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Abstract: We introduce a formalism for describing four-dimensional scattering ampli-
tudes for particles of any mass and spin. This naturally extends the familiar spinor-helicity
formalism for massless particles to one where these variables carry an extra SU(2) little
group index for massive particles, with the amplitudes for spin S particles transforming
as symmetric rank 2S tensors. We systematically characterise all possible three particle
amplitudes compatible with Poincare symmetry. Unitarity, in the form of consistent factor-
ization, imposes algebraic conditions that can be used to construct all possible four-particle
tree amplitudes. This also gives us a convenient basis in which to expand all possible four-
particle amplitudes in terms of what can be called “spinning polynomials”. Many general
results of quantum field theory follow the analysis of four-particle scattering, ranging from
the set of all possible consistent theories for massless particles, to spin-statistics, and the
Weinberg-Witten theorem. We also find a transparent understanding for why massive
particles of sufficiently high spin cannot be “elementary”. The Higgs and Super-Higgs
mechanisms are naturally discovered as an infrared unification of many disparate helicity
amplitudes into a smaller number of massive amplitudes, with a simple understanding for
why this can’t be extended to Higgsing for gravitons. We illustrate a number of applica-
tions of the formalism at one-loop, giving few-line computations of the electron (g − 2) as
well as the beta function and rational terms in QCD. “Off-shell” observables like correla-
tion functions and form-factors can be thought of as scattering amplitudes with external
“probe” particles of general mass and spin, so all these objects — amplitudes, form factors
and correlators, can be studied from a common on-shell perspective.
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1 Scattering amplitudes in the real world

Recent years have seen an explosion of progress in our understanding of scattering am-
plitudes in gauge theories and gravity. Infinite classes of amplitudes, whose computation
would have seemed unthinkable even ten years ago, can now be derived with pen and
paper on the back of an envelope using a set of ideas broadly referred to as “on-shell
methods” [1–9]. This has enabled the determination of scattering amplitudes of direct in-
terest to collider physics experiments, while at the same time opening up novel directions
of theoretical research into the foundations of quantum field theory, amongst other things
revealing surprising and deep connections of this basic physics with areas of mathematics
ranging from algebraic geometry to combinatorics to number theory.

Almost all of the major progress in this field has been in understanding scattering
amplitudes for massless particles. There are seemingly good reasons for this, both techni-
cally and conceptually. Technically, almost all treatments of the subject, especially in four
dimensions, involve the introduction of special variables (such as spinor-helicity, twistor or
momentum-twistor variables) to trivialise the kinematical on-shell constraints for massless
particles (see [10–12] for a comprehensive review). And conceptually, while it is clear that
the conventional field-theoretic description of massless particles with spin, which involves
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the introduction of huge gauge redundancy, leaves ample room for improvement — provided
by on-shell methods that directly describe particles, eliminating any reference to quantum
fields and their attendant redundancies — the advantage of “on-shell physics” seems to
disappear for the case of massive particles where no gauge redundancies are needed.

As we will see, the technical issue about massless kinematics is just that — the tran-
sition to describing massive particles is a triviality — while the conceptual issue is not an
obstacle but rather an invitation to understand the both the physics of “infrared deforma-
tion” of massless theories (by the Higgs mechanism and confinement), as well that of UV
completion (such as with perturbative string theory), from a new on-shell perspective (see
section 6).

But before getting too far ahead of ourselves it suffices to remember that the only
exactly massless particles we know of in the real world are photons and gravitons; even the
spectacular success of on-shell methods applied to collider physics are for high energy gluon
collisions, which are ultimately confined into massive hadrons at long distances. Even if we
consider the weakly coupled scattering amplitudes for Standard Model particles above the
QCD scale, almost all the particles are massive. If the amazing structures unearthed in the
study of gauge and gravity scattering amplitudes are indeed an indication of a radical new
way of thinking about quantum particle interactions in space-time, they must naturally
extend beyond photons, gravitons and gluons to electrons, W,Z particles and top quarks
as well.

Keeping this central motivation in mind, in this paper we initiate a systematic explo-
ration of the physics of scattering amplitudes in four dimensions, for particles of general
masses and spins. We proceed in section 2 with an on-shell formalism where the amplitude
is manifestly covariant under the massive SU(2) little group. This approach allows us to
cleanly categorize all distinct three-couplings for a given set of helicities or masses and
spins. When constructing four-point amplitudes, this formalism sharply pinpoints the ten-
sion between locality and consistent factorization, which, in turn provides a portal into the
difficulty of having higher-spin massive particles that is fundamental. As we will see, every-
thing that is typically taught in an introductory courses on QFT and the Standard Model
— including classic computations of the electron (g − 2) and the QCD β function (sec-
tion 7) — can be transparently reproduced from an on-shell perspective directly following
from the physics of Poincare invariance, locality and unitarity, without ever encountering
quantum fields, Lagrangians, gauge and diff invariance, or Feynman rules.

There are a number of other motivations for developing this formalism. For instance,
much of the remarkable progress in our understanding of the dynamics of supersymmetric
gauge theories came from exploring their moduli spaces of vacua [13]. From this point of
view the study of massless scattering amplitudes has been stuck on a desert island at the
origin of moduli space; we should now be able to study how the S-matrix varies on moduli
space in general supersymmetric theories, especially beginning with the Coulomb branch
of N = 4 SYM in the planar limit (see [14] for early surveys).

Another motivation, alluded to above, is the physics of UV completion for gravity
scattering amplitudes. It is easy to show on general grounds that any weakly coupled UV
completion for gravity amplitudes must involve an infinite tower of particles with infinitely
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increasing spins (as of course seen in string theory) [15]. This raises the possibility that
string theory might be derivable from the bottom-up, as the unique weakly-coupled UV
completion of gravity. But it has become clear that consistency conditions for massless
graviton scattering alone are not enough to uniquely fix amplitudes — deformations of the
graviton scattering amplitudes compatible with all the standard rules have been identified
(eq. (12.6) in [15]). This is not surprising, since the most extreme tension in this physics is
the coexistence of gravitons with massive higher-spin particles. Indeed (as we will review
in 3.2 from an on-shell perspective) the presence of gravity makes the existence of massless
higher-spin particles impossible. We should therefore expect the strongest consistency
conditions on perturbative UV completion to involve the scattering of massless gravitons
and massive higher-spin particles, the study of which calls for a good general formalism for
treating amplitudes for general mass and spin.

Finally, an understanding of amplitudes for general mass and spin removes the distinc-
tion between “on-shell” observables like scattering amplitudes and “off-shell” observables
like correlation functions [16]. After all, loosely speaking the way experimentalists actually
measure correlation functions of some system is to weakly couple the system to massive
detectors, and effectively measure the scattering amplitudes for the detectors thought of as
massive particles with general mass and spin! More precisely, as we demonstrate in sex. 8,
to compute the correlation functions for (say) the stress tensor (in momentum-space), we
need only imagine weakly coupling a continuum of massive spin 2 particle to the system
with a universal (and arbitrarily weak) coupling; the leading scattering amplitudes for
these massive particles is then literally the correlation function for the stress tensor in mo-
mentum space. This should allow us to explore both on- and off-shell physics in a uniform
“on-shell” way.

2 The little group

Much of the non-trivial physics of scattering amplitudes traces back to the simple question
— “what is a particle?” — and the attendant concept of Wigner’s “little group” governing
the kinematics of particle scattering. Let us review this standard story. Following Wigner
(and Weinberg’s exposition and notation) [17–19], we think of “particles” as irreducible
unitary representations of the Poincare group. We diagonalize the translation operator by
labelling particles with their momentum pµ; any other labels a particle state can carry
are labelled by σ. In order to systematically label all one-particle states, we start with
some reference momentum kµ and the states |k, σ〉. Now, we can write any momentum p

as a specified Lorentz-transformation L(p; k) acting on k, i.e. pµ = Lνµ(p; k)kν . Note that
L(p; k) is not unique since there are clearly Lorentz transformations that leave p invariant
— these “little group” transformations will figure prominently in what follows, for now
we simply emphasize that we pick some specific L(p; k) for which p = L(p; k)k. We also
assume that we have a unitary representation of the Lorentz group, i.e. for every Lorentz
transformation Λ there is an associated unitary operator U(Λ) acting on the Hilbert space,
such that U(Λ1Λ2) = U(Λ1)U(Λ2). Then we simply define one-particle states |p, σ〉 as

|p, σ〉 ≡ U(L(p; k))|k, σ〉 . (2.1)
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Note that the σ index is the same on the left and the right, this is the sense in which we
are defining |p, σ〉. Having made this definition, we can ask how |p, σ〉 transforms under a
general Lorentz transformation

U(Λ)|p, σ〉 = U(Λ)U(L(p; k))|k, σ〉 = U(L(Λp; k))U(L−1(Λp; k)ΛL(p; k))|k, σ〉 . (2.2)

Now, W (Λ, p, k) = L−1(Λp; k)ΛL(p; k) is not in general a trivial Lorentz transformation,
it is only a transformation that leave k invariant since clearly (Wk) = k. This subgroup
of the Lorentz group is the “little group”. Thus, we must have that

U(W (Λ, p; k))|k, σ〉 = Dσσ′(W (Λ, p; k))|k, σ′〉 , (2.3)

where Dσσ′(W ) is a representation of the little group. We have therefore found the desired
transformation property

U(Λ)|p, σ〉 = Dσσ′(W (Λ, p; k))|Λp, σ′〉 . (2.4)

We conclude that a particle is labeled by its momentum and transforms under some rep-
resentation of the little group.

Scattering amplitudes for n particles are thus labeled by (pa, σa) for a = 1, · · · , n. The
Poincare invariance of the S-matrix — translation and Lorentz invariance — then tells
us that

M(pa, σa) = δD(pµa1 + · · · pµan)M(pa, σa)
MΛ(pa, σa) =

∏
a

(
Dσaσ′a(W )

)
M((Λp)a, σ′a) . (2.5)

In D spacetime dimensions, the little group for massive particles is SO(D−1). For massless
particles the little group is the group of Euclidean symmetries in (D−2) dimensions, which
is SO(D−2) augmented by (D−2) translations. Finite-dimensional representations require
choosing all states to have vanishing eigenvalues under these translations, and hence the
little group is just SO(D−2).

So much for the basic kinematics of particle scattering amplitudes. It is when we come
to dynamics, and in particular to the crucial question of guaranteeing that the physics of
particle interactions is compatible with the most minimal notion of locality encoded in the
principle of cluster decomposition, that a fateful decision is made to choose a particular
description of particle scattering, introducing the idea of quantum fields. Beyond particles
of spin zero (and their associated scalar fields), there is a basic kinematical awkwardness
associated with introducing fields: fields are manifestly “off-shell”, and transform as Lorentz
tensors (or spinors), while particle states transform instead under the little group. The
objects we compute directly with Feynman diagrams in quantum field theory, which are
Lorentz tensors, have the wrong transformation properties to be called “amplitudes”. This
is why we introduce the idea of “polarisation vectors”, that are meant to transform as
bi-fundamentals under the Lorentz and little group, to convert “Feynman amplitudes”
to the actual “scattering amplitudes”. For instance in the case of spin 1 particles, we
introduce εµσ(p), with the property that εµσ(Λp) = Λµν ενσ′(p)Dσσ′(W ), so that εµσ(p)Mµ(p, · · · )
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transforms properly. For massive particles, such polarization vectors certainly exist, though
they have to satisfy constraints. For instance we must have pµεµσ = 0 for massive spin 1,
or for massive spin 1/2, we use a Dirac spinor ΨA

σ with (Γµpµ − m)ABΨB = 0. These
constraints are an artifact of using fields as auxiliary objects to describe the interactions
of the more fundamental particles. For massless particles with spin ≥ 1 the situation
is worse, since “polarisation vectors” transforming as bi-fundamentals under the Lorentz
and little groups don’t exist. Say for massless particles in four dimensions, if we make
some choice for the εµ± for photons of helicity ±1, we find that for Lorentz transformations
(Λp) = p, (Λε±)µ = e±iθεµ± + α(Λ, p)pµ. So polarisation vectors don’t genuinely transform
as vectors under Lorentz transformations, only the “gauge equivalence class” {εµ±|εµ±+αpµ}
is invariant under Lorentz transformations. This infinite redundancy is hard-wired into the
usual field-theoretic description of scattering amplitudes for gauge bosons and gravitons,
and is largely responsible for the apparent enormous complexity of amplitudes in these
theories, obscuring the remarkable simplicity and hidden infinite-dimensional symmetries
actually found in the physics.

The modern on-shell approach to scattering amplitudes departs from the conventional
approach to field theory already at this early kinematical stage, by directly working with
objects that transform properly under the little group (and so at least kinematically deserve
to be called “scattering amplitudes”) from the get-go. Auxiliary objects such as “quantum
fields” are never introduced and no polarization vectors are needed. It is maximally easy
to do this in the D = 4 spacetime dimensions of our world, where the kinematics is as
simple as possible. Here the little groups are SO(2) = U(1) for massless particles, and
SO(3) = SU(2) for massive particles, which are the simplest and most familiar Lie groups.

In four dimensions, we label massless particles by their helicity h. Massive particles
transform as some spin S representation of SU(2). The conventional way of labelling
spin states familiar from introductory quantum mechanics is by picking a spin axis ẑ.
and giving the eigenvalue of Jz in that direction. This is inconvenient for our purposes,
since the introduction of the reference direction ẑ breaks manifest rotational (not to speak
of Lorentz) invariance. We will find it more convenient instead to label states of spin
S as a symmetric tensor of SU(2) with rank 2S; this entirely elementary group theory
is reviewed in appendix B. Let’s illustrate the labelling of states by considering a four-
particle amplitudes where particles 1, 2 are massive with spin 1/2 and 2, and particles 3, 4
are massless with helicities +3/2 and −1. This would be represented as an object

M{I1},{J1,J2,J3,J4},{+ 3
2},{−1}(p1, p2, p3, p4) (2.6)

where {I1}, {Ji} are the little group indices of particle 1 and 2 respectively, and the ampli-
tude transforms as

M{I1},{J1,J2,J3,J4},{+ 3
2},{−1}

→ (W I1
1K1

)(W J1
2L1
· · ·W J4

2L4
)(w3)3(w4)−2M{K1},{L1,L2,L3,L4},{+ 3

2},{−1}
(2.7)

where theW matrices are SU(2) transformation in the spin 1/2 representation and w = eiθ

is the massless little group phase factor for helicity +1/2.
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2.1 Massless and massive spinor-helicity variables

Our next item of business is to find variables for the kinematics that hardwire these little
group transformation laws, this will be simultaneously associated with convenient represen-
tations of the on-shell momenta. As usual we will use the σµαα̇ matrices to convert between
four-momenta pµ and the 2 × 2 matrix pαα̇ = pµσ

µ
αα̇.1 Note that detpαα̇ = m2, so that

there is an obvious difference between massless and massive particles.
For massless particles, we have detpαα̇ = 0 and thus the matrix pαα̇ has rank 1. Thus

we can write it as the direct product of two, 2-vectors λ, λ̃ as2

pαα̇ = λαλ̃α̇ (2.8)

For general complex momenta the λα, λ̃α̇ are independent two-dimensional complex vectors.
For real momenta in Minkowski space pαα̇ is Hermitian and so we have λ̃α̇ = ±(λα)∗, (with
the sign determined by whether the energy is taken to be positive or negative).

Often the introduction of these “spinor-helicity” variables is motivated by the desire
to explicitly represent the (on-shell constrained) four-momentum pαα̇ by the unconstrained
λα, λ̃α̇. But the spinor-helicity variables also have another conceptually important role
to play: they are the objects that transform nicely under both the Lorentz and Little
groups. Thus while amplitudes for massless particles are not functions of momenta and
polarization vectors (or better yet, are only redundantly represented in this way), they are
directly functions of spinor-helicity variables.

The relation to the little group is clearly suggested by the fact that it is impos-
sible to uniquely associate a pair λα, λ̃α̇ with some pαα̇, since we can always rescale
λα → w−1λα, λ̃α̇ → wλ̃α̇ keeping pαα̇ invariant. The connection can be made com-
pletely explicit by attempting to give some specific prescription for picking λ(p)

α , λ̃
(p)
α̇ , which

leads us through an exercise completely parallel to our discussion of the little group. We
first choose some reference massless momentum kαα̇ and also choose some fixed λ(k)

α , λ̃
(k)
α̇

so that kαα̇ = λ
(k)
α λ̃

(k)
α̇ . For every other null momentum, we choose a Lorentz trans-

formation L(p; k)βα, L̃(p; k)β̇α̇ such that pαα̇ = L(p; k)βαL̃(p; k)β̇α̇kββ̇ , and we then define
λ

(p)
α ≡ L(p; k)βαλ

(k)
β , λ̃

(p)
α̇ ≡ L̃(p; k)β̇α̇λ̃

(k)
β̇

. Having now picked a way of associating some

λ
(p)
α , λ̃

(p)
α̇ with pαα̇, we can ask for the relationship between e.g. λ(Λp)

α and λ
(p)
α for some

Lorentz transformation Λ; what we find is

λ(Λp)
α = w−1(Λ, p, k) Λβαλ

(p)
β (2.9)

For general complex momenta w is simply a complex number and we have the action of
GL(1), for real Lorentzian momenta we must have w−1 = ±(w)∗ so w = eiθ is a phase
representing the U(1) little group. Most obviously we can perform a Lorentz transformation
W for which Wk = k, we simply find λ→ w−1λ. To be explicit, let

kαα̇ =
(

2E 0
0 0

)
, λα =

√
2E

(
1
0

)
, λ̃α̇ =

√
2E

(
1
0

)
(2.10)

1For our conventions of signature and spinor indices, see appendix A.
2The use of this fact for the computation of scattering amplitudes goes back to [20–23].
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represent a massless momentum in the z direction. Then a rotation around the z axis
(which leaves k invariant) is

Λβα =
(
eiφ/2 0

0 e−iφ/2

)
, Λ̃β̇α̇ =

(
e−iφ/2 0

0 eiφ/2

)
(2.11)

under which obviously λα → eiφ/2λα, λ̃α̇ → e−iφ/2λ̃α̇.
To summarize, amplitudes for massless particles are Lorentz-invariant functions of

λα, λ̃α̇ with the correct little-group helicity weights,

M(w−1λ,wλ̃) = w2hM(λ, λ̃) (2.12)

We now turn to the case of massive particles. There is no essential difference with the
massless case; we simply have the pαα̇ has rank two instead of rank one, and so can be
written as the sum of two rank one matrices as

pαα̇ = λIαλ̃α̇I (2.13)

where I = 1, 2. Note that
p2 = m2 → detλ× detλ̃ = m2 (2.14)

We can use this to set detλ = M, detλ̃ = M̃ with MM̃ = m2. It is sometimes useful to
keep the distinction between M, M̃ , but for our purposes in this paper we will simply take
M = M̃ = m. Of course λI , λ̃I can’t uniquely be associated with a given p, we can perform
an SL(2) transformation λI → W I

Jλ
J , λ̃I → (W−1)JI λ̃J . Note that we could extend this

SL(2) to a GL(2) if we also allowed (opposite) rephrasings of the mass parameters M, M̃ ,
but by making the choice M = M̃ = m does not allow this. This is not a disadvantage for
our purposes, since the object M/M̃ transforms only under the GL(1) part of the GL(2)
and can be used to uplift any SL(2) invariant into a GL(2) invariant if desired.

For real Lorentzian momenta we have W should be in the SU(2) subgroup of SL(2)
and gives us the action of the little group. We can make the connection explicit just as we
did for the massless case, by defining λIα, λ̃α̇I for a reference momentum kαα̇ and boosting
to define them for all momenta. A summary of this elementary kinematics is given in
appendix B.

We conclude that amplitudes for massive particles are Lorentz-invariant functions for
λI , λ̃I which are symmetric rank 2S tensors {I1, · · · , I2S} for spin S particles. Note that we
can obviously use εIJ , εIJ to raise and lower indices so that we can e.g. write pαα̇ = λIαλ̃

J
α̇εIJ .

