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Abstract: A discrepancy between the measured anomalous magnetic moment of the
muon (g−2)µ and computed Standard Model value now stands at a combined 4.2σ follow-
ing experiments at Brookhaven National Lab (BNL) and the Fermi National Accelerator
Laboratory (FNAL). A solution to the disagreement is uncovered in flipped SU(5) with
additional TeV-Scale vector-like 10 + 10 multiplets and charged singlet derived from local
F-Theory, collectively referred to as F–SU(5). Here we engage general No-Scale supersym-
metry (SUSY) breaking in F–SU(5) D-brane model building to alleviate the (g−2)µ tension
between the Standard Model and observations. A robust ∆aµ(SUSY) is realized via mixing
of M5 and M1X at the secondary SU(5) × U(1)X unification scale in F–SU(5) emanating
from SU(5) breaking and U(1)X flux effects. Calculations unveil ∆aµ(SUSY) = 19.0–
22.3 × 10−10 for gluino masses of M(g̃) = 2.25–2.56TeV and higgsino dark matter, aptly
residing within the BNL+FNAL 1σ mean. This (g − 2)µ favorable region of the model
space also generates the correct light Higgs boson mass and branching ratios of companion
rare decay processes, and is further consistent with all LHC Run 2 constraints. Finally, we
also examine the heavy SUSY Higgs boson in light of recent LHC searches for an extended
Higgs sector.
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1 Introduction

The Fermi National Accelerator Lab (FNAL) launched an experiment to update the orig-
inal Brookhaven National Lab (BNL) analysis of the magnetic moment of the muon
(g − 2)µ. The BNL measurements showed an enticing 3.7σ deviation [1] from the the-
oretical Standard Model calculation [2–31], albeit burdened with a large factor of uncer-
tainty. The independently conducted FNAL venture sought to either confirm or exclude
these initial BNL findings. Concluding the anticipation, FNAL announced recently a sim-
ilar disparity with the Standard Model value, leading to a combined 4.2σ discrepancy of
∆aµ = aµ(Exp)− aµ(SM) = 25.1± 5.9× 10−10 [32], in conjunction with a reduced uncer-
tainty by a factor of four. Even more intriguing is the magnitude of the discrepancy, which
just so happens to be similar in scale to the electroweak contribution [30, 31] to aµ(SM),
suggesting new physics obscured at the TeV-scale.

A natural explanation for the anomaly is supersymmetry (SUSY), certainly the most
auspicious extension to the Standard Model. The muon’s magnetic moment maintains
the benefit of precision measurements and is rather sensitive to new physics, thus it has
long been viewed as a gateway to probing SUSY. The triumphs of SUSY are numerous
and well known with regards to stabilizing quantum corrections to the scalar Higgs field,
gauge coupling unification, mechanism for radiatively breaking electroweak symmetry, and
yielding a dark matter candidate in the form of the lightest supersymmetric particle (LSP)
under R-parity. Our model we investigate here showcases intersecting D-branes, therefore
a critical feature of SUSY is its fundamental presence in superstring theory.

The SUSY grand unification theory (GUT) model we study merges the realistic in-
tersecting D6-brane model [33–47] with the phenomenologically [48–59] and cosmologi-
cally [60–69] favorable No-Scale flipped SU(5). The union of these with extra vector-like
matter, dubbed flippons [50], is referred to as the F–SU(5) D-brane model, which in ag-
gregate reinforces deep theoretical constructions, furnishing a compelling natural GUT
candidate for our universe. Serving as a viable high-energy candidate though, it must be
capable of elegantly explaining any and all empirical observations, so we shall stress test
the model to affirm whether or not it can indeed explain the BNL+FNAL 4.2σ discrepancy
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(spoiler alert: it can!). But first we must review the F–SU(5) D-brane model’s founda-
tion before we then take the deep dive into the calculations of (g − 2)µ and corresponding
phenomenology later in the paper.

