)

where

Qn(β) ≡
∫ ∞

0
dν νnP 2−d

2 +iν(cosh β) . (5.43)

27Here, we had to assume m�M > ν in order to evaluate ωAdS[∆, J ] using (2.57). In appendix F.1, we
check that the oscillatory terms are not enhanced outside this regime, i.e. for m ∼M .

– 58 –



J
H
E
P
1
1
(
2
0
2
1
)
1
6
4

We describe the function Qn(β) in more detail in appendix B.3. There we show that it has
the asymptotic behavior

(sinh β
β

) d−2
2
Qn (β)→



2nΓ
(
d−1

2

)
Γ
(
n+1

2

)
Γ
(
d−n−2

2

) 1
βn+1

(
1 +O

(
β2
))

β � 1 ,

2 d−2
2 Γ

(
d−1

2

)
Γ (n) sin

(
πn
2
)

√
πΓ
(
d−2

2

) 1
βn+ d−2

2

(
1 +O

(
1/β2

))
β � 1 .

(5.44)

An example plot of Qn(β) is shown in figure 16. We see that it smoothly interpolates
between the two limits (5.44) without crossing zero. By checking numerical examples, we
find that Qn(β) is everywhere positive as a function of β > 0 for 0 ≤ n ≤ 2 in d ≥ 4, and
for 0 ≤ n ≤ 1 in d = 3. Thus, if the leading term as p → 0 is in this range, positivity in
AdS follows from positivity in flat space.

What if this is not that case? As a concrete example, consider the following functionals,
which are analogous to (2.20) in d = 5 (D = 6):

f (1),d=5 ≡ p2
(
1− p2

)2 [
30 + 12516p− 18690p2 + 4345p3

]
,

f (2),d=5 ≡ p2
(
1− p2

)2 [
63 + 46690p− 152082p2 + 115749p3

]
.

(5.45)

In flat space, these are strictly positive and establish the two-sided bound

− 8.15 g2
M2 − 28.88πG

M4 ≤ g3 ≤ 3 g2
M2 + 93.08πG

M4 (D = 6) . (5.46)

The large-b limit in flat space is controlled by the coefficient of p2, which is positive. In AdS,
however, the large-β limit is controlled by the coefficient of p3, which has the wrong sign:
the functionals ωAdS from (5.45) are not positive! However, since this problem occurs only
for β ∼ 1, where the Regge limit of the functional is very small in magnitude (the Regge
limit of optimal functionals in flat space tend to be sharply localized around b ∼ 1/M), we
find that this can be easily fixed by adding a p3/2 term:

f (1),d=5 7→ f (1),d=5 + 5000p
3/2(1− p)2

M3/2 , f (2),d=5 7→ f (2),d=5 + 20000p
3/2(1− p)2

M3/2 .

(5.47)
Despite the large-looking coefficients, these are actually small changes to eqs. (5.45). The
added terms have a negligible impact ∼ 1

M3/2 on the bounds (5.46). They also do not
spoil positivity elsewhere: they have a negligible impact on the bulk-point regime as well
as on the improvement terms in (5.34). Positivity of the resulting functional is shown in
figure 17.

We conclude that, for flat space functionals whose Regge limit is localized at small b,
the large-β regime in AdS is either automatically positive, or it can be corrected by a small
perturbation.
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Figure 17. Similar to figure 15 but for the CFT5/AdS6 functionals in eqs. (5.45). The left panel
confirms that the improvement terms are again positive on their own for β > b0; dashed lines, almost
identical, show the flat space approximation of the functionals for β < 2. The discontinuous curve
on the right panel shows that the Regge limit of the original functional is not positive (negative
regions show as missing parts in the logarithmic plot), but becomes positive upon including the
small perturbation (5.47).

5.3.3 Bounds with maximal supersymmetry

In this paper we have focussed on scalar correlators. Our arguments rely on a physical
picture that we expect to go through straightforwardly for spinning correlators, but as
always, supersymmetry provides a shortcut. With maximal supersymmetry, one can access
stress tensor four-point correlators in terms of scalar correlators with improved Regge
behavior, in close analogy with 2 → 2 graviton scattering in flat space [11]. Let us focus
on the paradigmatic case of N = 8 AdS5 gauged supergravity, which captures all tree-
level interactions of the supergraviton multiplet of type IIB supergravity on AdS5 × S5.
Superconformal Ward identities [75, 76] can be solved to express the stress tensor four-
point function in terms on an auxiliary scalar correlator. The corresponding scattering
amplitude (which is also simple in Mellin space [77, 78]) is:

Mflat = 8πG
stu

+ α+ . . . (5.48)

The constant α corresponds to the leading R4 higher curvature correction. We can now
uplift to AdS5 the flat space analysis on our previous paper [11] (section 3.8). Running the
flat space numerics for D = 5, we find a precise upper bound with the expected scaling,

0 ≤ α

8πG ≤
10.9
∆6

gap
+O

(
1

∆8
gap

)
. (5.49)

In this case, we also have a purely field-theoretic calculation [79] of the higher-spin gap,
∆gap ∼= 2λ1/4, where λ = g2

YMN � 1 is the ’t Hooft coupling of planar N = 4 SYM theory.
All in all, this establishes bulk locality in the canonical example of holographic duality,
with a sharp bound that depends on the coupling λ.

5.4 Comments on truncation errors

Here we provide additional justification for the technical assumption (5.3), that
O(∑ g/R2

AdS) = O(1/R2
AdS). The reader content with this assumption can safely skip

to the next subsection.
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Each heavy-positive functional we have found places bounds on the bulk EFT, since the
light contribution from states with τ ≤ ∆gap can be computed from the bulk EFT. (From
a purely CFT perspective, this is equivalent to including only the light state contribution
to dDisc in the Lorentzian inversion formula, then accounting for the heavy contribution
by adding a series of ambiguities with finite support in spin [17]. The later are known to
be in one-to-one correspondence with bulk local interactions [13].)

By design, the light contribution is given, to leading order as RAdS → ∞, by a finite
linear combination of bulk couplings (up to loop corrections). However, unlike in flat
space, there are additional finite-RAdS corrections (even at tree-level), and we would like
to understand them. These take the schematic form (5.2):

1
∆2

gap

∑
n,•

cn,•gn,•∆2n−4
gap (5.50)

where the coefficients cn are of order unity and the exponent of ∆gap conforms with the
expectations of bulk dimensional analysis with M = ∆gap; the index • labels different
contact interactions with the same scaling dimension. As argued below (5.2), since we
have two-sided inequalities from flat space which control each EFT coefficient (to leading
order in 1/∆gap), we could substitute in those inequalities to eliminate any finite number
of gn,•, at the cost of introducing new terms order 1/∆4

gap. Here we would like to argue
that this process seems convergent.

To deal with this in practice, we afford ourselves breathing room by lowering the
cutoff slightly: M2 7→ (1 − ε)M2. Since the coefficients in the flat space bounds for gk,•
do not grow (the flat space EFT series is proven to converge for |s|, |t|, |u| < M2 [8]), any
contribution from a weight k coupling will be weighted by (1− ε)k. Now, the coefficients of
1/∆2j

gapgn,• in (5.50) could potentially grow with n, but we only expect a power-law growth
of the form nj .

Intuitively, the reason our null constraints are not exact in CFT, and why (5.50) arises
at all, is that different sum rules measure coefficients at slightly values of Mellin variables
(ie. s = 2∆φ versus s = 2∆φ + 2 for subtracted sum rules). These values are not very
friendly to crossing symmetry: Mellin-space dispersion relations may not converge at those
values of t [29]. Yet, the difference between all these evaluations are expected to be small,
they are effectively derivatives of monomials like sn, whence the power dependence on n.

We thus estimate that

contribution from gn,•

∆2j
gap
∼ nj(1− ε)n

∆2j
gap

at large n. (5.51)

Thus, even though we have formally infinitely many couplings to eliminate, the sum over
all n won’t exceed ∼ 1

(ε∆2
gap)j . As long as we choose ε sufficiently large (so that ε∆2

gap � 1)
the procedure appears to converge.

The technical weakness of this argument is that EFT couplings gn,• with n too large
may not be fundamentally defined in CFT. For example, the Ck sum rules require evalua-
tions at Mellin variables up to s = 2∆φ + k− 2, so at least if using the tools in this paper,
it is hard to define couplings with n & ∆gap. This is also why we introduced a cutoff kmax
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in the improved sum rules (5.25).28 On the other hand, given that, for sufficiently large ε,
eliminating those couplings changes our sum rules by a negligible amount, this would seem
to be more of a technical annoyance rather than a real loophole to the idea of dimensional
analysis scaling — whence the technical assumption (5.3).

A rigorous proof of (5.3), for example by bounding at once truncated tails as opposed
to bounding individual terms, is left to the future. This might be simplified by using exact
CFT null constraints.

5.5 Resolution of infrared divergences in CFT3/AdS4

Dispersive bounds in D=4-dimensional flat space suffer from IR divergences in the presence
of gravity. To see why, consider integrating Cimp

2,u against a wavefunction f(p), producing
the sum rule∫ 1

0
dpf(p)

( 8πG
(M2p2) + 2g2 + g3M

2p2
)

=
∫ 1

0
dpf(p)〈Cimp

2,−M2p2 [m,J ]〉 . (5.52)

To place bounds on the left-hand side, we should search for f(p) such that∫ 1

0
dpf(p)Cimp

2,−M2p2 [m,J ] ≥ 0 ∀m ≥M,J = 0, 2, . . . . (5.53)

As usual, (5.53) implies that the transverse Fourier transform f̂(b) is positive. The com-
plication in D=4 dimensions is that positivity of f̂(b) implies

0 <
∫
d2~b f̂(|~b|) = lim

p→0

f(p)
p

, (5.54)

which means that the integral of f(p) against the graviton pole in (5.52) is infinite. In
other words, there is a fundamental tension between a finite action on graviton exchange
and positivity in impact parameter space. Of course, this simply reflects that the Regge
limit of tree-level graviton-exchange in impact parameter space is infrared divergent.