Also note that clearly
pαα̇λ̃

α̇I = mλIα , pαα̇λ
αI = −mλ̃Iα̇ (2.15)

If we combine (λIα, λ̃α̇I) into a Dirac spinor ΨI
A, this is of course the Dirac equation (Γµpµ−

m)BAΨI
B = 0. But there is no particular reason for doing this in our formalism: even the

usual (good) reason for introducing Dirac spinors — making parity manifest in theories
which have a parity symmetry — can be more easily accomplished without using Dirac
spinors in our approach. We will thus not encounter any Γ matrices in our discussion.
Note also that using (pαα̇/m) allows to freely convert between λIα and λ̃Iα̇ variables. We
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will sometimes find it useful, especially in the context of the systematic classification of
amplitude structures, to use this freedom in order to use e.g. only λIα to describe a given
massive particle. Then we can write the symmetric tensor as

M{I1···I2S} = λI1
α1 · · ·λI2S

α2SM
{α1···α2S} (2.16)

where M{α1···α2S} is totally symmetric in the α indices.3
Let us illustrate our notation for writing amplitudes by returning to the example of

a four-particle amplitude with (1, 2) being massive with spin (1/2, 2), and (3, 4) massless
with helicity (+3/2) and (−1). Let’s give examples of “legal” expressions for these ampli-
tudes, that is objects with the correct little group transformation properties. Two possible
terms are

[2J13][2J23][2J33]
(
κ〈1I12J4〉〈4|(p1p2)|4〉+ κ′〈41I1〉〈2J44〉

)
+ symmetrize in {J1,2,3,4} (2.17)

It would clearly be notationally cumbersome to have our formulas littered with explicit
SU(2) little group indices, fortunately it is also entirely un-necessary to do so. We will
simply denote the massive spinor helicity variables in BOLD, and suppress the SU(2)
little group indices. Since these indices are completely symmetrized, putting them back in
is completely trivial and unambiguous. In this way, we re-write the above expressions as

[23]3
(
κ〈12〉〈4|p1p2|4〉+ κ′〈41〉〈42〉) (2.18)

We stress again that there is no notion of the usual “helicity weight” little group for the
massive particles; we can freely have expressions (as in the above) that from the viewpoint
of massless amplitudes look like they are “illegally” combining terms with different helicity
weight. As we will later see this reflects a beautiful feature of this formalism, making it
trivial to see how massive amplitudes decompose into the massless helicity amplitudes at
very high energies.

We pause to note the relation between our discussion here and a route to massive
spinor-helicity variables taken by a number of other authors [25].4 This approach begins
by noting that we can always represent pαα̇ = λαλ̃α̇−(m2/〈λη〉[λ̃η̃])ηαη̃α̇, for some reference
spinors η, η̃.5 The states are then labelled by giving the spin in the direction picked
out by the lightlike directon ηη̃. Of course this corresponds to a particular choice for
our (λIα, λ̃Iα̇), but making this choice at the very outset obscures the Lorentz and little
group transformation properties of the amplitude. Practically speaking, given some formula
written in terms of the λ, λ̃, η, η̃, this makes it difficult to ascertain whether or not it is
kinematically a legal expression for an amplitude, and thus the program of systematically
classifying and constructing on-shell amplitudes is difficult to pursue in this formalism.

3The amplitude as a function of massive spinors can be viewed as a natural consequence of choosing the
space-cone gauge Feynman rules [24].

4For applications, see for example: [26–31].
5The formalism here obviously have some parallels with the 6D spinor-helicity formalism [33, 34], but

here the little group is a single SU(2) instead of SU(2)×SU(2) as in six-dimensions, and thus there are no
“unnecessary” symmetries.
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Let us further illustrate our notation by presenting some classic scattering amplitudes
in these variables. We will simply state the results here and derive them from first-principles
later in the paper; here we are only illustrating the notation and its utility for understanding
the physics. Consider for instance the result for tree-level Compton scattering (12−3+4)
where particles 2, 3 are photons of helicity (−,+) while 1, 4 are charged massive particles
of spin 0, 1/2, 1. The amplitudes are given by

M(12−3+4) = g2

(s−m2)(u−m2) ×


〈2|(p1 − p4)|3]2 [spin 0]
〈2|(p1 − p4)|3] (〈12〉[43] + 〈42〉[13]) [spin 1

2 ]
(〈12〉[43] + 〈42〉[13])2 [spin 1]


(2.19)

Note the absence of γ matrices for the spin 1/2 case — the common complaint amongst
students first doing these computations — “why are we dragging around four-component
objects when the electron has only two spin degrees of freedom?” — is entirely absent here.
Similarly for the spin 1 case there are no polarization vectors. Indeed these expressions
are the most compact representation for these amplitudes possible, directly in terms of the
physical degrees of freedom of the actual particles, with no reference to fields as auxiliary
objects.

2.2 The high-energy limit

It is very easy to relate the massive and massless spinor-helicity variables, and especially
to take the high-energy limit of scattering amplitudes and see how massive amplitudes for
particles with spin decompose into the different helicity components. To do so, we note that
it is convenient to expand λIα in a basis of two-dimensional vectors ζ±I in the little-group
space. In other words, we can expand

λIα = λαζ
−I + ηαζ

+I

λ̃Iα̇ = λ̃α̇ζ
+I + η̃α̇ζ

−I (2.20)

where
εIJζ

+Iζ−J = 1, 〈λη〉 = m, [λ̃η̃] = m (2.21)

Note, as explicitly given in the kinematics appendix C, in a given frame we naturally have
ζ±I as the eigenstates of spin 1/2 in the direction of the spatial momentum ~p, and we can
identify λα =

√
E + pζ+

α , ηα =
√
E − pζ−α and similarly λ̃α̇ =

√
E + pζ̃−α̇ , η̃α̇ =

√
E − pζ̃+

α̇ .
Clearly, in the high energy limit

√
E + p →

√
2E while

√
E − p → m/

√
2E, so that both

η, η̃ are proportional to m and vanish relative to λ, λ̃. Said in a more Lorentz-invariant
way, to take the high-energy limit we take

ηα = mη̂α, η̃α̇ = mˆ̃ηα̇; with 〈λη̂〉 = [λ̃˜̂η] = 1 (2.22)

with all dimensionless ratios of the form
m

〈λaλb〉
,

m

[λ̃aλ̃b]
→ 0 (2.23)
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Note that any scattering amplitude naturally decomposes into different spins states in the
spatial direction of motion, via

M I1···I2S =
∑
h

(
(ζ+)S+h(ζ−)S−h

)I1···I2S
Mh(λ, λ̃; η, η̃) (2.24)

where trivially
Mh(w−1λ,wλ̃;wη,w−1η̃) = w2hMh(λ, λ̃; η, η̃) (2.25)

Thus, the different helicity components in the high-energy limit are just given by

Helicity h component = Limm→0Mh(λ, λ̃; η = mη̂, η̃ = mˆ̃η) (2.26)

As a simple exercise for taking the high-energy limit, let’s consider the coupling of a
massive vector to two massless scalars. This amplitude is simply:

〈31〉〈32〉
〈21〉 . (2.27)

Let us consider the high-energy limit of this amplitude. Substituting eq. (2.20), the (−, 0,+)
component of the vector are separately given as

− : 〈31〉〈32〉
〈21〉 H.E.−−−−−−→

〈31〉〈32〉
〈21〉

0 : 〈31〉〈32〉
〈21〉 H.E.−−−−−−→

(〈η31〉〈32〉+ 〈η32〉〈31〉)
2〈21〉

+ : 〈31〉〈32〉
〈21〉 H.E.−−−−−−→

〈η31〉〈η32〉
〈21〉 = [3|p2|1〉[3|p1|2〉

m2〈21〉 = [32][31]
[21] (2.28)

We see that only the plus and minus helicity amplitude survives, and as η3 scales as m,
the longitudinal mode is sub-leading in m.6

Especially in the context of the rather degenerate kinematics of three particle am-
plitudes, simply setting the η, η̃ → 0 can give rise to 0/0 ambiguities, and this proper
definition of the high-energy limit we have specified should be used. But for more generic
situations, and for any expressions that is manifestly smooth as m → 0, we can simply
set η, η̃ → 0 to take the high-energy limit. There is an especially easy way of doing this
with the “BOLD” notation we have introduced above, that shortcuts the need for any

6These results can also be obtained by converting the conventional polarization vector representation
of the three particle amplitude to the massive spinor helicity basis. First, being a Lorentz vector and a
symmetric tensor in SU(2), the on-shell form of the polarization vector is fixed to (see also [32])

εαα̇ = λ
{I1
α λ̃

I2}
α̇

m
. (2.29)

Contracting with the momenta then converts the polarization vector to pure chiral indices, εαβ = εαα̇
pα̇ β
m

.
Taking the high energy limit, one straight forwardly obtains the three helicity sectors:

ε−αβ = λαλβ
m

, ε0
αβ = λαηβ + ηαλβ

2m , ε+
αβ = ηαηβ

m
, (2.30)

in the chiral representation.
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explicit expansion in terms of ζ±I as we have indicated above. We simply unbold the char-
acters!7 Let us illustrate how this works for the case of Compton scattering of a charged
spin one particle in eq. (2.19), and see how the massive amplitude decomposes into its
helicity constituents. Expanding out the square of the numerators we find

〈12〉2[34]2 +〈42〉2[31]2 +2〈12〉[34]〈42〉[31]
(1, 4) have hel.(−1,+1) (1, 4) have hel.(+1,−1) (1, 4) have hel.(0, 0) (2.31)

Note that as helicity amplitudes “adding” the components in this way would be illegal,
but this is exactly how we can pick out the different pieces of the massive amplitude that
unifies the different helicity amplitudes together into a single object, in the high-energy
limit! Note also that quite nicely the (0, 0) helicity components reproduce the HE limit of
the scalar Compton amplitude, reflecting the fact that the longitudinal component of the
charged massive spin 1 particle is just a charged scalar at high energies.

3 Massless three- and four-particle amplitudes

Having dispensed with kinematics, we now move on to determining dynamics. We will
follow a familiar strategy, starting by determining the structure of all possible three-particle
amplitudes:

h
1

h
2

h
3

h
2

s

h

s

s s

s

sh
1

3 3

2 2

1

3

1 (3.1)

When many species Ns,m of particle of the identical mass and spin/helicity, we will label
them with an index “a′′.We will always think of these as real particles, and assume that the
“free propagation” does not change the a index, i.e. that free propagation has an SO(Ns,m)
symmetry. This choice is hardwiring the most basic physics of unitarity. Note that it is
trivial to have (non-unitary) Lagrangian theories that violate this rule, for instance we
can have grassmann scalar fields ψa with free action Jab∂µψa∂µψb with antisymmetric Jab.
Here the free propagation is proportional to J−1

ab which vanishes for a = b, and the free
theory has an Sp(N) rather than SO(N) symmetry.

Moving beyond three particles, the central constraint on higher-point tree amplitudes is
unitarity, in the form of consistent factorization. For massless or massive internal particles
goes on shell, spin s goes on-shell, we must have

M → Ma h
L Ma−h

R

P 2 [massless], M →
M

a {I1···I2s}
L Ma

R {I1···I2s}
P 2 −M2 [massive] . (3.2)

We will impose this consistency condition at 4 points, which must factorize onto a product
of three-particle amplitudes.

As is by now well-known, these conditions are incredibly restrictive for massless par-
ticles. The kinematics of three-particle momentum conservation forces either λ1, λ2, λ3 to

7This is analogous to the replacement of k → k[ in the massive spinor helicity formalism of [36].
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be all proportional, or λ̃1, λ̃2, λ̃3 to all be proportional. Thus the three-particle amplitudes
must either be of the form [12]a[23]b[31]c or 〈12〉a〈23〉b〈31〉c in these two cases respectively,
and the powers are fixed by the helicities of the three particles. The amplitudes are given by

Mh1h2h3 = g̃[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 when h1 + h2 + h3 > 0
g〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 when h1 + h2 + h3 < 0 . (3.3)

Note that only by symmetries we could use either of the two expression regardless of the
sign of h1 + h2 + h3, but we also demand that the amplitudes have a smooth limit in
Minkowski signature where the brackets also go to zero. We see that, up to the overall
couplings g, g̃, the three-particle amplitudes are entirely fixed by Poincare symmetry.

We now move on to determining four-particle amplitudes from consistent factorization.
The obvious strategy for doing this is to simply compute the residue in e.g. the s-channel by
gluing together the three particle amplitudes on the two sides of the channel; then multiply
this residue by 1/s. Adding over the channels should then give us an object that factors
correctly in all the channels. This trivially works for φ3 theory where the coupling is simply
a constant g, and the residue in each channel is simply g2. Then an object with the correct
poles in all channels is g2(1/s + 1/t + 1/u). Of course in addition to this we may have
contact terms with no poles at all, whose form is not fixed by the three-particle amplitudes.
But we will only be concerning ourselves with the parts of the four particle amplitudes that
are forced to exist by consistent factorization given the three-particle amplitudes.

Let’s repeat this exercise for the slightly more interesting case of Yukawa theory, where
the three-particle amplitude for fermions 1,2 of helicity −1/2 to a scalar 3 is simply y〈12〉.
Let us compute the s-channel

1

2 3

4

+

+

, Rs = 〈1I〉[I4] = 〈1|pI |4] , (3.4)

where here and in what follows we will suppress the trivial coupling constant dependence.
This can be simplified using that pI = p1 + p2 = −p3 − p4, to 〈1|p2|4] = −〈1|p3|4] =
1
2〈1|(p2 − p3)|4]. The residue in the u channel is the same swapping 2, 3. So finally the
consistently factorizing amplitude is

〈1|(p2 − p3)|4]
s

+ 〈1|(p3 − p2)|4]
u

. (3.5)

3.1 Self-interactions

Let’s now try a different example: consider a theory of a single self-interacting particle
of spin s. The three particle amplitude for (1−s2−s3+s) is 〈12〉3s

〈13〉s〈23〉s . Note a remarkable
feature of this expression, which we did not encounter in either the φ3 or Yukawa theory
cases: already the 3 particle amplitude appears to have poles! Thus in a sense, these
amplitudes are not as “local” as we might have expected. Now of course this peculiarity
is un-noticed in the usual Minkowski space, since the three-particle amplitude vanishes
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in the Lorentzian limit. It is not a coincidence that this subtle sort of “non-locality”
appears for precisely the same theories that, in a conventional Lagrangian description, must
introduce gauge redundancies for consistency. But returning to our problem of determining
four-particle amplitudes by imposing consistent factorization, this feature introduces an
important obstruction. The strategy of computing the residue in the s-channel, multiplying
by 1/s, then summing over channels, is no longer guaranteed to work; as we will see
because of the poles in the three-particle amplitudes, the residue in the s channel will itself
have poles in the other channels, making it non-trivial to be able to find an object that
consistently factorizes in all channels. Indeed, while we can define massless three-particle
amplitudes for any helicities, it will be impossible to find consistent four-point amplitudes
for all but the familiar interacting theories of massless spin 0, 1/2, 1, 3/2 and 2 particles.
This exercise has been carried out in systematically in [37, 38],8 here we highlight some
aspects of this story before moving on to carrying out the similar analysis with massive
particles.

Let us return to the theory of self-interacting massless particles of spin s; we will
consider the four-particle amplitude (1−s2+s3−s4+s). The residue in the s-channel, reached
when [12]→ 0 and 〈34〉 → 0, is

−s
1

2
+s

3

4

−s

+s

+−
, Rs =

(
〈I1〉3
〈12〉〈2I〉

)s( [4I]3
[I3][34]

)s

=
(
〈13〉2[24]2

t

)s

(3.6)

which, again using that e.g. 〈1I〉[I4] = 〈12〉[24] = −〈13〉[34], can be simplified to ( 〈13〉2[24]2
t )s.

We can similarly compute the t, u channel residues, and we find

Rs =
(
〈13〉2[24]2

t

)s

, Rt =
(
〈13〉2[24]2

s

)s

, Ru =
(
〈13〉2[24]2

t

)s

(3.7)

For s ≥ 1, we encountered the challenge alluded to above: the residue in one channel itself
has a pole in another channel. Let us start with s = 1. Given the structure of the residues,
any consistent amplitude must have the form

〈13〉2[24]2
(
A

st
+ B

tu
+ C

us

)
(3.8)

Note that as s → 0, we have t = −u, e.g. the residue in s is A/t + C/u = (A − C)/t. In
this way, we find that matching the residues in s, t, u demands that (A − C) = 1, (B −
A) = −1, (B − C) = 1, which is impossible since the sum of the three terms would have
to vanish. We conclude that it is impossible to a single self-interacting massless spin 1
particle! But suppose we have many of these particles labelled by the index a; thus the
self-interaction of a1, a2, a3 is further proportional to a coupling constant fa1a2a3 . Note

8A pedagogical discussion can be found in the 2011 PiTP lecture Robustness of GR. Attempts to Modify
Gravity given by one of us (N-A-H). A link to the video can be found at https://video.ias.edu/pitp-2011.
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that for s = 1 the three particle amplitude (1−12−13+1) = 〈12〉3
〈13〉〈23〉 is anti-symmetric in

exchanging 1↔ 2, implying fa1a2a3 taking on the same property. Extending to all helicity
configurations one can conclude that fa1a2a3 must be totally anti-symmetric. Next consider
the four particle amplitude with labels a1, a2, a3, a4, the residues in the s, t, u channels have
additional factors of fa1a2ef ea3a4 and similarly in the t, u channels. Now the ansatz for the
four-particle amplitude has the form

〈13〉2[24]2
(
Aa1a2a3a4

st
+ Ba1a2a3a4

tu
+ Ca1a2a3a4

us

)
(3.9)

and matching the residues in s, t, u tells us that

Ca1a2a3a4 −Aa1a2a3a4 = fa1a2ef ea3a4

Aa1a2a3a4 −Ba1a2a3a4 = fa2a3ef ea4a1

Ba1a2a3a4 − Ca1a2a3a4 = fa1a3ef ea4a2 (3.10)

and now, we can solve for Aa1a2a3a4 , Ba1a2a3a4 , Ca1a2a3a4 if and only if the fa1a2a3 satisfies
the Jacobi identity

fa1a2ef ea3a4 + fa2a3ef ea1a4 + fa1a3ef ea4a2 = 0 (3.11)

Let’s now move on to a single particle with s = 2. Naively, since the residue in the
s−channel is proportional to 1/u2, we might think that it is impossible for the four-particle
amplitude to have crucial properties of having only single poles! However, this 1/u2 is the
residue just as s → 0, and so it could also be represented as − 1

tu . Thus there is a unique
possibility for the four-particle amplitude for a single massless spin two particle:

− 〈13〉4[24]4
stu

(3.12)

which evidently has all the correct residues in all three channels! We can further investigate
the possibility on several massless spin two particles, with a coupling constant ga1a2a3 ; the
same analysis as for spin one then gives us quadratic constraints on the ga1a2a3 that are
solved only by g’s that, up to change of basis, are only non-vanishing for a1 = a2 = a3, i.e.
which are mutually non-interacting.

We have thus seen that the only consistently interacting massless spin one particles
must have a Yang-Mills structure, and the only consistent massless spin 2 particles does
not non-trivially allow more than one such particle, and gives us the standard gravity
amplitude. Of course we have done more than simply show the amplitudes are consistent,
we have computed them!

For spin s > 2, the residue in the s-channel is at least 1/u3, and so there is no way
to have a consistent four particle amplitude with only simple poles in s, t, u. We thus
conclude that there are no consistent theories of self-interacting massless particles of spin
higher than two.
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3.2 Interactions with other particles

Let’s move on to determine what sorts of self-consistent interactions other particles can
have with massless spin 1, 2 particles. Let’s start with the coupling of a spin s particles to
spin one particle, for which the three particle amplitude is 〈12〉2s+1〈23〉1−2s〈13〉−1. Let us
now consider the residues for the (1−s2+3−4+s) amplitude; we get residues in the s and u
channels from gluing these three-particle amplitudes together. These residues are trivially
computed to be

Rs = 1
u

(〈13〉[24])2s[2|(p1 − p4)|3〉2−2s, Ru = 1
s

(〈13〉[24])2s[2|(p1 − p4)|3〉2−2s (3.13)

We see there is a qualitative difference between s ≤ 1 and s ≥ 3/2. For s = 0, 1/2, 1,
while the residues in one channel have poles in the other, we can write down a consistently
factorizing four-particle amplitude:

(〈13〉[24])2s[2|(p1 − p4)|3〉2−2s

su
(3.14)

But for s ≥ 3/2, the residues have (increasing powers of) the spurious pole in [2|(p4−p1)|3〉,
and so no consistent four particle amplitude is possible. Thus we recover the correct
Compton-scattering expressions for particles of spin 0, 1/2, 1 scattering off photons, while
also seeing that it is impossible to have a consistent theory of massless charged particles
with spin ≥ 3/2.

