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Abstract: We study the spin correlations to probe time-reversal (T) asymmetries in
the decays of Λb → ΛV (V = φ, ρ0, ω,K∗0). The eigenstates of the T-odd operators are
obtained along with definite angular momenta. We obtain the T-odd spin correlations
from the complex phases among the helicity amplitudes. We give the angular distributions
of Λb → Λ(→ pπ−)V (→ PP ′) and show the corresponding spin correlations, where P (′)

are the pseudoscalar mesons. Due to the helicity conservation of the s quark in Λ, we
deduce that the polarization asymmetries of Λ are close to −1. Since the decay of Λb → Λφ
in the standard model (SM) is dictated by the single weak phase from the product of
CKM elements, VtbV ∗ts, the true T and CP asymmetries are suppressed, providing a clean
background to test the SM and search for new physics. In the factorization approach, as the
helicity amplitudes in the SM share the same complex phase, T-violating effects are absent.
Nonetheless, the experimental branching ratio of Br(Λb → Λφ) = (5.18 ± 1.29) × 10−6

suggests that the nonfactorizable effects or some new physics play an important role. By
parametrizing the nonfactorizable contributions with the effective color number, we calculate
the branching ratios and direct CP asymmetries. We also explore the possible T-violating
effects from new physics.
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1 Introduction

The time-reversal (T) symmetry demands that physics shall be invariant under reversing
the motions, which corresponds to flipping time t to −t and taking the complex conjugate
of the quantum states. Its anti-linear property makes T-violation and CP- violation become
synonyms, according to the CPT symmetry. In two or three-body decays, T-odd observables
can be constructed in the spin correlations among the particles [1–10]. Since the particle
spins could not be directly measured in the current high energy physics experiments, we
have to extract their effects through the angular distributions in the cascade decays [11–24].

There are more than forty naive T-odd observables, which have been measured in
the B meson decays [25], indicating the angular analyses have been well developed in the
experiments. Particularly, the longitudinally polarized fraction, fL(B0 → φK∗0) ≈ 0.5,
measured by BarBar [26] and Belle [27], shows that the nonfactorizable (NF) effects play
an important role in the B decays with vector mesons in the final states. On the other
hand, the angular analyses in Λb → J/ψΛ [28–30] from LHCb show that the polarization
fractions are consistent with zero. Furthermore, the Λb − Λb production asymmetry has
also been studied [31]. Recently, the branching ratios of Λb → Λφ and Λb → Λγ have been
measured to be (5.18± 1.29)× 10−6 [32] and (7.1± 1.7)× 10−6 [33] , respectively. However,
there have been no complete angular analyses for Λb → ΛV (V = φ, ρ0, ω,K∗0).

On the theoretical side, to deal with Λb decays, various approaches have been made [34–
38]. The most simple one is the naive factorization [18, 19, 39, 40], in which the mesons
are produced from weak vertices directly. In particular, the experimental branching ratio
of Λb → pπ− can be explained by light-cone QCD sum rules [39], and the experimental
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results in Λb → J/ψΛ are well compatible with those in the covariant confined quark
model [18, 30]. In refs. [41–44], the generalized factorization approach has been considered,
in which the renormalization dependence of the Wilson coefficients has been absorbed into
the effective ones in the next to leading log precision [45]. However, the effective color
number, found as Nc ≈ 2 in the decays of B mesons, has to be included to parametrize the
NF effects in the branching ratios. On the other hand, the NF amplitudes can be calculated
systematically based on the QCD factorization [46] and perturbative QCD [47] approaches,
in the heavy quark limit. Nevertheless, they suffer large uncertainties in the penguin
dominated decays, due to the unknown baryon wave functions. In this work, we adopt the
generalized factorization approach to estimate the results in the standard model (SM).

We will study T-violation systematically in Λb → ΛV based on the group theory
approach. The T-violating observables are often given by the triple vector products
asymmetries, read as

AT =
[
Γ(T̂ > 0)− Γ(T̂ < 0)

]
/Γ , (1.1)

where Γ corresponds to the decay width, T̂ = (~va × ~vb) · ~vc , and ~vi represents either the
spin (~s) or 3-momentum (~p) of the particle labeled by i with i = a or b or c.1 Under the T
transformation, T̂ flips its sign, and therefore AT are naively T-odd observables. However,
cares must be taken when one applies it on the vector products involving spins. For instance,
(~s× ~p) · ~J is Hermitian, but (~s× ~J) · ~p is not, with ~J the angular momentum operator. The
Hermiticity can be understood by the commutation relation,

[( ~A× ~B)i, Ji] = 0 , (1.2)

where ~A and ~B are arbitrary vectors. In contrast, the equality,

( ~A× ~J) · ~B = −( ~A× ~B) · ~J + 2i ~A · ~B , (1.3)

indicates that (~s× ~J) · ~p is not Hermitian. Hence, it clearly makes no sense to discuss the
case with ~vb = ~J . Another issue arises from an incompatible set of observables, causing
inconsistent in the analyses, which will be discussed carefully.

This paper is organized as follows. In section 2, we study the angular distributions of
Λb → Λ(→ pπ−)V (→ PP ′) , where P (′) are the pseudoscalar mesons in the cascade decays.
In section 3, we define the T-odd observables and identify their effects in terms of the angular
distributions. In section 4, we examine the decays in the SM based on the generalized
factorization approach. We also discuss possible right-handed current contributions to
T-violating observables from new physics. Finally, we give conclusions in section 5.

2 Angular distributions

The decay distributions in two body decays are often described by the helicity amplitudes [48].
In general, the decays amplitudes of Λb → ΛV take the form,

〈ΛV ; {λf}|Heff |Λb〉 , (2.1)
1Since angular momentum is always conserved, the spin of Λb can be identified as the angular momentum

in the final state.
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where Heff is the effective Hamiltonian of weak transitions, and λf correspond to physical
quantities to characterize the states properly. Often, λf are chosen as the momenta and
spins of the particles, resulting in expanding the amplitudes with the Dirac spinors and
polarization vector, given as

ξµ∗uΛ

[
A1γµ + A2Pµ

mΛb

−
(
B1γµ + B2Pµ

mΛb

)
γ5

]
uΛb

, (2.2)

where A1, A2, B1 and B2 are the effective couplings, ξµ represents the polarization vector of
V , Pµ = pµΛb

+pµΛ, and p
µ
Λ(b)

(uΛ(b)) are the four momenta (Dirac spinors) of Λ(b) . Expanding
the amplitudes in momenta and spins has the advantage in the dynamical aspect, for that
the amplitudes are easier to be parametrized in the calculations, such as the framework of
the factorization approach.