To proceed, we must relax one of these two conditions. The strategy in [11] is to first
allow the action on gravity to be divergent; one can then find positive functionals, for
example

fd=3 (p) = p (1− p)2
(
1310 + 1540p− 10318p2 − 4697p3 + 15680p4

)
. (5.55)

The leading term as p→ 0 is positive, in agreement with (5.54). Another crucial property
is that the first subleading term is negative:

fd=3(p)→ 1310p− 1080p2 + . . . ≡ a1p+ a2p
2 + . . . . (5.56)

This is necessary because we are in the second case of (5.39): n = d − 2, so the large-b
flat-space asymptotics controlled by the subleading term:

f̂(b) =
∫ 1

0
dp f(p)J0(bp) b�1−→

∫ ∞
0

dp
(
a1p+ a2p

2 + . . .
)
J0 (bp) = −a2

b3
+ . . . . (5.57)

28The formulas of the preceding sections also become inaccurate at large k. For example, terms in the
Regge series (3.27) go like k3

m2 at large k.
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The fact that the a1p term integrates to zero is an interesting quirk about Bessel functions.
Oscillatory contributions from p→ 1 vanish like ∼ 1/b4 thanks to the (1− p)2 factor and
can be ignored, see (5.38).

Although f(p) is positive, its action on gravity diverges. To get a meaningful bound,
ref. [11] then imposed a low-momentum cutoff pmin and considered the regulated functional

ωpmin ≡
∫ 1

pmin/M
dp f(p)Cimp

2,−M2p2 . (5.58)

This is a well-defined functional with a finite action on gravity (albeit logarithmically
sensitive on pmin), but it violates positivity for b larger than an IR cutoff bmax. We can
determine bmax by studying the large impact parameter limit of ωpmin :∫ 1

pmin/M
dp
(
a1p+ a2p

2 + . . .
)
J0(Mbp) = −a1p

2
min

2M2 −
a2

(Mb)3 + . . . . (5.59)

Locating where the two terms exchange dominance, one finds the curious scaling p2
min =

a2
a1(Mb3max) . Numerically, the resulting bound is:

g2 ≥ −17.64× 8πG
M2 log 0.19M

pmin
. (5.60)

This bound is only rigorous if one assumes additional information about the spectrum at
large impact parameters.

We will now show that the same functional, in CFT, proves a rigorous bound with the
more intuitive scaling pmin ∼ 1

RAdS
. By contrast with flat space, AdS possesses a built-in

IR regulator, which automatically cures the IR problems described above!
Consider the functional

ωAdS =
∫ M

0

dν

M
f (d=3)

(
ν

M

)
C imp

2,ν . (5.61)

Finiteness of the action on gravity follows from the modified form of the graviton propagator
in AdS:

−ωAdS|light =
∫ M

0

dν

M
f (d=3)

(
ν

M

)[ 8πG
ν2 + (d/2)2 + 2g2 + g3ν

2
]

(M � 1) , (5.62)

where we used (4.19) for the contribution of graviton exchange. The zero-momentum
logarithmic divergence has been cut-off at the inverse AdS radius.

We claim that ωAdS is rigorously positive at large M . By construction, it is positive
in the region of overlap between the bulk point and Regge limits 1/M � β � 1. For
1/M � β we split ωAdS into an improvement term and non-improvement term as before.
The improvement term is positive, and the non-improvement term in the Regge regime gives

lim
m→∞

m4ωAdS[∆, J ] ∝ a1Q1(β)
M2 + a2Q2(β)

M3 + . . . , (1/M � β) , (5.63)

where “. . . ” represents subleading corrections at large M .
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Figure 18. The functions Q1(β) and −Q2(β), multiplied by a standard factor (sinh β/β)1/2. Both
are everywhere positive. −Q2 dominates (5.63) in the flat space regime β � 1 but Q1 takes over
at large β.

Recall that in flat space, the term proportional to a1 vanished at large impact pa-
rameter, due to the identity (5.57). The consequence for AdS4 is that Q1(β) is smaller
than naively expected at small β: in the flat space regime, Q2 dominates. (Generically
Qn(β) ∼ 1/βn+1 at small β, but Q1(β) approaches a constant as β → 0.)

However, importantly, Q1(β) is everywhere positive. This is the crucial distinction
between AdS4 and the momentum cutoff in (5.59): the latter goes negative at large b, but
the former stays positive! The functional ωAdS thus remains positive even after Q1 and Q2
exchange dominance (at large β, Q2(β) is exponentially smaller than Q1(β)). It follows
that ωAdS[m,J ] is positive for 1/M � β at sufficiently large M . We plot the functions
Q1(β) and −Q2(β) for d = 3 in figure 18.

In conclusion, any positive functional in flat space, with logarithmically divergent
action on gravity, will uplift to an AdS functional where the graviton propagator is sim-
ply given an effective mass as in (5.62). For example, the functional (5.55) gives the
bound (5.60) with pmin = 3

2
1

RAdS
:

g2 +O
(
1/R2

AdS

)
≥ −17.648πG

M2 log (0.124MRAdS)

= −4516 cfree
T

∆2
gapcT

log (0.124 ∆gap) . (5.64)

We also find other functionals giving lower and upper bounds on the coefficient of stu, g3,
for example

− 10.4g2− 48.48πG
M2 log (0.23MRAdS) ≤ g3M

2 ≤ 3g2 + 2078πG
M2 log (0.11MRAdS) . (5.65)

The bounds (5.64) and (5.65) differ from the naive expectation from dimensional anal-
ysis by an additional logarithmic factor log(∆gap). This factor appears because the IR
divergences present in flat space reappear as one takes the AdS radius to infinity. If the
flat-space divergences could be resolved using a purely flat-space mechanism, then it should
be possible to remove the log term, obtaining stronger bounds.
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5.6 Bounds on anomalous dimensions

In the above, we have derived constraints on low-energy physics in AdS. The constraints
were expressed as bounds on various polynomial terms in the Mellin representation of the
low-energy correlator. In this subsection, we will express these bounds in terms of physical
observables, namely anomalous dimensions of light double-trace operators, denoted γn,`.

Recall that all the anomalous dimensions are small and of order G. We can measure
G from the coefficient of the stress tensor conformal block

G(z, z̄) = f2
φφTµνGd,2(z, z̄)+. . . , f2

φφTµν = 8πG
∆2
φΓ
(
d+2

2

)3

2π d2 (d−1)dΓ(d+2)
=

d∆2
φ

4(d−1)
cfree
T

cT
.

(5.66)
In the absence of higher-derivative contact diagrams, the anomalous dimensions γn,` with
` ≥ 2 would be given by their value in the sum of graviton exchange Witten diagrams in
the three channels. Let us denote this pure gravity value as γpure

n,` . We have for example

γpure
0,2 = 8πG

[
−32∆3

φ + 16(d− 6)∆2
φ + 8(4d− 11)∆φ + d3 + d2 + 10d− 24

]
×

Γ(∆φ + 1)2Γ
(
2∆φ − d

2 + 2
)

2π d2 (d− 1)d(d+ 2)(2∆φ + 3)Γ(2∆φ + 2)Γ
(
∆φ − d

2 + 1
)

Γ
(
∆φ − d

2 + 2
) . (5.67)

The bounds on couplings derived in this paper constrain the deviation

δγn,` = γn,` − γpure
n,` . (5.68)

If we assume that all couplings have the expected EFT scaling, then for all ` ≥ 2

|δγn,`|
8πG ≤ O

(
∆−2

gap

)
. (5.69)

At the leading order at large ∆gap, the difference δγn,` comes from the four-derivative
contact diagram, whose Mellin amplitude is M(s, t) = g2c2(s2 + t2 + t2), see section 4.2.
This diagram contributes only to the ` = 0, 2 anomalous dimensions. For example,

γ0,2|g2 = −
8Γ(∆φ + 2)2Γ

(
2∆φ − d

2 + 2
)

π
d
2 Γ(2∆φ + 4)Γ

(
∆φ − d

2 + 1
)2 . (5.70)

Now, in the above we have derived a lower bound on g2

g2
8πG ≥

α (d)
∆2

gap

[
1 +O

(
∆−2

gap

)]
, (5.71)

where α(d) < 0 is the horizontal location of the left tip of the exclusion plot in figure 2
and its generalization to other d [11]. Since γ0,2|g2 is always negative, this translates into
an upper bound on γ0,2

δγ0,2
8πG ≤

−α (d)
∆2

gap

8Γ (∆φ + 2)2 Γ
(
2∆φ − d

2 + 2
)

π
d
2 Γ (2∆φ + 4) Γ

(
∆φ − d

2 + 1
)2

[
1 +O

(
∆−2

gap

)]
. (5.72)
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Recall that we have also found a lower and an upper bound on g3 at fixed g2

g3
8πG ≥

[
α− (d)
∆2

gap

g2
8πG + β− (d)

∆4
gap

] [
1 +O

(
∆−2

gap

)]
g3

8πG ≤
[
α+ (d)
∆2

gap

g2
8πG + β+ (d)

∆4
gap

] [
1 +O

(
∆−2

gap

)]
.