When there are several species of spin s particles i coupling with several spin one
particles a, we attach an extra coupling T aij to the vertex. Consider (1−i 2+

a 3−b 4+
j ) scattering;

writing the residues R in any channel as R = (〈13〉[24])2s[2|p1|3〉2−2s × r, we have

k k

+ a
−b

− i + j

k k

− i + j

+ a −b

, rs = 1
u

(T aT b)ij , ru = 1
s

(T bT a)ij ,

(3.15)
where (rs, ru) satisfies s = 0 and u = 0 kinematics respectively. Note that if (T aT b)ij =
(T bT a)ij , or the commutator [T a, T b] vanishes, we can get a consistent amplitude as with
our Compton scattering example, with poles only in these s and u channels, but this is not
possible if [T a, T b] 6= 0. This means that the 1/u in rs and the 1/s in ru must secretly be
1/t instead, i.e. must also include a pole in the t channel. Of course fortunately we can
have a residue in the t channel, using the cubic self-interaction for gluons. Quite nicely
the same kinematical factor appears in Rt, and we find (writing this residue in an s, u

symmetric way):

− i + j

a b

c

c
, rt = (1

s
)× fabcT cij (3.16)
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Thus, if we have
fabcT cij = [T a, T b]ij (3.17)

and using the fact that when t = 0, s = −u, we find that the following amplitude indeed
consistently factorizes in all channels:

(〈13〉[24])2s[2|p1|3〉2−2s ×
(

(T aT b)ij
ts

+(T bT a)ij
tu

)
. (3.18)

This agrees with the result in [35]. Also, clearly once again no consistent amplitudes are
possible for spin s ≥ 3/2. Thus we have discovered the familiar structure of Yang-Mills
theories for particles of spin 0, 1/2, 1.

The same sort of analysis extends to gravity, since the details are virtually identical
we will leave them as enjoyable exercises for the reader. We can consider the coupling of
two particles of spin s to a graviton, with strength g. The residues in the s, u channels
are no longer equal, and the only way to make a consistent four particle amplitude is to
also have a pole in the t channel, using the graviton self-interaction κ = 1

MPl
. Thus once

again the poles for the amplitude is forced to come in the combination 1/stu. This implies
that the coupling constant appearing in the spin-s exchange channel must be identified
with that of the graviton exchange. That is, consistency between the three factorization
channel forces the universality of couplings to gravity, g = κ, with the following form for
Compton scattering:

κ2 (〈13〉[24])2s[2|(p1 − p4)|3〉4−2s

stu
. (3.19)

Now we see that for s ≥ 2 one again develops spurious pole, and one reaches the conclusion
that for spin greater than 2, the particle cannot consistently couple to gravity. In other
words, even if higher spin particles are non self-interacting and free, the moment one turns
on gravity it ceases to be consistent in flat space. Thus we find that the only possible
consistent theories that can couple to gravity can only have spins (0, 1/2, 1, 3/2).9

We can also discover the need for supersymmetry when massless particles of spin 3/2
are present. Consider for simplicity the case with a single spin 3/2 particle ψ. Now let’s
imagine we also have a massless scalar φ. Both of these particles have a universal coupling
to gravity, so there is inevitably an amplitude for ψ1ψ1φ2φ2 scattering mediated by gravity.
We can again compute the residue in the s-channel, and find that it has a pole in the t
channel. But since there is no (ψ, φ, graviton) coupling (amplitudes must be grassmann
even), we can’t have any t-channel poles, and so this theory is inconsistent. The only way
to have a consistent amplitude is if we also introduce a massless fermion χ, now we can
have a (ψ, φ, χ) interaction with the same gravitational strength 1/MPl, which provides
the needed pole in the t-channel. The full amplitude is then given as:

(1, 2, 3−
3
2 , 4+ 3

2 ) = κ2 〈3|(p1−p2)|4]3
st

. (3.20)

9As we remarked in our discussion above on self-interacting spin 2, via a basis change it is always possible
to say that the spin 2 particles are effectively in different universes with no mutual interactions; in each
one of these decoupled sectors the gravitons can be coupled to their own spectrum of particles with spin
(0, 1/2, 1, 3/2).
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Thus we see that we must have a bose-fermi degenerate spectrum, with the couplings of
the “gravitino” ψ to particles and their superpartners of universal gravitational strength.

We have given a lightning tour of some of the arguments leading to the determination
of all consistent theories of massless particles via the “four-particle scattering” test. It
is remarkable to see the architecture of fundamental physics emerge from these concrete
algebraic consistency conditions in such a simple way. A more complete and systematic
treatment can be found in [37, 38].

Before moving on to considering massive amplitudes, let us briefly comment the (in)con-
sistency of theories with three-particle amplitudes for helicities satisfying h1 +h2 +h3 = 0.
Apart from the case of all scalars h1 = h2 = h3 = 0, we have “phase” singularities in the
couplings, for instance we have a coupling of the form 〈13〉/〈12〉 or [12]/[13] for a spin zero
particle 1 to particles 2, 3 of helicity ±1/2. This peculiar interaction is unfamiliar, and
does not arise from Lagrangian couplings. But, as expected, it is also impossible to find a
correctly factorizing four-particle amplitudes with these couplings [37, 38], so consistency
forces the couplings to vanish.

4 General three particle amplitudes

In this section we will categorize the most general three-point amplitude with arbitrary
masses. As discussed in section 2, the amplitude will be labeled by the spin-S representation
of the SU(2) little group for massive legs and helicities for the massless legs. For amplitudes
involving massive legs, it will be convenient to expand in terms of λIα, since any dependence
on λ̃Iα̇ can be converted using eq. (2.15). For example for a general one massive two massless
amplitude, with leg 3 being a massive spin-S state, we have:

M
{I1···I2S},h1,h2
3 = λI1

3,α1 · · ·λ
I2S
3,α2S

M
{α1···α2S},h1,h2
3 , (4.1)

where (h1, h2) are the helicity. We will be interested in the most general form of the
stripped M

{α1···α2S},h2,h3
3 , which is now a tensor in the SL(2, C) Lorentz indices. The

problem thus reduces to finding two linear independent 2-component spinors that span
this space, which we will denote as (vα, uα). The convenient choice of (vα, uα) will depend
on the number of massive legs in a given set up and we will analyze each case separately.
We note that a similar classification of three-point interactions using a different basis can
be found in [39, 40].

4.1 Two-massless one-massive

Let’s first begin with the two massless and one massive interaction:

1 2S

h1

h2

Mh1h2
{α1α2···α2S}

Since both legs 1, 2 are massless, their spinors can serve as a natural basis:

(vα, uα) = (λ1α, λ2α) (4.2)
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The helicity weight (h1, h2) then completely fixes the degree-2S polynomial in λ1, λ2 up to
an overall coupling constant:

Mh1h2
{α1α2···α2S} = g

m2S+h1+h2−1

(
λS+h2−h1

1 λS+h1−h2
2

)
{α1α2···α2S}

[12]S+h1+h2 , (4.3)

where with appropriate factors of m such that it has the correct mass-dimension. Note
that we can trade [12] for 〈12〉 using [12] = m2

〈21〉 . When the massive leg is a fermion, i.e.
S ∈ 1

2Z, we must then require precisely one of the massless legs to be a fermion as well.
The fact that the structure of this three-point amplitude is unique implies no go theo-

rems for certain interactions. For example, for identical helicities the factor [12]S+2h1 will
attain an extra factor of (−1)1+2h1 under 1, 2 exchange for odd spins. This will result in the
wrong spin-statistics, thus a particle of odd spin S cannot decay to identical particles with
the same helicity. Now suppose the particles have opposite helicity, namely h1 = −h2 = h.
If we take into account that the exponents of λ1 and λ2 must both be positive, we con-
clude that the amplitude vanishes if |h| > S/2. For massive spin one states, this is Yang’s
theorem — that a massive spin one particle cannot decay to a pair of photons. We also
learn that a massive spin three particle cannot decay to a pair of gravitons. Note that we
have invoked spin-statistics without giving its on-shell origin. As we will see in the com-
ing subsection 4.3, when considering the three-point amplitude of identical massive spin-S
states to gravity, spin-statistics is immediately forced upon us.

4.2 One-massless two-massive

For two massive legs, the three-point amplitude is now labeled by (h, S1, S2)

1 2S

1 2S1

2

h

Mh
{α1α2···α2S1}, {β1β2···β2S2} (4.4)

The analysis depends on whether or not the masses are identical. For equal mass, the
kinematics becomes degenerate and one expects some form of superficial non-locality. The
reason is that the equal mass kinematics occurs precisely for minimal coupling, where its
massless limit contain inverse power of spinor brackets as discussed in the previous section.
As we will see, for this case we need to introduce a new variable x that encodes this
non-locality.

4.2.1 Unequal mass

For unequal mass, one of the basis spinor can be λ of the massless leg, while the remaining
can be chosen to be λ̃ contracted with one of the massive momentum. For example one
can choose:

(vα, uα) =
(
λα,

p1αβ̇
m1

λ̃β̇
)

(4.5)

Unlike the one massive case, here the amplitude is not unique. The helicity constraint only
fixes the polynomial degree in u and v to differ by 2h. For S1 6= S2 there are then a total of
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C = S1+S2−|S1−S2|+1 different tensor structures, and the general three-point amplitude
is given by:

Mh
{α1α2···α2S1}, {β1β2···β2S2} =

C∑
i=1

gi(uS1+S2+hvS1+S2−h)(i)
{α1α2···α2S1},{β1β2···β2S2}

(4.6)

where i labels the different structure and gi is the coupling constant for the different tensor
structures. Note that the number of possible tensor structures is determined by the lowest
spin. For example for one S1 = 1 S2 = 2, we have three tensor structures. For a minus
helicity photon these are given by:

(vvvv)(uu), (vvvu)(vu), (vvuu)(vv) . (4.7)

where the parenthesis indicates the grouping of the symmetrized SU(2) little group index.
One can also compare this with a Feynman diagram vertex F3,µνε

νρ
2 ∂ρε

µ
1 , where ε1, ε2 are

the polarization vectors for the massive particles. Again, substituting the on-shell form
of the masslesss polarization vectors ε−i = |i〉[µ̃|

[iµ̃] , ε
+
i = |µ〉[i|

〈µi〉 , where |µ̃], |µ〉 are reference
spinors, and massive ones in eq. (2.29), one finds:

M3{α1α2}{β1β2β3β4} = m2
1

m4
2

1
m2

1−m2
2

[
m1(uu){α1α2}(uuvv){β1β2β3β4}

− m2(uv){α1α2}(uuuv){β1β2β3β4}
]
. (4.8)

Indeed the three-point amplitude for the vertex can be expanded on the basis in eq. (4.7),
as it should.

4.2.2 Equal mass: the x-factor

If the masses are identical, then u and v are no longer independent, since:

vαuα = 〈3|p1|3]
m

= 0 . (4.9)

Thus (uα, vα) are parallel to each other and pick out just one direction in the SL(2,C)
space. There is however a crucial piece of additional data in the constant of proportionality
between u and v, which we will call “x”:

xλ3α = p1αα̇
m

λ̃α̇3 ,
λ̃α̇3
x

= pα̇α1 λ3α
m

. (4.10)

Note that x carries +1 little group weight of the massless leg. Furthermore, x cannot be
expressed in a manifestly local way. Indeed contracting both sides of the above equation
with a reference spinor ζ yields:

x = 〈ζ|p1|3]
m〈ζ3〉 , (4.11)

so while x is independent of ζ, any concrete expression for it has an apparent, spurious
pole in ζ. In the next section, as we glue the three-point amplitudes to get the four-point,
it will be convenient to choose ζ to be the spinor of the external legs on the other side.
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The denominator then yields a pole in other channels! This yields non-trivial constraint
for the four-point amplitude to have consistent factorisation in all channels.

Now the only objects we have carrying SL(2,C) indices are λ3, as well as the anti-
symmetric tensor εαβ .10 We can then express the three-point amplitude as:

Mh
{α1α2···α2S1}, {β1β2···β2S2} =

(S1+S2)∑
i=|S1−S2|

gix
h+i(λ2i

3 ε
S1+S2−i){α1α2···α2S1},{β1β2···β2S2}

=
(S1+S2)∑
i=|S1−S2|

gi x
h

λi3
(
p1λ̃3
m

)i
εS1+S2−i


{α1α2···α2S1},{β1β2···β2S2}

,

(4.12)

where the superscript on λ, ε, pλ̃/m indicates its power. For later purpose we present it in
two equivalent representations.

4.3 Minimal coupling for photons, gluons, gravitons

We have seen that while there is a unique structure for massless three-particle amplitudes
once the helicities are specified, for couplings of e.g. two equal mass particles of spin S to
a massless particle there are (2S+1) independent structures, each term with n factors of
ε with n = 0, · · · , 2S. Let us take the massless particle to be a graviton. Note that ε is
antiysymmetric with respect to the exchange 1 ↔ 2. Furthermore while the definition of
x in eq. (4.10) implies that it picks up a minus sign under the 1↔ 2, this is irrelevant for
gravitational couplings which are proportional to x2. Thus we see that one gravitation two
identical spin S amplitude will have a factor of (−)2S+1 under the exchange of the spin-S
states. This is nothing but the spin-statistic theorem!

Now one of the (2S+1) structures is special, and corresponds to what we usually think
of as “minimal coupling” to photons, gluons and gravitons. The defining characteristic of
“minimal coupling” is physically very clear. For massless particles, the mass dimension
of the couplings is given by 1− |h1 + h2 + h3|, and so the leading low-energy interactions
with photons, gluons and gravitons — those with dimensionless gauge couplings e, g or
gravitational coupling 1/MPl, involve massless particles of opposite helicity. The definition
of “minimal coupling” for massive particles is then simply the interaction whose leading
high-energy limit is dominated by precisely this helicity configuration. As we will see the
remaining (2S+1)−1 = 2S interactions represent the various multipole-moment couplings
(such as the magnetic dipole moment in the coupling to photons.)

In our undotted SL(2,C) basis, the amplitude with a positive helicity state can be
viewed as an expansion in λ. The leading piece in this expansion, namely that where the
SL(2,C) indices are completely carried by the Levi-Cevita tensors, precisely corresponds to
minimal coupling! It is instructive to see why this is the case. Using the simplest example,

10Note in the unequal mass case, since u, v provided a basis, we didn’t need to separately introduce εαβ
since (uαvβ −uβvα) = 〈uv〉εαβ . However as m1 → m2 these invariants vanish. This also shows the absence
of a singularity in eq. (4.8) as m1 → m2.

– 20 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
0

a photon coupled to two fermions, we find:

xmεα1α2 → x〈12〉 = 〈12〉〈ζ|p1|3]
m〈ζ3〉 = 〈2ζ〉[31] + 〈1ζ〉[32]

〈ζ3〉 (4.13)

Taking the high energy limit, we see that the leading term indeed correspond two possible
pairs of opposite helicity fermion,

〈2ζ〉[31] + 〈1ζ〉[32]
〈ζ3〉 H.E.−−−−−−→

[13]2
[12] + [23]2

[12] +O(m) . (4.14)

In general the minimal coupling between photon and two spin-S states is simply:

Mmin,+1
{α1···α2S},{β1···β2S} = xm

( 2S∏
i=1

εαiβi + sym

)
,

Mmin,−1
{α̇1···α̇2S},{β̇1···β̇2S} = m

x

( 2S∏
i=1

εα̇iβ̇i + sym

)
, (4.15)

where we’ve also included the negative helicity photon in its simplest dotted representation.
The proper amplitude (with little group indices) is then given as:

Mmin,+1 = x
〈12〉2S
m2S−1 , Mmin,−1 = 1

x

[12]2S
m2S−1 (4.16)

For gravitons, we simply introduce an extra power of m
Mpl

x. The fact that in this formal-
ism, minimal coupling is as simple as λφ3 heralds its potential for simplification. It is
also instructive to see how such simple representation emerges from the usual vertices in
Feynman rules. Here we present examples for scalar, spinor and vector at three points:

Scalars :
+

ε3 · p1 = 〈ξ|p1|3]
〈3ξ〉 = −mx , (4.17)

where we’ve used the identity xmλ3 = p1|3]. Similarly for spin- 1
2 and 1, we have:

Fermons :

+

1

2 ū1 6ε3v2 =
(
pγ̇α2

2
m

, δα2
γ

) 0 λ̃3γ̇ξβ
〈3ξ〉

− λ̃β̇3 ξ
γ

〈3ξ〉 0

( p2β̇
α1

m

εα1β

)

= xεα1α2 (4.18)

Vectors :

+

11

22
pβ1α̇1

1
m

[ε3 · p1εα1α2εα̇1α̇2 + p2α1α̇1ε3α2α̇2 − p1α2α̇2ε3α1α̇1 ] p
β2α̇2
2
m

= −mx
(
εα1α2εβ1β2 + sym(α↔ β)

)
. (4.19)
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The fact that minimal coupling is literally the “minimal” interaction in the undotted
SL(2,C) representation indicates the λ expansion should directly correspond to the presence
of couplings through higher-dimensional operators. These precisely are the magnetic and
electric moments. Let us begin with the magnetic dipole moment. Since this corresponds
to a coupling of the particle with Fµν , it can only occur for particles with spin. Thus we
can extract the electric dipole moment by separating the minimal coupling into a piece
that is universal, and pieces that only exists for spinning particles.

Recall that the field strength in momentum space becomes Fµν → λαλβεα̇β̇+ λ̃α̇λ̃β̇εαβ .
This implies that couplings through the field strength will be transparent in the undotted
frame for negative helicity photon, and dotted frame for the positive photon. With this
in mind we convert the minimal coupling for spin- 1

2 and negative helicity photon into the
dotted frame:

pαα̇1
m

(
m

x
εα̇β̇

)
pββ̇2
m

= m

x

(
εαβ+xλ

α
3λ

β
3

m

)
. (4.20)

Here the piece m
x ε

αβ is the same as that for scalars, sans the εαβ factor which is necessary to
carry the SL(2,C) indices, and thus a universal term. The extra piece λα3λ

β
3 then represents

the magnetic moment coupling, with the amplitude given by

〈13〉〈32〉
m

. (4.21)

Thus we immediately see that g = 2 for the magnetic dipole moment.11 Thus for minus
helicity photon, the general spin- 1

2 amplitude has the simple expansion:

M−1
α̇1α̇2 = 1

x
mεα̇1α̇2−

(g−2)
4

(λ̃3λ̃3)α̇1α̇2

x2 , (4.22)

where we’ve manifestly separated the minimal coupling and the (g−2) part of the magnetic
dipole moment. It is straight forward to see that (λ̃3λ̃3)α̇1α̇2

x2 in the undotted frame, is simply
λ3λ3. For the plus helicity, one has:

M+1
α1α2 = mxεα1α2+(g−2)

4 x2(λ3λ3)α1α2 . (4.23)

One can trivially extend this to higher spin. For example for spin-1, the minimal
coupling now contains both the magnetic dipole moment and electric quadrupole moment.
The minimal coupling yields:

m

x

(
εα1α2 − xλ

α1
3 λα2

3
m

)(
εβ1β2 − xλ

β1
3 λ

β2
3

m

)
+ (α1 ↔ β1)

= −m
x
εα1{α2εβ2}β1 − εα1{α2λ

β2}
3 λβ1

3 − εβ1{β2λ
α2}
3 λα1

3 + 2xλ
α1
3 λα2

3 λβ1
3 λ

β2
3

m
. (4.24)

11As a comparison, for the positive helicity and insisting on the undotted frame, we can make the
separation after contracting λIs. More precisely:

xεαβ → x
〈12〉
m

= 1
m

(
x[12]+ [13][32]

m

)
.
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We again see that the first term is the universal piece, the terms quadratic in λ is the
dipole moment where as the terms quartic in λ is the electric quadrupole moment. Thus
the general three point amplitude for the charged vector and a photon is:

M−1
{α̇1β̇1}{α̇2β̇2} = 1

x
mε{α̇1α̇2εβ̇1}β̇2

+ (g−2)

εα̇1{α̇2 λ̃3β̇2}λ̃3β̇1

x2 +
εβ̇1{β̇2

λ̃3α̇2}λ̃3α̇1

x2


+2(g′ + 1)

λ̃3α̇1 λ̃3α̇2 λ̃3β̇1
λ̃3β̇1

mx3 (4.25)

where (g−2) and (g′+1) is the anomalous magnetic dipole and electric quadrupole moment
respectively.

4.4 Three massive

For all massive legs, we no longer have massless spinors to span the SL(2, C) space. This
implies that the space has to be spanned by tensors instead. The fundamental building
blocks are now

Oαβ = p1{αβ̇p2β}
β̇ , εαβ . (4.26)

Note that since OαβOγδ − OγβOαδ ∼ εαγεβδ, pairs of εαβ can be traded for products of
Oαβ . The general form of the three-point amplitude is:

1 2S
2

1 2S
3

1 2S
1

Mα1···α2S1 ,β1···β2S2 ,γ1···γ2S3
=

1∑
i=0

∑
σi

gσi

(
OS1+S2+S3−iεi

)σi
{α1···α2S1},{β1···β2S2},{γ1···γ2S3}

(4.27)

where i = 0, 1 represents the number of εs and σi labels all distinct ways the SU(2) indices
can be distributed on Os and should be summed over. It will be interesting to see whether
the higher spin interactions from string theory, see [41] for recent results, spans the space
of all interaction allowed.