On the other hand, from the kinematical consideration, it is more preferable to describe
the states in terms of J2 and Jz. Since the values of J2 and Jz are always constrained
by the parent particle, one may eliminate the redundancies caused by the SO(3) rotation
group (SO(3)R), which are independent of the dynamical details. Nonetheless, J2 and Jz do
not specify the states unambiguously. We can choose a set of commuting SO(3)R scalars to
identify the states further. Concerning the angular distributions in the sequential decays, the
helicites can be a good choice. In the rest frames of Λ and V , the spins can be read directly.

In the center of the momentum frame of the ΛV system, the helicity and 3-momentum
states are related as [48, 49]

|λ1 , λ2; J = 1/2, Jz = M〉 = 1
2π

∫
dΩ|~p1, λ1 , λ2〉eiMφd

1
2 (θ)M λ1−λ2 , (2.3)

where d 1
2 stands for the Wigner d-matrix for J = 1/2, λ1(2) represents the helicity of

Λ (V ), and ~p1 corresponds to the 3-momentum of Λ in the Λb rest frame. In eq. (2.3),
the left-hand side is the so-called helicitiy state, while the right-hand one is made of the
linear superposition of the 3-momenta. To have a nonzero value in d

1
2 , one must have

1/2 ≥ |λ1 − λ2|. The helicity states are given as

|a±〉 = | ± 1/2 , 0〉 , |b±〉 = | ∓ 1/2 ,∓1〉 , (2.4)

where the first and second entries correspond to λ1 and λ2, respectively, with J = Jz = 1/2.
In this work, unless explicitly stated, J and Jz will not be written out explicitly. Here, a (b)
indicates the vector meson is longitudinally (transversely) polarized, while the subscripts
denote the angular momenta in the p̂1 direction, read as ~J · p̂1 = λ1 − λ2 = ±1/2. Under
the parity transformation, the helicities flip signs, given as

Is|a(b)±〉 = |a(b)∓〉 , (2.5)

where Is is the parity transformation operator.
Consequently, the decays amplitudes are given by

a± = H± 1
2 ,0

= 〈a±; “out”|Heff |Λb〉 ,

b± = H∓ 1
2 ,∓1 = 〈b±; “out”|Heff |Λb〉 , (2.6)
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where “out” denotes t→∞. If Heff respects the T symmetry, one has that2 [49]

a(b)± = 〈Λb|Heff |a(b)±; “in”〉 , (2.7)

where “in” denotes t→ −∞ . Furthermore, if the final state interactions (FSIs) are absent,
we can interchange “in” and “out” freely, resulting in

a(b)± = 〈Λb|Heff |a(b)±; “in”〉 = a∗(b∗)± . (2.8)

As a result, one concludes that a(b)± are real. This is a common approach in analyzing the
T symmetry with complex phases.

The angular distributions are parametrized with five angles, θ , θ1,2 and φ1 ,2, shown in
figure 1. In the following, we take Λb → Λ(→ pπ−)ρ0(→ π+π−) as a concrete example. In
this case, θ, θ1, and θ2 are defined as the angles between (n̂Λb

, ~pΛ), (~pΛ, ~pp), and (~pρ0 , ~pπ+),
respectively, where ~nΛb

is the unit vector pointing toward the polarization of Λb, ~pΛ,ρ0 is the
3-momentum defined in the rest frame of Λb, and ~pp (~pπ+) is defined in the helicity frame
of Λ (ρ0). On the other hand, φ1 (φ2) is the azimuthal angle between the decay planes of
n̂Λb
× ~pΛ and ~pΛ × ~pp (~pρ0 × ~pπ+). The angular distributions are then given by

D(~Ω) ≡ 1
Γc

∂5Γc
∂ cos θ∂ cos θ1∂ cos θ2∂φ1∂φ2

= 1
|a+|2 + |a−|2 + |b+|2 + |b−|2

3
8π2×

∑
λ′1 ,M=±1/2

ρM,M

∣∣∣∣∣∣
∑
λ1 ,λ2

Hλ1 ,λ2A λ′1
d

1
2 (θ)M λ1−λ2d

1
2 (θ1)λ1

λ′1
d1(θ2)λ2 0e

i(λ1φ1+λ2φ2)

∣∣∣∣∣∣
2

(2.9)

where Γc is the decay width of Λb → Λ(→ pπ−)ρ0(→ π+π−), ρM,M are the density matrix
elements of Λb in the polarized direction, ρ±1/2,±1/2 = (1 ± Pb)/2, with Pb the polarized
fractions, and A± are given by

|A+|2 = 1 + α

2 , |A−|2 = 1− α
2 , (2.10)

with α the up-down asymmetry parameter for Λ → pπ− [50]. For the charge conjugate
decays, one has the same formula with α = −α by assuming CP conserved in Λ → pπ−.
From the formalism, it is obvious that the complex phases of A± would not affect the
results. Here, we see the merit of the helicity formalism in which the angles are untangled
in the amplitudes, i.e., the helicities are independent of the Λb polarization and each other.
In the next section, we will find that it is not the case, when the states are expanded with
the triple vector products.

For the practical purpose, D(~Ω) is further written as

D(~Ω) = 1
32π2

1
|a+|2+|a−|2+|b+|2+|b−|2

20∑
i=1

fi(a±, b±)Di(αΛ,Pb,θ ,θ1 ,φ1 ,θ2 ,φ2) , (2.11)

2In practice, Jz flip sign under the TR transformation. Nonetheless, since the angular momentum is
conserved, we can rotate both sides back without affecting the amplitudes.
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Figure 1. The angles given in eq. (2.9), where n̂Λb
is the unit vector in the Λb polarized direction.

where fi are made of the amplitudes related to Λb → Λρ0, and Di depend on the angles, Pb
and αΛ. The explicit forms are given in table 1, where we have used the Legendre polynomial
of P2 = (3 cos2 θ2 − 1)/2 for the later convenience. In general, D(~Ω) can be applied to
any sequential decay in the form of 1/2→ 1/2(→ 1/2, 0)1(→ 0, 0) with a straightforward
replacement. For instance, the distribution of Ξ0

c → Λ(→ pπ−)K∗0(→ π+K−) can be given
by substituting Ξ0

c and K∗0 for Λb and ρ0, respectively [52].
In D(~Ω), fi depend on 4 complex amplitudes, in which a real parameter and a complex

phase could be diminished by the normalization, resulting in 3 real parameters and 3 relative
complex phases left. Although the explicit forms are complicated, there have some rules
which D(~Ω) follows:

• In the unpolarized case, Pb = 0, D(~Ω) shall only depend on θ1, θ2 and φ1 + φ2 (see
figure 1).

