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1 Introduction

Dimensional Regularization (DReg) [1–4] is one of the most commonly employed schemes
for practical calculations in perturbative quantum field theories. However, in this scheme,
the γ5 Dirac matrix requires a special treatment since not all its 4-dimensional properties
have straightforward d-dimensional extensions. This fact complicates calculations, and
various alternative treatments have been proposed; the issue of γ5 has been known for a
long time [5–12], but is of increasing importance in current investigations, see refs. [13–26]
and ref. [12] for an extensive overview of the situation and further references.
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In this paper, we follow the “Breitenlohner-Maison-’t Hooft-Veltman” (BMHV)
scheme [4, 27–29] of Dimensional Regularization. In this scheme γ5 is non-anticommuting
in d dimensions, but the scheme is rigorously established at all orders [30–33]. Gauge in-
variance and the related BRST symmetry are broken in intermediate steps by the modified
algebraic relations.

For these reasons, the renormalization and counterterm structure in the BMHV scheme
involves several BMHV-specific complications: the ultraviolet (UV) divergences cannot be
cancelled by counterterms generated by field and parameter renormalization; additional,
UV divergent evanescent counterterms (corresponding to operators which vanish in strictly
4 dimensions) are needed; and the breaking of BRST symmetry needs to be repaired by
adding finite, symmetry-restoring counterterms.

In a previous paper [34] we have started a research programme on the rigorous practical
application of this BMHV scheme to chiral gauge theories. In that reference we treated a
general non-abelian massless gauge theory with fermionic and scalar matter fields, and we
determined the full BMHV counterterm structure at the one-loop level. In particular we
established a method to determine the required symmetry-restoring counterterms which
compensate the breaking of BRST symmetry. The same method was developed and ap-
plied earlier in ref. [35] to study one-loop symmetry breakings in the BMHV scheme, and
refs. [36–38] used the same strategy to study supersymmetry in the context of dimensional
reduction up to the 3-loop level.

In the present work we present the first extension of this programme to the two-loop
level. For the sake of clarity and to highlight conceptual and methodological issues, we
particularize our calculations to the case of an abelian gauge theory with chiral fermions,
a chiral QED (“χQED”) model. Our goal is to determine the full two-loop structure of the
special counterterms in the BMHV scheme, i.e. the determine evanescent UV divergences,
the deviations from parameter and field renormalization, and ultimately the symmetry-
restoring counterterms.

The outline of the paper is as follows. After a brief reminder of notation and properties
of the scheme in section 2 we define the abelian model in section 3. In this section we also
set up the Slavnov-Taylor identity corresponding to BRST invariance and show that it
is already broken at tree-level in the BMHV scheme. Section 4 summarizes the general
strategy of renormalization and lays out the general procedure for finding UV divergent and
finite symmetry-restoring counterterms. Sections 5, and 6 contain the one-loop counterterm
results for this model. Both the singular, including the evanescent ones, as well as the
BRST-restoring finite counterterms can also be derived by particularizing our previously
obtained generic results [34] to this model.

Section 7 begins the two-loop analysis. It presents detailed results for the UV diver-
gences of subrenormalized two-loop Green functions, and determines the required singu-
lar two-loop counterterms and their relationship to field and parameter renormalization.
Subsection 8 presents first the evaluation of the two-loop breaking of the Slavnov-Taylor
identity by the regularization, using the method described in section 4 and ref. [34]. It
then presents the required symmetry-restoring two-loop counterterms. We also provide a
consistency check by explicitly evaluating the analog of the usual QED Ward identities for
two-, three- and four-point functions and checking that they are correctly restored as well.
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2 Generalities and notations

We re-employ the notations and conventions of [34]. The d-dimensional space is split into
a direct sum of 4-dimensional and d− 4 = −2ε-dimensional subspaces. Lorentz covariants
are extended into this d-dimensional space and consist of 4-dimensional (denoted by bars:
· ) and (−2ε)-dimensional (also called “evanescent”, denoted by hats: ·̂ ) components.

This split is performed for any tensorial quantity; this includes the definition and
properties of metric tensors1gµν , ḡµν and ĝµν , of vectors kµ, k̄µ and k̂µ, and of the γ-
matrices γµ, γ̄µ and γ̂µ. In addition two intrinsically 4-dimensional objects are defined
and appropriate properties for them are given. The first of them is the Levi-Civita symbol
εµνρσ. The second one is the γ5 matrix. They are related by γ5 = −i

4! εµνρσγ
µγνγργσ. In

the BMHV scheme, the most important properties of the γ5 matrix are its commutation
and anticommutation relations with the other γ-matrices, in particular

{γ5, γ̄
µ} = 0 , {γ5, γ

µ} = {γ5, γ̂
µ} = 2γ5γ̂

µ , (2.1a)
[γ5, γ̂

µ] = 0 , [γ5, γ
µ] = [γ5, γ̄

µ] = 2γ5γ̄
µ . (2.1b)

These relations will be used throughout all calculations in the present paper. They are the
root of the breaking of symmetries and the appearance of UV divergences associated with
purely evanescent operators.

3 Right-handed chiral QED (χQED) and its extension to d dimensions

The present paper is devoted to the first 2-loop application of the method described in
ref. [34]. We restrict ourselves to the abelian U(1) case without scalar fields and denote
the corresponding model as χQED. The model may be viewed either as a chiral version
of QED with purely right-handed fermion couplings, or as a variant of the U(1) part
of the electroweak Standard Model. Since the adjoint representation is trivial, trilinear
and quartic gauge boson interactions as well as ghost-gauge interaction are absent. The
fermionic generators are reduced to the hypercharge, with opposite sign for the conjugate
representation. The model is first defined in 4 dimensions, then extended to d dimensions,
providing the respective Lagrangian, BRST transformations and Slavnov-Taylor identities,
with motivation for particular choice for the evanescent part of the fermion kinetic term
and for the fermionic interaction term. We then specify the BRST breaking of the model at
tree-level. Finally we collect the symmetry identities defining the model at higher orders.

3.1 χQED in 4 dimensions

In χQED, the only generator is the hypercharge, which we can assume to be diagonal,

YRij ≡ (diag{Y1
R, . . . ,Y

Nf
R })ij ,

where Nf is the number of fermion flavours. The 4-dimensional classical Lagrangian of the
model reads:

L = iψRi /DijψRj −
1
4F

µνFµν −
1
2ξ (∂µAµ)2 − c̄∂2c+ ρµsAµ + R̄isψRi +RisψRi, (3.1)

1Our convention for the 4-dimensional metric signature is mostly minus, i.e. (+1,−1,−1,−1).
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where only purely right-handed fermions ψR appear. In general, we use the standard
right/left chirality projectors PR = (1 + γ5)/2 and PL = (1− γ5)/2 and abbreviate ψR/L =
PR/Lψ. The left-handed fermions ψL are thus decoupled from the theory. The covariant
derivative acting on the fermion field is defined in the diagonal basis for couplings by

Dµ
ij = ∂µδij − ieAµYRij , (3.2)

and the field strength tensor is defined as

Fµν = ∂µAν − ∂νAµ . (3.3)

In order not to have anomalies in χQED, the following anomaly cancellation condition is
imposed on the hypercharge couplings,

Tr(Y3
R) = 0 . (3.4)

Next, the Lagrangian contains an Rξ gauge fixing term with gauge parameter ξ and
a corresponding Faddeev-Popov ghost kinetic term. The last three terms of eq. (3.1) are
the BRST transformations of the physical fields, coupled to external sources (or Batalin-
Vilkovisky “anti-fields”, [39–41]), where the external sources do not transform under BRST
transformations. The non-vanishing BRST transformations are

sAµ = ∂µc , (3.5a)
sψi = sψRi = i e cYRijψRj , (3.5b)
sψi = sψRi = i e ψRjcYRji (3.5c)

sc = B ≡ −1
ξ
∂A, (3.5d)

where “s” is the generator of the BRST transformation, which acts as a fermionic dif-
ferential operator and is nilpotent for any linear combination of fields. The last of these
equations also introduces the auxiliary Nakanishi-Lautrup field B, which is integrated out
from the action in eq. (3.1) and in the rest of this paper. The 4-dimensional tree-level action