2 F–SU(5) intersecting D-branes

The F–SU(5) literature is amply stocked with discussions of the minimal flipped SU(5)
model (for instance, see refs. [51, 55, 56, 58, 59, 70–72] and references therein). We shall
provide here only a condensed review of the minimal flipped SU(5) model [73–75], where
the gauge group SU(5)× U(1)X is embedded into the SO(10) model. First, the generator
U(1)Y ′ in SU(5) is defined as

TU(1)Y′
= diag

(
−1

3 ,−
1
3 ,−

1
3 ,

1
2 ,

1
2

)
, (2.1)

which provides the hypercharge given by

QY = 1
5 (QX −QY ′) . (2.2)

There are three families of Standard Model fermions, and the quantum numbers under
SU(5)×U(1)X respectively are

Fi = (10,1), f̄i = (5̄,−3), l̄i = (1,5), (2.3)

with i = 1, 2, 3. Relevant for our D-brane model notation, we associate Fi, f̄i and l̄i with
the particle assignments

Fi = (Qi, Dc
i , N

c
i ), f i = (U ci , Li), li = Eci , (2.4)

where Qi, U ci , Dc
i , Li, Eci and N c

i are the left-handed quark doublets, right-handed up-type
quarks, down-type quarks, left-handed lepton doublets, right-handed charged leptons, and
neutrinos, respectively. Three Standard Model singlets φi can be introduced to generate
heavy right-handed neutrino masses.

The GUT and electroweak gauge symmetries can now be broken, and this is accom-
plished by introducing two pairs of Higgs representations

H = (10,1), H = (10,−1),
h = (5,−2), h = (5̄,2). (2.5)

The H and F multiplet states are labeled similarly, including only a “bar” added above
the fields for H. More precisely, the Higgs particles are

H = (QH , Dc
H , N

c
H) , H = (QH , D

c
H , N

c
H) , (2.6)

h = (Dh, Dh, Dh, Hd) , h = (Dh, Dh, Dh, Hu) , (2.7)

such that Hd and Hu are a single pair of MSSM Higgs doublets.
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We introduce this GUT scale Higgs superpotential to break the SU(5)×U(1)X gauge
symmetry down to the Standard Model gauge symmetry:

WGUT = λ1HHh+ λ2HHh+ Φ(HH −M2
H) . (2.8)

Consequently, there is only one F-flat and D-flat direction existing, which can certainly
be rotated along the N c

H and N
c
H directions. As a result, we obtain 〈N c

H〉 = 〈N c
H〉 =

MH. Additionally, the supersymmetric Higgs mechanism allows the superfields H and
H to be consumed and thus acquire large masses, except Dc

H and D
c
H . Moreover, the

superpotential terms λ1HHh and λ2HHh coupleDc
H andDc

H respectively withDh andDh,
which forms massive eigenstates with masses 2λ1〈N c

H〉 and 2λ2〈N
c
H〉. Accordingly, doublet-

triplet splitting naturally occurs due to the missing partner mechanism [75]. There is only
a small mixing through the µ term in the triplets h and h, so colored higgsino-exchange
mediated proton decay remains negligible, i.e., the dimension-5 proton decay problem is
absent [76].

String-scale gauge coupling unification at about 1017 GeV can be realized by introduc-
ing the following vector-like particles (referred to as flippons) at the TeV scale derived from
local F-theory model building [77–79]

XF = (10,1) , XF = (10,−1) ,
Xl = (1,−5) , Xl = (1,5) . (2.9)

Under Standard Model gauge symmetry, the particle content resulting from decompositions
of XF , XF , Xl, and Xl are

XF = (XQ,XDc, XN c) , XF = (XQc, XD,XN) ,
Xl = XE , Xl = XEc . (2.10)

The additional vector-like particles under the SU(3)C × SU(2)L × U(1)Y gauge symmetry
have the quantum numbers