• Since ρ0 decays strongly, D(~Ω) is invariant under interchanging π± in the cascade
decay of ρ0. Therefore, it does not matter which pseudoscalar meson we choose
to define θ2. Formally, it means that Di is invariant under the transformation of
(φ2 , θ2)→ (φ2 + π , π − θ2).

• On the other hand, Λ decays weakly, and hence it is important that θ1 is chosen as the
polar angle between n̂Λb

and ~pΛ. Formally, Di is unaltered under the transformation
of (φ1, θ1, α)→ (φ1 + π , π − θ1 ,−α).

Even when Λb is unpolarized, it is still possible to determine |a±|2 and |b±|2 with f2,3,4 and
the decay widths. Furthermore, the relative phase between b+ (b−) and a+ (a−) can be
extracted from f5,6.

To reduce the uncertainties caused by Pb, one can sum over the degree of freedoms in
the Λb polarization. To this end, one defines that

χ1 = φ1 + φ2 , 0 < χ1 < 2π ,

χ2 = 1
2(φ1 − φ2) , −π < χ2 < π . (2.12)
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i fi Di

1 |a+|2 + |a−|2 + |b+|2 + |b−|2 1
2 2|a+|2 + 2|a−|2 − |b+|2 − |b−|2 P2

3 |a+|2 − |a−|2 − |b+|2 + |b−|2 α cos θ1

4 2|a+|2 − 2|a−|2 + |b+|2 − |b−|2 α cos θ1P2

5 3√
2<(b+a∗+ − b−a∗−) α sin θ1 sin(2θ2) cos(φ1 + φ2)

6 3√
2=(b+a∗+ + b−a

∗
−) α sin θ1 sin(2θ2) sin(φ1 + φ2)

7 |a+|2 − |a−|2 + |b+|2 − |b−|2 Pb cos θ
8 2|a+|2 − 2|a−|2 − |b+|2 + |b−|2 Pb cos θP2

9 3√
2<(a+b

∗
− − a−b∗+) Pb sin θ sin(2θ2) cosφ2

10 3√
2=(a+b

∗
− + a−b

∗
+) Pb sin θ sin(2θ2) sinφ2

11 |a+|2 + |a−|2 − |b+|2 − |b−|2 Pbα cos θ cos θ1

12 2|a+|2 + 2|a−|2 + |b+|2 + |b−|2 Pbα cos θ cos θ1P2

13 3√
2<(b+a∗+ + b−a

∗
−) Pbα cos θ sin θ1 sin(2θ2) cos(φ1 + φ2)

14 3√
2=(b+a∗+ − b−a∗−) Pbα cos θ sin θ1 sin(2θ2) sin(φ1 + φ2)

15 3√
2<(a+b

∗
− + a−b

∗
+) Pbα sin θ cos θ1 sin(2θ2) cosφ2

16 3√
2=(a+b

∗
− − a−b∗+) Pbα sin θ cos θ1 sin(2θ2) sinφ2

17 −2<(a−a∗+) Pbα sin θ sin θ1(1 + 2P2) cosφ1

18 −2=(a−a∗+) Pbα sin θ sin θ1(1 + 2P2) sinφ1

19 2<(b+b∗−) Pbα sin θ sin θ1(1− P2) cos(φ1 + 2φ2)
20 2=(b+b∗−) Pbα sin θ sin θ1(1− P2) sin(φ1 + 2φ2)

Table 1. The parametrized angular distributions with the angles shown in figure 1, where P2 is the
Legendre polynomial with P2 = (3 cos2 θ2 − 1)/2.

The unpolarized angular distribution is then given as

D0(~Ω0) =
∫ π

−π

∫ 1

−1
Dχ(~Ωχ)d cos θdχ2 , (2.13)

where only Di with i ≤ 6 survive from the selection rule. In analogy to eq. (2.9), we have

D0(~Ω0) = 1
Γc

∂3Γc
∂ cos θ1∂ cos θ2∂χ1

= 1
8π

1
|a+|2 + |a−|2 + |b+|2 + |b−|2

6∑
i=1

fi(a±, b±)D0
i (αΛ , θ1 , θ2 , χ1) , (2.14)

which is clearly independent of Pb. Here, Dχ(~Ωχ) and D0
i are obtained by changing

the parametrization of the azimuthal angles from (φ1, φ2) to (χ1, χ2) in D(~Ω) and Di,
respectively.
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By integrating θ2 and χ1 in D0(~Ω0), we obtain that

1
Γc

dΓc
d cos θ1

= (1 + αλ1α cos θ1)/2 , (2.15)

where

αλ1 ≡
Γ(λ1 = 1/2)− Γ(λ1 = −1/2)
Γ(λ1 = 1/2) + Γ(λ1 = −1/2) = |a+|2 + |b−|2 − |a−|2 − |b+|2

|a+|2 + |a−|2 + |b+|2 + |b−|2
, (2.16)

describing the polarization asymmetry of Λ. Likewise, we can integrate θ1 and χ1, given by

1
Γ

dΓ
d cos θ2

= 1
2 + P2

4 + 3
4P2αλ2 , (2.17)

where
αλ2 ≡

|a+|2 + |a−|2 − |b+|2 − |b−|2
|a+|2 + |a−|2 + |b+|2 + |b−|2

, (2.18)

representing the asymmetry between the longitudinal and transverse polarizations of ρ0.
With eq. (2.5), it is straightforward to see that αλ1 and αλ2 are P-odd and P-even, respec-
tively. In addition, αλ1,2 are independent of Pb, which is a reasonable result since λ1,2 are
SO(3)R scalars and shall not be affected by the spin direction of Λb alone.

The structures of the angular distributions can be traced back to the spin correlations
in Λb → ΛV . In the next section, we will study the T-odd spin correlations and identify
their effects on D(~Ω).