5 Four particle amplitudes for massive particles

Now that we have determined the structure of all possible three-particle interactions, we
would like to proceed to investigating the consistency of four-particle amplitudes. Just
as we did for all massless particles, we ask: given a spectrum of particles, and a set of
three-particle interactions, is it possible to find a four-particle amplitude that consistently
factorizes in all possible channels? We stress that this is a completely sharply defined and
straightforward algebraic problem. To be maximally pedantic, suppose we have a set of
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particles with masses (zero or non-zero) given by mi. Then the most general ansatz for the
four-particle amplitude has the form

N∏
i(s−m2

i )(t−m2
i )(u−m2

i )
(5.1)

and we simply wish to determine whether there is a consistent numerator N that allows
this function to factorize correctly in the s, t, u channels12

M →
Ma
L, {I1···I2s}ε

I1J1 · · · εI2sJ2sMa
R {J1···J2s}

P 2 −M2 . (5.2)

As we’ve shown before, it is convenient to expand the amplitude on the λIα basis, in which
case the contraction of little group indices now translates to the contraction of undotted
SL(2,C) indices:

λIαλ
J
β

m
εIJ = εαβ . (5.3)

To make contact with the usual Feynman rules, the numerator of the vector propagator is
Gµν ≡ ηµν − pµpν

m2 , which in SL(2,C) undotted representation is:

Gαα̇,ββ̇ = 2εαβεα̇β̇ −
pαα̇pββ̇
m2 → pα̇γp

β̇
δ

m2 Gαα̇,ββ̇ = εα{βεγδ} , (5.4)

as expected. This is not surprising, as we’ve discussed in the introduction, the transverse
traceless-ness, which determines the numerator of the propagator, simply translates to
symmetrization of the SL(2,C) indices.

In practice, we don’t need to work with this slavishly systematic ansatz for the ampli-
tude with the giant denominator consisting of all possible simple poles. Instead, following
the same steps as in the all massless case, given the spectrum and the three-particle am-
plitudes, we will first simply compute the residues R(i)s, R(i)t, R(i)u in the s, t, u channels
from the exchange of the i’th particle. If these residues are local, we are trivially done,
since the object ∑

i

(
R

(i)
s

s−m2
i

+ R
(i)
t

t−m2
i

+ R
(i)
u

u−m2
i

)
(5.5)

manifestly matches the poles in all the channels. This is the case for the massive gφ3

theory where these residues are all simply Rs = Rt = Ru = g2. But as we already saw
in the massless case, there are more interesting cases where the residues in one channel
themselves have poles in another channel. With massive particles this will occur whenever
we have minimal coupling and the “x′′ factor. In this case an ansatz separately summing
the channels cannot work, and we must use building blocks that have simple poles in more
than one channel. For massless particles, the requirement of four-particle consistency was
so strong as to simply make certain theories (of high-enough spin charged or gravitating

12Of course the amplitude cannot be uniquely determined in this way, since we can always simply have
contact terms that are simply polynomials with no poles at all (corresponding to piece in N that cancels
all the poles). To avoid clutter, we will suppress the possible contact terms in what follows.
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massless particles) impossible. It also enforced universality of the couplings to gravitons
and the usual Yang-Mills structure for coupling to photons and gluons. We will see the
analogue of these statements for massive amplitudes. Once again, consistent factorization
will demand the standard couplings to photons, gluons and gravitons, will also see that
any self-interactions have to be invariant under the (global part) of the gauge symmetry.
But with these restriction met, it is possible to find consistently factorizing four-particle
amplitudes for any masses and spins. This is of course expected, since almost all interesting
objects in the real world are massive particles of high spin! But of course as we will also
see, the impossibility of consistent amplitudes for massless particles of high spin shows up
in a singularity of the massive high spin amplitudes in the high-energy (or m → 0) limit,
giving a very concrete sense in which particles of high spin cannot be “elementary”.

5.1 Manifest local gluing

We first begin with the construction of amplitudes without any x-factor non-localities. Let’s
begin with Yukawa amplitude, i.e. one massless scalar two massive fermion amplitude. The
three-point amplitude is simply

g

mf
〈13〉[23] + g′

mf
〈23〉[13] (5.6)

where mf is the mass of the fermion. The gluing in the s- and u-channel yields:

1

2 3

4 1

3 2

4

= g2〈12〉〈34〉[32] + g′g[12]〈43〉〈2|p4|3] + c.c.

mf (s−m2
f ) + (2↔ 3) , (5.7)

where by c.c. we are exchanging λ ↔ λ̃ and g ↔ g′. As one can see, since the three-point
amplitude was local, the resulting four-point amplitude can be written in a manifest local
way with two separate channels.

A “slightly” more complicated example would be the process γ− + t → gra+ + t, via
a massive spin-3

2 exchange:

t t

T
3/2

1

2 3

4

gra

. (5.8)

Here, t1,4 are the massive top quarks with their mass denoted by mt. The three-point
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amplitude on both sides are:

VL = g

m3
t

〈p2〉3[12] + g′

m3
t

〈12〉〈p2〉2[p2],

VR = g′′

m3
t

[43][p3]3 . (5.9)

There are two tensor structures for VL, reflecting the two distinct way the SL(2,C) indices
can distribute. The resulting four-point amplitude is then,

gg′′[43][21]〈2|p4|3]3 + g′g′′[43]〈12〉〈2|p4|3]2[32]mt

(s−m2
T )m6

t

+ (2↔ 3) , (5.10)

where mT is the mass of the spin-3/2 particle.
In the above examples, the residues are manifestly local as it is inherited from the

three-point amplitude. The only place potential non-locality can occur is when factors of
x appear for the three-point amplitude, for example the minimal coupling. Thus in the
next section we will focus on minimal coupling for massless spin-1 and 2 particles.

5.2 Minimal coupling

In this subsection we will consider the gluing of minimally coupled higher spin particles.
We will first begin with charged particles, which entails the three-point coupling of two
massive spin-S state and a positive or negative helicity photon. The three point amplitude
is given in eq. (4.15), which after dressing with external spinors, the complete amplitude is:

M+h
S = xh

〈12〉2S
m2S−1 , M−hS = 1

xh
[12]2S
m2S−1 . (5.11)

5.2.1 Compton scattering for S ≤ 1

Let us begin with scalar. Here one simply has:

41

p p
2

+1 3
−1

∼ m2x12
x34

. (5.12)

Here the subscripts on x serve to distinguish between different three point vertices. Now
since

x12λ2 = p1|2]
m
→ x12 = 〈3|p1|2]

〈32〉m ,
p4|3〉
m

= λ̃3
x34
→ 1

x34
= 〈3|p4|2]

[23]m , (5.13)

we see that the residue is given by:

m2x12
x34

= −〈3|p1|2]2
t

. (5.14)

Again the s-channel residue is non-local and must be interpreted as a pole from the other
channel! We now have a choice, it can either be interpreted as a massless particle in the
t-channel, or an u-channel massive particle since −t = u−m2 when s = m2. For there to
be a t-channel massless pole, the vectors must be gluons instead of photons, and we leave
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this possibility to the later part of this subsection. For the case where one has a u-channel
massive pole, the amplitude is simply:

M(φ1γ
+
2 γ
−
3 φ4) = 〈3|p1 − p4|2]2

4(s−m2)(u−m2) , (5.15)

As the amplitude is symmetric under 1 ↔ 4 exchange, it is guaranteed to be consistent
with the u-channel factorisation. It is straight forward to see that at H.E. one obtains the
usual two adjoint-scalar two gluon, and two charged scalar two photon amplitude.

Let us now consider Compton scattering for general spin. The s-channel gluing yields,

1

p p
2

+1 3
−1

4

∼ 1
m2(S−1)

x12
x34

(〈1P I〉[PI4])2S . (5.16)

Recall that x12
x34
m2 = −〈3|p1|2]2/t, if we rewrite t as u − m2 and put back the s-channel

propagator, this has the property that it is symmetric under 1↔ 4 (it is the scalar ampli-
tude after all). This means that if P 2S

m2S matches to the u-channel residue then we are done!
Finally using the identity:13

〈1|PI |4]
m

= m
〈43〉[12] + 〈13〉[42]

〈3|p1|2] , (5.19)

one derives the following ansatz for the four-point amplitude of minimally coupled general
spin-S amplitude,

〈3|p1|2]2−2S

(s−m2)(u−m2) (〈43〉[12] + 〈13〉[42])2S . (5.20)

Note that the final result has an extra (−)2S sign for spin-S under 1 ↔ 4 exchange. This
tells us that charged half integer spins must be fermions, while integer spins are bosons.
Thus we’ve recovered spin-statistics from the principles of Poincare symmetry and unitarity.
The result in eq. (5.20) contains spurious singularities which cancel for S ≤ 1. This signals
that there is something fundamentally different for charged particles of S ≤ 1 and S > 1.
For S = 1/2, 1 we recover the Compton scattering:

M(1
1
2 , γ+1

2 , γ−1
3 ,4

1
2 ) = 〈3|p1−p4|2]

2(s−m2)(u−m2) (〈43〉[12] + 〈13〉[42])

M(11, γ+1
2 , γ−1

3 ,41) = (〈43〉[12] + 〈13〉[42])2

(s−m2)(u−m2) . (5.21)

13This identity can be derived as follows: |P I〉[PI | is the internal momentum that satisfies the s-channel
on-shell constraint,

Pαα̇λ̃
α̇
2 = −mx12λ2α, Pαα̇λ̃

α̇
3 = mx34λ3α, P 2 = m2 (5.17)

The solution is given by:

Pαα̇ =
−m2λ3αλ̃2α̇ + (p1αβ̇λ̃

β̇
2 )(p4α̇βλ

β
3 )

〈3|p1|2] . (5.18)

Contracting with λI4 and λ̃I1 yields eq. (5.19).
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In appendix D we reproduce this result using Feynman diagrams for fermions. By studying
the H. E. limit, one can easily verify that this is correct. At H.E. for S = 1 one obtains
three terms, two of which are contributions where legs 1 and 4 are opposite helicity gluons,
and a final one which is when they are both scalars, which are the Goldstone bosons that
were eaten in the Higgs mechanism! Note that this is telling us that the Higgs mechanism
provides a way to “unify” the independent massless amplitudes in the IR. We will discuss
this phenomenon in more detail in section 6.

Now in the above discussion the result from the s-channel gluing can be matched to the
u-channel if we have a single species of spin-S. If there are multiple species, then similar to
the massless discussion in section 3, we should assign a matrix T aij to each vertex, and due
to [T a, T b] 6= 0, the matching to the u-channel will be off by a piece that is proportional to
fabcT cij . This mismatch is a sign that the t-channel pole from the s-channel factorisation
should be assigned into a physical massless pole, i.e. revealing the presence of an non-
abelian vector. For this to hold we should show that the s-channel residue admits this
interpretation. Indeed taking a scalar for example, 〈3|p1|2]2/(s−m2)t can be matched to
the t-channel residue since

p

1 4

3
−1

−1

2
+1

p+1

x14
〈3P 〉3
〈P2〉〈23〉 = −fab cT c

〈3|p1|3]〈3|p1|P ]
x14m〈P2〉 = 〈3|p1|2]2

(
T aT b

s−m2 + T bT a

u−m2

)
.

(5.22)
The last equality utilizes the fact that when t = 0, s−m2 = −(u−m2). Thus the final
amplitude is given by:

〈3|p1|2]2−2S (〈43〉[12]+〈13〉[42])2S 1
t

[
(T aT b)ij
s−m2 +(T bT a)ij

u−m2

]
. (5.23)

5.2.2 Compton scattering for S > 1

The ansatz for general minimal coupling in eq. (5.20) appears to contain non-physical poles
for S > 1. Of course this cannot be the final story since there’s an abundance of charged
higher spin-states in nature, and although we know that they are not fundamental, it has
no bearing on the existence of S-matrix for low energy scattering. In deriving eq. (5.20),
we started from the s-channel residue and analytically continued PI to a form that is
manifestly 2 ↔ 3 and + ↔ − symmetric, and thus can be directly matched to u-channel
residues. This is not entirely necessary, since the full amplitude can contain terms that only
contain s and not u-channel pole. Thus the very fact that eq. (5.20) gives us non-physical
poles for S > 1 is precisely telling us that such terms must be present.

To see this subtlety in detail, let’s consider minimal coupling for spin-3/2, for which
the gluing from s-channel yields:

− 〈3|p1|2]2
t

(〈43〉[12] + 〈13〉[42]
〈3|p1|2]

)3
. (5.24)
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First note that by using eq. (2.15) one can rewrite the internal propagator in a mostly local
form:
〈43〉[12] + 〈13〉[42]

〈3|p1|2] =
( [14]
m

+ 〈42〉[21]− 〈12〉[24]
2m2

)
+ t[21]〈34〉

2m2〈3|p1|2] ≡ A+B (5.25)

The first two terms, denoted as A, are local at the expense of introducing extra inverse
powers of m and are anti-symmetric under 1 ↔ 4, inheriting the symmetry properties of
its parent. This guarantees that the local terms can be combined with the pre-factor and
reproduce the correct residue on the u-channel pole. The last term, denoted as B, while
being spurious, does not contribute to the u-channel residue and thus we are free to rewrite
it in a local form using s-channel kinematics:

t[21]〈34〉
2m2〈3|p1|2]

∣∣∣∣
s=m2

= −〈43〉[32]〈21〉
2m3 (5.26)

Now expanding (A+B)3, only the A3 term will contribute to both s- and u- propagators,
while terms with B will contribute solely to s-channel propagators. Putting everything
together, one finds the following local form for the amplitude:

M(1
3
2 , γ+1

2 , γ−1
3 ,4

3
2 ) = 〈3|p1|2]2

(u−m2)(s−m2)A
3 −

{〈3|p1|2][21]〈34〉
2m2(s−m2) ×(

3A2 − 3A〈43〉[32]〈21〉
2m3 + 〈43〉2[32]2〈21〉2

4m6

)
+ (1↔ 4)

} (5.27)

We now see that in the final local form, all terms contain 1/m factors and becomes singular
in the H.E. limit. In other words, the obstruction of taking m→ 0 reflects the absence of
a consistent massless high energy amplitude. For example the leading term in 1/m that
will contribute to M(1+ 3

2 , γ+1
2 , γ−1

3 , 4+ 3
2 ) at high energies is given by:

〈3|p1|2]2
(u−m2)(s−m2)

[14]3
m3 →

〈31〉2[12]2
us

[14]3
m3 . (5.28)

As we will elaborate below, this is the concrete sense in which charged particles with spin
S ≥ 3/2 cannot be “elementary”, the same conclusion holds for any particles at all of spin
S ≥ 5/2 that can consistently couple to gravity.

5.2.3 Graviton compton scattering

Let us again begin with scalars, with the massive scalars are on legs 1, 4, a positive and
negative helicity graviton on legs 2, 3 respectively. The s-channel residue is given as:

m4

M2
pl

x2
12
x2

34
= 〈3|p1|2]4

t2M2
pl

, (5.29)

where Mpl is the Plank mass. As with the massless discussion we now have double pole in
t, which can be identified as the massive pole 1/(u −m2) and a massless 1/t pole. Thus
the four-point amplitude is simply

− 〈3|p1|2]4
(s−m2)(u−m2)tM2

pl

. (5.30)

– 29 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
0

It is instructive to verify that the massless pole is correct. Let us take the residue at t = 0,
in the kinematics where 〈ij〉 = 0. The residue of eq. (5.30) is

− 〈3|p1|2]4
〈3|p1|3]〈2|p1|2]M2

pl

. (5.31)

Since 〈ij〉 = 0, the massless three-point amplitude should be MHV, and one has

1 4

+
2 3

P
[2P ]6

[23]2[3P ]2
1

x2
14M

2
pl

= [2P ]4[2|p1|P 〉2
[23]2[3P ]2m2M2

pl

= [2P ]2[2|p1|3〉2
[3P ]2M2

pl

(5.32)

where P is the massless internal momenta. Finally using the identity

[2P ]2
[3P ]2 = [2P ][2|p1|P 〉

[3P ][3|p1|P 〉
= − [2|p1|3〉2

[3|p1|2〉[2|p1|3〉
= − [2|p1|3〉2
〈3|p1|3]〈2|p1|2] (5.33)

where in the last line, we’ve applied Schouten on the denominator, keeping in mind that
〈23〉 = 0. Thus we see that eq. (5.30) yields correct factorization in all channels.

For massive higher-spin particles, we again use the mixed representation. The s-
channel residue yields:

+
2 3

1
S

4
S

x2
12
x2

34

m4

M2
pl

(
P 2S
I

m2S

)
α1···α2S ,α̇1···α̇2S

. (5.34)

Using the explicit form for PI in eq. (5.18), we find that the residue, after contracting with
the external (λI1, λI4) is simply

〈3|p1|2]4
t2M2

pl

(〈43〉[12] + 〈13〉[42]
〈3|p1|2]

)2S
. (5.35)

Thus for S ≤ 2 we find a perfectly local four-point amplitude given by:

− 〈3|p1|2]4
(s−m2)(u−m2)tM2

pl

(〈43〉[12] + 〈13〉[42]
〈3|p1|2]

)2S
. (5.36)

For S > 2, we see that the formula ceases to be local. Similar to our photon coupling
analysis, this indicates that the residue of s-channel must be separated into pieces that will
combine with other channels and pieces that don’t.

5.3 Massive higher spins cannot be elementary

We have seen that Compton scattering amplitudes for particles of high enough spin do not
have a healthy high-energy limit, growing as powers of (p/m). Of course so long as the
gauge/gravitational couplings are small, these amplitudes do not become O(1) till energies
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parametrically above the particle mass m, so in that sense no inconsistency is encountered
in the effective theory of a single massive higher spin particle till a cutoff parametrically
above its mass. Nonetheless, the sickness of the m → 0 limit does show that a single
massive higher spin particle cannot be “elementary”, and that any consistent theory for
such particles must also include new particle states with a mass comparable to m. As
an example, suppose we have some strongly-interacting QCD-like gauge theory; can such
a theory have a spectrum consisting of bound states of high spin, with a parametrically
large gap up to higher excited states? Our analysis suggests that this is impossible. We
can imagine weakly gauging a global symmetry of the theory, or coupling the system to
gravity. The total cross-section for e.g. γγ → X should be bounded by σ < C × e4/s for
some constant C characterizing the current four-point amplitude. But if we have a charged
higher spin particle, just the cross-section for its production would grow as e4/s× (s/m2)n,
and if there is a parametrically large gap up to other particle states this will exceed the
bound when (s/m2)n > C. Of course this is a somewhat qualitative argument, but we
believe it captures the essence of why higher-spin massive particles must be composite. A
sharpening of the argument may be able to give a more quantitative bound for the scale
beneath which new particles must appear.

We can ask if the presence of new states in the propagator can tame this high-energy
behaviour by cancelling the 1/m6 singularity in eq. (5.28). In other words consider the
case where one has a new spin S′ state with the similar mass as the S = 3

2 , then one can
include the contribution:

4
1 2 3

2 3
+1 −1

1
1 2 3

. (5.37)

If S′ 6= S, then in the degenerate mass limit, it is easy to see that the three point amplitude
cannot involve the pure x dependent pieces and thus the residue must be local. This then
tells us that the contribution of such terms in the high energy limit must take the form
ns
smα + nu

umα for some α, and ns, nu is some local function in kinematic invariants. This has
a distinct high energy behaviour than eq. (5.28) which behaves as 1/su, and thus cannot
cancel.14 For S′ = S, if the masses are not identical then the residue is again local and we
have the same issue. If the masses are the same, then one simply obtains the exact same
form as eq. (5.28) with identical signs, and the H.E. behaviour is again untamed.

Thus even with finite number of states with comparable mass, the sick H.E. limit still
rules out isolated charged higher spin state as a fundamental particle. The above analysis
does provide a loop hole: one can have an infinite tower of ever increasing higher spin
states. While their presence in the propagator only produces terms with single poles in the
H.E. limit, an infinite sum of ns/s terms can produce poles in u if the degree of polynomial

14Strictly speaking, due to our helicity choice eq. (5.28) really only has an s-channel pole at H.E. The
bad H.E. behaviour in both channels will be present for other helicity configurations.
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for ns unbounded. That is, if the exchanged state has unbounded spin. This is precisely
what happens for string theories which contain massive higher spin states.

5.4 All possible four particle amplitudes

Having discussed the four-particle amplitudes associated with the most familiar and impor-
tant three-particle interactions, let us finally turn to computing all possible four-particle
amplitudes. As we have seen when there are no “x” factors involved, we have local residues
and the construction of four-particle amplitudes is trivial. We will therefore concentrate on
discussing the cases where consistent factorization is non-trivial, which involve having at
least one minimal coupling with an “x′′ factor, but now allowing for the most general set of
other couplings. We will see (once again) that consistency demands that the minimal cou-
plings have the standard Yang-Mills/gravitational forms, and that the other interactions
have to be (globally) Yang-Mills invariant. But it is then possible to find consistently fac-
torizing four-point amplitudes for any choice of three-particle interactions satisfying these
conditions.