S
(4D)
0 =

∫
d4 x L (3.6)

satisfies the following Slavnov-Taylor identity

S(S(4D)
0 ) = 0 , (3.7)

where the Slavnov-Taylor operation is given for a general functional F as

S(F) =
∫

d4 x

(
δF
δρµ

δF
δAµ

+ δF
δR̄i

δF
δψi

+ δF
δRi

δF
δψi

+B
δF
δc̄

)
, (3.8)

where again B is treated as an abbreviation to its value given in eq. (3.5d). As usual
in the context of algebraic renormalization, several additional functional identities hold.
In particular all functional derivatives of S(4D)

0 with respect to the fields c, c̄ or ρµ

– 4 –
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Aµ ψi, ψi c c̄ B ρµ Ri, R̄i ∂µ s

mass dimension 1 3/2 0 2 2 3 5/2 1 0
ghost number 0 0 1 -1 0 -1 -1 0 1

(anti)commutativity +1 -1 -1 -1 +1 -1 +1 +1 -1

Table 1. List of fields, external sources and operators, and their quantum numbers.

are linear in the propagating fields, and one may write down identities of the form
δS

(4D)
0 /δc(x) = (linear expression). Such identities may be required to hold at all orders

as part of the definition of the theory.2 We highlight first the so-called ghost equation(
∂

∂c̄
+ ∂µ

∂

∂ρµ

)
S

(4D)
0 = 0 , (3.9)

which is a linear combination which has analogues also in the non-abelian case.3 Second,
the so-called antighost equation, based on δS

(4D)
0 /δc(x), contains the essence of the

original gauge transformations. Combining it with the Slavnov-Taylor identity yields the
functional form of the abelian Ward identity (for extensive discussions of the more general
case and the importance to the Standard Model and extensions see e.g. [42–44]). Here
this functional Ward identity reads(

∂µ
δ

δAµ(x) − ieY
j
R

∑
φ

(±)φ(x) δ

δφ(x)

)
S

(4D)
0 = −∂2B(x) . (3.10)

The summation extends over the charged fermions and their sources, φ ∈
{ψRj , ψRj , Rj , R̄j}, and the signs are +,−,+,−, respectively. Finally, we summa-
rize in table 1 a list of the quantum numbers (mass dimension, ghost number and
(anti)commutativity) of the fields and the external sources of the theory, that are
necessary for building the whole set of all possible renormalizable mass-dimension ≤ 4
field-monomial operators with a given ghost number.

3.2 The χQED in d dimensions and its BRST breaking

The extension of the χQED model eq. (3.1) to d dimensions is not unique, due to the
fermionic kinetic and interaction terms. Here we follow the procedure used in ref. [34].
The extension to d dimensions requires fully d-dimensional fermion propagators, so as to
ensure that Feynman diagrams involving fermions can be regularized. This is achieved
by introducing a left-chiral U(1)-singlet fermion into the kinetic part of the Lagrangian,
thus promoting the intrisically 4-dimensional χQED fermionic kinetic term to a full d-
dimensional one. On the other side the fermion-gauge boson interaction is chosen to be
fully chiral-projected, with right-handed fermions only. This procedure, together with the
straightforward extension of the other terms in eq. (3.1) to d dimensions, leads to the

2If B is not integrated out, the same is true for the functional derivative δS(4D)
0 /δB(x).

3It can be obtained in general from evaluating δS(S(4D)
0 )/δB if the field B is not eliminated.
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tree-level action S0,

S0 =
∫

dd x
(
iψi/∂ψi + eYRijψRi /AψRj −

1
4F

µνFµν −
1
2ξ (∂µAµ)2

− c̄∂2c+ ρµ(∂µc) + i e R̄icYRijψRj + i e ψRicYRijRj
)

≡
∑
i

Si
ψψ

+
∑
i

Si
ψRAψR

+ SAA + Sg-fix + Sc̄c + Sρc + SR̄cψR + SRcψR ,

(3.11)

where the last line introduces explicit abbreviations for each of the eight terms in the
action.

The rest of this subsection is devoted to the discussion of BRST symmetry of the tree
level action which follows the corresponding discussion in ref. [34] for a generic non-Abelian
model. First we can define d-dimensional BRST transformations and a d-dimensional
Slavnov-Taylor operation Sd by straightforward extensions of the 4-dimensional versions.
Then it is elementary to see that the d-dimensional action may be written as the sum of
two parts, an “invariant” and an “evanescent” part,

S0 = S0,inv + S0,evan , (3.12a)

S0,evan =
∫

dd x iψi /̂∂ψi . (3.12b)

The first part is BRST invariant even in d dimensions, i.e. it satisfies

sdS0,inv = 0 , (3.13a)
Sd(S0,inv) = 0 . (3.13b)

The second part S0,evan consists solely of one single, evanescent fermion kinetic term, but
it breaks d-dimensional BRST invariance and the tree-level Slavnov-Taylor identity,

sdS0 = sdS0,evan ≡ ∆̂ , (3.14a)

Sd(S0) = ∆̂ . (3.14b)

The breaking ∆̂ is an integrated evanescent operator, comprised of one ghost and two
fermions,

∆̂ =
∫

dd x eYRij c
{
ψi

(←
/̂∂PR +

→
/̂∂PL

)
ψj

}
≡
∫

dd x ∆̂(x) , (3.15)

and generates an interaction vertex whose Feynman rule (with all momenta incoming) is

̂

∆ c

p2
ψj

p1

= eYRij
(
/̂p1PR + /̂p2PL

)
. (3.16)
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For later use we also need the expression for the linearized Slavnov-Taylor operator [45],
bd, defined such that

Sd(S0 + ~F) = Sd(S0) + ~ bdF +O(~2) . (3.17)

Its functional definition in χQED and its relation to sd are:

bd =
∫

dd x
(
δS0
δρµ

δ

δAµ
+ δS0
δAµ

δ

δρµ
+ δS0

δR̄i
δ

δψi
+ δS0
δψi

δ

δR̄i
+ δS0
δRi

δ

δψi
+ δS0

δψi

δ

δRi
+B

δ

δc̄

)

= sd +
∫

dd x
(
δS0
δAµ

δ

δρµ
+ δS0
δψi

δ

δR̄i
+ δS0

δψi

δ

δRi

)
. (3.18)

3.3 Defining symmetry relations for the renormalized theory

At higher orders a set of symmetry identities can be imposed on the finite, renormalized
theory. These identities may be viewed as part of the definition of the model; they constrain
the regularization/renormalization procedure and particularly determine the symmetry-
restoring counterterms. Here we collect the relevant symmetry identities which are the basis
of the subsequent sections. All following identities are valid at tree level by construction.
In principle, it is crucial to establish that they can be fulfilled also at higher orders. For
the present model this is clear from the general analysis of algebraic renormalization of
gauge theories4 and the anomaly condition eq. (3.4).

All identities are formulated as functional identities for the fully renormalized, finite
and 4-dimensional effective action Γren, which formally satisfies Γren = S

(4D)
0 +O(~). The

first and most important symmetry is BRST invariance, which is expressed as the Slavnov-
Taylor identity

S(Γren) = 0 (3.19)

for the renormalized theory. In addition, we require a set of more trivial relations

δΓren
δc(x) = δS

(4D)
0

δc(x) ,
δΓren
δc̄(x) = δS

(4D)
0

δc̄(x) ,
δΓren
δρµ(x) = δS

(4D)
0

δρµ(x) . (3.20)

These identities correspond to the absence of higher-order corrections involving the fields
c, c̄, ρµ (a similar identity for the B-field is valid in case B is not yet eliminated). They
can be imposed since the respective derivatives of the tree-level action are linear in the
dynamical fields as described between eqs. (3.8) and (3.10).