XQ =
(

3,2, 16

)
, XQc =

(
3̄,2,−1

6

)
, (2.11)

XD =
(

3,1,−1
3

)
, XDc =

(
3̄,1, 13

)
, (2.12)

XN = (1,1,0) , XN c = (1,1,0) , (2.13)

XE = (1,1,−1) , XEc = (1,1,1) . (2.14)

The superpotential is

WYukawa = yDijFiFjh+ yUνij Fif jh+ yEij lif jh+ µhh+ yNij φiHFj +Mφ
ijφiφj

+yXFXFXFh+ yXFXFXFh+MXFXFXF +MXlXlXl , (2.15)
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and after the SU(5)×U(1)X gauge symmetry is broken down to the Standard Model gauge
symmetry, the superpotential presented directly above gives

WSSM = yDijD
c
iQjHd + yUνji U

c
iQjHu + yEijE

c
iLjHd + yUνij N

c
i LjHu +µHdHu + yNij 〈N

c
H〉φiN c

j

+yXFXQXDcHd + yXFXQ
cXDHu +MXF (XQcXQ+XDcXD)

+MXlXE
cXE+Mφ

ijφiφj + · · · (decoupled below MGUT). (2.16)

where yDij , yUνij , yEij , yNij , yXF , and yXF are Yukawa couplings, µ is the bilinear Higgs mass
term, and Mφ

ij , MXF and MXl are new particle masses. The vector-like particle flippons
are of course these new particles. The masses Mφ

ij , MXF , andMXl have not been explicitly
computed yet, reserving that in-depth project for the future. Regardless, a common mass
decoupling scale MV for the vector-like multiplets is implemented.

Contributions from vector-like multiplets require changes to the one-loop gauge β-
function coefficients bi that promote a flat SU(3) Renormalization Group Equation (RGE)
running (b3 = 0) [49], separating the secondary SU(3)C × SU(2)L unification around
1016 GeV, which we refer to as the mass scale M32, and the primary SU(5)× U(1)X unifi-
cation near the string scale 1017 GeV, defined as the mass scale MF . This is significant as
it elevates unification close to the Planck mass. The M3 and M2 gaugino mass terms and
couplings α3 and α2 unify at the scale M32 into a single mass parameter M5 and coupling
α5 [48], where M5 = M3 = M2 and α5 = α3 = α2 between M32 and MF [49]. The
flattening of the M3 gaugino RGE running between M32 and MV produces a characteristic
mass texture of M(t̃1) < M(g̃) < M(q̃), spawning a light stop and gluino that are lighter
than all other squarks [55].

Two critical effects naturally transpire at the scale M32. First, U(1)X flux effects [48]
cause a small increase in M1 from the evolution of M1X via the following

M1
α1

= 24
25
M1X
α1X

+ 1
25
M5
α5

(2.17)

where α1 = 5αY /3 is the U(1)Y gauge coupling. Second, in the SU(5) × U(1)X models
motivated by D-brane model building, there exist three chiral multiplets in the SU(5)
adjoint representation, for example, see ref. [80]. These chiral multiplets can obtain vacuum
expectation values around the SU(3)C×SU(2)L unification scaleM32, and then the gaugino
masses for SU(3)C × SU(2)L × U(1)Y ′ of SU(5) can be split due to the high-dimensional
operators [81, 82]. Because the bino mass is a linear combination of the U(1)Y ′ and U(1)X
gaugino masses, the bino massM1, wino massM2, and gluino massM3 can be independent
free parameters at M32. Thus, we shall consider such effects by introducing the following
relationship at the scale M32 that stimulates mixing between M5 and M1X :

M2 = 18
25M5 −

7
25M1X . (2.18)

This effect drives the wino to small values at the electroweak scale and we use the resulting
phenomenology to constrain the coefficients in eq. (2.18). A larger contribution from M5
decreases the wino contribution to (g − 2)µ. On the contrary, a smaller contribution from
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M5 shifts the SU(3)C × SU(2)L unification scale M32 lower, to below 1016 GeV. The lower
M32 in turn pushes the proton decay rate τp(p → e+π0) down to unacceptably fast time
periods of 1034 yrs or less. We study the nominal mixing highlighted in eq. (2.18) in this
analysis, though plan a more in-depth study later regarding maximum limits on the mixing
parameters of eq. (2.18).