5.4.1 All massive amplitude

This is the simplest, since we only need to consider the massless exchange. Consider the
exchange of a massless-photon, for external scalars we have:

1

2 3

4

: m2
(
x12
x34

+ x34
x12

)
, (5.38)

where the two terms correspond to the two different helicities. Using x12λP ≡ p1
m |P ],

x34λP ≡ p3
m |P ] and P = p1 + p2, we find:

1
s
m2

(
x12
x34

+ x34
x12

)
= 1
s

(〈η|p1|P ]〈P |p3|ξ]
〈ηP 〉[Pξ] + 〈η|p3|P ]〈P |p1|ξ]

〈ηP 〉[Pξ]

)
= 2(p1 · p3)

s
, (5.39)

where one uses the fact that 〈P |pi|P ] = 0 for any external momenta pi. This is not the
complete answer, as one expects (p1·p3)−(p2·p3)

s from minimal coupling. The difference is s/s
and thus have no factorization poles. The correct answer can be inferred from symmetry
arguments under 1↔ 2 exchange. Thus the correct completion is

1
s
m2

(
x12
x34

+ x34
x12

)
= (p1 − p2) · p3

s
, (5.40)

For the exchange of a general massless spin S state, we simply get a factor of ((p1−p2)·p3)S
for the numerator.

Now we let the external particles carry spin. For simplicity we will consider the case
where all four particles are of the same spin. Then the residue for the most general coupling
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is given by:

x12
m2S−2

[
〈12〉2S +

2S−1∑
i=0

(
ai〈12〉i

(〈1P 〉[2P ]
m

)2S−i
+ ãi〈12〉i

(〈2P 〉[1P ]
m

)2S−i)]

× 1
x34

[
[34]2S +

2S−1∑
i=0

(
bi[34]i

(〈3P 〉[4P ]
m

)2S−i
+ b̃i[34]i

(〈4P 〉[3P ]
m

)2S−i)]
(5.41)

where ai, bi, ãi, b̃i parameterize all possible coupling to the photon, and for parity invariant
theories we have ai = bi and ãi = b̃i. Since besides the leading term in the square brackets,
each of the terms contains |P ]〈P | which can readily convert x12

x34
into local forms, thus we

only need to worry about the term
1

m2S−2

(
x12
x34
〈12〉2S [34]2S + x34

x12
[12]2S〈34〉2S

)
, (5.42)

where we’ve included the contribution where the photon helicity is flipped. Finally, using
the identity:

[12] = 〈12〉+ 〈1|P |2]
m

, (5.43)

introduces |P ]〈P | that can again be used to absorb the x-factors leaving behind

〈12〉2S〈34〉2S
m2S−2

(
x12
x34

+ x34
x12

)
= 〈12〉2S〈34〉2S

m2S (p1 − p2) · p3 , (5.44)

where we’ve used eq. (5.40). Thus we see that the massless gluing of any three point vertex
can be converted into a local form. For more general external spins, the analysis is the
same albeit more complicated.

5.4.2 Three-massive one-massless

If we have three-massive legs, the dangerous x-factors can occur in two types of diagrams
for the s-channel residue:

3

1

2

4

(a)
1

2 3

4

(b)

. (5.45)

Let us first consider the case where the solid lines are massive scalars, and the wavy line
is the positive helicity photon. Diagram (a), (b) gives:

(a) [2P ]2
x34

= [2P ][2|p3|P 〉
m

, (b) mx1P = [2|p1|ξ〉
〈2ξ〉 . (5.46)

The first is manifestly local. For the second, let’s consider the all massive vertex being
φφ′φ′′ vertex, and the photon only couples to φ and φ′ with coupling e, e′. Then gluing
leads to:

e
[2|p1|ξ〉

〈2ξ〉(s−m2) + e′
[2|p4|ξ〉

〈2ξ〉(u−m2) = (e+ e′) [2|p4|ξ〉
〈2ξ〉(u−m2) + e

[2|p4p1|2]
(s−m2)(u−m2) , (5.47)
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where legs 1, 4 are φ, φ′ respectively. We see that only when the charge is conserved, i.e.
e+ e′ = 0 does the 〈2ξ〉 pole cancels and the amplitude becomes local. If the scalars were
all charged with charges e, e′, e′′, the same analysis would tell us that e + e′ + e′′ = 0.
Next suppose the photon was instead a gluon, with the scalars carry indices i, i′, i′′ and
the three-point amplitude given by cii′i′′ . We have already seen that consistency demands
the couplings to the gluons T aij , T ai′j′ , T ai′′j′′ be generators in some representation of the
Yang-Mills group. Then we discover that we must have T aijcji′i′′ + T ai′j′cij′i′′ + T ai′′j′′c

ii′j′′ =
0, in other words the cubic interaction must be invariant under the (global) Yang-Mills
symmetry. Finally, for graviton, gluing to a φ3 vertex leads to:

g1
[2|p1|ξ〉2

Mpl〈2ξ〉2(s−m2) + g3
[2|p3|ξ〉2

Mpl〈2ξ〉2(t−m2) + g3
[2|p4|ξ〉2

Mpl〈2ξ〉2(u−m2) , (5.48)

where we’ve let all three scalars couple to gravity. Again after rearranging the terms, one
finds that the auxiliary spinor drops out only if g1 = g2 = g3, and one arrives at:

g1
Mpl

[2|p1p3|2]2
(s−m2)(u−m2)(t−m2) . (5.49)

Thus we see that coupling to photons, the consistency of the four-point amplitude requires
charge to be conserved, for a gluon it requires the particles to be in the adjoint repre-
sentation, and finally for a graviton, it leads to the equivalence principle. Note that this
discussion does not refer to any gauge redundancy and the independence there of. On the
other hand, the astute reader will recognize that the factor [2|p1|ξ〉

〈2ξ〉 can be identified with
ε2 · p1 from Feynman rules, where λξ is the reference spinor for the polarization vector
ε2. Indeed from the photon and graviton soft-theorem [43, 44], it is precisely this factor
whose gauge invariance (Ward identity) demands the conservation of charges and equiv-
alence principle. Here, there’s no gauge redundancy, the auxiliary spinor λξ is simply a
projection of eq. (4.10), and the independence thereof is the requirement that factorization
is consistent to all solutions of x defined through eq. (4.10).

Again the same applies if we consider external spinning particles. For example for
massive spin-1, diagram (a) yields,

(a) [2P ]3〈12〉〈1P 〉
m5

1
x34

(
〈34〉 − x34

〈3P 〉〈4P 〉
m

)2

= [2P ]2〈12〉〈1P 〉 [2|p3|P 〉
m6

(
〈34〉 − 〈4|p3|P ]〈3P 〉

m2

)2
(5.50)

where again the residue is local. For diagram (b) the only non-locality originates from the
minimal coupling piece, and hence one recovers the same condition as before.

5.4.3 One-massive three-massless

So far we have found that all potential non-localities can be converted into local expressions,
and hence the residue of one-channel does not encode information with respect to other
channels. For three massless particles things are more interesting. The potential s-channel

– 34 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
0

factorization diagrams are:

(a) (b)

3

1

2

4
1

2 3

4

. (5.51)

For our purpose, only minimal coupling is relevant for the two massive one massless vertex
in (a). We will consider a massive scalar coupled to abelian and non-abelian vectors.

First for the abelian case we only need to consider diagram (a). Taking all vectors to
be plus helicity, one finds the s-channel residue given by

(a) x12[34]2 = 〈3|p1|2][34]2
m〈23〉 = m[42][34]

〈23〉 . (5.52)

The appearance of 〈23〉 seems to indicate an illegal massless pole. However since s = m2,
this can be identified as a u-channel massive pole, u −m2 = −t. Thus one can write the
amplitude as

m[42][34][23]
(s−m2)(u−m2) (5.53)

Note however the extra − sign under the 2 ↔ 3 exchange will lead to the violation of
spin-statistics for identical vectors. Thus we see that minimally coupled scalars are incom-
patible with a di-photon coupling. Indeed from the action point of view, this is simply
the statement that the U(1) symmetry of a charged scalar forbids the appearance of φF 2

coupling. Thus there is no such four particle amplitude for the abelian theory. For the
non-abelian case, one must also consider diagram (b), which yields

(b) : [2P ]2
m

[34]3
[3P ][P4] = m3[34]

〈23〉〈24〉 . (5.54)

We gain find the illegal pole 1/〈24〉. Since we are considering the non-abelian theory we can
consider the colour stripped amplitude and convert the spurious pole into a legal t-channel
massive pole. This suggest us to write

M4(1, 2+, 3+, 4+) = m3[24][23][34]
st

( 1
(t−m2) + 1

(s−m2) + 1
m2

)
, (5.55)

where we’ve added the massless t-channel image, and the extra 1/m2 is to guarantee that
both massless channels factorises correctly. One can check the s-channel massive residue,
which was given in eq. (5.52), matches when taken into account that 〈34〉 = m2

[43] . Note that
the amplitude vanishes as m→ 0 as it should.

Now let’s move on to the case where there are external spins. For example, one can
consider a massive spin-1 particles couple to three massless vectors. If the vector is abelian,

Yang’s theorem tells us that there is no vertex to consider, and thus there are no
factorizable four-point amplitude to consider. We instead begin with a massive vector and
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three gluons. We will start with colour stripped all plus-helicity gluons, whose residue for
the massless s-channel is given as:

1

2 3

4

P

S=1

→ 〈12〉〈1P 〉 [P2]3
m4 ×

[34]3
[4P ][P3] . (5.56)

Now since the vertex on one side contains high power of momenta, there are different ways
of rewriting this residue which are equivalent on the kinematics 〈34〉 = 0. We will choose
the representation where one separates the various pieces that contain information on other
channels. More precisely, we have:

〈12〉〈1P 〉 [P2]3
m4 ×

[34]3
[4P ][P3] = 〈12〉〈1P 〉[P2][34]([P3][42] + [P4][23])2

m4[4P ][P3]

= [34]
(2[1|p2|1〉[42][23]

m3 + [42]〈1|p4p2|1〉
m2〈23〉 + [23]〈1|p2p3|1〉

m2〈24〉

)
(5.57)

where the last equality sign is understood to hold on 〈34〉 = 0 kinematics. We see that
unavoidably there is an 1/〈24〉 pole in the s-channel massless residue, which is spurious
unless it can be interpreted as a t-channel pole 1/(t−m2). Thus the massless residue for
the amplitude tells us that there must be a two massive vector, one gluon matrix element
that must be present to explain the apparent spurious singularity. The contribution of this
matrix element for the s-channel is given by:

1

2 3

4
S=1

→
(
x12
〈1P〉2
m

× 〈P3〉〈P4〉 [34]3
m4

)
= [42][34]〈1|p3p4|1〉

〈32〉m2 . (5.58)

This suggests that we begin with the following piece which factorises correctly on the s
and t-channel massive pole:

[42][34]〈1|p3p4|1〉
〈32〉(s−m2)m2 −

[42][32]〈1|p3p2|1〉
〈34〉(t−m2)m2 . (5.59)

Note that the above is symmetric in (2↔ 4) and contains 〈34〉, 〈23〉 poles as well. Taking
〈34〉 → 0, only the second term in eq. (5.59) contributes to its residue:

Res

[
− [42][32]〈1|p3p2|1〉
〈34〉(t−m2)m2

] ∣∣∣∣
〈34〉=0

= [23]〈1|p2p3|1〉
〈24〉m2 . (5.60)

This is nothing but the spurious residue appearing in eq. (5.57)!
Putting the information built from the s- and t-channel massive, and s-channel massless

residue together, leads to:

M(1S=12+3+4+) = [42][23][34]
m2

{1
t

(〈1|p3p4|1〉
(s−m2) + 2〈1|p1p4|1〉

m2

)
+ 〈1|p4p2|1〉

st

+1
s

(〈1|p3p2|1〉
(t−m2) + 2〈1|p1p2|1〉

m2

)
. (5.61)
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The matching to the massless t-channel is straight forward given that the above is symmet-
ric in (2↔3). Note that unlike the uniqueness of the one massive two massless amplitude,
a priori the coupling between the two massive and one massless vector does not have to
match that of minimal coupling. It is the consistency between the massless and massive
factorisation that fixes this choice. A quick recap: beginning with the massless residue, for
which the three-point coupling involving the massive spin-1 is unique, the anti-symmetric
property with respect to the massless legs tells us that the massive state must be in ad-
joint rep of the color group. Then the presence of an 1/〈24〉 singularity becomes spurious
unless it arises from the massive propagators evaluated on degenerate kinematics. Thus
the massless residue in one channel encodes the massive residue in the other.

For the other helicity components, the derivation is simpler as one can construct the
full amplitude from the residue of the massive channel, and we simply list the results:

1
4

2 3

S=1

→ [3|p1|2〉〈23〉[34][13][14]
m4t(s−m2)

1

4

2 3

S=1

→ [12][14][24]2〈32〉〈43〉
stm2 . (5.62)

In the first line, we’ve listed the amplitude in the dotted frame for simplicity. One can
check that the leading contribution for the H.E. limit of this amplitude yields the amplitude
generated by the tr(F 3) extension of Yang-Mills theory.

As a final example, let’s consider a possible singlet massive spin-2 particle that interacts
with gluons via a higher-dimensional operator RF 2. For the one massive three positive-
helicity gluon amplitude, we expect that the final result is cyclic invariant in (2, 3, 4). The
massless s-channel residue can now be written as,

1

2 3

4
S=2

P

→ 〈12〉2〈1P 〉2 [P2]4
m7 ×

[43]3
[4P ][P3]

= [43][1|p2|1〉2
m3

( [42]
〈23〉 + [32]

〈24〉

)
, (5.63)

where we’ve suppressed the symmetrized SL(2,C) indices, keeping in mind they are dis-
tributed amongst the (pi · pj)s. Putting back the massless propagator, this suggest that we
start with:

[1|p2|1〉2
m3〈34〉

( [42]
〈23〉 + [32]

〈24〉

)
. (5.64)
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The above result contains other additional poles, which under cyclic rotation (2, 3, 4), will
generate terms that will modify the original 1

〈34〉 residue. Thus before summing over its
cyclic image, we should augment eq. (5.64) with terms that kill the extra poles in 〈24〉 and
〈23〉. Putting everything together, we find:

M(1S=22+3+4+) = [1|p2|1〉2
m

[43][32][42]
stu

− [21]2
m3

(〈24〉[43][32]
st

[41]2 + 〈23〉[43][42]
su

[31]2
)

+cyclic(2, 3, 4) . (5.65)

We give further examples of massive amplitudes involving one massive higher spin and
non-identical spin massless particles in appendix F.

5.5 The spinning polynomial basis

The fact our on-shell formalism provides a convenient basis to classify distinct three-point
couplings lends itself to another important application: construction of a basis polynomial
to expand the four-point amplitude. A well known example for such a polynomial is the
Gegenbauer polynomial, or its four dimensional representation the Legendre polynomial,
as a basis for the four-point scalar amplitude. The Gegenbauer polynomials arises from the
exchange of a spin-S particle for a four scalar amplitude. Note that we have one polynomial
for a given S because the three-point coupling between two scalars and a spin-S particle
is fixed.

As we’ve seen in the previous discussion, the three-point amplitude for one massive,
two massless particles is also unique. This implies that we can similarly construct “spin-
ning” Gegenbauer polynomials for massless scattering amplitude, where each polynomial
correspond to a different spin exchange. To see how this works let’s consider the residue for
a spin-S exchange in the s-channel for M(1−h2+h3−h4+h). We can write down the unique
three-point amplitudes on both sides:

λS+2h
1 λS−2h

2 [12]S
m2S−1 ,

λS+2h
3 λS−2h

4 [34]S
m2S−1

Such coupling only exists for S ≥ 2h. Now when we glue the two tensor structures together
the indices on λ1, λ2 must be fully contracted with those on λ3, λ4. This can be done in
many ways, each with its own pre-factor counting the number of equivalent contractions.
The gluing procedure is thus a sum over all possible contractions with suitable combinatoric
factors:

[12]S [34]S
m4S−2

∑
a

c2S,S+2h,a〈13〉a〈14〉S+2h−a〈23〉S+2h−a〈24〉a−4h (5.66)

where the summation a ranges from 4h to S + 2h, and

c2S,S+2h,a = (S + 2h)!2(S − 2h)!2
a!(S + 2h− a)!2(a− 4h)! , . (5.67)

It would be useful to convert this polynomial into a function of the scattering angle in the

center of mass frame for particles 1 and 2. We write λ1 = m
1
2

(
1
0

)
, λ2 = m

1
2

(
0
1

)
, λ3 =
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im
1
2

(
cos θ2
sin θ

2

)
, λ4 = im

1
2

(
sin θ

2
− cos θ2

)
. The spinning Gegenbauer polynomial is then given as:

P hS (cos θ) = 1
(S!)2

∑
a

(S + 2h)!2(S − 2h)!2
a!(S + 2h− a)!2(a− 4h)!

(cos θ − 1
2

)a−2h (cos θ + 1
2

)S+2h−a

(5.68)
As a few example (with x = cos θ):

P 1
2 (x) = 3

2(x− 1)2, P 1
3 (x) = 5

6(x− 1)2(2 + 3x)

P 1
4 (x) = 5

8(x− 1)2(1 + 7x(1 + x)) . (5.69)

The universal prefactor (x − 1)2 can be identified with 〈13〉2[24]2 which takes care of the
overall helicity weights of this amplitude. Taking ` = 0 and we indeed recover the Legendre
polynomials P 0

S(x) = PS(x).
For completely general helicities h1, h2, h3, h4 of external massless particles, we have:

P hiS (x) = 1
(S!)2

∑
a

(S + h4 − h3)!(S + h3 − h4)!(S + h1 − h2)!(S + h2 − h1)!
a!(S + h4 − h3 − a)!(S + h2 − h1 − a)!(a+ h1 + h3 − h2 − h4)!

×
(
x− 1

2

)a+h1+h3−h2−h4
2

(
x+ 1

2

)S−a−h1+h3−h2−h4
2

This reduces to equal spin polynomial if we take all |hi| to be equal.
Three-point couplings with more than one massive leg are no longer unique. This

means that for a given spin-exchange, one instead has a symmetric matrix where the rows
and the columns label the independent three-point vertices on both sides of the factorization
channel. We illustrate this for the two massive spin-1 and two massless spin-1 amplitude.

Now the three-point coupling involved in the factorization involves a massive spin-1
spin-S and massless spin-1 amplitude. The number of such coupling is determined by
the lowest spin massive particle, which in this case is 1 and there are three independent
coupling. To give an explicit example, consider S=2

(α1α2)

1

(β1β2β3β4)

The building blocks of tensor structures will be {λ1, P2λ̃1} = {v, u}. If the massless particle
has − helicity, we have three tensor structures listed in eq. (4.7). Now imagine gluing the
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two three-point amplitude:

(α1α2)

1−

(β1β2β3β4)
(β1β2β3β4)

(γ1γ2)

4−

The residue will be a polynomial of (uL, vL, uR, vR) with

uαL = εαβ(P2)ββ̇λ̃
β̇
1 , vαL = λα1

uαR = εαβ(P3)ββ̇λ̃
β̇
4 , vαR = λα4 .

By gluing them we contract the internal indices in all possible ways, then sum them up
with appropriate combinatoric factors. We can distribute indices carried by exchanged
particle into a bunch of u’s and v’s:

#(uL) + #(vL) = 2S
#(uR) + #(vR) = 2S

where S is the spin of exchanged particle. For a contraction with (uL)k1 and (uR)k2 on
exchanged leg, suppose uL and uR are contracted together k3 times. Then we have

〈uLuR〉k3〈uLvR〉k1−k3〈vLuR〉k2−k3〈vLvR〉2N−k1−k2+k3 (5.70)

which means a factor of (
k2
k3

)(
2N − k2
k1 − k3

)
(k1)!(2N − k1)!. (5.71)

The first two factors come from choosing which uLs and uRs are to be contracted together.
Since we can always redefine coupling constants for interactions, the k3-independent factors
shall not concern us here. Summing this factor over k3 one gets (2N)!, the total number
of permutations on 2N indices.