(5.73)

g3 can be measured from the combination of δγ0,2 and δγ1,2 which vanishes in the g2
diagram

δγ1,2 −
(d+ 4) (∆φ + 2) (d− 4∆φ − 4)

2 (2∆φ + 5) (d− 2∆φ − 2) δγ0,2 =

g3
16 (d+ 4) Γ (∆φ + 3)2 Γ

(
2∆φ − d

2 + 4
)

π
d
2 Γ (2∆φ + 6) Γ

(
∆φ − d

2 + 1
)

Γ
(
∆φ − d

2 + 2
) [1 +O

(
∆−2

gap

)]
.

(5.74)

(5.73) translate to an upper and lower bound on this combination in terms of δγ0,2 and
∆gap. The contribution of pure gravity, g2 and g3 to the anomalous dimensions γ0,2 and
γ1,2 needed to make these bounds fully explicit are recorded in appendix G.

5.7 Classical gravity and the Classical Regge Growth conjecture

The authors of [80] formulated the Classical Regge Growth (CRG) conjecture, to the effect
that any causal classical S-matrix cannot grow faster than s2 in the Regge limit. This was
effectively proved (for gravity in AdS) in [81] by relating CFT correlators in the Rindler
wedge and in scattering kinematics in the classical limit of AdS/CFT.

The present paper establishes a slightly stronger, nonperturbative result: for any S-
matrix that can be obtained from a flat space limit of AdS/CFT, twice-subtracted dis-
persion relations hold. This effectively amounts to lim|s|→∞ |M(s, t)/s2| = 0 along any
complex s direction, for t < 0. The argument is that dispersive CFT sum rules with Regge
spin-2 converge when acting on any physical correlator. Via (2.61), such sum rules become
twice-subtracted flat-space dispersion relations in the flat-space limit M →∞.

To be fully precise, we established this result for amplitudes integrated against test
functions that have compact support in momentum space p and fast decay in impact
parameters (in the Regge limit). Such test functions suffice to prove all our bounds (in
D > 4) and these properties explain why RAdS does not appear in the bounds. This could
help address concerns raised in [82].

One interesting implication of the CRG conjecture is that (almost) any higher-deriva-
tive correction to Einstein gravity must be parametrically suppressed by the Compton
wavelength of new higher-spin states. This was first demonstrated in [12] for three-point
self-interactions, then generalized in [80] to four-point graviton self-interactions (this con-
straints, for example, terms in the effective Lagrangian with up to four powers of the
Riemann tensor as well as derivatives). Roughly, this shows that in any causal classical
theory of gravity, such as the Einstein-Hilbert action minimally coupled to matter of spin
2 or less, birefringence disappears at high energies [12]. This is an important result: we
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interpret this as saying that the causal structure of spacetime is unambiguous since it is
the same for all high-energy particles.29

The Regge scaling in [80] left open one exceptional term: in spacetime dimensions
D ≥ 7, an interaction proportional to

Mgggg ⊃
1
7!C

(
ε1 ∧ ε2 ∧ ε3 ∧ ε4 ∧ p1 ∧ p2 ∧ p3

)2
, (5.75)

where hµνi = εµi ε
ν
i denotes the polarization tensor of the i-th graviton. This structure (also

called second Lovelock Lagrangian [80]) vanishes identically if D < 7. Although it contains
six derivatives, it only grows like ∼ s2 in the Regge limit. This makes it analogous to the
g3stu scalar self-interaction which we discussed above. We thus believe that our techniques
can provide sharp lower and upper bounds on all higher-derivative couplings considered
in [80], including the coefficient C, in units of the G and the Compton wavelength of heavy
higher-spin particles.

In fact, in some cases, no work is needed: choosing graviton polarizations as the con-
stant tensor h⊥i = 1

2diag(1, 1,−1,−1) in four transverse dimensions, one finds that (5.75)
reduces to a scalar amplitude in D − 4 spacetime dimensions with

M⊥⊥⊥⊥ ⊃
−3C

8 stu . (5.76)

This effective scalar amplitude has a graviton pole, and bounds on g3 as in eqs. (2.22)
or (5.65) thus directly apply to C. Of course, using (D − 4)-dimensional partial waves
in this way is suboptimal (and only possible if D ≥ 8), but this example illustrates that
two-sided bounds on C are provable. The optimal bound are to be found by manipulating
twice-subtracted S-matrix dispersions relations in D-dimensions.

6 Conclusions

In this work, we applied bootstrap methods to derive constraints on the low-energy dynam-
ics of gravitational theories in anti-de Sitter space. We focused on the problem of bounding
higher-derivative couplings in the low-energy effective Lagrangian in theories containing a
light scalar weakly coupled to gravity. If the mass of the lightest non-EFT state is large
in AdS units, i.e. ∆gap � 1, it is expected that the bulk theory should be local down to
distances of order RAdS/∆gap. This means that any higher-derivative bulk coupling of mass
dimension δ < 0 should be suppressed by ∆δ

gap.
Over the years, strong evidence in favor of this expectation has accumulated. However,

previous arguments have only led to parametric bounds, meaning they give no control over
the O(1) coefficient in front of ∆δ

gap. Furthermore, in some cases (such as direct arguments
based on the Lorentzian inversion formula) the bounds scale with the Regge spin rather
than the mass dimension of the bulk coupling. In the present work, we overcame these

29A related quantum version of this statement, involving commutativity of shocks, is discussed in [21].
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shortcomings and derived sharp bounds that exhibit the correct mass dimension scaling.30

These sharp bounds remove the last psychological obstacle in embracing the proof of bulk
of locality from a CFT perspective. They also offer the hope that interesting theories
may live at the boundary of the allowed region in parameter space; a similar serendipitous
discovery [83] paved the way for the success of the conformal bootstrap program [84].

Our main tools were dispersive sum rules in conformal field theory. Applied to holo-
graphic CFTs, dispersive sum rules relate the bulk EFT couplings to contributions of states
above the UV cutoff ∆gap. The UV contributions satisfy positivity constraints as a conse-
quence of unitarity, leading to bounds on the EFT couplings.

The name “dispersive” means that states above ∆gap enter the sum rule only through
the double discontinuity of the four-point function. As such, dispersive CFT sum rules are
an anti-de Sitter analogue of dispersive sum rules for the flat-space S-matrix, in which only
the imaginary part of the amplitude enters at high energies. A distinct advantage of the
CFT case is that while S-matrix dispersion relations are not always rigorously established,
CFT sum rules are a rigorous consequence of unitarity and the operator product expansion.
Indeed, they can be thought of as particular projections of the standard crossing equation
equating the s- and t-channel OPEs. As discussed in section 5.7, our results support the
validity of twice-subtracted sum rules for gravitational S-matrices.

Our central conclusion is simple: twice-subtracted S-matrix sum rules uplift to rigorous
CFT sum rules. Sum rules that are positive for m > M in flat space, remain so for√

∆2 − J2 > ∆gap in CFT. This is nontrivial and requires looking at regions of large impact
parameter. Since S-matrix sum rules have previously been constructed which bound generic
higher-derivative corrections to lengths 1/M , this establishes sharp bounds in AdS effective
theories, implying that bulk physics is local down to the scale RAdS/∆gap. In the process,
we made a technical assumption (5.3) that infinite towers of higher-derivative couplings
cannot conspire to produce contributions enhanced at large ∆gap. While we consider the
converse possibility very unlikely, it would be nice to remove this assumption.

The O(1) coefficients in the bounds we obtain are identical to the corresponding bounds
in flat space. Given that the relation between CFT and S-matrix sum rules proceeded
through physically transparent saddle points, we expect that the same conclusion will
remain valid for spinning correlators. For example, rigorous bounds on stress tensor corre-
lators in a CFT with a large gap can now be obtained by studying graviton S-matrices in
flat space. It will be important to determine whether these bounds are optimal, or if AdS
is more constraining than flat space. This would seem necessary if one were to rule out a
low-energy theory of pure gravity. One reason to hope that stronger bounds may be possi-
ble in AdS is as follows. The condition τ ≥ ∆gap effectively yields an upper bound on the
AdS impact parameter, β < 2 log(m/M). Our functionals seem to be positive even above
this threshold, so potentially stronger bounds could be obtained by relaxing positivity in
this region.

30Note that we defined ∆gap to be the twist gap to the lightest heavy single-trace operator of arbitrary
spin, including J = 0, 2. On the other hand, [13] conjectured that a sufficient condition for locality of the
bulk theory is ∆J>2

gap � 1, where ∆J>2
gap is the twist gap to the lightest single-trace of spin four or higher. It

will be important to understand if/how our arguments extend to work under this weaker assumption.
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The technical centerpiece of our arguments is the family of dispersive CFT sum rules
Ck,ν , defined in (2.54). Here k denotes the number of subtractions, and ν is the momentum
transfer. Crucially, in the flat space limit, these sum rules reduce to simple S-matrix sum
rules Ck,u studied in our previous paper [11] and reviewed in section 2.1. That these sum
rules indeed agree in the flat space limit can be gleaned from the action of Ck,ν on states
with ∆ � 1 and fixed spin, see (2.58). Dispersive sum rules enjoy uniqueness properties
that make them easy to translate between spaces. For instance, Ck,ν admits a concise
representation in Mellin space (3.46). We used it to numerically test expansions around
various limits to high accuracy. The sum rules are also related to the Lorentzian inversion
formula at negative spin (D.13) and to superconvergence relations [25].