Following upon the Fi, f̄i, and l̄i of eq. (2.4), the general No-Scale SUSY breaking
soft terms at MF are M5, M1X , MQDcNc , MUcL, MEc , MHu , MHd

, Aτ , At, and Ab. Note
that MQDcNc is the 10, MUcL is the 5̄, and MEc is the 1 of eq. (2.3). General SUSY
breaking soft terms of this type are motivated by D-brane model building [80], where Fi,
f i, li, and h/h arise from intersections of different stacks of D-branes. As a result, the
SUSY breaking soft mass terms and trilinear A terms will be different. The Yukawa terms
HHh and HHh of eq. (2.8) and FiFjh, XFXFh, and XFXFh of eq. (2.15) are forbidden
by the anomalous global U(1) symmetry of U(5), nonetheless, these Yukawa terms can
be generated from high-dimensional operators or instanton effects. Differing from SU(5)
models, the Yukawa term FiFjh in the F–SU(5) model gives down-type quark masses, so
these Yukawa couplings can be small and hence generated via high-dimensional operators
or instanton effects.

3 Phenomenological results

The general No-Scale soft SUSY breaking terms in the F–SU(5) D-brane model are im-
plemented at the SU(5) × U(1)X unification scale MF , and we concurrenly float the low-
energy parameters tanβ, mt, and MV . Over 1.2 billion points in the model space are
sampled by computing the SUSY mass spectra, rare decay process branching ratios, spin-
independent dark matter cross-sections, and relic density using a proprietary mpi codebase
built on scaled down versions of Micromegas 2.1 [83] and SuSpect 2.34 [84]. The inter-
vals scanned are:

100 GeV ≤ M5 ≤ 1700 GeV
100 GeV ≤ M1X ≤ 3800 GeV

10 eV ≤ MUcL ≤ 1500 GeV
1 GeV ≤ MEc ≤ 2400 GeV
1 keV ≤ MQDcNc ≤ 1900 GeV

100 GeV ≤ MHu ≤ 4000 GeV
100 GeV ≤ MHd

≤ 4000 GeV
−10 TeV ≤ Aτ ≤ 10 TeV
−10 TeV ≤ At ≤ 13 TeV
−10 TeV ≤ Ab ≤ 15 TeV

2 ≤ tanβ ≤ 60
1 TeV ≤ MV ≤ 8000 TeV .
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A small tolerance of 172.3 ≤ mt ≤ 174.4GeV is applied around the World Average
top quark mass [85]. We only consider a positive Higgs bilinear mass term µ, and the
strong coupling constant is fixed at αS(MZ) = 0.1184, within the Particle Data Group 1σ
variation [85]. The SUSY contribution to ∆aµ is calculated using GM2Calc 1.7.5 [86].

The computational results are constrained by filtering the data through current limits
on pertinent beyond the Standard Model (BSM) experiments. A tolerance of 2σ is allowed
around the branching ratio Br(b → sγ) of the b-quark decay [89] and branching ratio
Br(B0

S → µ+µ−) of the rare B-meson decay to a dimuon [90]. The WMAP 9-year [91] and
2015–18 Planck [92, 93] upper limit of about Ωh2 ' 0.12 is required, though no lower limit
on the relic density is applied. A lower bound on the proton decay rate τp(p → e+π0) ≥
1.7×1034 yrs [94] is also enforced. In summary, the points are filtered to ensure consistency
with the following requirements:

2.99 ≤ Br(b→ sγ) ≤ 3.87× 10−4

0.8 ≤ Br(B0
S → µ+µ−) ≤ 6.2× 10−9

0 ≤ Ωh2 ≤ 0.12
τp(p→ e+π0) ≥ 1.7× 1034 yrs

123 ≤ mh ≤ 127 GeV .