Assigning a coupling constant gi for each three-point vertex, the residue of the four-
point amplitude can then be expanded as giMijgj where each element inMij is a polynomial
given by the contraction of the corresponding three-point amplitudes. Since we have two
external spin-1 particles, Mij is a 3 × 3 symmetric matrix irrespective of the exchanged
spin. For the case where one exchanges a spin-2, the matrix elements are given by:
M11 = 24〈vLvR〉4〈uL1〉2〈uR4〉2

M12 = 24〈vLuR〉〈vLvR〉3〈uL1〉2〈uR4〉〈vR4〉
M13 = 24〈vLuR〉2〈vLvR〉2〈uL1〉2〈vR4〉2

M22 =
(
18〈uLvR〉〈vLuR〉〈vLvR〉2 + 6〈uLuR〉〈vLvR〉3

)
〈uL1〉〈vL1〉〈uR4〉〈vR4〉

M23 =
(
12〈uLvR〉〈vLuR〉2〈vLvR〉+ 12〈uLuR〉〈〈vLuR〉〈vLvR〉2

)
〈uL1〉〈vL1〉〈vR4〉2

M33 =
(
4〈uLvR〉2〈vLuR〉2 + 16〈uLuR〉〈uLvR〉〈vLuR〉〈vLvR〉+ 4〈uLuR〉2〈vLvR〉2

)
〈vL1〉2〈vR4〉2 .

(5.72)

where we’ve contracted each entry with the external λI1, λI4s.
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For convenience, we will also give the representation in terms of scattering angle. We
can parameterize the kinematics as

p1 = (x, 0, 0, x)

p2 = (
√
x2 +m2

2, 0, 0,−x)

p3 = (−
√
y2 +m2

3,−y sin θ, 0,−y cos θ)

p4 = (−y, y sin θ, 0, y cos θ)

where

x =

√
(m2

2 + t)2

−4t , y =

√
(m2

3 + t)2

−4t .

One can explicitly check that ∑i pi = 0, p2
i = m2

i . In this parametrization, the matrix
elements then take the form, where we’ve stripped the external spinor dependent terms: 6 + 12x+ 6x2 12(1 + x)

√
1− x2 24− 24x2

12(1 + x)
√

1− x2 12− 12x− 24x2 −48x
√

1− x2

24− 24x2 −48x
√

1− x2 −32 + 96x2

 . (5.73)

6 (Super)Higgs mechanism as IR unification

Our exploration of consistent four-particle amplitudes has given us an almost complete
understanding of the broad architecture of particle physics. Theories of massless parti-
cles are incredibly constrained, allowing only helicities (0,1/2,1,3/2,2), and limited to the
(super)gravity coupled to (super)Yang-Mills theories. Massless higher spins are made im-
possible by the mere presence of gravity. We have also seen that the amplitudes for massive
particles of sufficiently high spin have sick high-energy limits — as expected, since there is
no consistent theory of massless high-spin particles they can match to at high-energies —
so such particles cannot be “elementary”.

The final case to consider is then that of massive particles of low spin S ≤ 2. Here
of course there is in principle a consistent high-energy theory to match to, but as we
will see in this section, doing so puts non-trivial restrictions on the particle content and
interactions of the theory. This investigation will lead to the on-shell discovery of the Higgs
and Super-Higgs mechanisms.

Note that we will not simply be rephrasing well-known “bottom-up” facts, such as the
high-energy growth of scattering amplitudes for longitudinal components of massive spin
one particles, and the attendant need for the Higgs particle to tame this growth, in an
on-shell language. It is of course perfectly possible to do this, and the on-shell methods do
simplify the explicit computations, but the advantage is purely technical and does not add
anything conceptually new to this standard textbook discussion.

We will instead take a different, “top-down” point of view, where as described above
we insist that massive amplitudes manifestly match to consistent massless amplitudes in
the high-energy limit. As we will see this gives us a satisfying understanding of the Higgs
mechanism that is at least psychologically quite opposite to the usual picture of gauge
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symmetry “breaking”. Indeed in textbook language, the gauge symmetry is “broken” or
“hidden”, and becomes more manifest only at high energies. By contrast in the on-shell
picture, the massive “Higgsed” amplitudes do not “break” or “hide” the (non-existent in
this formalism!) gauge redundancies. Instead, they unify the different helicity components
of massive amplitudes, the Higgs mechanism can be thought of as an infrared unification
of massless amplitudes, and this unification is more disguised at high energies!

We will see this beginning already at the level of three-particle amplitudes. Here,
the non-locality associated with the poles in massless three-particle amplitudes gets IR-
deformed to 1/m poles. Such 1/m poles non-trivially disappear in the high-energy limit
while the massive amplitudes unify different helicity components together. Matching the
high-energy limit enforces all the usual consistency conditions associated with the Higgs
mechanism. Moving on to four-particle amplitudes, we will obtain them both by gluing
the three-particle amplitudes as usual, but also in a novel way, starting with the massless
helicity amplitudes, simply adding them so they fit into massive multiplets, then shifting
the poles and “BOLD”ing the spinor-helicity variables to make massive amplitudes! This
will highlight the Higgs mechanism as an “IR unification” in an even more vivid way.

Rather than present a completely systematic analysis of all possible “Higgsings”, in this
section we will content ourselves with illustrating this physics in three standard examples:
the Abelian Higgs model, the Super-Higgs mechanism in a simple model with N = 1 SUSY,
and the general structure of the non-Abelian Higgs mechanism for a model with enough
scalars so that all the spin one particles are massive. As alluded to above we will also
discuss why gravity cannot be Higgsed in this way.

6.1 Abelian Higgs

Let us start with the simplest example - a theory with a massless photon and a charged
scalar; we’ll call the scalar’s two real degrees of freedom “H” and “E”.

The three-particle amplitudes are

1
E

3
H

2
+

g
[12][32]

[13] ,

1
E

3
H

2

g
〈12〉〈32〉
〈13〉 (6.1)

We now want to see how to introduce masses as an “infrared deformation”. The first step
is a trivial kinematical one. We declare that (+,−, E) are to become the 3 components of
a massive spin 1 particle, leaving H as an additional scalar. Now, the two massive vector
(with m2

γ) and one massive scalar (with m2
H) amplitude can only be,

3

2

1

g

mγ
〈12〉[21] . (6.2)
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The coefficient is fixed by the requirement that this 3 particle amplitude matches the
massless amplitude in the high-energy limit. It is illuminating to see how this happens
explicitly. Recall that to take the HE limit we put

λIα = λαξ
I
+ + ηαξ

I
−

λ̃Iα̇ = λ̃α̇ξ
I
− + η̃α̇ξ

I
+ , (6.3)

where we scale each of η, η̃ as ∼ m. We are looking for pieces that survive in the mγ ,mH →
0 limit. The leading piece in the numerator are those with zero η, η̃’s which is given as:

3

2

1
0

0

H = g

mγ
〈12〉[21] = g

mγ
(m2

H) . (6.4)

This indeed vanishes as mH → 0, as expected since we don’t have an (EEH) coupling in
the UV. For the order η̃ piece, we have

3

2

1
0

H = g

mγ
〈12〉[1η̃2] . (6.5)

This term is more interesting. To compute it, note that in the UV we have our usual
restrictions on 3 particle kinematics — either λ1 ∝ λ2 ∝ λ3 or λ̃1 ∝ λ̃2 ∝ λ̃3. This 3-
particle amplitude vanishes in the first case. On the other hand, in the second case, we
have by momentum conservation that

λ̃1 = 〈23〉ξ̃, λ̃2 = 〈31〉ξ̃, λ̃3 = 〈12〉ξ̃ , (6.6)

and so
[1η̃2] = [2η̃2]〈23〉

〈31〉 = mγ
〈23〉
〈31〉 . (6.7)

So this amplitude becomes

3

2

1
0

H = g

mγ
〈12〉 ×mγ

〈23〉
〈31〉 = g

〈12〉〈23〉
〈31〉 =

1
E

3
H

2

(6.8)

exactly as desired. Obviously we get the analogous result for 2+. Thus quite beautifully the

massive three-particle amplitude reproduces the component helicity amplitudes

and unifies them into a single object. Note also that despite appearances, there is no
singularity as mγ → 0.
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Here we see an interesting counterpart to the purely massless 3pt amplitudes - which
are not manifestly local due to the presence of poles. Healthy theories of massless particle
(which we should reproduce in the UV) do not have such non-local poles at 4pts and higher.
When we perform this “IR deformation”, we have removed the non-local poles but are left
with seeming factors of 1

mγ
in the amplitude. But as we have seen the 3pt amplitude is —

by design — chosen to match the correct massless helicity amplitudes and thus be smooth
as mγ → 0, and this will be inherited at higher points.

Indeed let us compute the 4-particle amplitude with all massive spin 1 particles con-
sistent with factoring into the three-point amplitude in eq. (6.2). Since we have no “x”
factors to worry about, we can proceed in the most naive possible way, simply gluing the
3-pt amplitudes in the s, t and u channels, and we find:

1

2 3

4

g2

m2
γ

[
〈12〉[12]〈34〉[34]

s−M2
h

+〈23〉[23]〈14〉[14]
t−M2

h

+〈13〉[13]〈24〉[24]
u−M2

h

]
. (6.9)

Since there are no three-point massive spin-1 amplitude, there is no poles involving mγ .
Note that all possible contact terms here can be eliminated since they give growing am-
plitudes for some of the helicity components in the UV, which we are assuming not to
have. Now again, despite appearances this amplitude is guaranteed (by construction!) to
be smooth in the high-energy (or mγ ,mH → 0) limit. Let us first show this directly for
some of the helicity components. For instance, the all-longitudinal amplitude is

g2

m2
γ

[
(p̂1 · p̂2)(p̂3 · p̂4)

s−M2
h

+ (p̂1 · p̂4)(p̂2 · p̂3)
t−M2

h

+ (p̂1 · p̂3)(p̂2 · p̂4)
u−M2

h

]
. (6.10)

Where with p = λλ̃+ ηη̃ we define p̂ = λλ̃− ηη̃. Just to take a first look at the HE limit,
which naively goes as g2

mγ2 , we drop the η’s and find at O( 1
m2
γ
)

g2

m2
γ

× [s+ t+ u] = 0 , (6.11)

and so as expected there is no ( s,t,u
m2
γ

) singularity as mγ → 0. In order to find the leading

high-energy limit, let us define q ≡ ηη̃. Note that p · q = m2
γ

2 so q = O(m2
γ), and we will

work to first order in q. Using 2p1 · p2 = s− 2m2
γ , and also p̂ = p− 2q, we find in the HE

limit
4(p̂1 · p̂2)(p̂3 · p̂4)

s−M2
h

= s−4m2
γ +M2

h−4(q1 ·p2 +q2 ·p1 +q3 ·p4 +q4 ·p3)+O(M4
h ,m

4
γ) . (6.12)

So summing over channels gives

s+ t+ u− 3× 4m2
γ + 3M2

h − 4(q1 · (p2 + p3 + p4) + . . .)
= 4m2

γ − 3× 4m2
γ + 3M2

h + 2× 4m2
γ

= 3M2
h (6.13)
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Hence the all-longitudinal amplitude is fixed to be 3
4g

2M2
h

m2
γ
. This tells us we must have a

quartic coupling in the UV, and by the U(1) invariance it must be λ(E2 +H2)2 with

λ

M2
H

= g2

m2
γ

. (6.14)

Let’s see how some of the other component amplitudes work. Consider (102−3+40),
which should match (1E2−e+4E) in the high-energy limit. This is

g2

m2
γ

[〈12〉[1η̃2]〈4η3〉[43]
s

+ 〈2η3〉[η̃23]〈14〉[14]
t

+ 〈1η3〉[13]〈24〉[η̃24]
u

]
(6.15)

Note that since all that matters is [2η̃2] = mγ , 〈3η3〉 = mγ , η̃2, η3 are defined up to shifts
such as η̃2 → η̃2 + αλ̃2. Not surprisingly the above representation is independent of such
shifts. The term in the brackets shifts as

α [〈4η3〉[43] + 〈2η3〉[23] + 〈1η3〉[13]] = α〈η3|p3|3] = 0 . (6.16)

Hence we are free to choose η̃2 = mγ λ̃3
[23] , η3 = mγλ2

〈23〉 ,
15 then only the s + u channel terms

contribute and we find

1

2 3

4

+

0 0

=g2〈2|p4|3]2
( 1
st

+ 1
tu

)
= −g2 〈2|(p1−p4)|3]2

4su =

1

2 3

4

+

E
E

(6.17)

Thus we find the correct amplitude for minimally charged scalars in the UV. All other
helicity amplitude components vanish as mγ → 0. We have thus verified that the 4pt
massive amplitudes are an “infrared deformation” of the massive ones, reproducing and
unifying the different helicities in the HE limit.

6.2 Higgsing as UV unification → IR deformation

Given that we see the massive amplitudes reproduce the massless ones at high energy, we
are motivated to consider directly assembling the high-energy massless amplitudes in a
way that one can readily “IR deform” the amplitude by simply putting in the mass for the
propagator and “BOLDing” the spinor brackets. We are then guaranteed to have a result
that gives the correct high-energy behaviour, and what remains is simply to add in higher
order corrections in mass that ensure the massive residue is matched.

Let’s first consider all the different component amplitudes - Compton scattering for
H,E, and the quartic interaction for E. We will first merely group these amplitudes to-
gether, ready to be “BOLD”ed + unified into a massive amplitude. The massive amplitude
in the IR will be the four massive vector amplitude, and thus we will need a total of eight
spinors to carry the SU(2) Little group indices, these are the objects that will be BOLDed.

15Using this representation for η̃2, one can also show that the O(m−1
γ ) term in the amplitude vanishes as

well, with λ̃I2 → η̃2, while all other massive spinors are set to their massless limit.

– 45 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
0

Thus the name of the game is to write the massless amplitudes in a form which contains
eight spinors, two for each legs, and every thing else can only be expressed as momenta.
Note that because of this the E4 quartic must be written in an interesting way. Naively it
is just 3λ, but to put it in a form where by BOLDing we can recognize it as a component
of massive spin 1, we have to write it in the following way:

3λ = λ
s3+t3+u3

stu
= λ

(〈12〉[21][3|p4|3〉[4|p3|4〉+〈34〉[43][1|p2|1〉[2|p1|2〉) + {u}+{t}
2stu ,

(6.18)
where λ = g2M2

h
m2
γ

and {t} {u} represents its t, u image. This is the only way to represent
the “constant” without introducing double poles. Similarly for the two photons two E

amplitudes we write

− g2 〈2|p1−p4|3]2
4su = g2 [14]〈14〉〈2|p1−p4|3]2

4stu . (6.19)

Collecting all the component amplitudes together, we are ready to IR deform: declaring
the particles have mass mγ by BOLDing the spinors, and deforming s → s −M2

h etc.,
giving an IR deformed object:

[12]〈12〉(g2〈3|p1−p2|4]2 + g2〈4|p1−p2|3]2 + 2λ[3|p4|3〉[4|p3|4〉+(1, 2↔ 3, 4)
4(s−M2

h)(t−M2
h)(u−M2

h) + {u}+{t} .
(6.20)

The above result by construction gives the correct answer in the High-energy limit, with
mismatch at higher order in m2

γ ,M
2
h . Thus we have the identity

g2

m2
γ

(
〈12〉[12]〈34〉[34]

s−M2
h

+ 〈14〉[14]〈32〉[32]
t−M2

h

+ 〈13〉[13]〈24〉[24]
u−M2

h

)

=[12]〈12〉(g2〈3|p1−p2|4]2 + g2〈4|p1−p2|3]2 + 2λ[3|p4|3〉[4|p3|4〉+(1, 2↔ 3, 4)
4(s−M2

h)(t−M2
h)(u−M2

h)
+{u}+{t}+O(m2

γ ,M
2
h) . (6.21)

But now in this form, the challenge is to check the factorization channels, which will fix the
O(m2

γ ,M
2
h) terms. For example in the limit where m2

γ = M2
h ≡ m2, the remaining term is

simply

O(m2) = m2(〈43〉2[12]2 + 〈12〉2[34]2 − 〈43〉[43]〈12〉[12]) + {u}+{t}
(s−m2)(t−m2)(u−m2) . (6.22)

We have thus seen the Higgs mechanism very explicitly as an IR deformation. Note that
while it is pleasing to see everything work explicitly, the correct HE limit was guaranteed
once we ensured the 3 particle amplitudes reproduced and unified the helicity amplitudes in
the high-energy limit. Again: all the non-trivial physics was in the “unified packaging” of all
the massless helicity amplitudes into the massive amplitudes - everything was guaranteed
to work after that point.

We could also consider
H H H H

H

H H

HH

and derive the rest of the physics.

For example from the fact that we know there is a coupling λ(E2 +H2)2 in the UV, tells
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us that we have an (EEHH) = λ component that needs to be unified into

H H

Naively, one would combine this with (γγHH), however, the bolded version of this ampli-
tude:

2 3
+ −

4
H

1
H

= 〈3|p1−p4|2]2
4st → 〈3|p1−p4|2]2

4(s−m2
γ)(t−m2

γ) , (6.23)

will not contain such a high-energy scalar contact piece. This suggests that we should
directly IR deform it:

λ = λ
〈23〉[23]

t
→ λ

〈23〉[23]
(t−m2

H) . (6.24)

Thus we see that by IR deforming it, we are forced to have a Higgs propagator, whose

residue reveals the presence of a Higgs cubic coupling

H

H

H .

6.3 Super-Higgs

Let us now describe the Super-Higgs mechanism. Again, we will consider the simplest case,
and N = 1 SUGRA where we have a graviton, gravitino ψ as well as a chiral superfield - a
fermion χ and a scalar φ. First in the massless limit, in addition to the universal couplings
to gravity we have

3

1
−1/2

2
−3/2

1
Mpl

〈12〉2〈23〉
〈13〉

3

2
+3/2

1
+1/2

1
Mpl

[12]2[23]
[13] (6.25)

Now, we wish to see whether the (ψ, χ) amplitudes can be unified into those of a single
massive spin 3

2 multiplet. The logic completely parallels to the Abelian Higgs mechanism
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we discussed above. Indeed, again we simply have the following massive amplitude for
massive spin-3

2 , spin-
3
2 and scalar:

1

2

3φ
1
Mpl

1
m3/2

〈12〉[12] ([12] + 〈12〉)

The correct HE limit emerges in exactly the same way. For instance the (1− 1
2 2− 3

2 30)

− 1
2

− 3
2

φ
1
Mpl

1
m3/2

〈21〉[1η̃2] ([η̃1η̃2] + 〈12〉)

The first term vanishes as m3/2 → 0, while the second term becomes 〈12〉2[1η̃2]
Mplm3/2

. Substituting
[1η̃2] = m3/2

〈23〉
〈13〉 yields the correct massless amplitude in the HE limit. After this point

everything is guaranteed to work just as with the Abelian Higgs mechanism, and we omit
the details. (We have described spontaneous SUSY breaking with the chiral superfield
X = φ+ θχ+ θ2Fφ and W = µ2X)

6.4 Non-Abelian Higgs

Let us now look at the most general case. In the UV we have gluons and scalars in some
representation R:

2−b

1−a

3+
c

2a

1I

3J

gfabc 〈12〉3
〈13〉〈23〉 g(T a)IJ 〈12〉〈32〉

〈13〉

Now, we want to take the ± component of index a, together with some linear combi-
nation of the scalars (uaJφJ), and make the part of a massive vector of mass ma. Here, we
are assuming that all the vectors are massive, in particular this means that the number of
scalars Nφ is larger than or equal to the number of massless vectors. Then, what we are
doing is considering a big SO(Nφ) matrix UIJ , such that UaJφJ will become the longitudi-
nal component of the massive vector. The remaining scalars are “Higgses” UiJφJ . We can
always diagonalise so these have mass M2

i , i.e. UaIUbI = δab, UaIUiI = 0, UiIUjI = δij . So,
we have

a
ma, i

Mi . (6.26)
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The relevant massive amplitudes in question includes

b

a

c ,

b

a

i ,

b

j

i . (6.27)

In particular in the high energy limit we must have, for example:

b

a

c H.E.−−−−−−−→ gfabc

2−b

1−a

3+
c + gUaI U

c
J(T bIJ)

b

J

I (6.28)

b

a

i H.E.−−−−−−−→ gUaI UJi(T bIJ)

b

I

J . (6.29)

Being able to unify these into massive amplitudes will allow us some interesting inter-
pretations of the U matrix. First, the only possibility for the first figure in (6.27) is16

2b

1a

3c = gfabc

mambmc
(〈12〉[12]〈3|p1−p2|3] + cyc.) (6.30)

We can again compute the HE limit of the component amplitudes. The details of this
limit is given in appendix E, and we simply summarise the result:

2−b

1−a

3+
c −→ gfabc

〈12〉3
〈23〉〈31〉 (6.31)

2−b

1a

3c −→ gfabc

mamc

〈12〉〈23〉
〈31〉

(
m2
b −m2

c −m2
a

)
. (6.32)

From the above we see that in order for the massless amplitudes to be unified into a
single massive amplitude, the matrix UaI must satisfy

UaI T
b
IJU

c
J = fabc

m2
b −m2

a −m2
c

mamc
. (6.33)

16This can be verified by noting that εαα̇ = λ
{I
α λ̃

J}
α̇

m
, and substitute into the usual Feynman rules.
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Let’s define τaI = maU
a
I , then

τaI τ
b
I = m2

aδ
ab. (6.34)

So, we can re-write the eq. (6.33) as

(τaT bτ c) = fabd(τ bτd − τaτd − τ cτd) (6.35)

where we have suppressed the contraction of indices I, J . The solution to the constraint
for τaI is simply that

τaI = T aIJVJ (6.36)

for some constant vector VJ (the “vev”). Indeed this is precisely what we get in the
usual Higgs mechanism. The combination T aIJVJφI is “eaten”, and diagonalising (M2)ab =
V TT aT bV .