In the near future, it is not likely that the experiments have enough data points to
reconstruct the full angular distributions in eq. (2.9). Nonetheless, the experiments at LHCb
are able to carry out the partial angular distribution analyses, which require a handful of
parameters to be fitted, such as the ones in eqs. (2.14), (2.15) and (2.17) (see eq. (3.19)
also). In particular, aiming on probing T-violation, the partial angular analysis of Λb → Λφ
has been studied at LHCb. [32], although the effects of the FSIs have not been considered.

3 T-odd observables

In general, to observe T-violating effects, one should compare Λb → ΛV to the time-reversed
processes, ΛV → Λb, which are difficult to prepare in the experiments. However, in the
first order of the weak interaction, it is possible to constrain the amplitudes with the T
symmetry as demonstrated in the helicity formalism (see eq. (2.8) and appendix A also).
Our goal in this section is to obtain naive T-odd observables with eq. (A.4) and subtract
the effects of the FSIs by comparing them with the charge conjugate ones. To this end, we
ought to find the eigenstates of the T-odd operators, T̂i, in the ΛV systems, which satisfy

It|ΛV ;λti , {λf}〉 = |ΛV ;−λti , {λTf }〉 , (3.1)

where It is the T operator, λti are the eigenvalues of T̂i, {λf} corresponds to a set of
compatible physical quantities to specify the states, and λTf represent the values after the T
transformation.

– 7 –
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From eq. (A.2), if Heff respects the T symmetry, we have

|〈ΛV ;λti , “out”, {λf}|Heff |B〉|2 − |〈ΛV ;−λti , “in”, {λTf }|Heff |B〉|2 = 0 . (3.2)

In our study, except for Jz which can always be flipped back by SO(3)R,3 λf are chosen as
T-even. The naive T-violating observables are then given by

∆ti = Γ(λti)− Γ(−λti)
Γ(λti) + Γ(−λti)

, (3.3)

where we always choose λti > 0 to fix the ambiguity. Notice that if “in” and “out” can be
interchanged freely, the left-handed side of eq. (3.2) would be proportional to the numerator
of ∆ti , resulting in that ∆ti are T-odd observables. Furthermore, since T̂i involve more
than two spins in two-body decays, ∆ti are also referred to as the T-odd spin correlations.

Nonetheless, | ± λti〉 could potentially oscillate, leading to

〈−λti ; “out”|λti ; “in”〉 6= 0 , (3.4)

for the rescattering from λti → −λti , due to the FSIs. To subtract the rescattering effects,
we have to compare them with their charge conjugates, as long as the FSIs are not tractable.
Accordingly, the true T-violating quantities can be given as

Tti ≡ (∆ti − (±)∆ti)/2 , (3.5)

where the overline denotes the charge conjugate, and the signs correspond to the parities
of T̂i. For example, if T̂j are the vector products of two spins and one 3-momentum, it is
P-odd with the minus sign for Ttj . Here, as we have used the CPT symmetry to relate the
charge conjugate processes, Tti are not only T-violating but also CP-violating observables.

To define the T-odd operators, we start with the definition of the spin, given by [51]

m~s = P 0 ~J − ~p× ~K − 1
P 0 +m

~p(~p · ~J) , (3.6)

where m is the particle’s mass, and ~K is the generator of the Lorentz boost. Despite
that the definition seems complicated, each term can be understood separately. On the
right-hand side of eq. (3.6), the first term describes that ~s shall be reduced to ~J at the rest
frame, the second one ensures [si, pj ] = 0, and the last one guarantees that the algebra is
closed, i.e., [si, sj ] = iεijksk. As a result, we have [51]

siL|~p = 0, Jz = M〉 = LJi|~p = 0, Jz = M〉 , (3.7)

where L is an arbitrary Lorentz boost, indicating that ~s is treated as a 3-momentum state
of ~J in its rest frame.

In quantum mechanics, one should find a set of commuting operators to characterize
the states properly, which has often been mishandled in the studies concerning T-violation.
For instance, let us consider the most simple T-odd operator, given by

T̂1 = (~s1 × ~s2) · p̂1 , (3.8)
3See the footnote followed by eq. (2.8).
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where ~s1 and ~s2 are the spins of Λ and V , respectively, and p̂1 is the normalized unit vector
of ~p1. In the literature, it is often examined in terms of the Dirac spinors and polarization
vector as eq. (2.2), which essentially expand the final states by (~p1, ~s1 · n̂1) and (~p2, ~s2 · n̂2) ,
where n̂1 and n̂2 are arbitrary unit vectors in the three-dimensional space. However, the
approach is questionable since ~s1 · n̂1 does not commute with T̂1. It is odd (wrong) to study
any physical quantity with incompatible observables.

For each T-odd operator, one should find a set of compatible observables, in which J2

and Jz are always included, resulting in that only T-odd SO(3)R scalars are studied. These
T-odd scalars are classified into 4 categories, depending on the spins. First, we study T̂1
defined in eq. (3.8) , which can be sizable even when Pb = 0, since it does not contain ~J .
Second, we work out the case in which ~s1 is not involved, given as

T̂2 = (~s2 × p̂1) · ~J , (3.9)

which can be large even when α = 0. Third, we discuss the case with ~s1, given as

T̂3 ≡ (~s1 × p̂1) · ~J , (3.10)

which requires both Pb 6= 0 and α 6= 0. Note that if we set α = 0, Di will be independent of
θ1 and φ1 as in the cascade decays of 1/2→ 1/2, 0 shown in eq. (2.15). Finally, we examine
the cases in which all the spins are involved.

3.1 T-odd observables with ~s1 and ~s2

In this subsection, we consider the T-odd scalar operators made from ~s1 , ~s2, p̂1 and ~J · p̂1.
Since p̂1 commutes with each of them, the T-odd scalar operators must also commute with
~J · p̂1. The most simple case is T̂1, given in eq. (3.8). By direct computation with eqs. (2.3)
and (3.7), the eigenstates are given by

|λt1 = ± 1√
2
, λ = 1

2〉 = 1√
2

(|a+〉 ∓ i|b+〉) ,

|λt1 = ± 1√
2
, λ = −1

2〉 = 1√
2

(|a−〉 ± i|b−〉) , (3.11)

where λt1 and λ = λ1 − λ2 are the eigenvalues of T̂1 and ~J · p̂1, respectively. Due to the
anti-linear property of It, one can easily check that the eigenstates in eq. (3.11) satisfy the
criterion in eq. (3.1).