A 2σ experimental uncertainty and reasonable theoretical uncertainty is permitted around
the observed light Higgs boson mass of mh = 125.09GeV [95, 96], providing a range of
123 ≤ mh ≤ 127GeV on the computed total mh. The total light Higgs boson mass
calculation includes the vector-like particle contribution, which couples through the vector-
like multiplet Yukawa coupling. We assume a maximum coupling, implying the (XD,XDc)
Yukawa coupling is YXD = 0 and the (XU,XU c) Yukawa coupling is YXU = 1, and
furthermore, the trilinear coupling A-term is AXD = 0 while the (XU,XU c) A-term is
AXU = AU [55, 97]. These numerical values ensure a maximal coupling between the
vector-like particles and light Higgs boson.

Given only an upper limit established on the abundance of the lightest neutralino
χ̃0

1, multi-component dark matter is generally necessary. Therefore, we rescale the spin-
independent cross-section σSI on nucleon-neutralino collisions as such:

σrescaled
SI = σSI

Ωh2

0.12 . (3.1)

The SU(5) breaking effects drive the wino to near degeneracy with the lightest neu-
tralino, generating higgsino LSPs. Compressed spectra with M(χ̃±1 ) −M(χ̃0

1) = 3–7GeV
and M(χ̃0

2) < 0 are typical conditions identifying higgsino spectra, and indeed these are
the characteristics of the F–SU(5) D-brane points. Twelve sample benchmark points are
presented in table 1, with the higgsino LSP composition percent shown. Given the small
wino, the most stringent LHC constraints on the F–SU(5) D-brane model are ATLAS elec-
troweakino production searches for higgsino LSP [87]. The small wino though does provide
ample contribution to ∆aµ(SUSY) to explain the BNL+FNAL 4.2σ discrepancy. The D-
brane model has a large region within both the 1σ and 2σ limits around the BNL+FNAL
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M1 (GeV) 2700 2700 2500 2700 2900 2500 2800 3100 3400 3600 3500 3600
M5 (GeV) 1510 1510 1530 1570 1600 1600 1600 1600 1610 1640 1660 1700
MUcL (keV) 10 10 10 10 10 100 10 10 10 10 10 10
MQDcNc (keV) 10 10 10 10 10 100 10 10 10 10 10 10
MEc (GeV) 1200 1200 1400 1200 1300 1400 1200 1200 900 1000 1000 900
MHu (GeV) 1800 1800 1900 1900 2100 2000 1900 2000 1900 2000 1900 1900
MHd

(GeV) 2300 2300 2300 2300 2400 2500 2400 2500 2400 2600 2600 2600
Aτ (GeV) 800 800 1200 400 1200 700 600 800 1200 1200 600 800
At (GeV) 600 600 200 400 0 300 500 100 400 200 800 1000
Ab (GeV) −4600 −4900 −4900 −5200 −4300 −4500 −5200 −4900 −5000 −4700 −5000 −5000
MV (TeV) 4000 7000 7000 4000 4000 5500 5500 7000 8000 7000 8000 8000

tanβ 60 60 60 60 60 59 59 60 60 60 60 60
mtop (GeV) 173.3 173.1 172.7 173.3 173.7 173.3 172.7 172.9 172.3 173.1 172.3 172.5

∆aµ(SUSY) (×10−10) 21.1 22.3 21.1 20.1 19.3 19.0 19.4 20.2 20.6 19.0 19.5 19.0
Br(b→ sγ) (×10−4) 3.01 3.04 2.99 3.09 3.01 3.02 3.10 2.99 3.14 2.99 3.16 3.26