The mechanism by which flat space S-matrices are recovered from CFT is interesting.
The Ck,ν sum rules are integrals over a “spacelike scattering” region, where causality is clear
(certain commutators vanish), correlators are bounded, and integrals rigorously converge.
However, the image is blurred. The problem of reconstructing the S-matrix from this region
is somewhat analogous to reconstructing an object’s shape from the way it diffracts light.
Simple versions of this problem are solved by the Fourier transform, and one might say
that we borrowed a technique from optics to decode the hologram.

Technically, the S-matrix is recovered because a highly-oscillatory Fourier transform
is dominated by a complex saddle point where space and time are effectively exchanged,
see figure 9. On the saddle point, it becomes causally possible to focus beams within a
distance ∼ RAdS/∆gap of a bulk point. Since AdS curvature appears inessential for this
effect, we believe this method could potentially yield novel proofs of various properties of
flat space S-matrices.

Perhaps the most surprising finding of recent developments is the power of (relativistic)
causality. For example, the power-counting rules that underly effective theories have long
been justified by considering example UV completions; we now know that, in a causal
theory, such rules are implied by causality. One wonders to what extent causality as we
understand it is really an exact feature of our world, and what more it will teach us.
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A The space of allowed test functions in impact parameters

In (3.21) we defined functionals Ψk,γ whose action is perfectly localized in ηAdS: pro-
portional to δ(γ − ηAdS). An important point is that perfect localization is physically
impossible. Here we show that Ψk,γ must be interpreted as a distribution dual to a certain
space of test functions of γ. Specifically, consider the integral against a function f(γ),

∫ ∞
1

[dγ] f(γ)Ψk,γ =
∫ ∞

0

dν

2π
ρ(ν)f̃(ν)

γ2∆φ+k−1(ν)2

(
(−1)ka∆φ

Π̂k,ν + . . .
)
, (A.1)

where [dγ] = 2d−2(γ2 − 1) d−3
2 dγ and f̃(ν) is defined by

f(γ) =
∫ ∞

0

dν

2πρ(ν)f̃(ν)P 2−d
2 +iν(γ) , (A.2)

where ρ(ν) is the measure appearing in (2.50).
We expect that the moment Π̂k,ν is dual to Schwarz functions of ν. This follows from

the fact that it can be written as a linear combination of applications of the Lorentzian
inversion formula (see appendix D), and the Lorentzian inversion formula computes a
tempered distribution of ν.31 Consequently γ2∆φ+k−1(ν)−2f̃(ν) must be a Schwarz function
in order for the right-hand side of (A.1) to converge. Since γ2∆φ+k−1(ν)−2 ∼ eπν grows
exponentially at large ν, this means that f̃(ν) must fall off exponentially as e−πν .

An elegant way to express this resulting constraint on f(γ) is to parametrize γ = ξ+1/ξ
2 .

At large ν and |ξ| > 1, we have

P 2−d
2 +iν(γ) ∼ 1

(ξ − 1/ξ) d−2
2

 ξiν

q 2−d
2 +iν

+ ξ−iν

q 2−d
2 −iν

 , (ν � 1, |ξ| > 1) , (A.3)

where qj is defined in (2.51). For |ξ| < 1, we can use symmetry under ξ → 1/ξ. The
falloff condition on f̃(ν) then implies that f(γ) is analytic in the cut plane ξ ∈ C\ (−∞, 0].
This condition can be interpreted by writing the spacetime cross-ratio (2.40) in the same
form: η = ξ+ξ−1

2 : the region ξ < 0 realize the bulk-point kinematics of [23]. Therefore, the
allowed test functions f(γ) must admit an unobstructed analytic continuation between the
Rindler and bulk point kinematics.

Although the analyticity condition precludes strict δ-function localization, this result
provides us with a sufficiently vast supply of “bump functions” f(γ) to produce narrow
peaks around any desired value of ηAdS. We expect sharper functionals to exhibit more
violent oscillations when written as combinations of moments Πk,η.

31At least this is true when ∆φ is sufficiently small that the Euclidean four-point function is normalizable
with respect to the pairing discussed in [85]. For general ∆φ, one might need to subtract off a finite number
of partial waves from the four-point function to make it normalizable. Fully characterizing the type of
distribution in ν produced by the Lorentzian inversion formula is an open problem.
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B Formulas involving the Gegenbauer function

In this appendix, we collect some useful formulas involving the Gegenbauer function PJ(η),
defined by

PJ(η) = 2F1
(
−J, J + d− 2, d−1

2 , 1−η
2

)
. (B.1)

B.1 Fourier-Laplace transform of Gegenbauer functions

In evaluating moments at large-∆, one finds Fourier-Laplace transforms of Gegenbauer
functions. Here we prove the identity (3.18):∫

x>0
ddx|x|a−dP 2−d

2 +iν

(−x·y
|x||y|

)
ex·p = 2a−1π

d−2
2 γa(ν)×|p|−aP 2−d

2 +iν

(−p·y
|p||y|

)
, (B.2)

where p is any future timelike vector. The Gegenbauer function is proportional to a har-
monic function on AdSd−1, with x/|x| and y/|y| interpreted as bulk points. The general
form of this result is determined by symmetries (rotational and scale invariance) as well
as Casimir equation with respect to y; the nontrivial output of the following calculation is
the proportionality constant.

One method to do the integral is to use the “split” representation for the AdS har-
monic function as the integral over a boundary point z, interpreted as an embedding space
coordinate for CFTd−2:

PJ
(−x · ȳ
|x||y|

)
=
∫

Dd−2z

volSd−2

(−z · x
|x|

)J (−z · ȳ
|y|

)2−d−J
, (B.3)

where Dd−2z is the measure defined in (3.5). Substituting this expression into (B.2), the
fact that z2 = 0 now makes the integral over x elementary (for example, it can be done by
separating x into an energy, the angle with the z axis, and the norm of its perpendicular
components). These integrals produce gamma factors:∫

x>0
ddx|x|a−d

(−x · z
|x|

)∆+1−d
ex·p = 2a−1π

d−2
2 γa(∆)× |p|−a

(−z · p
|p|

)∆+1−d
, (B.4)

where
γa (ν) ≡ Γ

(
1+a− d2−iν

2

)
Γ
(

1+a− d2 +iν
2

)
. (B.5)

The proof of (B.2) is completed by using (B.3) in reverse. The infinite set of poles in
the result γa(ν) can be understood from the lightcone limit x2 → 0 of the integral, where
η →∞ and P(η) ∼ η 2−d

2 ±iν , causing divergences at complex ν.

B.2 Integral representation and positivity of derivatives

We now discuss the positivity of derivatives of P 2−d
2 +iν(cosh β) with respect to ν, which

is used in section 5.2. We begin from the split representation (B.3) of P 2−d
2 +iν(−x·y|x||y|) and

make the substitution x = (cosh β, sinh β, 0, . . . , 0) and y = (1, 0, . . . , 0):

P 2−d
2 +iν(cosh β) =

∫
Dd−2z

volSd−2 (−z · x)
2−d

2 +iν(−z · y)
2−d

2 −iν

= volSd−3

volSd−2

∫ π

0
dθ sind−3 θ(cosh β − sinh β cos θ)

2−d
2 +iν . (B.6)
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Changing variables from θ to

u ≡ log(cosh β − sinh β cos θ)
β

, (B.7)

we find32

P 2−d
2 +iν(cosh β) = volSd−3

volSd−2

(
β

sinh β

) d−2
2
∫ 1

−1
du

(2 cosh β − 2 cosh uβ
β sinh β

) d−4
2
eiuβν . (B.8)

The formula (B.8) yields an expression for derivatives around the forward limit ν = 0:

(−∂2
ν)kP 2−d

2 +iν(cosh β)
∣∣∣
ν=0

= volSd−3

volSd−2

(
β

sinh β

) d−2
2

2β2kR2k(β) , (B.9)

where

Rn(β) ≡
∫ 1

0
duun

(2 cosh β − 2 cosh uβ
β sinh β

) d−4
2
. (B.10)

The function Rn(β) is everywhere positive and interpolates smoothly between the limits

lim
β→0

Rn (β) =
Γ
(
d−2

2

)
Γ
(
n+1

2

)
2Γ
(
d+n−1

2

) , lim
β→∞

Rn (β) = 1
n+ 1

(
β

2

) 4−d
2
. (B.11)

B.3 The ν-moments Qn(β)

From (B.8), we can derive a useful integral representation for the function defined in (5.43):

Qn(β) =
∫ ∞

0
dν νnP 2−d

2 +iν(cosh β) . (B.12)

In fact, the integral (B.12) is naively divergent for n /∈ (−1, 0), and our formula will serve to
define Qn(β) outside this range. To obtain it, we integrate (B.8) over ν ∈ (0,∞), treating
the cases u > 0 and u < 0 separately by deforming the ν contour into the positive and
negative imaginary directions, respectively. We then combine these cases to give a single
integral over u ∈ [0, 1]:

Qn(β) ≡
∫ ∞

0
dν νnP 2−d

2 +iν(cosh β)

= volSd−3

volSd−2
−2 sin(πn2 )Γ(n+ 1)

βn+1

(
β

sinh β

) d−2
2
∫ 1

0

du

un+1

(2 cosh β − 2 cosh uβ
β sinh β

) d−4
2
.