Like at tree level, the Ward identity(
∂µ

δ

δAµ(x) − ieY
j
R

∑
φ

(±)φ(x) δ

δφ(x)

)
Γren = −∂2B(x) , (3.21)

is an automatic consequence of the Slavnov-Taylor identity eq. (3.19) combined with the
antighost equation in eq. (3.20). It is not manifestly valid at higher orders but it will be

4See refs. [46–49] for important treatments of abelian theories in such contexts and refs. [45, 47] for
general overviews.
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automatically valid once the Slavnov-Taylor identity holds. In fact we will see that the
breaking and restoration of the Slavnov-Taylor identity can be well interpreted in terms of
the Ward identity.

In what follows we will only refer to BRST invariance and the Slavnov-Taylor identity,
which are the most important symmetry requirements. The requirements eq. (3.20) are
manifestly valid at all steps and individually for the regularized Green functions and for
the counterterms.

4 Multiloop regularization and renormalization formulae

Dimensional regularization using the BMHV scheme inevitably breaks BRST symmetry,
which therefore has to be restored at any order in perturbation for ensuring the consistency
of the theory. In this section we collect the general formulae governing the construction of
the renormalized theory and the procedure for finding singular (i.e. UV divergent) and finite
symmetry-restoring counterterms. The calculational details at the one-loop and two-loop
level will be given in the following sections.

In general, counterterms contain UV divergent (“singular”) and finite contributions.
As noted in our previous paper [34], in dimensional regularization it is useful to fur-
ther subdivide the counterterms into five types: singular BRST invariant and noninvari-
ant (evanescent or non-evanescent) counterterms, finite BRST invariant and noninvariant
(BRST restoring) counterterms as well as finite evanescent counterterms,

Sct = Ssct,inv + Ssct,noninv + Sfct,inv + Sfct,restore + Sfct,evan ≡ Ssct + Sfct . (4.1)

In this and the following equations, symbols with no index denote all-order quantities. For
the following perturbative expressions we will also use an upper index i for quantities of
precisely order i, an upper index (i) for quantities up to and including order i. For example,
the counterterm action and the bare action can be split as

Sbare = S0 + Sct, Sct =
∞∑
i=1

Sict, S
(i)
ct =

i∑
j=1

Sjct . (4.2)

The perturbative construction of the effective action in dimensional regularization and
renormalization is performed iteratively at each order of ~ (or loops), starting from the
tree-level action S0 of order ~0. Then, at each higher loop order i ≥ 1 a counterterm action
Sict has to be constructed. The counterterms are subject to the two conditions that the
renormalized theory is UV finite and in agreement with all required symmetries listed in
section 3.3.5

In general, at each order i one may distinguish Green functions at various levels of
regularization, partial or full renormalization. Of particular importance are “subloop-
renormalized” Green functions and the corresponding effective action. To keep the notation

5As mentioned in section 3.3, in what follows we will only refer to BRST invariance and the Slavnov-
Taylor identity, which are the most important symmetry requirements. The other related symmetry re-
quirements eq. (3.20) are manifestly valid at all steps.
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simple in the present paper we use the symbol Γi for this subloop-renormalized effective
action of order i. By definition this is obtained at order i by using Feynman rules from
the tree-level action and counterterms up to order i − 1. By constructing and including
singular counterterms of the order i we obtain the quantity

Γi + Sisct = finite for ε→ 0 . (4.3)

This equation determines the singular counterterms unambiguously, including their evanes-
cent parts, introduced in eq. (4.1). By also including additional, finite counterterms of the
order i we obtain

ΓiDReg := Γi + Sisct + Sifct . (4.4)

This resulting effective action is finite at this order and essentially renormalized but still
contains the variable ε and evanescent quantities. The fully renormalized effective action
is given by taking the limit d → 4 and by setting all evanescent quantities to zero. This
operation is denoted as

Γiren := LIMd→4ΓiDReg . (4.5)

The basic procedure to determine the finite counterterms Sifct, specifically their
symmetry-restoring part, is as follows. The ultimate symmetry requirement is the Slavnov-
Taylor identity expressing BRST invariance for the fully renormalized theory, which can
be written as

LIMd→4
(
Sd(ΓDReg)

)
= 0 . (4.6)

As discussed in detail in ref. [34] there are several possibilities to extract the symmetry-
restoring counterterms from this equation. Like in that reference, we choose again to use
the regularized quantum action principle [31], which allows to rewrite6

Sd(ΓDReg) = (∆̂ + ∆ct) · ΓDReg , (4.7)

where the insertions ∆̂ and ∆ct in the present abelian theory are given as

∆̂ = Sd(S0) = sdS0 , (4.8a)

∆̂ + ∆ct = Sd(S0 + Sct) , (4.8b)
∆ct ≡ sdSct . (4.8c)

The first two equations are valid in general, the third one is valid in the present context
because, as we will see in the concrete calculations, there will be no counterterms involving
external fields. The previous equations can be plugged into eq. (4.6) and perturbatively
expanded at the order i. This leads to

LIMd→4

(
∆̂ · ΓiDReg +

i−1∑
k=1

∆k
ct · Γi−kDReg + ∆i

ct

)
= 0 , for i ≥ 1 , (4.9)

6The same equation has been presented specifically for the one-loop case in ref. [34] and for the general
case in ref. [36]. Ref. [35] presents a slightly different version. All versions of the equation become equal in
the present context of an abelian gauge theory where there are no counterterms involving external fields.
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which explicitly exhibits the genuine i-loop counterterm via ∆i
ct (see eq. (4.8)). The fact

that the limit d→ 4 exists provides a consistency check on the divergent part of ∆i
ct, which

contains the singular counterterms Sisct. The finite part of the equation determines the finite
part of ∆i

ct. This determines the desired finite counterterms not unambiguously. Rather,
their symmetry-restoring parts are fixed, while it remains possible to add finite symmetric
counterterms (to adjust renormalization conditions) and finite evanescent counterterms,
which are not needed in the following.

5 Evaluation of the one-loop singular counterterm action S(1)
sct in χQED

versus QED

We start by evaluating the one-loop (order ~1) singular counterterm action S
(1)
sct , defined

from the divergent parts of the one-loop diagrams constructed with the Feynman rules of
the tree-level action S0. These counterterms are basically determined by eq. (4.3) at the
one-loop level, and they will be part of the dimensionally-regularized one-loop effective
action ΓDReg.

The calculations are performed in d = 4 − 2ε dimensions. We use notational conven-
tions from [34]. Here and in the rest of the paper, the necessary Feynman diagrams have
been computed using the Mathematica packages FeynArts [50] and FeynCalc [51, 52];
the ε-expansion of the amplitudes has been cross-checked using the FeynCalc’s interface
FeynHelpers [53] to Package-X [54].

Since intermediate results can be obtained from the presentation of ref. [34], we im-
mediately provide the full result for the singular one-loop counterterm action. It reads

S1
sct,χQED = −~ e

2

16π2ε

2 Tr(Y2
R)

3 SAA + ξ
∑
j

(YjR)2
(
Sj
ψψR

+ Sj
ψRAψR

)

+Tr(Y2
R)

3

∫
dd x 1

2Āµ∂̂
2Āµ

)
,

(5.1)

and it may be compared to the corresponding result of ordinary QED with Dirac fermions
of charges Y,

S1
sct,QED = −~ e

2

16π2ε

4 Tr(Y2)
3 SAA + ξ

∑
j

(Yj)2
(
Sj
ψψ

+ Sj
ψAψ

) . (5.2)

Notice that we restore explicit ~ order for every final result of the counterterm action from
now on. Most of the monomials have already been introduced; the bar in SAA designates
the fully 4-dimensional version of SAA, and the additional terms Si

ψψR
, Si

ψRAψR
are the

fully right-chiral-projected equivalents to their usual d-dimensional versions,

Si
ψψR

=
∫

dd x iψi/∂PRψi ≡
∫

dd x i

2ψi
↔
/∂PRψi , (5.3a)

Si
ψRAψR

=
∫

dd x eY iRψi /APRψi . (5.3b)
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In both models there are three kinds of UV divergent Green functions, corresponding to the
photon self energy, the fermion self energy and the fermion-photon interaction. The results
eqs. (5.1) and (5.2) differ in three characteristic ways. Clearly, in χQED there are half as
many fermionic degrees of freedom, hence the fermion loop contributions to the photon
self energy generate the prefactor 2/3 instead of 4/3. In addition, the purely right-handed
nature of the interaction leads to a purely evanescent divergent non-transverse contribution
to the photon self energy in the second line of eq. (5.1). Finally, the fermion self energy and
the fermion-photon interaction receive only purely 4-dimensional right-handed corrections
in χQED, while in (non-chiral) QED these contributions remain d-dimensional.