Br(B0
S → µ+µ−) (×10−9) 5.8 4.9 5.7 6.2 6.2 4.6 4.6 5.6 5.7 5.2 4.3 4.1

σrescaled
SI (×10−9pb) 8.6 6.7 6.8 8.7 6.5 4.9 6.2 6.7 7.8 4.9 6.1 6.2

τp(p→ e+π0) (×1035 yrs) 1.3 1.3 1.5 1.4 1.0 1.4 1.5 1.1 1.0 0.9 1.0 1.0
Ωh2 0.0039 0.0041 0.0049 0.0048 0.0043 0.0055 0.0050 0.0039 0.0030 0.0024 0.0032 0.0035

Mχ̃0
1

(GeV) 235 201 202 217 185 207 215 197 190 210 197 185

Mχ̃0
2

(GeV) −282 −237 −232 −251 −215 −234 −247 −233 −234 −271 −240 −222

Mχ̃±1
(GeV) 239 206 208 223 191 213 220 202 195 213 201 190

Mτ̃±1
(GeV) 412 380 352 463 458 355 475 396 416 396 416 374

MẽR,µ̃R
(GeV) 1074 1054 1076 1109 1155 1115 1113 1129 1133 1174 1162 1184

M
t̃1

(GeV) 1737 1738 1710 1784 1727 1770 1833 1753 1829 1814 1903 1968
Mg̃ (GeV) 2254 2281 2306 2341 2372 2388 2397 2406 2428 2463 2500 2554
MũR

(GeV) 2522 2507 2537 2619 2658 2651 2655 2650 2660 2713 2739 2798
mh (GeV) 123.3 123.3 123.6 124.0 124.6 124.0 123.6 124.2 123.4 124.3 123.1 123.0
MH0 (GeV) 936 946 889 847 831 1014 1000 904 813 1010 962 904

M32 (×1016 GeV) 1.0 1.0 1.1 1.1 1.0 1.1 1.1 1.0 1.0 0.9 1.0 1.0
MF (×1017 GeV) 1.9 1.8 1.8 1.9 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7

LSP Higgsino Composition 67% 80% 86% 82% 86% 89% 84% 79% 71% 52% 72% 79%

Table 1. The F–SU(5) D-brane model general No-Scale SUSY breaking soft terms along with
their associated mass spectra and other pertinent data for 12 benchmark spectra representative of
that region of model space that can explain the BNL+FNAL 4.2σ discrepancy. All spectra have
higgsino LSP, with the higgsino percentage listed in the bottom line.

25.1 × 10−10 central value. This is graphically illustrated in figure 1, where ∆aµ(SUSY)
is plot versus the gluino mass. The points are distinguished by satisfaction of the ATLAS
light chargino constraint for those spectra with higgsino LSP [87]. The uncertainty on
all ∆aµ calculations is about ±2.4 × 10−10. For the amount of M5 and M1X mixing in
eq. (2.18), ∆aµ(SUSY) remains in the BNL+FNAL 1σ range up to M(g̃) ≈ 2.56TeV. It is
clear in figure 1 that the current LHC Run 2 gluino constraint of M(g̃) & 2.25TeV [98–104]
correlates to the current chargino constraint for higgsino LSP since the BNL+FNAL 1σ
and 2σ points that satisfy the ATLAS chargino constraint show a coincident lower bound
of M(g̃) ' 2.25TeV.