(B.13)
32The representation (B.8) shows that P 2−d

2 +iν(cosh β) simplifies when d = 4, where it becomes propor-
tional to a Bessel function:

Piν−1(cosh β) = β

sinh β J̃(νβ) = sin βν
ν sinh β (d = 4),

where J̃(x) is defined in (2.23). In this case, we have

Qn(β) =
sin(πn2 )Γ(n)
βn sinh β (d = 4).
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Although the integral (B.13) may appear singular at u = 0, the correct prescription is to
define it by analytic regularization. This is clear from the representation (B.8), where we
can deform u into the upper half-plane to avoid the singularity.

We can now expand the integrand (B.13) in small or large β to determine the asymp-
totics (5.44). We can obtain a quickly convergent approximation to Qn(β) by instead
expanding the integrand in u and integrating term-by-term:(sinhβ

β

) d−2
2
Qn(β) =

2 d−2
2 Γ(d−1

2 )Γ(n)sin(πn2 )
√
πΓ(d−2

2 )
tanh

d−4
2 β

2

βn+ d−2
2

(
1+ n(d−4)β2

8(2−n)sinh2(β2 )
+. . .

)
.

(B.14)

Using the first few terms in this expansion, it is straightforward to plot Qn(β), as we do
in figure 16.

C Regge moments of heavy blocks

Here we present various formulas pertaining to the evaluation of block moments (2.49)

Π̂k,ν [G] =
∫ ∞

1
[dη]P 2−d

2 +iν(η)
∫ rmax(η)

0
dr rk−2dDiscs G(r, η) , (C.1)

and corresponding formulas for physical functionals Ck,ν . Here r =
√
ρρ̄ and η = ρ+ρ̄

2
√
ρρ̄

are radial and angular variables in the u-channel Regge limit (2.40), and P is a harmonic
function (2.13).

C.1 Integral representation in symmetrical frame

In this section, we gauge-fix conformally-invariant integrals like (3.8) in the conformal
frame (3.23), which we reproduce here:

(x1, x2, x3, x4;x5) =
(
−y, −x
−x2 , y,

x

−x2 ; e
)
, x, y > 0 . (C.2)

Recall that the cross-ratios (2.40) in this frame are given by

r = |x||y| , η = − x · y
|x||y|

. (C.3)

To evaluate (3.8) in this frame, we need to compute the Fadeev-Popov determinant
corresponding to the gauge-fixing factor δd(x1 + x3)δd(x−1

2 + x−1
4 )δd(x5 − e) needed to

reduce the symmetry to SO(d − 1) rotations acting on x, y. The relevant dim SO(d, 2) −
dim SO(d − 1) = 3d conformal generators are d translations and d boosts, together with
one rescaling and the d− 1 rotations acting nontrivially on e = (1,~0). The latter just give
a trivial Jacobian, and the rest gives a 2d× 2d determinant

2ddet
(

δνµ δνµx
2−2xµxν

δνµy
2−2yµyν δνµ

)
= 2d

(
1+2x·y+x2y2

)(
1−2x·y+x2y2

)(
1−x2y2

)d−2

= 2d+4r2√u′v′
(
1−r2

)d−2
.

(C.4)
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Substituting (3.16) into (3.8) then gives a concrete formula for the Regge moment (C.1) of
heavy blocks

Πk,Ω
[
Gs∆,J

]
2 sin2

(
π
τ−2∆φ

2

) = 42∆φ
(−1)J

b∆,J

∫
ddxddy (|x||y|)k+d−1 Ω

(
x · y
|x||y|

)
T (x, y) . (C.5)

To complete the formula, we must record the product of three-point functions in the
frame (3.23):

T (x, y) ≡ 25d−2−4∆φ
|〈φ1φ2O(x5, n)〉||〈OS(x5, n)φ3φ4〉|

|x|4d(−x2
13)∆̃φ(−x2

24)∆̃φ

, (C.6)

which can be written as:

T (x, y) = 1
(x2y2)∆̃φ

(1 + 2x · y + x2y2)d−1−2∆φ

(e− x)2(e− y)2

(
(e− x)2(e− y)2

(e+ x)2(e+ y)2

)∆+J
2

× [−n·Ve]J
[n·V−e]J+d−2 ,

Ve =
(
(1− 2e · x)(1− 2e · y)− x2y2

)
e+ (e+ y)2x+ (e+ x)2ȳ ,

(C.7)
where ȳ = −y− 2e(y · e) denotes the space-reflected vector. Expanding at large dimension
and spin, with x, y ∼ 1/∆, this reduces to

lim
∆,J�1

T (x, y) ≈ e2p·(x+ȳ)

(x2y2)∆̃φ

. (C.8)

The limit (C.8) substituted into (C.5) agrees precisely with that recorded in (3.17) for
the non-symmetrical frame, after a simple variable change x 7→ x/2, y 7→ ȳ/2. As noted
around (3.27), the symmetrical frame is useful to analyze subleading corrections when
x ∼ 1/m because only even powers of 1/m appear.

C.2 Expansion of physical functionals as sums of Regge moments

Finally, we consider the expansion of the physical kernel Ck,ν defined in (2.54) in Regge
moments. We record it here for convenience, after combining it with the formula (2.45) for
the Bk,v sum rule:

Ck,ν [G] =
∫ ∞

1
[dη]

∫ rmax(η)

0
dr Ω̃k,ν(r, η)dDiscs[G] , (C.9)

where the kernel is defined formally by the double integral transform

Ω̃k,ν (r,η) =
a∆φ

γ2∆φ+k−1 (ν)2 η r
k−2

(
1−r4

)∫ ∞
1

dη′
(
η′2−1

) d−3
2

(η2−1)
d−3

2
P 2−d

2 +iν
(
η′
)
×

× (−1)
k
2 (k−1)
π

∫ ∞
η′2

dv

(v−η′2)
k+1

2
+

θ
(
η2−v

)
(η2−v)

3−k
2

((
1+r2)2−4vr2

) k−3
2(

(1+r2)2−4η2r2
)k−1 . (C.10)
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Our task is to series-expand this at small r ∼ 1/m. A useful first step is to note that the
v dependence of the last factor is suppressed as r → 0. We thus expand out that factor
around v → η2:

((
1+r2)2−4vr2

) k−3
2(

(1+r2)2−4η2r2
)k−1 = 1(

(1+r2)2−4η2r2
) k+1

2

∞∑
n=0

(
3−k

2

)
n

n!
(
η2−v

)n( −4r2

(1+r2)2−4η2r2

)n
.

(C.11)
The v integral can then be computed term-by-term. The distributional nature of the
integrand makes this somewhat subtle; we find:

(−1)
k
2 (k−1)
π

∫ ∞
η′2

dv

(v−η′2)
k+1

2
+

θ
(
η2−v

)
(η2−v)

3−k
2 −n

= 2


δ
(
η′2−η2) , n= 0,(
k−1

2

)
n

(n−1)!
(
η2−η′2

)n−1
θ (η−η′) , n≥ 1.

(C.12)
The generic case could be derived simply by evaluating the integral as an analytic function
of k and n, in terms of Euler’s beta function, and continuing to the desired value. For n = 0,
that integral naively yields zero, however the singular power-counting of the integral ∼ 1

η′−η
makes the distributional term possible; by power-counting, distributional terms cannot
appear for n > 0. A good way to confirm the above expression is to integrate against test
functions which are powers of η, for which the left-hand-side evaluates to simple gamma
functions.

Combining the preceding two formulas, we express the kernel as a series:

Ω̃k,ν (r,η) =
a∆φ

γ2∆φ+k−1 (ν)2
rk−2 (1−r4)(

(1+r2)2−4η2r2
) k+1

2
×

×

P 2−d
2 +iν (η)+

∞∑
n=1

(
k−1

2

)
n

(n−1)!

(
3−k

2

)
n

n!

(
−4r2

(1+r2)2−4η2r2

)n
In (η)

 (C.13)

where

In (η)≡ η
∫ η

1
dη′
(
η′2−1

) d−3
2

(η2−1)
d−3

2

(
η2−η′2

)n−1
P 2−d

2 +iν
(
η′
)
. (C.14)

Remarkably, the integral In(η) can be written in closed form as a finite sum of P with
shifted indices! This may be seen by repeatedly applying the familiar shift identity for
multiplication by η, together with a similar identity for integration:

ηPj (η) = (j+d−2)Pj+1 (η)+jPj−1 (η)
2j+d−2 ,

∫ η

1
dη′
(
η′2−1

) d−3
2

(η2−1)
d−3

2
Pj
(
η′
)

= Pj+1 (η)−Pj−1 (η)
2j+d−2 ,

(C.15)

both of which can be proven straightforwardly via series expansion around η = 1.
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Eqs. (C.13) and (C.15) allow to express the action of Ck,ν to any desired order in 1/m
as a finite sum of Regge moments. For example,

γ2∆φ+k−1 (ν)2

a∆φ

Ck,ν = Π̂k,ν+ (d−2)(2(k−3)(k−1)+(k+1)(d−4))
4(ν2+1) Π̂k+2,ν

− (d+2iν)(2(k−3)(k−1)+(k+1)(d−2+2iν))
8ν (ν−i) Π̂k+2,ν−2i

− (d−2iν)(2(k−3)(k−1)+(k+1)(d−2−2iν))
8ν (ν+i) Π̂k+2,ν+2i+O(Πk+4) .

(C.16)

While ν-poles appear in individual terms, they are spurious and cancel between terms: this
is clear since all denominators are generated by eqs. (C.15). We also note that subleading
terms get shifted away from the principal series. The enhanced growth at large η could
cause potential divergences, however, the imaginary shift in ν never exceeds the shift in k,
and this ensures (see (B.5)) that all double-poles continue to cancel against γ2: Ck,ν is an
entire function of ν.