Both χQED and ordinary QED models are abelian, and as a result there are no loop
corrections involving ghosts or external BRST source fields. This property reflects the
identities eq. (3.20) and persists at all orders. This implies in particular that the linearized
Slavnov-Taylor operator bd reduces to the BRST operator sd when acting on the loop
contributions of the effective action.

As in ref. [34] we can re-express the result for the singular one-loop counterterms S1
sct in

a structure reminiscent of the one appearing in the usual renormalization transformations,
where fields renormalize multiplicatively as ϕ →

√
Zϕ ϕ, Zϕ ≡ 1 + δZϕ, and the coupling

constant renormalizes additively as e→ e+ δe. The sum of the singular counterterms can
be written as

S1
sct = S1

sct,inv + S1
sct,evan , (5.4)

where the first term arises in the usual way from a renormalization transformation, while
the second term has a different structure. In detail, the first term can be obtained by
applying the renormalization transformation S0,inv −→ S0,inv + Sct,inv, and it is given by

S1
ct,inv = δZ1

A

2 LA + δZ1
c

2 Lc +
δZ1

ψRj

2 LψRj + δe1

e
Le . (5.5)

The one-loop renormalization constants δZϕ, δe agree with the usual ones (see e.g. [55–57])
and read

δZ1
A = δZ1

c = −2δe
1

e
, (5.6a)

δZ1
A = −~ e

2

16π2ε

2 Tr(Y2
R)

3 , (5.6b)

δZ1
ψR j

= −~ e
2

16π2ε
ξ(YjR)2 . (5.6c)

The first of these relations again reflects eq. (3.20) as in ordinary QED. The Lϕ functionals
corresponding to field renormalizations can be written in various ways, either as a field-
numbering operators acting on the tree-level action or as total bd-variations or in terms of
the monomials of eq. (3.11). Here we provide the results in the form

LA = bd

∫
dd x ρ̃µAµ = 2SAA + SψAψR − Sc̄c − Sρc , (5.7a)

– 11 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
9

where ρ̃µ = ρµ + ∂µc̄ is the natural combination arising from the ghost equation (3.9);

Lc =
∫

dd x c(x) δS0
δc(x) = Sc̄c + Sρc + SR̄cψR + SRcψR , (5.7b)

LψR = −bd
∫

dd x (R̄iPRψi + ψiPLR
i)

= 2
(∫

dd x iψi/∂PRψi + SψAψR

)
+ iψi /̂∂ψi ≡ LψR + S0,evan =

∑
i

LψRi .
(5.7c)

The Le functional corresponding to renormalization of the physical coupling can be ex-
pressed in terms of the monomials of eq. (3.11) or related to the field renormalization
functionals as

Le = e
∂S0
∂e

= SψAψR + SR̄cψR + SRcψR = Lc + LA − 2SAA . (5.8)

Despite the non-nilpotency of bd, several of the Lϕ are actually bd-invariant in the
following sense:

bdLA = 0 , bdLψR = 0 . (5.9)

In contrast, Lc is not bd-invariant in this sense;7 instead, it is easy to see that

bdLc = ∆̂ , (5.10)

with the same breaking as in eq. (3.15). As a result, also Le, corresponding to gauge
coupling renormalization, is not bd-invariant. Note, however, that in the limit d → 4 and
evanescent terms vanishing, all the Lϕ functionals presented here become invariant under
the linear b transformation in 4 dimensions.

Finally, the evanescent counterterms appearing in eq. (5.4) can be written as

S1
sct,evan = −~ e2

16π2ε

Tr(Y2
R)

3

(
2(SAA − SAA) +

∫
dd x 1

2Ā
µ∂̂2Āµ

)
. (5.11)

For later use we record the corresponding BRST breaking of the singular one-loop coun-
terterms. This breaking originates solely from the evanescent non-invariant second term of
S1
sct,evan and is given by

∆1
sct = sdS

1
sct = − ~

16π2ε

e2 Tr(Y2
R)

3

∫
dd x (∂µc) (∂̂2Āµ) . (5.12)

6 BRST symmetry breaking and its restoration; evaluation of the one-
loop finite counterterm action S1

fct

In the previous section we determined the singular counterterms action S1
sct, eq. (5.4).

Here we discuss the determination of symmetry-restoring counterterms S1
fct at the one-loop

level. We follow the general procedure outlined in section 4 but will be brief since the
7This fact appears to be in contradiction with a claim made in [35].
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computation is essentially a special case of the one presented in ref. [34]. We begin by
specializing the general formulae of section 4 to the one-loop case, then we present the
results and a brief discussion.

At the one-loop level the structure of renormalization can be written as

Γ(1)
DReg = Γ(1) + S1

sct + S1
fct , (6.1a)

∆1
ct = Sd(S0 + Sct)1 , (6.1b)

where the counterterms are subject to the conditions discussed in section 4, which here
simplify to

S1
sct + Γ1

div = 0 , (6.2a)(
∆̂ · Γ1 + ∆1

ct
)
div = 0 , (6.2b)

LIMd→4
(
∆̂ · Γ1 + ∆1

ct
)
fin = 0 . (6.2c)

Here the subscripts ‘div,fin’ refer to the pure 1/ε pole part and the ε-independent part,
respectively. Compared to eq. (4.9) we dropped the index ‘DReg’ because the one-loop in-
sertions arise from genuine one-loop diagrams and not from one-loop counterterms. Equa-
tion (6.2a) has already been satisfied in the previous section, and eq. (6.2b) must automat-
ically hold by construction, providing a consistency check. The last equation determines
the finite symmetry-restoring counterterms, with a remaining ambiguity of changing finite
symmetric or evanescent counterterms. The equation can also be written as

N
[
∆̂ · Γ1

]
+ ∆1

fct = 0 , (6.3)

which implicitly fixes the choice of the finite, evanescent counterterms. This version of
the equation uses the result (5.12) that the BRST variation of the one-loop singular coun-
terterms contains no finite term (which could in principle arise from the evaluation of sd),
hence ∆ct|fin = ∆fct. The symbol N [O] denotes the Zimmermann-like definition [47, 58–60]
of a renormalized local operator (also called “normal product”), defined as an insertion of
a local operator O and followed, in the context of Dimensional Regularization and Renor-
malization, by a minimal subtraction prescription [61].

In order to determine the finite counterterms we need to compute the quantity ∆̂ ·Γ1,
corresponding to the breaking of the Slavnov-Taylor identity or BRST symmetry by one-
loop regularized Green functions. This is given by one-loop Feynman diagrams with one
insertion of the vertex ∆̂, the BRST breaking of the d-dimensional action given in eq. (4.8).
In principle, infinitely many Feynman diagrams can give a nonzero result. However in most
cases the result is purely evanescent or of order ε. Only power-counting divergent diagrams
can lead to a result which contributes to the above equations, i.e. which contains either a
1/ε pole or which is finite and survives in the LIMd→4. The four contributing diagrams are
shown in figure 1.
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̂∆ c

p1Aµ

̂∆

AνAµ p2p1

c
̂∆

Aν

AρAµ

c

p1
p2

p3

̂

∆

p2 p1
ψj

Figure 1. The four one-loop diagrams contributing to ∆̂ · Γ1 in a relevant way. Only the first
diagram provides UV divergent contributions, which are evanescent. All diagrams provide UV finite
non-evanescent contributions, i.e. contributions which remain in the LIMd→4.

The result of all these diagrams can be compactly written as an insertion in the effective
action in terms of field monomials of ghost number one, as

∆̂ · Γ1 = ~
16π2

∫
dd x

[
e2 Tr(Y2

R)
3

(1
ε

(∂µc) (∂̂2Āµ) + (∂µc)(∂
2
Āµ)

)
(6.4)

+ e4 Tr(Y4
R)

3 c ∂µ(ĀµĀ2)− 5 + ξ

6 e3∑
j

(YjR)3 c ∂
µ(ψjγµPRψj)

− 2 e3 Tr(Y3
R)

3 εµνρσc(∂ρAµ)(∂σAν)
]
.