To more accurately assess any tension with LHC electroweakino production constraints
so that we can provide a frame of reference for our relatively small wino, we superimpose the
D-brane model points of figure 1 onto the ATLAS electroweakino production summary plot
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25

          Points in all Figures are:
            123  mh  127 GeV

       2.99 Br(b s ) 3.87 10-4

      0.8 Br(B0
S

-) 6.2 10-9

 h2 
         Higgsino LSP with 

 1  a  (satisfies LHC wino constraint for higgsino LSP)
 1  a  (fails LHC wino constraint for higgsino LSP)
 2  a  (satisfies LHC wino constraint for higgsino LSP)
 2  a  (fails LHC wino constraint for higgsino LSP)

a
[

-1
0 ]

(gluino) [GeV] 

Figure 1. Depiction of ∆aµ(SUSY) as a function of the gluino mass M(g̃), distinguished by
whether the spectra satisfy the BNL+FNAL 1σ or 2σ limits on ∆aµ. The points are also separated
into groups regarding consistency with the LHC constraints on electroweakinos for those spectra
with higgsino LSP, namely chargino production. The uncertainty on all ∆aµ(SUSY) calculations
is about ±2.4× 10−10.

for higgsino LSP [87], as displayed in figure 2, and also the CMS electroweakino production
plot for higgsino LSP [88], as shown in figure 3. The points are likewise separated into those
that reside within either the BNL+FNAL 1σ or 2σ limits on ∆aµ. Given the compressed
nature of the D-brane spectra, these higgsino simplified models appear to be the only search
regions capable of probing the D-brane model space that resolves the BNL+FNAL 4.2σ
discrepancy. In the CMS plot in figure 3, for clarity we show only those points that satisfy
the ATLAS chargino constraint of figure 2. The CMS simplified model scenario applied
in figure 3 is not a precise fit for the F–SU(5) D-brane model space, but it does give a
good summary as to how our model stands against the current chargino constraints. The
CMS analysis of ref. [88] also studies the higgsino model in the phenomenological MSSM
(pMSSM), though constraints are given in terms of the wino mass as a function of µ and
all points in our model are well beyond these exclusion limits due to the large µ term.

Other than the small wino, the only other class of measurements the D-brane model
would seem to be experiencing tension with are the direct-detection spin-independent cross-
sections, which we rescale for small Ωh2. However, given the difficulty with which higgsino
LSPs can be detected, we are not alarmed by the larger σrescaled

SI ∼ 10−9 pb cross-section.
Recently, ATLAS and CMS have completed searches for heavy resonances that would

include heavy Higgs bosons found in an extended Higgs sector. The ATLAS search [105]
involves b-jet and τ -lepton final states, whereas the CMS search [106] focuses on b-quark
pairs. All 261,562 points that pass the LHC chargino constraints on higgsino spectra and
concurrently reside within either the BNL+FNAL 1σ or 2σ limits on ∆aµ are binned in
the histogram of figure 4, using 10GeV bin widths. The histogram peak resides in the
(985, 995]GeV bin, or M(H0) ' 1TeV.

4 Conclusions

The recent FNAL confirmation of the BNL discrepancy between the measured value of the
anomalous magnetic moment of the muon (g−2)µ and the Standard Model (SM) prediction
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 1  a  (green dots)
 2 a  (yellow dots)

Figure 2. Illustration of the F–SU(5) D-brane model points that can explain the BNL+FNAL 4.2σ
discrepancy on ∆aµ evaluated against the ATLAS constraints on electroweakinos for those spectra
with higgsino LSP. The points are superimposed upon the ATLAS exclusion curves of ref. [87] that
addresses electroweakino production in compressed spectra, namely, higgsino. The SU(5) breaking
effects drive the wino to small values, engendering some tension with the lower LHC bound on
chargino masses. However, as this figure exhibits, there remains a large region that handily satisfies
this constraint.