One can check that after substituting for τ , eq. (6.35) becomes

V TT aT bT cV = −V TT cT bT aV = 1
2V

T (T aT bT c − T cT bT a)V (6.37)

(note we are always writing with real states so T aIJ = −T aJI). Now, if we assume that the
“coupling tensor” fabc is the structure constant for the Lie group associated with T a, then
we can repeatedly use T aT b = fabdT d + T bT a, and we find,

T aT bT c = f bcdT aT d + T aT cT b

= f bcdT aT d + facdT dT b + T cT aT b

= f bcdT aT d + facdT dT b + fabdT cT d + T cT bT a (6.38)

Using the fact that V TT aT bV is diagonalised, we find:

V T (T aT bT c − T cT bT a)V
=f bcam2

a + facbm2
b + fabcm2

c

=fabc(m2
a +m2

c −m2
b). (6.39)

Once eq. (6.33) is satisfied, the rest of the story is again the same as our previous examples.
Note in particular that wemust have Higgses! Even if we haveNscalar = Ngluon precisely, the
interactions are not the correct ones for the full UV theory due to the standard polynomial
growth of the longitudinal piece scattering, which is not present for the UV theory. But
with the “uneaten Higgses” included, is simply chosen to match the high energy limit, and
we manifestly match to a healthy UV theory.

6.5 Obstruction for spin 2

We now consider massive spin-2 particles, which in the HE limit should yield a graviton,
a massless vector and scalar. We would like to see if the massless interactions can be con-
sistently unified into an IR massive amplitude. The three-point massive spin-2 amplitude
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can be easily written down as:

2

1

3 = 1
Mplm6 [〈12〉[12]〈3|p1−p2|3] + cyc.]2 , (6.40)

where m is the mass of the massive graviton. Let us look at the HE limit. We can directly
import what was done for non-abelian Higgs, and one finds:

1
Mplm6 [〈12〉[12]〈3|p1−p2|3] + cyc.]2 HE−−−−−−→

 (−2,−2,+2) : 1
Mpl

〈12〉6
〈13〉2〈23〉2

(0,−2, 0) : 3
Mpl

〈12〉2〈23〉2
〈13〉2

(6.41)
Notice the extra factor of 3 associated with the minimally coupled scalars. This extra
factor is due to the 3 different combinations (+,−,−) × (−,−,+), (−,−,+) × (+,−,−)
and (0,−, 0) × (0,−, 0). Thus the scalar coupling at high energy is three times what it
should be. This is unacceptable since gravitational coupling is universal, and the coupling
strength Mpl has already been set by the self-interaction. Note that similar difficulties
arise for the HE limit that yields the one graviton two minimally coupled vector, where
one obtains −2〈12〉4/Mpl〈13〉2. Again the factor of 2 is inconsistent with graviton self
coupling. Thus we see that there is a fundamental obstruction in organising the massless
degrees of freedom into a massive spin-2 particle, in a way such that the massive interactions
have HE limit that morphs into a consistent UV theory.

7 Loop amplitudes

In this section we briefly touch on constructing loop amplitudes by an on-shell gluing of
the tree amplitudes we have found in previous sections. We will follow the philosophy of
“generalized unitarity” [4–9, 45], where the integrand for loop amplitudes is determined by a
knowledge of its (generalized) cuts, putting internal propagators on-shell. As is well-known,
at one-loop this gives a systematic way of determining the integrand from gluing together
on-shell tree amplitudes.17 While we are not adding anything new to this conceptual
framework, the technical advantages offered by our formalism for massive particles with
spin are significant in many cases, including the dispensation of complicated gamma matrix
algebra, the clear separation of electric and magnetic moments for charged particles, the

17There is an obvious subtlety in this on-shell approach to loop amplitudes, regarding “wavefunction
renormalization”. In the unitarity approach where one glues tree amplitude on both sides of the cut, there
will be diagrams which correspond to a bubble insertion on the external leg, and hence give rise to an 1/0
from the on-shell propagator. In the Feynman diagram approach, these are wave function diagrams that are
to be amputated, replaced by counter terms. This procedure breaks gauge invariance in the intermediate
steps. For massless internal states, these can be side stepped since there will be UV-IR cancellation for
these diagrams. For massive internal particles this is no-longer the case, and we refer the reader to [46–48]
for unitarity based treatments of this issue. This subtlety will not affect any of the examples we discuss in
this section: for (g-2) and rational terms, the 1-loop corrections are leading, while for the beta function the
external massive particles are merely probes.
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extraction of UV divergent properties without the contamination from IR divergences (by
virtue of using massive external and internal states), and finally directly obtaining the
(internal) mass depending pieces in the small mass expansion relevant for obtaining rational
terms for massless one-loop amplitudes. In all of these processes, as they do not have tree
counterparts, bubbles on external legs do not contribute. It is pleasing to continue seeing
directly the way in which Poincare symmetry and Unitarity fully determines the physics,
not just at tree-level but incorporating the leading quantum loop corrections as well.

7.1 g−2 for spin-1
2 and 1

As seen in previous discussions the simplicity of minimal coupling allows us to straight for-
wardly separate the magnetic moment pieces. The same simplicity translate to a straight-
forward computation for the loop level magnetic moment.

Let’s consider the e+, e− → γ at one loop. The diagram we want to build is:

+

+

+ −

−

p1 p2

q

a

bc

∼ e3m3xaεαβ

[
εβγ

xb
xc

(
ε+ xc

λ`λ`
m

)αδ
+ εαδ

xc
xb

(
ε− xb

λ`λ`
m

)βγ]
(7.1)

where we’ve glued the three-point vertices according to the two possible helicity configura-
tions in the internal photon lines. Notice that here, we are using the three point amplitude
in the SL(2,C) undotted basis. This is motivated by eq. (4.23), which yields a clear sep-
aration of (g−2) factors in this basis. One can also understand this from the fact that
anomalous moments should arise only if the particle carries spin. By expanding the inte-
grand in eq. (7.1), one notices that the λ independent terms will be present for charged
scalars as well, and thus the piece of the integrand that can contain the magnetic moment is:

e2m2xa(xb − xc)λδ`λγ` = −mxaqδ α̇`α̇β . (7.2)

This gives us the following integrand:

−mxa
∫

d4`

(2π)4
qδ α̇`

α̇β

`2((`− p2)2 −m2)((`+ p1)2 −m2) = e2

(4π)2 2xa
qδ α̇p

α̇β
1

m
= α

2πx
2
aλ

γ
qλ

δ
q .

(7.3)
This gives the (g−2) = α

2π by comparing with eq. (4.23).
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Just to give us a little bit more challenge, let’s now consider the W+,W− → γ at one
loop involving only photon coupling. The integrand is again built from:

+

+

+ −

−

p1

q

a

bc

p2

1 12 2

∼ e3m3xaε{α1α2εβ1}β2

[
εβ1{γ1εα1δ1} xb

xc

(
ε+ xc

λ`λ`
m

)α2{δ2 (
ε+ xc

λ`λ`
m

)β2γ2}

+εβ2{γ2εα2δ2}xc
xb

(
ε− xb

λ`λ`
m

)α1{δ1 (
ε− xb

λ`λ`
m

)β1γ1}
]
. (7.4)

Leaving behind the electric coupling, we now have two structures for the numerator of the
integrand:

e2xa(xb − xc)m2
[
4
(
εδ1{δ2λγ1

` λ
γ2}
` + εγ1{δ2λδ1

` λ
γ2}
`

)]
+ 16e2xaxbxcmλ

δ1
` λ

δ2
` λ

γ1
` λ

γ2
`

= −4e2xam
[
εδ1{δ2qγ1

α̇`
α̇γ2} + εγ1{δ2qδ1

α̇`
α̇γ2}

]
f1(q)

+2e2xa
3m (p1α̇

{δ1`α̇γ1})(p2α̇
{δ2`α̇γ2})

f2(q)

(7.5)

Here f1(q) is the same as the electron moment, and leads to:

F1(q) =
∫

d4`

(2π)4
f1(q)

`2((`− p2)2 −m2)((`+ p1)2 −m2)
= 4 α2πx

a
(
εδ1{δ2λγ1

q λ
γ2}
q + εγ1{δ2λδ1

q λ
γ2}
q

)
.

(7.6)

For the second tensor structure, one has:

F2(q) =
∫

d4`

(2π)4
f2(q)

`2((`− p2)2 −m2)((`+ p1)2 −m2) = α

(4π)9m3O
{δ1γ1}
1,2 O{δ2γ2}

1,2 , (7.7)

where we’ve defined Oαβi,j ≡ piα̇ αpα̇βj .

7.2 The beta function

Let’s now turn to the extraction of beta function. For massless amplitudes, these can be
obtained by extracting the coefficient for the bubble integrals in the scalar integral basis [13,
45]. However, extra care needs to be taken for the subtraction of infrared divergence. Here
we will instead consider two massive scalar probes of a photon propagator, and consider
the correction to the propagator due to an internal massive scalar, fermion and vector
(denoted by X):

X
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The UV divergence of this amplitude contains the contribution of a scalar to the beta
function, without the IR-contamination. The loop amplitude will be constructed by gluing
the 2→2 amplitude involving the scalar probe particle exchanging a photon with X. This
will allow us to obtain the beta function for different spins. From the massive vector, we
will also be able to extract the contribution for a massless vector by simply subtracting a
scalar. Assuming that the mass of X is identical with that of the scalar probe, the relevant
tree amplitudes can be easily constructed by generalizing the examples in subsection 5.4.1:

X
+

+

−

−

a b

1

2 3

4

: X ∈ scalarm
2

s

(
xa
xb

+ xb
xa

)
= (p1 − p2) · p3

s

X
+

+

−

−

a b

1

2 3

4

: X ∈ fermionm
s

(
xa
xb

[34]+xb
xa
〈34〉

)

= 1
2ms (2(p1 − p2) · p3〈34〉−〈3|p1P − Pp1|4〉)

X
+

+

−

−

a b

1

2 3

4

3 3

4 4

: X ∈ vector1
s

(
xa
xb

[34]2+xb
xa
〈34〉2

)

= 1
m2s

(
(p1 − p2) · p3〈34〉2−〈34〉〈3|p1P − Pp1|4〉

−〈3|p1P − Pp1|4〉〈3|P |4]
2m

)
(7.8)

where we’ve again summed over the two possible photon helicity configuration and P =
p3 + p4. The second equality for each amplitude gives the manifest local form, which can
be checked against the H.E. limit where one should find a finite result as m → 0. Note
that each term contains a piece which is identical to the scalar contribution.

We can now glue the tree amplitudes into the one-loop integrand. The beta function
can be readily read off by picking out the divergent piece which is proportional to the tree
amplitude. For further simplification, we can take the s→ 0 limit, and we will be looking
for the term that is proportional to 2(p1·p3)

s . Let us use the scalar correction as an example.
The one-loop amplitude is now

1

2 3

4

1

2

= Ascalar
4 (p1, `1)Ascalar

4 (`2, p3)
∣∣∣
s→0

= 4(p1 · `1)(p3 · `2)
s2 . (7.9)

The one-loop integrand is then simply:

4
s2

∫
d4−2ε`

(2π)4
(p1 · `1)(p3 · `2)

(`2 −m2)((`− P )2 −m2) = − 1
(4π)2ε

1
6

(2p1 · p3)
s

+ · · · (7.10)
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where · · · represent terms that are purely functions of s, or finite. For fermions, there are
now two pieces that are relevant, the square of the scalar piece, and the square of the piP
piece. All other contributions cannot generate the p1 · p3 tensor structure. We find:

Afermion
4 (p1, `1)Afermion

4 (`2, p3) = 8(p1 · `1)(p3 · `2)
s2 − 2(p1 · p3)

s
+ · · · . (7.11)

The relevant part of the one-loop integrand is then:

1
s

∫
d4−2ε`

(2π)4
8(p1 · `1)(p3 · `2)/s− 2(p1 · p3)

(`2 −m2)((`− P )2 −m2) = − 1
(4π)2ε

4
3

(2p1 · p3)
s

+ · · · . (7.12)

Finally, similar analysis for vectors yields:

Avector
4 (p1, `1)Avector

4 (`2, p3) = 12(p1 · `1)(p3 · `2)
s2 + 8(p1 · p3)

s
(7.13)

which leads to

1
s

∫
d4−2ε`

(2π)4
12(p1 · `1)(p3 · `2)/s+ 8(p1 · p3)

(`2 −m2)((`− P )2 −m2) = 1
(4π)2ε

7
2

(2p1 · p3)
s

+ · · · . (7.14)

Thus we’ve found that the beta function for a scalar is 1
6 a Dirac fermion 4

3 and a massless
vector being −7

2 + 1
6 = −11

3 , where we’ve subtracted the scalar “eaten” by the massive
vector.

7.3 Rational terms

Another application of massive amplitudes is to derive rational terms for massless ampli-
tudes, that are not constructible via four-dimensional cuts. These terms appear due to the
fact that the integrals are regulated and one can encounter ε/ε ∼ O(1) effects. These terms
can be obtained by considering the states in the internal loops to be massive [51, 52], where
the mass m2 is identified with the extra −2ε dimension piece of `2, denoted as µ2.18 For
QCD, one considers the contribution of a massive adjoint scalar state that is minimally cou-
pled to the external gluons. These “µ” terms are computed using the tree-level amplitudes
in D-dimensions [34, 49] and consider the extra dimension momenta as four-dimensional
mass.

Here we will directly use the four-dimensional massive amplitudes to obtain the integral
coefficients for I4[µ2k], the four-point scalar box integral with µ2k as its numerator. For
the box-integral coefficient one considers the quadruple cut, where the two solutions for
the cut loop momentum are:

`1 = 1
2

(
c±λ̃1λ4 −

m2

tc±
λ1λ̃4

)
, c± = 〈12〉

2〈42〉

1±
√

1 + 4m2u

st

 . (7.15)

The box-coefficient is then obtained by gluing the four tree-amplitudes substituted with
the cut loop momenta.

18See [53] for some recent applications.
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First consider the four-point all-plus amplitude, where the cut is given by:

1
+

2
+

4
+

3
+

a

b c

d

1

2

∼ m4xaxbxcxd = m4 [41]m
〈4|`1|1]

〈4|`1|1]
〈41〉m

[23]m
〈2|`2|3]

〈2|`2|3]
〈23〉m

= m4 [41][23]
〈41〉〈23〉 (7.16)

This directly gives the all plus integrand, [12][34]
〈12〉〈34〉I4[µ4]. For the single minus amplitude,

one instead has:

2
+

4
+

3
+

a

b c

d

1

2

1
−

∼ m4xbxcxd
xa

= m4 〈4|`1|1]2
〈41〉[14]m2

[23]m
〈2|`2|3]

〈2|`2|3]
〈23〉m

= m2 〈4|`1|1]2
t

[23]
〈23〉 . (7.17)

Substituting the two solutions for the cut in eq. (7.15) and summing the results, one obtains

[23][42]〈12〉
4〈23〉〈42〉[12]

(
st

2uI4[µ2] + I4[µ4]
)
. (7.18)

The above rational terms are in agreement with [49].

8 Form factors and correlation functions

The ability to discuss scattering amplitudes for general mass and spin largely removes the
distinction between amplitudes and “off-shell” objects such as correlation functions and
form-factors. Consider correlation functions for the stress tensor for some theory. The
computations are precisely the same as what we would carry out if we were computing
the scattering amplitude for a massive spin two particle, (arbitrarily) weakly coupled to
the theory. The scattering amplitude for these massive particles gives us the correlation
function in momentum-space, corresponds closely to the experiments that are actually
done to measure correlation functions. Strictly speaking we are coupling a continuum of
particles of different masses, and we are getting the correlator in momentum space for
the external legs pa in the timelike Lorentzian region where p2

a > 0. But we can then
define the correlators for null and spacelike momenta by analytic continuation. At least in
perturbation theory — which is what we will largely concern ourselves with here in this
subsection — there is no ambiguity for what this means in practice.
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It is important to imagine that the massive particle O corresponding to the operator
is simply an external probe and does not participate in the dynamics. In other words,
we should not have any “internal propagators” associated with cuts that put O on-shell.
In practice, this means that we should be able to make the coupling of O to our system
proportional to a parameter ε that we can make as small as we wish. To take an example,
consider a 3-point coupling of O to a pair of massless particles for the system of interest;
making this proportional to ε means that the leading amplitudes will never involve internal
O particles:

O : ε, O O : ε2. (8.1)

In general, the leading amplitude involving N O’s will be proportional to εN and will
never involve internal O particles.

8.1 Observables in gauge theories and gravity

Before moving on to illustrating how this interpretation is useful in concrete calculations,
let us pause to interpret some standard and elementary facts about observables in gauge
theories and gravity from this on-shell perspective.

In particular, let us understand the reason for the absence of charged local operators
in gauge theory, or any local operators whatsoever in gravity. Consider a charged operator
Φ. We know that consistency enforces universal coupling of Φ to photons/gluons, with
strength set by the gauge coupling g, and so we can’t arbitrarily weakly couple Φ to
the system. Thus we can’t speak of charged local operator. Similarly with gravity, the
coupling of any particle to gravity is universal given by

√
GN , so in the presence of gravity

we can’t meaningfully talk about any local operators at all. In a conventional Lagrangian
description of the physics, this is associated with the impossibility of making local charged
operators gauge invariant. Of course we can always fix a gauge and compute correlators
for operators in that gauge, but then these are not quite local. If we start with correlators
of local operators in the limit as g2 → 0 or GN → 0, the weak gauging attaches Wilson
lines to the operators in some way. Of course this also has an obvious on-shell meaning,
again corresponding closely to physical experiments that measure these Wilson-line dressed
correlators.

Consider again a charged scalar Φ of charge +1 in an abelian gauge theory, and let’s
consider the correlator 〈Φ∗(x)Φ(y)〉 first in the limit where we turn off the gauge coupling.
We may have U(1) invariant self-interactions for Φ of the form e.g. (Φ∗Φ)2, and we can also
turn on the gauge-interactions. But we also couple Φ to some heavy external probe par-
ticles X(q), Y (q+1) and A(Q), B(Q+1) via the couplings εX(q)Y (q+1)∗Φ, ε′A(−Q)B(−Q−1)∗Φ∗.
Let’s now look at the (XY ∗B∗A) scattering amplitude. Since this breaks the global par-
ticle number symmetries acting separately on X,Y,A,B as ε, ε′ → 0, this amplitude is
proportional to the product εε′; some of the diagrams contributing to the amplitude are
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shown below:

X X X

Y Y YA A A

B B B

. (8.2)

As ε, ε′ → 0, stripping off this product from the amplitude yields the correlator where
〈Φ∗(x)Φ(y)〉 is dressed with Wilson lines in the pX , pY , pA, pB directions:

M(pX , pY , pA, pB)

→ εε′
∫
x,y
ei(pX+pY )xei(pA+pB)y〈

(
W q
pX

ΦW ∗(q+1)
pY

)
(x)

(
W−QpA ΦW ∗(−Q−1)

pB

)
(y)〉 (8.3)

The fact that inequivalent “dressings” of the local operator with Wilson lines are possible
simply reflects the many different ways we can couple Φ to external probes; since the probes
themselves are charged and emit long-range gauge fields, the amplitudes (and hence the
extracted correlator) does depend on the choices that are made. Thus, while correlation
functions for local charged operators don’t exist, dressed version of these correlators exist,
for both gauge theory and gravity, to all orders in g and

√
GN .

There is a deeper difficulty with gravity, which makes even these quasi-local “Wilson-
line dressed” correlators ambiguous at a non-perturbatively tiny level, of O(exp(−M2

Pl/s)).
As we saw in our example above, in order to be able to identify the piece of the amplitude
for the heavy probes that is unambiguously associated with the coupling to the operator
Φ, it was important that the coupling to the probe broke some global symmetry of the
problem. But we expect that gravity breaks all global symmetries, and in particular, we
can’t say that e.g. the XY ∗A∗B amplitude is arbitrarily small; there is some (perhaps
virtual black-hole mediated) rate for this process of O(exp(−M2

Pl/s)) that pollutes any
attempt to associate this amplitude with “the” (Wilson-line dressed) correlator of interest,
making it impossible to pick out a piece proportional to εε′ as ε, ε′ → 0.