In this equation, further terms of order ε and evanescent terms of order ε0 have been
omitted. The first two terms correspond to the first diagram of figure 1; they involve an
evanescent UV divergence and a UV finite, non-evanescent term. Their interpretation is the
violation of the Slavnov-Taylor identity for the photon self energy (describing essentially
its transversality). The other terms are UV finite and non-evanescent. They correspond in
an obvious way to the third and fourth diagrams of figure 1, and they correspond to the
violation of the Slavnov-Taylor identities involving the photon 4-point function and the
fermion-photon interaction, respectively.

Notice that the last term in eq. (6.4), arising from the second diagram in figure 1, can-
not be written as the BRST transformation of any local field operator in the action, hence
it cannot be removed by any counterterm we can possibly construct, since that counterterm
would have to be proportional to a structure like εµνρσ∂µAνAρAσ, which however vanishes.
The last term represents the essential anomaly, but since it is proportional to the Tr(Y3

R), it
will vanish due to the anomaly cancelation condition eq. (3.4), ensuring that the theory is
anomaly free. In general, eq. (6.4) reflects important statements established in the context
of algebraic renormalization [43–48]. The breaking of the Slavnov-Taylor identity at any
order is a local, power-counting renormalizable expression with ghost number one. The
term in the last line is the unique and only kind of term that can possibly represent a true
anomaly that cannot be canceled by symmetry-restoring counterterms. It is known that if
the term vanishes at one-loop order, like here, it vanishes at all orders and the theory is
free of anomalies.
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We can first use this one-loop result to carry out the check of the divergent contribu-
tions eq. (6.2b). The singular counterterms given in eq. (5.4) are BRST invariant up to
one evanescent contribution exhibited in eq. (5.11), and the resulting BRST breaking ∆1

sct
is given in eq. (5.12). Hence, we see that indeed eq. (6.2b) is fulfilled, as it should be.

Now we turn to the determination of the finite counterterms S(1)
fct , which serve to restore

the Slavnov-Taylor identity in the form of eqs. (6.2c) or (6.3). Explicit inspection of the
breaking (6.4) reveals that the following ansatz is correct:

S1
fct = ~

16π2

∫
d4 x

{
−e2 Tr(Y2

R)
6 Ā · (∂2

Ā) + e4 Tr(Y4
R)

12 (Ā2)2

+ 5 + ξ

6 e2∑
j

(YjR)2iψjγ
µ∂µPRψj

}
.

(6.5)

Each of the three terms has a clear interpretation. The first restores transversality of the
photon self energy, the second restores the Ward identity relation for the quartic photon
interaction. The third term restores the Ward identity between the fermion self energy and
its photon interaction.

The choice of the symmetry-restoring counterterms is constructed such that it satisfies

sdS
1
fct = −N [∆̂] · Γ1 , (6.6)

where the right-hand side corresponds to the purely finite, non-evanescent part of eq. (6.4).
Further, the counterterms do not depend on external source fields, which implies the iden-
tities

sdS
1
fct = bdS

1
fct = Sd(S0 + Sfct)1 = ∆1

fct . (6.7)

Hence the counterterms S1
fct restore the symmetry, and all equations (6.2c), (6.3) and ulti-

mately (4.6) are valid at the one-loop level. As an additional byproduct the simplification
announced in eq. (4.8c) is established at this order. As mentioned above, the finite coun-
terterms are not uniquely fixed. One can add any BRST-symmetric term to these finite
counterterms without spoiling the restoration of the BRST symmetry. This is required to
fulfil specific renormalization conditions but is not further pursued in the present paper.

Further, the finite counterterms are defined as purely four-dimensional quantities. This
corresponds to our requirement (6.3). As discussed there, one may change the finite coun-
terterms by evanescent contributions which vanish in the LIMd→4. This means that it
would be allowed e.g. to change the counterterms by extending them to d dimensions, i.e.
to replace some or all of the Āµ and ∂̄µ by full Aµ and ∂µ. Such changes are irrelevant
for pure one-loop discussions, however once the counterterms are inserted into higher-loop
diagrams the changes matter and might change the form of two-loop results, corresponding
to different renormalization schemes.

As stated around eq. (6.3), in this work we stick to the choice of keeping the finite
counterterms in their four-dimensional form when being used in 2-loop calculations, as
vertex insertions.
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7 Evaluation of the two-loop singular counterterm action S2
sct in χQED

versus QED

In this section we determine the UV divergences of the subrenormalized two-loop (order
~2) Green functions. According to eq. (4.3) these define the singular two-loop counterterm
action S2

sct. The calculations are performed in d = 4− 2ε dimensions, and in the Feynman
gauge ξ = 1, and the results are compared with the corresponding results for ordinary QED.

7.1 A comment on the calculation procedure

The calculational procedure uses the same tools already mentioned in section 5. In addition,
we compute two-loop self energy integrals using TARCER [62]. Divergences of three-point
functions are obtained using two different approaches. In the first approach we reduce
the expressions effectively to self energies by setting one external momentum to zero and
proceed with TARCER. This is justified since we are interested in the UV divergences which
are known to be local and independent of external momenta for the diagrams of our interest
(after subrenormalization). This approach fails in case zero external momenta induce
infrared divergences. In this case, we use a UV/IR-decomposition [63–65] where effectively
all external momenta vanish and propagators become massive. The resulting integrals
become massive self energies without external momenta, i.e. massive vacuum integrals.
Whenever different approaches can be applied we use both, and the results agree.

7.2 List of divergent two-loop Green functions

Like at the one-loop level there are three kinds of UV divergent Green functions, cor-
responding to the photon self energy, the fermion self energy and the fermion-photon
interaction. Here we first present the explicit results for each subrenormalized two-loop
Green function separately and both for χQED and ordinary QED. The blobs shown in the
diagrams represent the sum of the all possible subrenormalized two-loop corrections, i.e.
two-loop diagrams with tree-level vertices and one-loop diagrams with singular and finite
BRST-restoring counterterm insertions.

Gauge boson self energy.
Aµ Aνp

iΓ̃νµAA(p)|2div, χQED = ie4

256π4
Tr(Y4

R)
3

[2
ε

(pµpν − p2gµν) +
( 17

24ε −
1

2ε2
)
p̂2gµν

]
, (7.1a)

iΓ̃νµAA(p)|2div, QED = ie4

256π4ε
2 Tr(Y4)(pµpν − p2gµν) . (7.1b)
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Fermion self energy. ψj

iΓ̃ji
ψψ

(p)|2div, χQED = −ie4

256π4

[
(Y2

R)ij Tr(Y2
R)

9ε + (Y4
R)ij

( 7
12ε + 1

2ε2
)]
6p PR , (7.2a)

iΓ̃ji
ψψ

(p)|2div, QED = −ie4

256π4

[
(Y2)ij Tr(Y2)

ε
+ (Y4)ij

( 3
4ε + 1

2ε2
)]
6p . (7.2b)

Fermion-gauge boson interaction.

ψj

iΓ̃ji,µ
ψψA
|2div, χQED = −ie5

256π4

[
(Y2

R)ij Tr(Y3
R)

ε
− (Y3

R)ij Tr(Y2
R)

9ε + (Y5
R)ij

( 17
12ε + 1

2ε2
)]

γµ PR ,

(7.3a)

iΓ̃ji,µ
ψψA
|2div, QED = −ie5

256π4

[
(Y3)ij Tr(Y2)

ε
+ (Y5)ij

( 3
4ε + 1

2ε2
)]

γµ . (7.3b)

The first term with Tr(Y3
R) = 0 does not contribute due to the previously imposed anomaly

cancellation condition.

Three- and four-photon interactions. The triple-photon interaction amplitude is
equal to zero for QED models, while it is finite and purely evanescent for χQED. The
four-photon interaction amplitude is finite and does not provide any singular counterterm.