A nontrivial check is that the Regge moment expansion of the kernel Ω̃k,ν coincides
with that of conformal blocks entering the Lorentzian inversion formula at special values
of spin corresponding to superconvergence relations. An example is given in (D.10) below.

D The Ck,ν functionals as superconvergence relations

In this appendix, we establish a relationship between the Ck,ν functionals and “super-
convergence” sum rules [21, 25], which express the vanishing of certain null-integrated
commutators. This relationship leads to explicit formulas for the kernels Ω̃k,ν(r, η) defin-
ing Ck,ν in terms of conformal blocks. The relation to superconvergence also suggests a
natural way to extend the Ck,ν sum rules for spinning correlators.

We briefly review superconvergence relations. In [31] we showed that the sum rule
B2,v[G] = 0 is equivalent to the subtracted superconvergence sum rule∫ ∞

−∞
dx+

1

∫ ∞
−∞

dx+
3
v′−u′

u′v′
〈Ω|φ(x4)

[
φ
(
x+

1 ,x
−
1 = 0,~x1

)
,φ
(
x+

3 ,x
−
3 = 0,~x3

)]
φ(x2) |Ω〉= 0 .

(D.1)

Here, we use lightcone coordinates x = (x+, x−, ~x). The cross-ratios u′, v′ are built from
the positions x1, x2, x3, x4 in the usual way (with the iε prescription appropriate for the
given operator ordering). The left-hand side of (D.1) vanishes because the operators φ(x1)
and φ(x3) in the commutator are everywhere spacelike-separated and the integral is con-
vergent [21]. The parameter v that labels different sum rules is a function of x2, x4 and
the transverse positions ~x1, ~x3.

By choosing different kinematics for the operators φ(x1) · · ·φ(x4), we obtain other
equivalent statements of the same set of sum rules. For our purposes, it is useful to
adopt the kinematics of [25] in which (D.1) becomes related to the Lorentzian inversion
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formula [17]. To write it down, let us introduce the u-channel Lorentzian inversion integral

Φk,ν [G] ≡ 1
4kq 2−d

2 +iν

∫ −∞
0

∫ −∞
0

dwdw̄|w − w̄|d−2Gu
k+d−1, 2−d2 +iν(w, w̄)dDiscs[G] , (D.2)

where qJ is defined in (2.51). We have defined Φk,ν so that it has a Regge moment expansion
of the form33

Φk,ν [G] ∼ Π̂k,ν +O(Πk+2) . (D.3)

For reference, the statement of the Lorentzian inversion formula in terms of Φk,ν is

C

(
d

2 + iν, J

)
= 22J−1κ d

2 +iν+Jq 2−d
2 +iνΦJ,ν [G] , κβ ≡

Γ(β/2)4

2π2Γ(β − 1)Γ(β) , (D.4)

where we have analytically continued from even spin J , so that the s and t channel dDisc’s
contribute equally, giving a factor of 2.

A result of [25, 31] is that (D.1) is equivalent to vanishing of the Lorentzian inversion
integral at the special spin k = −1, applied to the modified correlator v′−u′

u′v′ G:

Φ−1,ν

[
v′ − u′

u′v′
G
]

= 0 , ∀ ν ∈ [0,∞) . (D.5)

We can obtain an even simpler relationship between C2,ν and Lorentzian inversion using
the following observation. Using standard identities for conformal blocks [86], we find that

(
v′ − u′

)
G̃−1,ν (w, w̄) =

2−d
2 + iν

iν
G̃−2,ν+i (w, w̄)−

2−d
2 − iν
iν

G̃−2,ν−i (w, w̄) , (D.6)

where

G̃k,ν(w, w̄) ≡
Gu
k+d−1, 2−d2 +iν(w, w̄)

q 2−d
2 +iν

. (D.7)

The right-hand side of (D.6) is an invertible ν-dependent finite difference operator applied
to G̃−2,ν(w, w̄).34 Thus, the subtracted superconvergence relation (D.5) is equivalent to

Φ−2,ν

[ G
u′v′

]
= 0 , ∀ ν ∈ [0,∞) . (D.8)

Superconvergence sum rules involving the Lorentzian inversion formula at negative even
spins k = −2,−4, . . . were not discussed in [25], but they exist as well. We explain how
they arise in section D.2.

33Recall that the leading behavior of a u-channel conformal block as r → 0 is Gu∆,J ∼ (4r)∆qJPJ(η)+ . . . .
To obtain (D.3) we must additionally take into account the Jacobian for translating from w, w̄ to r, η, and
a tricky factor of 2 accounting for symmetry under w ↔ w̄.

34To see that it is invertible, we can study the leading Regge moment of (D.6), which is the elementary
Gegenbauer identity

ηP 2−d
2 +iν(η) =

2−d
2 + iν

2iν P 2−d
2 +iν−1(η)−

2−d
2 − iν

2iν P 2−d
2 +iν+1(η) .

This shows that the finite difference operator on the right-hand side is equivalent to multiplication by η in
η-space, which is invertible because η ∈ [1,∞). To obtain its inverse, we transform from ν-space to η-space,
divide by η, and transform back to ν space.
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D.1 The Ck,ν functionals as special cases of Lorentzian inversion

We can now relate the superconvergence relation Φ−2,ν to C2,ν using uniqueness properties
of dispersive sum rules. A dispersive functional can be characterized by the list of double-
twist Regge trajectories on which it does not have double zeros (its “support”) together
with its expansion into Regge moments. For example, ref. [31] showed that any spin-2
convergent sum rule with double zeros on all but the leading trajectory ∆−J = 2∆φ, must
be a linear combination of B2,v functionals. The correct combination can then be found
simply by matching the leading Regge moment. This predicts the following exact relation:

γ2∆φ+2−1(ν)2

a∆φ

C2,ν [G] = Φ−2,ν

[ G
28u′v′

]
. (D.9)

In particular, taking into account the Jacobian relating w, w̄ to r, η, we obtain an explicit
expression for the kernel Ω̃2,ν appearing in C2,ν (C.9):

γ2∆φ+2−1(ν)2

a∆φ

Ω̃2,ν(r, η) = (4r)3−d (1− r2)d−2

(1 + r2)2 − 4r2η2

Gu
d−3, 2−d2 +iν(w, w̄)

q 2−d
2 +iν

. (D.10)

We have verified that this relation holds to high order!
How about higher-subtracted sum rules? In the main text, we constructed Ck,ν ac-

cording to the following specifications: it should be a dispersive functional with support on
the first k/2 double-trace families, and it should be a pure Π̂k,ν moment in the Regge limit.
The result (D.9) reveals another way to construct such functionals using Φ−2,ν , Φ−4,ν , etc..
We expect these constructions to be related. Indeed, by matching Regge moments, we find
for example

γ2∆φ+4−1 (ν)2

a∆φ

C4,ν [G] = Φ−4,ν
[
G(4)

]
−

2 (d− 2)
(
d−8

2 − iν
) (

d−8
2 + iν

)
(d− 8) (ν + i) (ν − i) Φ−2,ν

[
G(4)

]

+

(
d−8

2 + iν
) (

d−4
2 + iν

) (
d
2 + iν

)
ν (ν − i)

(
d−6

2 + iν
) Φ−2,ν−2i

[
G(4)

]

+

(
d−8

2 − iν
) (

d−4
2 − iν

) (
d
2 − iν

)
ν (ν + i)

(
d−6

2 − iν
) Φ−2,ν+2i

[
G(4)

]
, (D.11)

where we have defined the spin-2k-subtracted correlator

G(k) (u′, v′) ≡ G (u′, v′)
(28u′v′)k/2

. (D.12)

The poles in ν on the right-hand side of (D.11) are spurious — they cancel among the
different terms. The agreement between the left- and right-hand sides of (D.11) can be
argued as follows. Firstly, Φ−4,ν [G(4)], Φ−2,ν [G(4)] span the space of dispersive sum rules
with spin-4 or higher Regge decay that are nonvanishing on only the first two double-twist
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trajectories. Any linear combination of these can thus be fixed by its first two Regge
moments. Further Regge moments can then be used as tests of (D.11). In general, we find

γ2∆φ+k−1 (ν)2

a∆φ

Ck,ν [G] = Φ−k,ν
[
G(k)

]
+ . . . , (D.13)

where “. . . ” are a finite sum of higher-spin Φ’s with shifted arguments.
The behavior of functionals at large-ν is important for our discussion of the bulk point

saddle in sections 3.4 and 4.3. Any dispersive functional with the same leading Regge
moment and the same large-ν limit would give similar results. We note that at large-ν, the
kernel for Ck,ν satisfies

γ2∆φ+k−1 (ν)2Ck,ν [G] = γ2∆φ+l−1 (ν)2Cl,ν
[
G( k−l4 )

]
×
(
1 +O

(
1/ν2

))
. (D.14)

This suggests a possible alternative set of functionals C̃k,ν that could play the same role as
Ck,ν in this paper:

γ2∆φ+k−1(ν)2

a∆φ

C̃k,ν [G] =


Φ−2,ν

[
G( k−2

4 )
]

if k ≡ 2 mod 4
γ2∆φ+4−1(ν)2

a∆φ
C4,ν

[
G( k−4

4 )
]

if k ≡ 0 mod 4 ,
(D.15)

where C4,ν is given by (D.11) (or any similar dispersive functional with the same large-ν
limit). Analogous sum rules could be useful for spinning correlators.