In addition, it is straightforward to see the helicities are entangled in |λt1〉. Nonetheless,
they are still independent of n̂Λb

. Since T̂1 commutes with ~J · p̂1, |a+〉 and |a−〉 share the
same θ dependence with |b+〉 and |b−〉, respectively. For instance, from eq. (2.3), we have

|λt1 =± 1√
2
,λ= 1

2〉=
1

2
√

2π

∫
dΩ(|~p1,1/2 ,0〉∓i|~p1,−1/2 ,∓1〉)e−iMφd

1
2 (θ)M 1

2
. (3.12)

Clearly, the helicities do not depend on θ and hence n̂Λb
.
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Notice the close relations between the opposite λ. The eigenstates in eq. (3.11) are
related by the parity, which can be seen from the following identity, read as4

ItIs|λt1 , λ〉 = It| − λt1 ,−λ〉 = |λt1 ,−λ〉 . (3.13)

Here, the first and second equalities are due to that λ(t1) and λ are P-odd and T-even,
respectively. In general, λt1 is degenerated as long as λ 6= 0.

The naive T-odd observable, defined in eq. (3.3), is then given as

∆t1 ≡
Γ(λt1)− Γ(−λt1)
Γ(λt1) + Γ(−λt1) = 2=(a+b

∗
+ − a−b∗−)

|a+|2 + |a−|2 + |b+|2 + |b−|2
, (3.14)

which is also P-odd. Consequently, the true T-odd quantity is given by

Tt1 = (∆t1 + ∆t1)/2 . (3.15)

From eq. (3.14), it is obvious that ∆t1 vanishes if a± and b± are real. This is consistent
with eq. (2.8).

To construct a P-even and T-odd observable, we define

T̂1
p = ~J · p̂1T̂1 . (3.16)

By comparing eqs. (3.16) and (3.12), it is easy to see that the eigenstates of T̂ p1 are identical
to those of T̂1 with the eigenvalues of λpt1 = λt1λ. Accordingly, the naive T-odd observable
is then given as

∆p
t1 = 2=(a+b

∗
+ + a−b

∗
−)

|a+|2 + |a−|2 + |b+|2 + |b−|2
, (3.17)

and the true one is
T pt1 = (∆p

t1 −∆p
t1)/2 . (3.18)

With the unpolarized Λb, there are only 3 independent observables in the decay
distributions, ~pa , ~pb and ~pc, where a , b and c correspond to the particles after the cascade
decays. As a result, to manifest the T-odd quantity, it can only take the P-odd form,
(~pa × ~pb) · ~pc. Hence, one naively expects that ∆t1 (P-odd) shows up in D0(~Ω0), whereas
∆p
t1 (P-even) can not be observed. It is indeed the case in our previous work [10], in which

we consider B → V V ′. Interestingly, things go the other way round in Λb. We see that ∆t1

appears in f14, which requires Pb 6= 0, whereas ∆p
t1 is found in f6, which is independent of

Pb. The reason for this opposite behavior is that to manifest the helicities of Λ, α is always
needed (see eq. (2.15)), which is P-odd, and therefore inverts the argument.

Since the observation of ∆p
t1 does not demand Λb to be polarized, the uncertainties

caused by Pb can be eliminated. From D0(~Ω0), we find that

∆p
t1 = −128

√
2

3π2α

∫ 2π

0

∫ 1

−1

∫ 1

−1
D0(~Ω0)d cos θ1 (cos θ2d cos θ2) (sinχ1dχ1) . (3.19)

4In practice, Jz flips the sign under It. However, we can always rotate it back with R2(−π) without
affecting λti and λ, and therefore, the conclusion still holds.
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Note that in contrast to the ordinary integral, we have added the weight factors, cos θ2
and sinχ1. Here, cos θ2 is designed to diminish the uncertainties, satisfying the orthogonal
relation, given as ∫ 1

−1
Di cos θ2d cos θ2 = 0 for i = 1, 2, 3, 4 , (3.20)

while sinχ1 corresponds to the familiar Fourier transformation.

3.2 T-odd observables with ~J and ~s2

Similar to the previous subsection, we consider the T-odd scalar operators made of ~s2, p̂1,
~J and ~s1 · p̂1. Since ~s1 · p̂1 commutes with each of them, the T-odd operators commute with
~s1 · p̂1. From eq. (3.13) with substituting λ1 for λ, we anticipate that the eigenvalues are
degenerated as λ1 6= 0. For the most simple case of T̂2 in eq. (3.9), we have that

|λt2 = ±1/
√

2 , λ1 = 1/2〉 = 1√
2

(|a+〉 ± i|b−〉) ,

|λt2 = ±1/
√

2 , λ1 = −1/2〉 = 1√
2

(|a−〉 ∓ i|b+〉) , (3.21)

where λt2 and λ1 are the eigenvalues of T̂2 and ~s1 · p̂1, respectively, while the naive T-odd
observable is

∆t2 = 2=(b−a∗+ − b+a∗−)
|a+|2 + |a−|2 + |b+|2 + |b−|2

, (3.22)

where the spins correlations are handed down to f10. With the charge conjugate, the true
T-odd observable is then given as

Tt2 = (∆t2 + ∆t2)/2 . (3.23)

In analogy to the previous subsection, we define T̂ p2 = ~s1 · p̂1T̂2, resulting in the naive
T-odd observable as

∆P
t2 = 2=(b−a∗+ + b+a

∗
−)

|a+|2 + |a−|2 + |b+|2 + |b−|2
, (3.24)

which can be found in f16, and the true T-odd observable is

T pt2 = (∆p
t2 −∆p

t2)/2 . (3.25)

In section 4, we will see that Λb → ΛV is predominant by a− and b+, making ∆(p)
t2 a good

observable to test the SM.

3.3 T-odd observables with ~J and ~s1

We now expand the states in terms of ~s2 ·p̂1 and T̂3. The eigenstates with nonzero eigenvalues
are

|λt3 = ±1
2〉 = 1√

2
(|a+〉 ± i|a−〉) , (3.26)

where λt3 are the eigenvalues of T̂3. On the other hand, similar to eq. (3.13), we have

T̂3|b±〉 = 0 . (3.27)
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The naive T- odd observable is

∆t3 ≡
2=(a−a∗+)

|a+|2 + |a−|2 + |b+|2 + |b−|2
, (3.28)

which manifests itself in f18. The true T-odd observable is

Tt3 = (∆t3 −∆t3)/2 , (3.29)

which is also a CP-violating observable due to the CPT symmetry.