7.3 Singular two-loop counterterms

From the singular part of the two-loop diagrams listed above we obtain the singular coun-
terterm action at the two-loop level, which cancels these divergences,

S2
sct = −

(
~ e2

16π2

)2
Tr(Y4

R)
3

[2
ε
SAA +

( 1
4ε2 −

17
48ε

)∫
dd x Āµ∂̂2Āµ

]

+
(

~ e2

16π2

)2∑
j

(YjR)2
[( 1

2ε2 + 17
12ε

)
(YjR)2 − 1

9ε Tr(Y2
R)
] (
Sj
ψψR

+ Sj
ψRAψR

)

−
(

~ e2

16π2

)2∑
j

(YjR)2

3ε

(5
2(YjR)2 − 2

3 Tr(Y2
R)
)
Sj
ψψR

.

(7.4)

Its structure is the same as at the one-loop level, see eq. (5.1), corresponding to countert-
erms to the three divergent kinds of Green functions. Again purely 4-dimensional terms
appear, as well as an evanescent contribution to the photon self energy. A conceptually
new feature compared to the one-loop case is the term in the last line of S2

sct, which breaks
BRST invariance by a non-evanescent amount.
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In the following we again re-express the result using renormalization transformations.
Because of the last term it is not possible to split the two-loop singular counterterms into
a BRST invariant plus an evanescent part. We can write

S2
sct = S2

sct,inv + S2
sct,break . (7.5)

The first term is BRST invariant and arises from the renormalization transformation
S0,inv −→ S0,inv + Sct,inv, and is given by

S2
sct,inv = δZ2

A

2 LA + δZ2
c

2 Lc +
δZ2

ψRj

2 LψRj + δe2

e
Le (7.6)

with two-loop renormalization constants δZ2
ϕ, δe2.8 The split (7.5) is not unique, but we

reasonably choose to keep the “trivial” identities (3.20) valid for both S2
sct,inv and S2

sct,break
individually (which simply means the counterterms do not contain the ghost or source
fields) and to allow only two-point functions in S2

sct,break. Then the renormalization con-
stants are given by

δZ2
A = δZ2

c = −2δe
2

e
, (7.7a)

δZ2
A = − e4

256π4ε

2 Tr(Y4
R)

3 , (7.7b)

δZ2
ψRj

= e4

256π4 (YjR)2
[( 1

2ε2 + 17
12ε

)
(YjR)2 − 1

9ε Tr(Y2
R)
]
. (7.7c)

Like at the one-loop level the first equation (7.7a) here reflects the validity of the trivial
identities equation (3.20) and the analog of the usual QED Ward identity on the level
of S2

sct,inv. The results for the other renormalization constants differ from the ones in
the literature obtained without the BMHV scheme, see e.g. refs. [55–57]. This difference
reflects the modified relationship between the renormalization-group β functions and sin-
gular counterterms in the BMHV scheme, see the discussions in refs. [34, 66]. A detailed
investigation of this issue will be presented in a forthcoming publication.

The BRST-breaking singular counterterms appearing in eq. (7.5) can be written as

S2
sct,break = −

(
~ e2

16π2

)2
1
ε

Tr(Y4
R)

3

(
2(SAA − SAA) +

( 1
2ε −

17
24

)∫
dd x 1

2Ā
µ∂̂2Āµ

)

−
(

~ e2

16π2

)2
1
3ε
∑
j

(YjR)2
(5

2(YjR)2 − 2
3 Tr(Y2

R)
)
Sj
ψψR

.

(7.8)

This counterterm action generates a BRST breaking,

∆2
sct = sdS

2
sct = −~

2e4

256π4
Tr(Y4

R)
6

( 1
ε2
− 17

12ε

)∫
dd x (∂µc)(∂̂2Āµ)

− ~2e5

256π4
1
3ε
∑
j

(YjR)3
(5

2(YjR)2 − 2
3 Tr(Y2

R)
)∫

dd x c ∂µ(ψγ̄µPRψ) ,
(7.9)

8Note that the superscript in the notation δe2 refers to the 2-loop contribution to δe, not to a square!
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where we have used the BRST invariance of SAA and SAA. Again we note that, in contrast
to the one-loop case, this BRST breaking contains a non-evanescent contribution (the
second term).

8 BRST symmetry breaking and its restoration at two-loop; evaluation
of the two-loop finite counterterm action S(2)

fct

This section is devoted to restoring BRST symmetry at the two-loop (or ~2) order. We
again follow the general procedure outlined in section 4 and proceed along the same lines
as at the one-loop level in section 6.

At the two-loop level the structure of renormalization can be written as

Γ(2)
DReg = Γ(2) + S2

sct + S2
fct , (8.1a)

∆2
ct = Sd(S0 + Sct)2 . (8.1b)

The conditions (4.3), (4.9) on the counterterms specialize to

S2
sct + Γ2

div = 0 , (8.2a)(
∆̂ · Γ2 + ∆1

ct · Γ1 + ∆2
ct
)
div = 0 , (8.2b)

LIMd→4
(
∆̂ · Γ2 + ∆1

ct · Γ1 + ∆2
ct
)
fin = 0 . (8.2c)

Like at the one-loop level, the second of these equations must hold automatically and
provides a consistency check; the third equation determines the finite symmetry-restoring
counterterms. We again rewrite it as

N
[
∆̂ · Γ2 + ∆1

ct · Γ1]+ ∆2
fct = 0 , (8.3)

which implicitly fixes the choice of finite, evanescent counterterms. The meaning of this
equation is as follows: the breaking of the Slavnov-Taylor identity is given via the quantum
action principle by Green functions with breaking insertions. The finite symmetry-restoring
counterterms are defined such that they cancel the finite, purely 4-dimensional part of the
breaking. As at the one-loop level, we have used that the BRST variation of the singular
counterterms ∆2

sct contains no terms of order ε0 and we could drop the index ‘DReg’.
In the following we first describe the required Feynman diagrammatic computation,

then we carry out the check corresponding to eq. (8.2b) and finally we determine the finite,
symmetry-restoring counterterms.

8.1 Computation of the 2-loop breaking of BRST symmetry

Here we provide details on the computation of the Feynman diagrams describing the two-
loop symmetry breakings. As described in section 4 the quantum action principle implies
that they are given by diagrams with insertions of the symmetry breaking of the tree-level
and counterterm action. At the two-loop level eqs. (8.2b) and (8.3) show that the divergent
and finite parts of the following kinds of diagrams are required. ∆̂ · Γ2 contains genuine
two-loop diagrams with one insertion of the tree-level breaking ∆̂, and it contains one-loop
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̂∆ c

p1Aµ

̂∆ c

p1Aµ

∆
1

ct c

p1Aµ

̂∆ c

p1Aµ

+ loop on the other
fermion propagator.

̂∆ c

p1Aµ

+ fermion counterterm on
the other fermion

propagator.

̂∆ c

p1Aµ

F

+ fermion finite
counterterm on the other

fermion propagator.

Figure 2. List of Feynman diagrams for the ghost-photon breaking contribution given in eq. (8.4).
The diagrams in the first column are genuine two-loop diagrams with one insertion of the tree-level
breaking ∆̂. The diagrams in the second column are one-loop diagrams with one insertion of a
one-loop singular counterterm, denoted as a circled cross. The third column contains a one-loop
diagram with an insertion of a one-loop symmetry-restoring counterterm, denoted by a boxed F ,
and a one-loop diagram with an insertion of the one-loop breaking ∆1

ct.

diagrams with one insertion of a one-loop counterterm and one insertion of ∆̂. The object
∆1

ct ·Γ1 consists of one-loop diagrams with tree-level vertices and with one insertion of the
breaking of the one-loop counterterm action ∆1

ct. Note that in our case for the U(1) model
we have (∆1

sct · Γ1)2 = 0, implying (∆1
ct · Γ1)2 = (∆1

fct · Γ1)2, due to the fact that there are
no ghost loop corrections.