The relation (D.10) together with (D.14) also gives a way to compute the large-ν limit
of the kernel for Ck,ν . The large-ν limit of (D.10) is controlled by the large-spin limit of a
conformal block, which was computed in [24]. Using that result, we find

lim
ν�1

γ2∆φ+k−1 (ν)2

a∆φ

Ω̃k,ν (r, η) =
(
1− r4) rk−2(

(1 + r2)2 − 4r2η2
) k+1

2
P 2−d

2 +iν (η) . (D.16)

Note that P 2−d
2 +iν(η) is given by (A.3) at large-ν, but we have chosen to keep it explicit

here. We could alternatively arrive at this result by noting that at large-ν, the v integral
in (2.45) localizes to v = η2.

D.2 Superconvergence at spins J = −2,−4, . . .

In this section, we given a direct argument for the existence of superconvergence sum rules

ΦJ,ν [G] = 0 , J = −2,−4, . . . , (D.17)

which are valid whenever the four-point function G decays faster than the given spin J in
the Regge limit. Such sum rules usually cannot be applied to physical correlators, since
physical correlators typically do not possess spin −2 or faster Regge decay. However, they
can be applied to subtracted correlators like G(k) defined in (D.12).

We follow the notation and conventions of [24]. We start from the bilocal integral used
in the construction of (even signature) light-ray operators

O∆,J(x0, z) =
∫
ddx1d

dx2K∆,J(x1, x2;x0, z)φ(x1)φ(x2) + (1↔ 2) . (D.18)
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Here, the kernel K is given by

K∆,J (x1, x2;x0, z) = r∆,J

(
−2z · x20x

2
10 + 2z · x10x

2
20
)1−∆

(
x2

12
) 2d−2∆φ−(1−J)+(1−∆)

2
(
−x2

10
) (1−J)+(1−∆)

2
(
−x2

20
) (1−J)+(1−∆)

2

,

(D.19)

where

r∆,J = −i
Γ
(
J + d

2

)
Γ (d+ J −∆) Γ (∆− 1)

πd−1Γ (J + 1) Γ
(
∆− d

2

)
Γ
(
d−∆+J

2

)2 . (D.20)

See [24] for a description of the region of integration for (D.18). The key property of O∆,J
is that its (time-ordered) correlation function with a pair of other operators is proportional
to C(∆, J):

〈φ(x4)O±∆,J(x0, z)φ(x3)〉 = C(∆, J)× (standard factors) . (D.21)

We see immediately from (D.20) that the prefactor r∆,J vanishes when J = 0,−1, . . . .
However, this does not imply that O∆,J itself vanishes, since the zero in r∆,J can be
cancelled by a pole in the kinematic factors in (D.19), leaving a nontrivial distribution.
Explicitly taking the limit J → −m with m = 2, 4, . . . using the techniques of [87], we find

O∆,−m(x0, z) = i
Γ(m)Γ(d2 −m)Γ(d−m−∆)

πd−1Γ(∆− d
2)

Γ(∆−m
2 )2

Γ(d−∆−m
2 )2

×
∫
ddx1d

dx2
(−2z · x20)m−∆

2 (−2z · x10)m−∆
2

(x2
12)

2d−2∆φ−m−∆
2

×
∑

k+l=m−1
(−1)l

(∆−m
2 )k(∆−m

2 )l
k!l!

δ(k)(−x2
10)δ(l)(−x2

20)
(−2z · x20)k(−2z · x10)l [φ1(x1), φ2(x2)] .

(D.22)

We see that the integrand contains a distribution with support where x2
10 and x2

20 si-
multaneously vanish, so that φ(x1) and φ(x2) are constrained to be spacelike-separated.
Furthermore, the integrand is proportional to the commutator [φ(x1), φ(x2)]. It follows
that (D.22) vanishes inside a correlation function, as long as the integral converges. The
expression (D.22) is valid as long as d/2 −m does not vanish. It would be interesting to
understand what replaces the kernel (D.22) when d/2−m vanishes.

E Computing ω|light from the Regge moments of ω

In this appendix, we explain how the light contribution to a dispersive sum rule

ω|light =
∑

∆,J light
p∆,Jω[Gs∆,J ] (E.1)
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can be computed from a contour integral around the u-channel Regge limit. Suppose that
ω is a physical functional whose action on blocks is defined by a contour integral of the form

ω[Gs∆,J ] =
∫ 0

−∞

∫ 0

−∞

dwdw̄

(2πi)2 dDiscs
[
H(w, w̄)Gs∆,J(w, w̄)

]
. (E.2)

The kernel H(w, w̄) should be such that dDiscs can be commuted through H(w, w̄) up to
distributional terms with support away from the u-channel Regge limit. This is indeed the
case for the Bk,v functionals, see (2.37).

We begin by approximating the light dimensions and OPE coefficients by those of a
tree-level bulk effective field theory whose four-point function is GEFT. This gives

ω|light =
∫ 0

−∞

∫ 0

−∞

dwdw̄

(2πi)2 dDiscsK(w, w̄), where K(w, w̄) ≡ H(w, w̄)GEFT(w, w̄) .

(E.3)

Note that GEFT may grow with spin > 1 in the Regge limit w, w̄ →∞. However, we assume
that dDiscsGEFT(w, w̄) decays sufficiently quickly along the negative w, w̄ axes that (E.3)
is well-defined. This is indeed true when GEFT is any finite sum of Witten diagrams.

Our goal is to reexpress (E.3) as a contour integral along an “arc at infinity” near the
u-channel Regge limit. Our strategy will be to deform the w, w̄ contours towards the right
cut w, w̄ ∈ [1,∞). The integral of dDisct along the right cut is related to ω|light by crossing
anti-symmetry of ω.

We begin by writing

ω|light = lim
R→∞

Ileft(R) , (E.4)

where

Ileft (R) =−1
2

∫ 1
2

−R

dw

2πi

∫ 1
2

−R

dw̄

2πi
[K (w+iε, w̄+iε)+K (w−iε, w̄−iε)−K (w+iε, w̄−iε)−K (w−iε, w̄+iε)] . (E.5)

Here, we used the fact that K(w, w̄) has no branch cut in a neighborhood of w, w̄ ∈ [0, 1]
so that we can extend the integration region to include the segment w, w̄ ∈ [0, 1/2].

Now consider the four different terms in the integrand of (E.5). The last two terms
are in Euclidean kinematics, where the imaginary parts of w and w̄ have opposite signs.
The four-point function in this region is controlled by the u-channel OPE. The integrand
is suppressed at large w or large w̄, so we can safely rotate the w and w̄ contours to lie
along [1

2 , R+ 1], up to a contribution near infinity that is suppressed by a power of R,

∫ 1
2

−R

dw

2πi

∫ 1
2

−R

dw̄

2πi (−K(w + iε, w̄ − iε)−K(w − iε, w̄ + iε))

=
∫ 1

2

R+1

dw

2πi

∫ 1
2

R+1

dw̄

2πi (−K(w + iε, w̄ − iε)−K(w − iε, w̄ + iε)) +O(1/R#) . (E.6)
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Now consider the first two terms in (E.5), where the imaginary parts of w and w̄ have
the same sign. These terms are in Regge kinematics. Let us change variables to radial and
angular coordinates centered around w = w̄ = 1

2 :

w − 1
2 = yt , w̄ − 1

2 = y/t . (E.7)

The integration region is t ∈ [0,∞] and y ∈ [0,−Rt], where Rt ≡ −(R + 1
2) min(t, 1/t).

Consider the term where w, w̄ are slightly below the left cut. This is equivalent to choosing
y slightly below the left cut. We now rotate the y contour to lie below the right cut, keeping
t fixed. In doing so, we pick up a contribution from an arc near infinity with radius Rt,
which we denote y

Rt :∫ 1
2

−R

dw

2πi

∫ 1
2

−R

dw̄

2πiK (w−iε, w̄−iε)

= 1
(2πi)2

∫ ∞
0

dt

t

∫ 0

−Rt−iε
(−2ydy)K (w,w̄)

= 1
(2πi)2

∫ ∞
0

dt

t

(∫ 0

Rt−iε
+
∫
y

Rt

)
(−2ydy)K (w,w̄)

=
∫ 1

2

R+1

dw

2πi

∫ 1
2

R+1

dw̄

2πiK (w−iε, w̄−iε)+ 1
(2πi)2

∫ ∞
0

dt

t

∫
y

Rt

(−2ydy)K (w,w̄) . (E.8)

Similarly, we have∫ 1
2

−R

dw

2πi

∫ 1
2

−R

dw̄

2πiK (w + iε, w̄ + iε)

=
∫ 1

2

R+1

dw

2πi

∫ 1
2

R+1

dw̄

2πiK (w + iε, w̄ + iε) + 1
(2πi)2

∫ ∞
0

dt

t

∫
yRt

(−2ydy) K (w, w̄) . (E.9)

Putting everything together, we find

Ileft (R)−Iright (R) =−1
2

1
(2πi)2

∫ ∞
0

dt

t

(∫
y

Rt

(−2ydy)K (w,w̄)+
∫
yRt

(−2ydy)K (w,w̄)
)

+O
(
1/R#

)
, (E.10)

where Iright is an analogous integral to Ileft with both w and w̄ wrapping the right cut.
We are interested in applications of this formula to Witten contact and exchange

diagrams, which have the property that dDiscs vanishes close to the u-channel Regge limit.
We assume that the kernel H does not modify this property. Thus, we have

K (w+iε, w̄+iε)+K (w−iε, w̄−iε)−K (w+iε, w̄−iε)−K (w−iε, w̄+iε)→ 0
(|w|, |w̄|� 1) . (E.11)

Also in the large |w|, |w̄| regime, the last two terms go to zero, since they are associated to
the OPE regime in the u channel. Thus, we actually have

K(w + iε, w̄ + iε) +K(w − iε, w̄ − iε)→ 0 (|w|, |w̄| � 1) . (E.12)
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Consequently, for large R, the integral over the upper arc yRt becomes minus the contin-
uation of the integral over the lower arc y

Rt . In the limit R→∞, we can replace the sum
of integrals with a single circular contour

lim
R→∞

[Ileft (R)− Iright (R)] = lim
R→∞

1
2

1
(2πi)2

∫ ∞
0

dt

t

∫
	Rt

(−2ydy) K+ (w, w̄)

= 1
2

1
(2πi)2

∫ ∞
0

dt

t

∮
(−2ydy) K+ (w, w̄) . (E.13)

where the final contour encircles y = ∞. Here, K+ indicates that K(w, w̄) should be
evaluated for w, w̄ in the upper half-plane, and analytically continued from there.