3.4 T-odd observables with triple spin correlations

Among the T-odd parameters in D(~Ω), only f20 has not been discussed yet. The responsible
T-odd operator is quite complicated, read as

T̂4 =
[
T̂1

(
~s2 · ~J −

1
2(~s2 · p̂1)2

)
+ 1√

2
T̂3

]
+ h.c. , (3.30)

where h.c. stands for the Hermitian conjugate. The eigenstates are

|λt4 = ±
√

2〉 = 1√
2

(|b+〉 ± i|b−〉) , (3.31)

where T̂4|a±〉 = 0. The corresponding naive T-odd observable is then given as

∆t4 ≡
2=(b−b∗+)

|a+|2 + |a−|2 + |b+|2 + |b−|2
, (3.32)

which is proportional to the relative phase between b±, while the true T-odd observable is

Tt4 = (∆t4 + ∆t4)/2 . (3.33)

Here, the nonzero value of ∆t4 could be caused by the FSIs. However, to oscillate between
|b±〉, the helicities of V must alter twice (λ2 : 1→ 0→ −1), and therefore, the oscillations
are expected to be suppressed, as the case in B mesons decays [10]. Clearly, it is interesting
to see whether the suppression holds in the baryon systems or not.

Before ending this section, let us collect the results. We have found the T-odd spin
correlations in Λb → ΛV , with their effects on the sequential decays identified. In particular,
we have shown that ∆t1 ,∆

p
t1 ,∆t2 ,∆

p
t2 ,∆t3 and ∆t4 correspond to f14 , f6 , f10 , f16 , f18

and f20, respectively. Notably, all the relative phases among a± and b± can be described
by ∆(p)

t1,2,3,4 , which complete our study on all possible T-odd observables.

4 Numerical results

In the SM, the effective Hamiltonian responsible for b→ d/s transitions, obtained from the
operator product expansions, is given by [53]

Heff = GF√
2
∑
f=,d,s

[
VubV

∗
uf

(
C1O

f
1 + C2O

f
2

)
− VtbV ∗tq

10∑
i=3

CiO
f
i

]
, (4.1)
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where GF stands for the Fermi constant, Ci represent the Wilson coefficients, Vqq′ correspond
to the CKM matrix elements, and Of1−10 are the operator products, given by [53]

Of1 = (uαbα)L(fβuβ)L , Of2 = (uαbβ)L(fβuα)L ,
Of3 = (fαbα)L

∑
q

(qβqβ)L , Of4 = (fαbβ)L
∑
q

(qβqα)L ,

Of5 = (fαbα)L
∑
q

(qβqβ)R , Of6 = (fαbβ)L
∑
q

(qβqα)R ,

Of7 = 3
2(fαbα)L

∑
q

eq(qβqβ)R , Of8 = 3
2(fαbβ)L

∑
q

eq(qβqα)R ,

Of9 = 3
2(fαbα)L

∑
q

eq(qβqβ)L , Of10 = 3
2(fαbβ)L

∑
q

eq(qβqα)L , (4.2)

with L and R in the subscripts denoting the left and right-handed currents, respectively.
The amplitudes are given by sandwiching Heff between the initial and final states. Note
that both Ci and Oi depend on the renormalization schemes and energy scales.

In the following, we adopt the generalized factorization approach [45], in which the
quarks and antiquarks of vector mesons are created by weak vertices. The amplitudes are
simplified as [18, 46]

GF√
2
CV 〈V |V µ|0〉〈Λ|(sb)L|Λb〉 = GF√

2
CV fVMV ξ

µ∗〈Λ|(sb)Lγµb|Λb〉 , (4.3)

where V µ, fV , MV , and ξµ are the currents, decay constants, masses, and polarizations of
the vector mesons (V ), and CV are given as

Cφ = −V ∗tsVtb
(
a3 + a4 + a5 −

1
2a7 −

1
2a9 −

1
2a10

)
,

Cρ0 = 1√
2

[
V ∗usVuba2 −

3
2V
∗
tsVtb (a7 + a9)

]
,

Cω = 1√
2

{
V ∗usVuba2 − V ∗tsVtb

[
2a3 + 2a5 + 1

2 (a7 + a9)
]}

,

CK∗0 = −V ∗tdVtb
(
a4 −

1
2a10

)
, (4.4)

respectively, with ai = ceff
i + ceff

i+(−1)/Nc for i =odd (even). Here, one has Nc = 3 in
the absence of the NF contributions. In the numerical calculations, the Wolfenstein
parametrization is used for the CKM matrix elements in the SM, taken to be [25]

λ = 0.22650± 0.00048 , A = 0.790+0.017
−0.012 , ρ = 0.141+0.016

−0.017 , η = 0.357± 0.011 , (4.5)

and the effective Wilson coefficients are given in table 2 [43, 45].
The baryon transitions in eq. (4.3) can be parametrized by the form factors, defined by

〈Λ|sγµb|Λb〉 = uΛ

(
f1(q2)γµ − f2(q2)iσµν

qν

MΛb

+ f3(q2) qµ

MΛb

)
uΛb

,

〈Λ|sγµγ5b|Λb〉 = uΛ

(
g1(q2)γµ − g2(q2)iσµν

qν

MΛb

+ g3(q2) qµ

MΛb

)
γ5uΛb

, (4.6)
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b→ d b→ d b→ s b→ s

ceff
1 1.168 1.168 1.168 1.168
ceff

2 −0.365 −0.365 −0.365 −0.365
ceff

3 238 + 14i 254 + 43i 243 + 31i 241 + 32i
ceff

4 −497− 42i −545− 130i −512− 94i −506− 97i
ceff

5 145 + 14i 162 + 43i 150 + 31i 148 + 32i
ceff

6 −633− 42i −682− 130i −649− 94i −643− 97i
ceff

7 −1.0− 1.0i −1.4− 1.8i −1.1− 2.2i −1.1− 1.3i
ceff

8 5.0 5.0 5.0 5.0
ceff

9 −112− 1i −112− 3i −112− 2i −112− 2i
ceff

10 20 20 20 20

Table 2. The effective Wilson coefficients with the NDR and MS schemes at the energy scale of
µ = 2.5GeV, where ceff