Like at the one-loop level, the only relevant results are the ones which are either
divergent or finite but not evanescent. Since the breaking insertions ∆̂ are themselves
evanescent, such results can only arise from power-counting divergent Feynman diagrams.
For this reason only a finite number of Feynman diagrams with a specific set of external
fields need to be computed. The relevant diagrams with non-vanishing contributions are
shown in figures 2, 3 and 4, and their results are described in the following.

The ghost-gauge boson contribution from the diagrams with external fields cA shown
in figure 2 is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

Aµc
= 1

256π4
e4 Tr(Y4

R)
6

[( 1
ε2
− 17

12ε

)
p̂2

1p
µ
1 −

11
4 p

2
1p
µ
1 +O(̂.)

]
. (8.4)
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̂

∆

p2 p1
ψj

̂

∆

p2 p1
ψj

̂

∆

p2 p1
ψj

̂

∆

p2 p1
ψj

+ loop on the other
fermion propagator.

̂

∆

p2 p1
ψj

+ fermion counterterm on
the other fermion

propagator.

̂

∆

p2 p1
ψj

+ fermion finite
counterterm on the other

fermion propagator.

̂

∆

p2 p1
ψj

+ loop on the other
vertex.

̂

∆

p2 p1
ψj

+ fermion
counterterm on the

other vertex.
̂

∆

p2 p1
ψj

̂

∆

p2 p1
ψj

∆
1

ct

p2 p1
ψj

Figure 3. List of Feynman diagrams for the Ghost-fermion-fermion breaking contribution. The
symbols are as in figure 2 and the results are given in eq. (8.5).

The result contains 1/ε2 poles and 1/ε poles with local, evanescent coefficients and finite,
non-evanescent terms. Finite but evanescent terms are not relevant for the present context
and are suppressed here and in the following.
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The ghost-fermion-fermion contribution from the diagrams with external fields cψψ
shown in figure 3 is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

ψψc
= 1

256π4
e5(YjR)3

3 (/̄p1 + /̄p2)PR

×
[1
ε

(5
2(YjR)2 − 2

3 Tr(Y2
R)
)

+ 127
12 (YjR)2 − 1

9 Tr(Y2
R)
]
.

(8.5)

The result contains no 1/ε2 poles but only 1/ε poles with local, evanescent coefficients and
finite, non-evanescent terms.

The ghost-two gauge bosons contribution from diagrams with external fields cAA turns
out to vanish. Hence

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

AAc
= 0 . (8.6)

The ghost-three gauge bosons contribution from the diagrams with external fields
cAAA shown in figure 4 is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

AρAνAµc
= 1

256π4 3e6 Tr(Y6
R)(p1 + p2 + p3)σ

× (ḡµν ḡρσ + ḡµρḡνσ + ḡµσ ḡνρ) .
(8.7)

Notice that this result contains no UV divergence but only finite terms.
Collecting the results of eqs. (8.4), (8.5), (8.6) and (8.7), one obtains the following result

for the two-loop breaking of the Slavnov-Taylor identity of two-loop subrenormalized Green
functions:(

[∆̂ + ∆1
ct] · Γ

)2
= ~2e4

256π4

∫
dd x

×
{
− Tr(Y4

R)
6

[( 1
ε2
− 17

12ε

)
c ∂µ∂̂

2Āµ − 11
4 c ∂µ∂

2
Āµ
]

+ e
∑
j

(YjR)3

3

[1
ε

(5
2(YjR)2 − 2

3 Tr(Y2
R)
)

+ 127
12 (YjR)2 − 1

9 Tr(Y2
R)
]
c ∂µ(ψj γ̄µ PR ψj)

+ 3 e2 Tr(Y6
R)

2 c ∂µ(ĀµĀνĀν)
}

+O(̂.) .

(8.8)

It is particularly noteworthy that, despite significantly more complicated computations,
the structure of the terms is the same as at the one-loop level.

8.2 Two-loop finite symmetry-restoring counterterms

Like at the one-loop level we can first use the result to check the cancellation of the UV
divergences as prescribed by eq. (8.2b). Indeed, this cancellation with sdS

(2)
sct , eq. (7.9)

takes place as it should, in the explicit form

∆2
sct = sdS

(2)
sct = −

(
[∆̂ + ∆1

ct] · Γ̃
)2

div
, (8.9)
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̂∆

Aν

AρAµ

c

p1
p2

p3

+ loop on the other
vertices.

̂∆

Aν

AρAµ

c

p1
p2

p3

+ fermion counterterm on
the other vertices.

∆
1

ct

Aν

AρAµ

c

p1
p2

p3

̂∆

Aν

AρAµ

c

p1
p2

p3

+ mirrored (loop around
Aν and Aρ photons).

̂∆

Aν

AρAµ

c

p1
p2

p3

̂∆

Aν

AρAµ

c

p1
p2

p3

+ loop on the other
fermion propagators.

̂∆

Aν

AρAµ

c

p1
p2

p3

+ fermion counterterm on
the other fermion

propagators.

̂∆

Aν

AρAµ

c

p1
p2

p3

F

+ fermion finite
counterterm on the other
fermion propagators.

Figure 4. List of Feynman diagrams for the Ghost-three gauge bosons breaking contribution
(additional diagrams corresponding to {(p1, µ) , (p2, ν) , (p3, ρ)} permutations are not shown). The
symbols are as in figure 2 and the results are given in eq. (8.7).
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providing a confirmation of the computation. Next we can turn to the determination of
the two-loop symmetry-restoring counterterms, using eq. (8.3). Given the results of the
previous subsection and a simple calculation we obtain

∆2
fct = −N

[
∆̂ · Γ2

DReg + ∆1
ct · Γ1

DReg
]

= −LIM
d→4

{(
[∆̂ + ∆(1)

ct ] · Γ
)(2)

+ sdS
(2)
sct

}
= + ~2e4

256π4 Tr(Y4
R) s

(11
48

∫
d4 x Āµ∂

2
Āµ
)

− ~2e4

256π4

∑
j

(YjR)2
(127

36 (YjR)2 − 1
27 Tr(Y2

R)
)
s

∫
d4 x ψji /̄∂ PR ψj

+ ~2e6

256π4
3 Tr(Y6

R)
8 s

∫
d4 x ĀµĀ

µĀνĀ
ν .

(8.10)

Here the right-most equation has been written as an explicit 4-dimensional BRST trans-
formation of a local action.

This implies that the following choice of finite counterterms restores the Slavnov-Taylor
identity at the two-loop level,

S2
fct =

( ~
16π2

)2 ∫
d4 x e4

{
Tr(Y4

R)11
48Āµ∂

2
Āµ + 3 e2 Tr(Y6

R)
8 ĀµĀ

µĀνĀ
ν

−
∑
j

(YjR)2
(127

36 (YjR)2 − 1
27 Tr(Y2

R)
)(

ψji /̄∂ PR ψj
) .

(8.11)

Like at the one-loop level, three kinds of terms exist. In an obvious way they correspond
to the restoration of the Ward identity relations for the photon self energy, the photon
4-point function and the fermion self energy/photon interaction.

8.3 Tests of Ward identities

In order to check the consistency of the previously calculated divergent and finite coun-
terterms we may make use of Ward identities which express relations of Green’s functions
and their properties due to gauge invariance of the theory. In section 3.3 we have seen that
in our U(1) model the Slavnov-Taylor identity straightforwardly leads to Ward identities
since certain functional relations trivially survive renormalization. Once the Slavnov-Taylor
identity is satisfied, the Ward identities will likewise be valid, but they provide a check that
is independent of breaking diagrams. Eq. (3.21) supplies us with three well-known QED
Ward identities for renormalized Green functions to check our counterterm results:

1. The transversality of the photon self energy,

ipν
δ2Γ̃ren

δAµ(p)δAν(−p) = 0 ; (8.12)

2. The transversality of multi-photon vertices, and in particular the photon 4-point
amplitude,

i(p1+2+3)σ
δ4Γ̃ren

δAρ(p3)δAν(p2)δAµ(p1)δAσ(−p1+2+3) = 0 (8.13)

(denoting p1+2+3 ≡ p1 + p2 + p3);

– 24 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
9

3. The relation between fermion self energy and fermion-photon interaction for vanishing
photon momentum q = 0,

− ieYR
∂

∂pµ

δ2Γ̃ren

δψ(−p)δψ(p)
+ i

δ3Γ̃ren

δAµ(0)δψ(−p)δψ(p)
= 0 . (8.14)

With these equations, we can demonstrate the consistency and correctness of our calcula-
tions by evaluating usual loop diagrams and compare them with the results for breaking
insertions.