When ω is s-t antisymmetric, Ileft = −Iright, so we obtain

ω|light = 1
4

1
(2πi)2

∫ ∞
0

dt

t

∮
(−2ydy)K+(w, w̄) . (E.14)

Finally changing variables to r, η, we find

ω|light = −1
4

1
(2πi)2

∫ ∞
1

dη

∮
dr
∂(w, w̄)
∂(r, η) K+(w, w̄) , (E.15)

where ∂(w,w̄)
∂(r,η) = 1+(2−4η2)r2+r4

8r3
√
η2−1

and now the contour encircles r = 0 counterclockwise. To
summarize, our result is that ω|light can be computed by replacing∫

dr(· · · )dDiscG → −1
4

∮
dr(· · · )G+ . (E.16)

Formula (4.4) follows.

F Heavy moments at large ∆, J, ν

In sections 3.2 and 3.4, we computed the action of Ck,ν on heavy blocks Gs∆,J in two limits:
the bulk point limit of large ∆ with small J/∆ (with arbitrary ν ≤ ∆), and the Regge
limit of large ∆, J with fixed ν. In this appendix, we compute Ck,ν [Gs∆,J ] in a third limit
of simultaneously large ∆, J, ν.

As in section 3.4, we begin with the exact expression (3.25) for heavy moments
Π̂k,ν [Gs∆,J ] and look for saddle points. We first plug in the split representation of the
Gegenbauer function

|Ve|J

|V−e|J+d−2PJ
( Ve · V−e
|Ve||V−e|

)
=
∫

Dd−2z

volSd−2 (−Ve · z)J (V−e · z)2−d−J . (F.1)

This gives a simultaneous integral over x, y, z, where z = (1, ~n) with ~n ∈ Sd−2.
At large ∆, J, ν, we find saddle points where x, y, z all lie in the two-dimensional ±

plane, with vanishing transverse positions ~x = ~y = ~z = 0. There are two saddles that
dominate the integral for ν < ∆− J . The first is(

x+,x−,y+,y−,
)

=
(
−iα−

√
α2−ν2

ν
, i
ᾱ−
√
ᾱ2−ν2

ν
, i
ᾱ−
√
ᾱ2−ν2

ν
,−iα−

√
α2−ν2

ν
,

)
,(

z+,z−
)

= (2,0) , (F.2)
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where α, ᾱ are given by (2.30). Note that when J is small, the saddle point (F.2) becomes
one of the bulk point saddles (3.33). The second dominant saddle is obtained by swapping
the ± directions and replacing ν → −ν. The effect of this second saddle is to add a complex
conjugate term to the final formula.

Evaluating the saddle point integral and plugging in the extra factors in the large-ν
limit of kernel for Ck,ν (D.16), we find

lim
∆,J,ν→∞

Ck,ν [∆, J ] = (−1)J (Sν (α, ᾱ) + h.c.) , (F.3)

where

Sν (α, ᾱ) ≡
2d−3Γ

(
d−1

2

)
π1/2

(
iα2ᾱ2

ν (ᾱ2 − α2)

) d−2
2 αᾱ+

√
α2 − ν2

√
ᾱ2 − ν2

(αᾱ)
k+1

2 (α2 − ν2)
k+3

4 (ᾱ2 − ν2)
k+3

4

×

(√
α2−ν2+iν

α

)α (√
ᾱ2−ν2−iν

ᾱ

)ᾱ (√
α2−ν2+α√
ᾱ2−ν2+ᾱ

)iν
(
ᾱ
√
α2−ν2+α

√
ᾱ2−ν2

2

) d
2−2

. (F.4)

One can check using (A.3) that the large (∆, J) limit of (F.3) agrees with the large ν limit
of the Regge limit formula (2.57), and that the large (∆, ν) limit of (F.3) agrees with the
large-J limit of the bulk point formula (2.58).

F.1 Oscillatory contribution to ωAdS

In section 5.3.2, we checked that the oscillatory contribution to ωunimproved
AdS coming from

the ν = M endpoint of the integral (5.41) is not large when m � M . In this appendix,
we check that this conclusion is unchanged for m ∼ M and J � 1. In other words,
oscillatory terms are not enhanced outside the regime m�M , even outside the flat-space
region β � 1.

To compute the oscillatory contribution to ωunimproved
AdS , we expand the integral

ωunimproved
AdS [∆, J ] =

∫ M

0

dν

M
f

(
ν

M

)
C2,ν [∆, J ] (F.5)

near ν = M . We are interested in the case m,J � 1, but not necessarily m � M . Since
ν is large, we must use (F.3). Writing ν = M(1− x), we have

Sν(α, ᾱ) ≈ SM (α, ᾱ)e−iMφx , (F.6)

where

φ ≡ log
√
α2 −M2 + α√
ᾱ2 −M2 + ᾱ

. (F.7)

Using f(p) ∼ f1(1− p)l, the integral near ν = M can be approximated by

ωunimproved
AdS [∆,J ]

∣∣∣
ν=M

≈
∫ ∞

0
dxf1x

lSM (α,ᾱ)eiMφx+h.c.= il+1f1Γ(l+1)
(Mφ)l+1 SM (α,ᾱ)+h.c.

(1/M�β) . (F.8)

In the limit of large M with m2 = αᾱ ≥ M2, this contribution scales like m−4M−
d
2−l,

which is the same as the oscillatory term (5.38) in the bulk point limit. In particular, (F.8)
is subdominant to (5.42) assuming l > n+ 1− d

2 .
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G Some anomalous dimensions

Here we record the anomalous dimensions coming from various terms in the EFT. Let us
start with the four-derivative contact diagram, defined by the Mellin amplitude35 M(s, t) =
g2c2(s2 + t2 + u2). Its ` = 2 anomalous dimensions take the form

γn,2|g2 =

−
Γ
(
d
2 +n+2

)
Γ(n+∆φ+2)Γ

(
∆φ− d

2 +n+ 1
2

)
Γ
(
2∆φ− d

2 +n+2
)

2dπ d2 Γ
(
d+4

2

)
Γ(n+1)Γ

(
∆φ+n+ 5

2

)
Γ
(
∆φ− d

2 +n+1
)

Γ(2∆φ−d+n+1)
.

(G.1)

In the case of the six-derivative contact M(s, t) = g3c3 stu, we find

γn,2|g3 =
[
∆φ (−d+4∆φ+4)+n(−d+4∆φ+4)+2n2

]
×

Γ
(
d
2 +n+2

)
Γ(n+∆φ+2)Γ

(
−d

2 +n+∆φ+ 1
2

)
Γ
(
−d

2 +n+2∆φ+2
)

2dπ d2 Γ
(
d
2 +2

)
Γ(n+1)Γ

(
n+∆φ+ 5

2

)
Γ
(
−d

2 +n+∆φ+1
)

Γ(−d+n+2∆φ+1)
.

(G.2)

Finally, let us record the anomalous dimensions in pure gravity, i.e. in the sum of the
graviton exchange Witten diagram in the three channels, normalized as in (5.66). For
` = 2, we find

γpure
0,2 = 8πG

[
−32∆3

φ+16(d−6)∆2
φ+8(4d−11)∆φ+d3+d2+10d−24

]
×

Γ(∆φ+1)2 Γ
(
−d

2 +2∆φ+2
)

2πd/2 (d−1)d(d+2)(2∆φ+3)Γ(2∆φ+2)Γ
(
−d

2 +∆φ+1
)

Γ
(
−d

2 +∆φ+2
) (G.3)

and

γpure
1,2 =

8πG
[
d5 (∆φ+1)2+d4

(
−23∆2

φ−110∆φ−111
)

+

2d3
(
8∆4

φ+160∆3
φ+721∆2

φ+1174∆φ+641
)
−

8d2 (∆φ+1)(2∆φ+3)(2∆φ+5)
(
∆2
φ+15∆φ+27

)
+

16d
(
8∆5

φ+84∆4
φ+314∆3

φ+521∆2
φ+377∆φ+88

)
−

128(∆φ+1)2 (∆φ+2)(2∆φ+3)(2∆φ+5)
]
×

Γ(∆φ+1)2 Γ
(
−d

2 +2∆φ+3
)

2(d−1)d(d+2)(d+4)πd/2 (2∆φ+5)Γ(2∆φ+4)Γ
(
−d

2 +∆φ+1
)

Γ
(
−d

2 +∆φ+3
) .
(G.4)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

35Our convention for the Mellin representation is in (3.39) and the normalization cn is given in (4.9).
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