1,2 and ceff
3−10 are in the units of 100 and 10−4, respectively.

f1 f2 f3 g1 g2 g3

q2 = m2
ρ 1.60± 0.09 0.02± 0.00 −0.18± 0.00 1.60± 0.09 0.05± 0.00 −0.21± 0.00

q2 = m2
K∗ 1.62± 0.09 0.02± 0.00 −0.19± 0.01 1.62± 0.09 0.05± 0.00 −0.22± 0.01

q2 = m2
φ 1.63± 0.07 0.04± 0.01 −0.19± 0.01 1.64± 0.08 0.05± 0.01 −0.22± 0.00

q2 = (MΛb
−MΛ)2 11.0± 0.00 4.04± 0.02 0.00± 0.13 11.5± 0.0 0.66± 0.07 −3.05± 0.11

Table 3. Form factors with the unit 10−1, where the uncertainties come from the bag radius.

where qµ = pµΛb
− pµΛ, and f1,2,3 and g1,2,3 are the form factors. In this study, we calculate

them with the modified MIT bag model [44], in which the center motions of the baryon
waves are removed. The hadrons parameters are given as [44, 54]

mb = 4.8 GeV, ms = 0.28 GeV, mu = md = 0.005 GeV , R−1 = 0.21± 0.01GeV ,
(4.7)

where R is the bag radius, and (fφ, fω, fρ) = (215 ± 5, 187 ± 5, 216 ± 3)MeV [55] . The
numerical results of the form factors with the q2 dependencies are given in table 3. The
uncertainties come mainly from the bag radius. We see that our results are consistent with
those having f1 = g1 demanded by the heavy quark symmetry.

Finally, the helicity amplitudes are related to the form factors as [18]

a± = GF√
2
CV fVMV

[√
Q−

(
f1
M+
MV

+ f2
MV

MΛb

)
∓
√
Q+

(
g1
M−
MV
− g2

MV

MΛb

)]
,

b± = GF√
2
CV fVMV

[√
2Q−

(
−f1 − f2

M+
MΛb

)
∓
√

2Q+

(
−g1 + g2

M−
MΛb

)]
, (4.8)

whereM± = MΛb
±MΛ and Q± = M2

±−M2
V . The decay widths and direct CP asymmetries
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are given by

ΓΛb→ΛV = 1
16π
|~pΛ|
M2

Λb

(
|a+|2 + |a−|2 + |b+|2 + |b−|2

)
,

ACP = Γ(Λb → ΛV )− Γ(Λb → ΛV )
Γ(Λb → ΛV ) + Γ(Λb → ΛV )

. (4.9)

The numerical results are shown in table 4, where the first and second uncertainties arise
from the bag radius and CKM matrix elements, respectively. We see that with Nc = 3,
Λb → Λω is suppressed at the level of 10−8 due to the cancellation of the effective Wilson
coefficients, which is also found in the framework of the QCD factorization [46]. To take
account the NF effects, we treat Nc as a parameter in the decay branching ratios, which are
in general related to the decay processes. Nonetheless, in this work, we will assume that Nc

is independent of the vector mesons. With the experimental branching ratio in Λb → Λφ,
we find that Nc = 2.0± 0.3, which is consistent with the B meson decays.

In the factorization approach, αλ1 and αλ2 are independent of CV as can be seen from
eqs. (2.16), (2.18) and (4.8). In addition, we find that in the bag model, they also depend
little on the bag radius and the vector mesons. Explicitly, we have that

αλ1 = −0.99 ≈ −1 , αλ2 = 0.86 , (4.10)

for Λb → ΛV with V = {φ, ρ0, ω,K∗0}. The values can be understood in the heavy quark
limit, in which the light quark chiralities are related to the helicities. In eq. (4.3), the s
quark in Λ is left-handed, and the quark and anti-quark in V have the same chiralities,
resulting in λ1 = −1/2 and λ2 = 0. We conclude that the amplitudes are dominated by a−
in the framework of the factorization in the SM.

On the other hand, once the NF contributions are considered, the arguments would not
hold. In the B meson decays with b→ s transitions, we know that the NF contributions
are mainly found in the negative helicities [56–61], which lead to the so-called polarization
puzzles in B0 → K∗0φ [26, 27, 62, 63]. In analogy, we assume that the NF effects attribute
solely to b+ in the b→ s transitions of Λb decays. As a result, since b+ ≈ 0 in the factorizable
amplitudes, the branching ratios increase along with the NF contributions, which meet well
with the results in table 4.

In the b→ s transitions, we assume that a− are totally factorizable, calculated with
Nc = 3, and |b+|2 can be obtained by subtracting the |a−|2 contributions in the branching
ratios. The numerical values of αλ1 remain unaltered, since |a−|2 and |b+|2 share the same
sign in eq. (2.16). In contrast, αλ2 decrease along with Nc. The results are given in table 4.
We see that αλ2 are sensitive to Nc. With Nc = 2.0± 0.3, we get that

αNλ2 = 0.0± 0.3 , −1 , 0.6± 0.2 (4.11)

for Λb → (Λφ,Λω,Λρ0), where the superscript of “N” denotes the NF contribution in the
scenario of the effective color number. Here, we find that Λb → Λω is dictated by the NF
contribution, which is consistent with those in the literature [42, 46].

In the factorization approach, the relative phases of a± and b± would vanish (see
eq. (4.8)), and therefore, one predicts that ∆(p)

ti = 0 for i = 1, 2, 3, 4. Although it only holds
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V Nc=1.7 Nc=2.0 Nc=2.3 Nc=3 Exp

φ

Br 6.90± 0.65± 0.30 5.22± 0.49± 0.24 4.12± 0.39± 0.18 2.67± 0.25± 0.12 5.18± 1.29
ACP 1.14± 0.00± 0.00 1.16± 0.00± 0.00 1.18± 0.00± 0.00 1.21± 0.00± 0.00
αNλ2

−0.28 −0.05 0.21 0.86

ρ0
Br 0.30± 0.03± 0.02 0.27± 0.03± 0.02 0.25± 0.03± 0.02 0.24± 0.03± 0.01
ACP −2.15± 0.00± 0.04 −1.61± 0.00± 0.01 −1.11± 0.00± 0.01 −0.18± 0.00± 0.00
αNλ2