 1  a  (green dots)
 2 a  (yellow dots)

Figure 3. Depiction of the F–SU(5) D-brane model points that can explain the BNL+FNAL 4.2σ
discrepancy on ∆aµ evaluated against the CMS constraints on electroweakinos for those spectra
with higgsino LSP. The points are superimposed upon the CMS exclusion curves of ref. [88] that
addresses electroweakino production in compressed spectra, namely, higgsino. In this plot for clarity
we only show those points that survive the ATLAS electroweakino constraint of ref. [87], as displayed
in figure 2. The CMS simplified model scenario applied is not an exact match for the F–SU(5)
D-brane model space, but it is nonetheless instructive as to how our model measures against the
latest chargino constraints.

presents a combined deviation of 4.2σ. Given the possible confirmation of a statistically
significant 5σ discovery in forthcoming years, all natural GUT model candidates should
be capable of elegantly explaining these experimental anomalies. Supersymmetry (SUSY)
persists as one promising extension of the SM, hence we study in this work a merging
of a realistic D-brane model with the supersymmetric GUT model flipped SU(5) with
extra TeV-scale string derived vector-like multiplets, referred to collectively as the F–

– 9 –



J
H
E
P
1
1
(
2
0
2
1
)
0
8
1

Bin Range of M(H0) [GeV]

 

N
um

be
r o

f P
oi

nt
s

99
0 

G
eV

Figure 4. Histogram binned by counts of the heavy SUSY Higgs mass M(H0). All 261,562 points
that satisfy the LHC electroweakino constraints and reside within either the BNL+FNAL 1σ or 2σ
limits on ∆aµ are counted in the bins. The bin width is 10GeV. The peak lies in the (985, 995] bin,
or M(H0) ' 1TeV.

SU(5) D-brane model. Flipped SU(5) has been shown to be both phenomenologically and
cosmologically favorable, therefore, it is an ideal candidate to pursue whether it can indeed
resolve the BNL+FNAL observed disparity with the SM calculations. The supersymmetric
GUT model F–SU(5) produces a distinctive two-stage unification process. The primary
unification occurs at the SU(5) × U(1)X scale where M1 = M2 = M3, then a secondary
unification at the SU(3)C × SU(2)L scale. However, the large wino mass M2 at SU(5) ×
U(1)X due to the primary unification presents difficulties since a light wino at low-energy
provides a large contribution to the muon (g−2)µ. This dilemma can be resolved when the
three chiral multiplets in the SU(5) adjoint representation acquire vevs around the scale
SU(3)C×SU(2)L, and then the gaugino masses for SU(3)C×SU(2)L×U(1)Y ′ of SU(5) can
be split due to high-dimensional operators, leading to independent bino, wino, and gluino
masses. These effects from SU(5) breaking can drive the wino M2 to small values at the
electroweak scale, which in consequence generates a large contribution to the muon (g−2)µ.

A deep analysis of the parameter space uncovered a region in the model that can
explain the BNL+FNAL muon (g − 2)µ measurements of ∆aµ = aµ(Exp) − aµ(SM) =
25.1± 5.9× 10−10. Calculations show that the model can produce an anomalous magnetic
moment as large as ∆aµ(SUSY) = 22.3×10−10 for a gluino mass ofM(g̃) = 2281GeV, well
within the 1σ uncertainty on the observed value. Moreover, we completed computations
for gluino masses as large as M(g̃) = 2560GeV, sufficient to ensure probing of the model
space for several years to come at the LHC Run 2. We found that ∆aµ(SUSY) can remain
tucked just above the lower 1σ bound of ∆aµ(SUSY) ' 19.0 × 10−10 all the way up
to the 2560GeV gluino mass. The small M2 does drive the chargino mass M(χ̃±1 ) to
near degeneracy with the LSP mass M(χ̃0

1) along with a small negative neutralino mass
M(χ̃0

2), generating higgsino dark matter. In addition to the favorable ∆aµ(SUSY), these
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same points in the model space are consistent with the observed light Higgs boson mass
and other rare decay branching ratios, and also all LHC constraints, particularly those
on electroweakinos, given the small chargino. Lastly, in light of recent LHC searches for
heavy Higgs bosons in an extended Higgs sector, for this same region that can explain the
BNL+FNAL measurements, we examined the heavy SUSY Higgs by plotting all viable
(g − 2)µ points in a histogram with 10GeV bin widths and discovered that the histogram
peak resides at M(H0) ' 1TeV.
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