We begin with the example of the two-loop divergent part of the photon self energy.
If we contract it with one momentum, what we obtain is

i pν Γ̃µνA(−p)A(p)

∣∣∣2
div

= ie4

256π4
Tr(Y4

R)
6

( 17
12ε −

1
ε2

)
p̂2pµ = −

(
[∆̂ + ∆1

ct] · Γ̃
)2

div, Aµ(−p)c(p)
.

(8.15)
The first of these equations is obtained by direct computation of the appropriate two-
loop diagrams. The second equation is then an observation using eq. (7.9) and eq. (8.9).
These equations mean that the part of the divergent photon self energy that would vio-
late transversality is cancelled by the divergent counterterm calculated from the breaking
insertion.

The finite part of photon self energy at the two loop level is given by

iΓ̃µνAA(p)
∣∣∣2
fin

= ie4

256π4
Tr(Y4

R)
3

[(673
23 − 6 log(−p2)− 24ζ(3)

)
(pµpν − p2gµν) + 11

8 p
µpν

]
,

(8.16)
and after the momentum contraction we obtain

i pν Γ̃µνA(−p)A(p)

∣∣∣2
fin

= ie4

256π4
Tr(Y4

R)
6

11
4 p

2pµ = −
(
[∆̂ + ∆1

ct] · Γ̃
)2

fin, Aµ(−p)c(p)
. (8.17)

The first of these equations is again obtained by direct computation of the diagrams.
It illustrates that the non-local log(−p2) and transcendental ζ(3) parts are by themselves
transversal. The second equation is then observed by comparison with eq. (8.10). Hence we
confirm that the violation of the symmetry is restored by our finite counterterm evaluated
from breaking diagrams.

The 4-photon amplitude is finite. A direct, explicit manipulation of the corresponding
Feynman diagrams shows that we can relate the breaking of the Ward identity to the
breaking of the Slavnov-Taylor identity as

− i pν Γ̃µ1µ2µ3ν
A(−p1)A(−p2)A(−p3)A(p)

∣∣∣2
fin

=
(
[∆̂ + ∆1

ct] · Γ̃
)
fin, Aµ1 (−p1)Aµ2 (−p2)Aµ3 (−p3)c(p)

= ie6

256π4 3 Tr(Y6
R) (p1 + p2 + p3)ν(gνµ1gµ2µ3 + gνµ2gµ1µ3 + gνµ3gµ1µ2) .

(8.18)

Via eq. (8.10) this shows again that the counterterms of eq. (8.11) appropriately restore
this Ward identity.
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We can investigate the Ward identity between the fermion self energy and fermion-
photon interaction eq. (8.14) in a similar way. The divergent two-loop violation is given by

− i eYR
∂

∂pµ
Γ̃ψ(p)ψ(−p)

∣∣∣∣∣
2

div
+ i Γ̃µ

ψ(p)ψ(−p)A(0)

∣∣∣∣2
div

= iYR
e5

256π4ε
γµ PR

(2Y2
R Tr(Y2

R)
9 − 5Y4

R

6

)
= − ∂

∂qµ

(
[∆̂ + ∆1

ct] · Γ̃
)2

div, ψ(p−q)ψ(−p)c(q)
(q = 0) ,

(8.19)

and the finite two-loop violation by

− i eYR
∂

∂pµ
Γ̃ψ(p)ψ(−p)

∣∣∣∣∣
2

fin
+ i Γ̃µ

ψ(p)ψ(−p)A(0)

∣∣∣∣2
fin

= iYR
e5

256π4 γ
µ PR

(
log(−p2)

(3
2Y

4
R − Y2

R Tr(Y2
R)
)

+ 62
27Y

2
R Tr(Y2

R)− 109
72 Y

4
R

− log(−p2)
(3

2Y
4
R − Y2

R Tr(Y2
R)
)
− 61

27Y
2
R Tr(Y2

R)− 145
72 Y

4
R

)
= iYR

e5

256π4 γ
µ PR

(Y2
R Tr(Y2

R)
27 − 127Y4

R

36

)
= − ∂

∂qµ

(
[∆̂ + ∆1

ct] · Γ̃
)2

fin, ψ(p−q)ψ(−p)c(q)
(q = 0) .

(8.20)

In each case again the first equations are obtained from explicit computation of the
Feynman diagrams, and the last equations are obtained by comparing with eq. (7.9),
eq. (8.9) and eq. (8.10).9 As a result, it is established that the counterterms in eq. (8.11)
restore all Ward identities.

9 Conclusions

In this work we applied the BMHV scheme for non-anticommuting γ5 in dimensional regu-
larization to a chiral gauge theory at the two-loop level, and we studied the BMHV-specific
aspects of renormalization. Most importantly we determined the full structure of two-loop
symmetry-restoring counterterms. The present work is restricted to an abelian gauge the-
ory with right-handed fermions and establishes the methodology. The same method will
be applicable to general non-abelian gauge theories with scalar and fermionic matter.

In general, the application of the BMHV scheme leads to several specific kinds of coun-
terterms: the ultraviolet (UV) divergences cannot be cancelled by counterterms generated
by field and parameter renormalization; additional, UV divergent evanescent counterterms
(corresponding to operators which vanish in strictly 4 dimensions) are needed; and the
breaking of BRST symmetry needs to be repaired by adding finite, symmetry-restoring

9The divergent 1/ε2 poles in (8.19) are omitted since they cancel completely. The second and third
rows in (8.20) represent the full results for finite (momentum-differentiated) photon self energy and vertex
interaction, respectively.
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counterterms. We have evaluated all these counterterms explicitly at the one-loop and
two-loop level. An important aspect of our results is that the structure at the one-loop and
two-loop level is essentially the same. As expected, the UV divergences arise in the fermion
and the photon self energy and in the fermion-photon interaction. The triple and quartic
photon self interactions are UV finite. However, there are purely evanescent divergences
in the photon self energy, and at the two-loop level there is a non-evanescent divergence
in the fermion self energy, both of which require an extra counterterm which cannot be
obtained from field or parameter renormalization.

The required symmetry-restoring counterterms turn out to take a rather simple struc-
ture with a straightforward interpretation. Both at the one-loop and the two-loop level
there are three kinds of such counterterms. A counterterm to the photon self energy re-
stores transversality of the renormalized photon self energy. Similarly, a counterterm to the
photon 4-point function restores the Ward identity for this Green function. Finally, a coun-
terterm to the fermion self energy restores its Ward identity-like relation to the fermion-
photon interaction. An important outcome is that the precise form of these counterterms
is now known, and it is established that this is the complete set of symmetry-restoring
counterterms for arbitrary two-loop calculations in the model.

We applied a method which was previously applied at the one-loop level in refs. [34, 35];
refs. [36–38] applied similar techniques at the multiloop level, however in cases where
the symmetry is actually unbroken by the regularization. The core of the method is the
evaluation of the breaking of the Slavnov-Taylor identity by employing the regularized
quantum action principle [30]. Here we presented the first such computation at the two-
loop level. It involves Feynman diagrams of four different kinds: genuine two-loop diagrams
with an insertion of the tree-level breaking ∆̂ and one-loop diagrams with insertions of the
one-loop breaking ∆1

ct or of the one-loop divergent or finite counterterms.
Since the method is now established and not restricted to abelian theories, it will

be possible to apply it to general non-abelian chiral gauge theories and to the Standard
Model at the two-loop level. In this way, two-loop Standard Model calculations will be-
come feasible in the BMHV scheme without worrying about symmetry violations or scheme
inconsistencies. As a further outlook, it will be of interest to explore in detail the rela-
tionship between the modified counterterm structure (with additional UV divergent and
non-symmetric finite terms) and the renormalization group, similar to the one-loop discus-
sion of ref. [34].
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