0.43 0.59 0.71 0.86

ω

Br 2.98± 0.35± 0.15 1.36± 0.16± 0.07 0.57± 0.06± 0.03 0.01± 0.00± 0.00
ACP −1.88± 0.00± 0.07 −1.87± 0.00± 0.07 −1.86± 0.00± 0.07 −1.55± 0.00± 0.04
αNλ2

−1 −0.99 −0.98 0.86

K∗0
Br 0.10± 0.01± 0.00 0.11± 0.01± 0.00 0.12± 0.02± 0.01 0.14± 0.02± 0.01
ACP −14.1± 0.0± 0.4 −13.5± 0.0± 0.3 −13.1± 0.0± 0.3 −12.6± 0.0± 0.5

Table 4. Branching ratios and direct CP asymmetries in units of 10−6 and % for Λb → ΛV , where
the first and second uncertainties come from the bag radius and the CKM matrix elements in the
SM, respectively, while the experimental branching ratio of Λb → Λφ is taken from ref. [32].

in the framework of the factorization, with the scenario that the NF effects attribute to
b+ solely, ∆t1 would remain suppressed. Furthermore, Λb → Λφ is dominated by one weak
phase, V ∗tsVtb, so that the effects of CP- and T-violation are highly suppressed. Explicitly,
we have

T (p)
ti (Λb → Λφ) ≈ 0 , for i = 1, 2, 3, 4 , (4.12)

which are independent of the factorization ansatz, providing a clean background to test the
SM and search for new physics.

We now explore the possible contributions from new physics to the T-violating observ-
ables. Note that in Λb → Λω/ρ0, the s quark is essentially left-handed in the SM, and thus
the experimental results with αλ1 ≥ 0 can be a smoking gun for new physics. Particularly,
Λb → Λω acquires large contributions from right-handed penguin operators. To illustrate
the effects, we concentrate on the possible effective Lagarangian from new physics, given
by [5, 64, 65]

LNeff = −GF√
2
c̃5(sαbα)R

∑
q

(
qβqβ

)
L
, (4.13)

which contributes mainly to a+ in the factorization approach, given as

aN+ = GF c̃5fωMω

[√
Q−

(
f1
M+
Mω

+ f2
Mω

MΛb

)
+
√
Q+

(
g1
M−
Mω
− g2

Mω

MΛb

)]
, (4.14)

where c̃5 is the effective coefficient and the superscript of N denotes new physics. With
c̃5 > 10−3, new physics could potentially flip the sign of αλ1 .

On the other hand, due to the helicity conservation of the s quark, (a+ , b−) and
(a− , b+) receive contributions from LNeff and the SM, respectively, and the CP-violating
effects are suppressed due to the lack of the interferences. In contrast, T pt1 , depending on
the complex phases between different helicities, can be sizable. With the assumption of
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|a−| ≈ |b+| and |aN+ | ≈ |bN− |, we find that

T pt1 ∼
√

1− α2
λ1

sinφN , (4.15)

which can be large when the phase of φN from new physics is sizable. As a result, we conclude
that the T-violating observables are useful in testing the complex phases for new physics.

5 Conclusions

We have parametrized the helicity amplitudes in terms of the angular distributions and
systematically studied the T-violating observables in Λb → Λ(→ pπ−)V (→ PP ′). We have
shown that all the relative complex phases among a± and b± can be interpreted as the
T-odd correlations. By subtracting the effects from the FSIs, we have defined the true
T-violating observables, which could be measured in the experiments. In particular, we
recommend the experiments on ∆p

t1 and T p1 , which do not require Λb to be polarized. In
addition, the polarization asymmetries of Λ and V have been defined and their effects on
the cascade decays have been given.

The decays of Λb → ΛV in the SM have been examined with the generalized factorization
approach, which leads to the domination of a−, resulting in that αλ1 ≈ −1. Since the
complex phases among a± and b± are identical, the factorization approach suggests that
T-violating observables in the decays can not be observed. Nonetheless, the measured
branching ratio of Λb → Λφ indicates that the NF effects play an important role, resulting
in that the nonzero values of ∆(p)

ti do not necessary contradict to the SM. However, as
Λb → Λφ is dominated by a single weak phase, the true T-violating effects are not expected
to be observed. In table 4, we have given the branching ratios and direct CP asymmetries
for the different values of the effective color number Nc. We have found that αλ2 depend
heavily on the NF contributions. Furthermore, the absolute value of ACP (Λb → ΛK∗0) has
been expected to be larger than 10%. We have also explored the possible effects from new
physics. In particular, we have illustrated that the right-handed currents from new physics
can potentially flip the sign of αλ1 from negative to positive, resulting in a possible large
T-violating effect. Finally, we recommend the future experiments on T p1 (Λb → Λφ) to test
the SM and search for new physics.

A T-transformation

If the system respects the T symmetry, one has that [49]

〈f |U(∞,−∞)|i〉 = 〈iT |U(∞,−∞)|fT 〉 , (A.1)

for arbitrary initial and final states |i〉 and |f〉, respectively, where U(t, t0) is the time
evolution operator from t0 to t, and the superscript T denotes the time-reversed state.
Hence, in general, the T-transformation relates i→ f to fT → iT instead of iT → fT .

In the first order of the weak interaction, it is possible to relate the amplitudes between
i → f and iT → fT . To do this, we adopt the interaction picture, in which the weak
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transition is described by Heff , and the unperturbed Hamiltonian corresponds to the strong
interaction. We have [49]

〈f ; “out”|Heff |i〉 = 〈iT |H†eff |f
T ; “in”〉 = 〈iT |Heff |fT ; “in”〉 , (A.2)

where “in” and “out” denote t→ ∓∞, respectively. Here, the states are related as

U0(∞,−∞)|f ; “in”〉 = |f ; “out”〉 , (A.3)

where U0 represents the time evolution operator for the unperturbed Hamiltonian (strong
interaction). In eq. (A.2), we have taken |i〉 as a single particle state of a stable hadron,
having |i; “in”〉 = |i; “out”〉. Furthermore, in eq. (A.2), if |fT 〉 is an eigenstate of the FSI,
we would have |fT ; “in”〉 = eicf |fT ; “out”〉 with cf the elastic rescattering phases, thereby
leading to

|〈f ; “out”|Heff |i〉|2 = |〈i|Heff |fT ; “out”〉|2 . (A.4)

As an application, for instance, after factorizing the pion decays, |f〉 corresponds to the
vacuum and eq. (A.4) demands the pion decay constants to be real.
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