Summarizing more informally, in both gauge theories and gravity we don’t have mean-
ingful correlators of local charged operators, for the (relatively trivial) reason that we can’t
ignore the long-range gauge and gravitational fields. This can already be seen perturba-
tively in g2, GN , but to all order in these couplings, there are dressed versions of local
operators that take care of the long-range fields at infinity, smoothly deforming the local
correlators we have when g2, GN = 0. But in gravity, due to exponentially small effects
of O(exp(−Area/GN )), associated with black-hole physics, even these dressed versions of
local operators don’t make precise sense. This is a concrete sense in which any notion of
spacetime becomes ambiguous in quantum gravity, highlighting that e.g. the breakdown of
locality in the context of the black-hole information paradox is an effect of O(exp(−SBH)),
and is otherwise invisible to every order in GN .
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8.2 Weinberg-Witten

The interpretation of correlators in terms of massive amplitudes allows us to re-interpret
some familiar facts about massive amplitudes we have already encountered to other well-
known facts about QFT’s. Consider the Weinberg-Witten theorem [54], which in this way
of thinking is essentially identical to Yang’s theorem. Recall the discussion of consistent
couplings of a massive spin S particle to massless particles. Note that since conserved
currents and stress tensors measure the charge and the momentum on single particle states
respectively, we will be interested in the interaction of the massive state with two opposite
helicity massless-particles h1 = −h2.19 Our analysis showed that S+h2−h1 and S+h1−h2
must always be greater or equal to 0, this tells us that for S = 1, |h1| = |h2| ≤ 1

2 , i.e.
massless particles with spin > 1

2 cannot couple to a Lorentz covariant conserved current.
Similarly for S = 2, |h1| = |h2| ≤ 1, and massless particles with spin > 1 cannot couple to
a conserved stress-tensor. This is precisely the Weinberg-Witten theorem.

8.3 Form factors example: stress tensor/gluons

From Weinberg-Witten theorem we know that the stress tensor can only couple to massless
particles of spin ≤ 1, thus we will consider form factors of a stress tensor and three gluons.
Identifying the stress tensor as a massive spin-2 state, we will map this to a four-point
amplitude involving one massive and three massless states:

−
+

+

×T −→
T1

2−

4+

3+

(8.4)

Let us consider the t-channel massless residue. Since the gluon is “charged” under the
stress tensor, for the one massive two massless coupling, one should consider opposite
helicity gluons. The t-channel residue can then be written as:

(λP )4 [p4]2
m3

[3P ]3
[P2][23] = (λ2)4m[23]

〈43〉〈24〉 , (8.5)

where again, the equality holds for 〈23〉 = 0. This leads us to the following simple expression
for the form factor:

〈T̃ (1)|2−3+4+〉 = (λ2)4m

〈43〉〈32〉〈24〉 (8.6)

It is straight forward to check that the above result matches all three factorisation channels,
as expected from its cyclic invariant form, up to the over all factor of (λ2)4 that takes care of
the excess helicity weight and the stress tensor’s SL(2,C) indices. We can straight forwardly
extend to two stress tensors coupled to two gluons:

〈T̃ (1)T̃ (2)|3−4+〉 = (λ3)4
(

([4|p1)2([3|p2)2

t
+ ([3|p1)2([4|p2)2

u

)
. (8.7)

19Recall that all momenta are out going, so for p1 and p2 to represent the same particle, h1 = −h2.
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There is an elephant in the room that we have not yet addressed. So far we have been
considering conserved operators as massive spinning states. But conserved operators are a
tiny subset of an infinite number tensor operators, for which all must have well defined form
factors (and in the next section momentum space correlation functions). Furthermore, we
should be able to see there must be a kinematic distinction between conserved operators
and non-conserved operators, such that higher-spin conserved currents for an interacting
theory can be ruled out, à la Coleman-Mandula theorem [55].

As an exercise let’s consider a theory with two scalars (φ, φ̄) and the operators O1µ =
φ
←→
∂ µφ̄ and O2µ = φ∂µφ̄. The first is a conserved current while the second is not. Let us

now consider the three-point form factor for

〈Õ1αα̇,ββ̇ |p1p2〉 ∼ (p1 − p2)αα̇, 〈Õ2αα̇,ββ̇ |p1p2〉 ∼ pαα̇1 . (8.8)

Converting the above result into pure undotted SL(2,C) indices by contracting with (p1+p2)
one finds:

〈Õ1|p1p2〉 ∼ [12]λ{α1
1 λ

α2}
2 , 〈Õ2|p1p2〉 ∼ [12]λα1

1 λα2
2 = 1

2[12]
(
λ
{α1
1 λ

α2}
2 + 〈12〉εα2α1

)
.

(8.9)
Not surprisingly the form factor for O2 can be further decomposed into a combination
of S = 2, 1 and 0 states. Thus we see that a general operator simply corresponds to a
linear combination of lower spin states. In position space this is a statement that a general
current, for example, can

Oµ = (ηµν − ∂µ∂ν

�
)Oν + ∂µ∂ν

�
Oν ≡ Ôµ + ∂µ∂ν

�
Oν (8.10)

where Ôµ is the conserved piece. Note that while there is a conserved piece in a gen-
eral operator, the projection introduces non-locality and are thus distinct from a genuine
conserved operator. This non-locality is present in all the lower spin components in the
projection.

Let us look at this distinction more closely in the context of general form factors. For
an interacting theory, the form factor will in general have poles whose residue reveals the
existence of a non-trivial S-matrix:

+ ....

. (8.11)

Let us consider the particles to be massless, and take the momenta of the operator to be
soft. Then just like the usual Weinberg’s soft theorems for S-matrix, the form factor will
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be dominated by diagrams where one has the operator attached to the external leg

∑
i

i

q

=
∑
i

n(pi, q)
pi · q

Mn (8.12)

where q is the soft momenta of the operator, n(pi, q) is the numerator function. If the op-
erator is a tensor, then n(pi, q) should carry the corresponding Lorentz indices. Conserved
tensor is reflected in that the form factor must vanish when contract with qµ. If we have a
conserved current, then we can have n(pi, q)µ = eip

µ
i , where ei is the charge of each exter-

nal state. The requirement of conservation then simply corresponds to the requirement of
charge conservation. Similarly for conserved stress tensor we have n(pi, q)µν = κpµi p

ν
i , and

the conservation condition is simply stem from momentum conservation if the coupling κ
is universal. Note that for higher spins, S > 2, there are no local solutions for n(pi, q)µ1···µS

such that the conserved quantity is respected. This is the Coleman-Mandula theorem!
The assumptions that went into this argument is the existent of a non-trivial S-matrix, the
analyticity of the form factor which can be interpreted as a massive S-matrix, and Lorentz
invariance. The fact that the argument is closely related to Weinberg’s soft theorems for
gauge bosons is not a surprise in view of our usual intuition that if a conserved tensor
exists in an interacting theory, then we can always weakly gauge it and have non-trivial
S-matrix involving the gauge boson.

Note that while one can always project out a conserved piece for non-conserved tensors,
the corresponding form factor will include non-local pieces. Indeed in this case we can
have, for example, n(pi, q)µ = qµñ(pi,q)

q2 = qµñ(pi,q)
m2 . This non-locality is again reflected in

the singularity of the m2 → 0 limit. This of course is an artifact of our projection, since
there will be lower spin contributions coming along that will contain the same singularity
and conspire to cancel, producing a smooth m2 → 0 limit.
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8.4 Current and stress-tensor correlators

Let’s consider the two and three-point correlation functions for stress-tensors in a confor-
mal theory. In momentum space, the tree-level correlator are computed by gluing tree-level
amplitudes with one massive leg and two massless legs. For conformal theories, the avail-
able tensor structures are constrained by conformal symmetry. In momentum space, this
constraint is simply a reflection of the uniqueness of the three-point amplitude, which is
fixed by the spin of the massive state and the helicities of the massless legs.

For example the two point function receives contribution from:

〈Tα1α2α3α4Tβ1β2β3β4〉 =
1

2

+

+

−

−

I2
[
S`1`2α1α2S

`1`2
α3α4S

`1`2
β1β2

S`1`2β3β4

]

+
1

2

+

−

−

+

I2

[ 4∏
i=1

S`1`2βiαi

]
+

2

+

−

−

+

1

1

2
−

1

2
−

1

2
−

1

2
−

I2
[
S`1`2α1α2S

`1`2
β1β2

S`1`2α3β3
S`1`2α4β4

]
(8.13)

where we’ve listed the contributions from different internal helicity configuration and I2[X]
is defined as:

I2[X] ≡
∫
d4`

X

`2(`− k)2 (8.14)

where k is the momenta of the stress tensor. The operator S`1`2α1α2 is a shorthand notation
for `1α1β̇

`2α2
β̇ . Note that it is understood that the expression must be symmetrized over

{αi} and {βi} separately, as well as over exchanging αi ↔ βi, which takes into account the
conjugate helicity configurations. For the scalar and equal helicity fermion contributions,
their tensor structure are identical to that of equal helicity gauge field.
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For the three-point function one has:

〈Tα1α2α3α4Tβ1β2β3β4Tγ1γ2γ3γ4〉=
−+

1 2

3

{
I3
[
S`1`2β1α1

S`1`2β2α2
S`1`3β3γ1

S`1`3β4γ2
S`3`2γ3α3S

`3`2
γ4α4

]

+ I3
[
S`1`2β1α1

S`1`2β2α2
S`2`3α3β3

S`2`3α4β4
S`2`3γ1γ2S

`2`3
γ3γ4

]}
+

− +
1 2

3

{
I3
[
S`1`2α1γ1S

`1`2
α2γ2S

`1`3
α3β1

S`1`3α4β2
S`3`2β3γ3

S`3`2β4γ4

]

+ I3
[
S`1`2α1γ1S

`1`2
α2γ2S

`1`3
α3γ3S

`1`3
α4γ4S

`1`3
β1β2

S`1`3β3β4

]}
+

− −
1 2

3

{
I3
[
S`1`3α1β1

S`1`3α2β2
S`2`3α3β3

S`2`3α4β4
S`2`3γ1γ2S

`2`3
γ3γ4

]

+ I3
[
S`1`3β1β2

S`1`3β3β4
S`1`3α1γ1S

`1`3
α2γ2S

`2`3
α3γ3S

`2`3
α4γ4

]}
+

+ +
1 2

3

{
I3
[
S`1`2α1α2S

`1`2
α3α4S

`1`2
β1γ1

S`1`2β2γ2
S`2`3γ3β3

S`2`3γ4β4

]

+ I3
[
S`1`2α1α2S

`1`2
α3α4S

`1`2
β1γ1

S`1`2β2γ2
S`1`3β3γ3

S`1`3β4γ4

]}
+

−
1

2
−+

1

2
−

1 2

3

{
I3
[
S`1`2α1α2S

`1`2
β3α3

S`1`3β1β2
S`2`3γ1γ2S

`2`3
γ3γ4S

`2`3
α4β4

]

+ I3
[
S`1`2α1α2S

`1`2
β3α3

S`1`3β1β2
S`1`3β4γ3

S`2`3γ1γ2S
`2`3
α4γ4

]}
+

+
1

2
−−

1

2
−

1 2

3

{
I3
[
S`1`2α1α2S

`2`1
γ3α3S

`2`3
γ1γ2S

`1`3
β1β2

S`1`3β3β4
S`1`3α4γ4

]

+ I3
[
S`1`2α1α2S

`2`1
γ3α3S

`2`3
γ1γ2S

`2`3
γ4β3

S`1`3β1β2
S`1`3α4β4

]}
(8.15)

and I3[X] is defined as:

I3[X] ≡
∫
d4`

X

`21(`1 − k2)2(`1 + k1)2 (8.16)

where k1, k2 are the momenta carried by the αi and βi indexed stress-tensor respectively.
Again symmetrisation interns of {αi}, {βi} and {γi} are implied and the equal helicity
fermion on the one of the vertices as well as internal scalars do not produce new tensor
structures.

9 Outlook

Relativistic quantum mechanics governs the laws of nature at low enough energies so that
physics can be described in flat space, with a finite number of interacting particles. “Quan-
tum field theory” is the standard textbook approach to this physics, where, as useful theo-
retical constructs, “local quantum fields” are introduced, along with the attendant baggage
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of field redefinition and gauge redundancies, in order to allow a description of the physics
in a way compatible with relativistic locality and unitarity. But the on-shell approach to
scattering amplitudes suggests that this may not be the only way — that we might instead
be able to describe relativistic quantum mechanics without local quantum fields, directly
in terms of the physical particles.20

In this paper we have taken the first steps to extending the ideas of this on-shell
approach to cover particles of all masses and spins in four dimensions. The purely kine-
matical part of our discussion has been fundamentally trivial — but trivializing the kine-
matics allows to understand the structure of the physics as following seamlessly from the
foundational principles of Poincare Invariance, Locality and Unitarity in a satisfying way.

We have seen many aspects of this understanding throughout this paper. The struc-
ture of three particle amplitudes, for any mass and spin, is fixed by Poincare invariance.
For massless particles, there is a peculiarity for high enough spin — the three particle
amplitudes are superficially “non-local” in the sense of having poles; while this doesn’t
show up in (3, 1) signature Minkowski space where these amplitudes vanish, it does mean
that consistent factorization at four points is non-trivial, and indeed, all but the usual
massless theories we know and love, of interacting spin (0, 1/2, 1, 3/2, 2), are ruled out by
these considerations. We learn that we can only have a single massless spin two particle,
with universal couplings, that the massless spin one particles must have the structure of
Yang-Mills theories, and spin 3/2 requires supersymmetry. Furthermore the mere existence
of a consistent amplitude coupling to gravitons rules out all higher spin massless particles.

Similarly there is still a superficial “non-locality” associated with the coupling of a
single massive particle to massless particles with spin — the “x− factor” — which again
makes factorization non-trivial. Unlike the case for massless particles, we can (non-trivially)
find consistently factorizing four-particle amplitudes for any choice of three-particle cou-
plings, (with the usual restrictions on consistent couplings to massless spin one and spin
2 particles). But for massive particles of high enough spin, these consistently factorizing
amplitudes are badly behaved at high energies — growing with powers of (pi · pj/m2), so
that the massless limit cannot be taken smoothly. This tells us that even massive particles
of high enough spin cannot be separated by a parametrically large gap from other particles
— massive particles with high spin cannot be “elementary”. Finally, three particle ampli-
tudes involving all massive particles are local, but naturally have powers of 1/m. Thus,
theories of massive particles can only smoothly interpolate to massless amplitudes at high
energies for special choices of spectra and couplings; conversely, starting from massless he-
licity amplitudes at high energies, we can “unify” subsets of these amplitudes into massive
ones in some cases. This can be done for spin 1 and spin 3/2 particles, representing the
on-shell avatars of the Higgs and super-Higgs mechanism, but we can see that gravity can’t
be “Higgsed” in this way.

In the context of this summary it is perhaps also worth briefly describing the on-shell
20It is amusing that the on-shell program is often contrasted with the standard approach using Feynman

diagrams, since Feynman’s primary physical motivation for introducing his diagrams to begin with was to
get rid of quantum fields — and he was famously disappointed to learn, via Dyson’s proof, that his diagrams
were so closely related to field theory after all!

– 64 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
0

understanding of the most famous general consequences of relativistic quantum mechanics:
the existence of antiparticles and the spin-statistics connection.

The existence of antiparticles is essentially hardwired into the on-shell formalism, since
by fiat we are considering analytic functions of Lorentz-invariant kinematical variables,
with consistent factorization on all possible channels. To be a little more explicit on these
ancient points, we can ask how causality is encoded in the S-matrix in any theory, with
or without Lorentz invariance. At tree-level, causality tells us that the amplitude can
only have simple poles as a function of energy variables. If the particles have a dispersion
relation of the form E = ω(~p), the poles can be either be of the form 1/(E +ω(~p)), or also
1/(E − ω(~p)) if the interaction Hamiltonian allows particle production. But in a Lorentz
invariant theory, neither (E + ω(~p)) nor (E − ω(~p)) are individually invariant, so Lorentz
invariance and causality forces us to have poles of the form 1

(E2−ω(~p)2) = 1
p2−m2 . This is

how we see that causality demands this familiar pole structure at tree-level, which as a
byproduct also forces the existence of non-zero amplitudes for the production of degenerate
particles and antiparticles.

The on-shell understanding of the connection between spin and statistics is slightly
more interesting, and makes use of the universality of coupling to gravity. Indeed we
saw vividly that the structure of the four-particle amplitude for gravi-compton scattering
off particles of general mass and spin is completely fixed, and in particular, forces the
correct spin-statistics connection. This deeply relies on the non-triviality of how residues
in different channels are consistent with each other, forcing the “s” and “u” channels —
related by particle interchange — to have fixed relative signs. It is not surprising that an
on-shell understanding of a classic fact related to locality and unitarity should be related
to coupling to gravity — after all it is precisely the ability to “weakly gauge” gravity that
gives a physical probe (via the existence of an energy momentum tensor) of the locality of
quantum field theory. We also described how other famous general results in field theory,
such as the Weinberg-Witten and Coleman-Mandula theorems, are interpreted in directly
on-shell terms.

Moving beyond tree-scattering, we also took some first steps for computing amplitudes
at one-loop, where the on-shell picture is especially powerful, as seen in the speed and
transparency of the computation for electron (g − 2) and the QCD beta function. While
not discussed in this paper, chiral anomalies, together with the possibility of cancelling
them via the Green-Schwartz mechanism, also have a beautiful on-shell understanding,
arising from the necessity to interpret poles in one-loop amplitudes fixed by generalized
unitarity [56].

But of course, much more importantly than providing a conceptually transparent and
technically straightforward understanding of standard results, we hope that the formalism
introduced in this paper removes the trivial barriers to exploring the new frontier of massive
scattering amplitudes, which is filled with fascinating physical questions. We close by listing
just a small number of these.

We have focused almost entirely on the computation of tree-level three- and four-
particle amplitudes, so one completely obvious question is the extension of e.g. BCFW
recursion relations to any number of external particles, especially for Higgsed Yang-Mills
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theories. Of course for massless particles the BCFW shift must be performed for massless
particles of appropriate helicity in order to ensure the absence of poles at infinity, so the
obvious challenge is that the massive amplitudes unify both the “good” and “bad” helicity
combinations into a single object.

Another clear goal is the systematic computation of all the massive amplitudes in
the Standard Model, starting at tree level but moving to multi-loop level. It is worth
mentioning at least one exciting motivation for this undertaking. Future Higgs factories
— like the CEPC or TLEP — can also run on the Z-pole, producing between 109 − 1011
Z particles. Making full use of this data will require a computation of Z-couplings at
three to four loop accuracy. And unlike QCD calculations of backgrounds at the LHC, for
which the perturbative computations must ultimately be convolved with non-perturbative
information such PDF’s and hadron fragmentation functions to connect with experiment,
these precision electroweak calculations are unaffected by hadronic uncertainties at the
needed level of precision, so any theoretical predictions can be unambiguously connected
to exquisitely precise experimental measurements!

It is also clearly of interest to investigate massive amplitudes in supersymmetric the-
ories, this should of course be especially interesting in the context of the N = 4 SYM
on the Coulomb branch. Now even our first look at the on-shell avatar of the Higgs and
Super-Higgs mechanisms, showed that the Higgsed amplitudes are more unified than their
massless counterparts. Thus we should expect that all the natural objects encountered for
massless amplitudes — such as tree amplitudes, leading singularities and on-shell diagrams,
which are separated into different “k” sectors — are somehow unified into more interesting
objects. Amongst other things the extension of BCFW to the Higgsed theories might be
most natural in the massive N = 4 on-shell diagram formulation. And of course it would
be fascinating to see if the Grassmannian/Amplituhedron structures underlying the theory
and the origin of the moduli space is somehow extended/deformed away from the origin.

All of the physics we have discussed in this paper has revolved around the consistency
of long-distance physics: the on-shell focus on factorization and cuts at tree and loop level
is meant to ensure that infrared singularities needed by locality and unitarity are correctly
accounted for, and this fixes the structure of the amplitudes. For theories with growing
amplitudes in the ultraviolet, needing a UV completion, it is very natural to ask the
same questions: can the physics of UV completion also be determined from the consistency
conditions of locality and unitarity? If the UV completion has a weak coupling, the question
becomes perfectly sharply posed, and in the context of unitarizing the Fermi interaction
or WW scattering, searching for a tree-level UV completion correctly led to the prediction
of massive W particles and Higgses as the completion of the weak interactions. Turning
to the even more famous problem of UV completion for gravity scattering amplitudes, we
encounter a well-known novelty. As will be discussed at greater length in [15], any weakly
coupled UV completion for gravity amplitudes, (or for that matter, also Yang-Mills or
φ3 theory, any theory with non-trivial three-particle amplitudes), must involve an infinite
tower of particles with infinitely increasing spins, as of course familiar from string theory.
It is a tantalizing prospect to try and “derive string theory” in this way, as giving the
only possible consistent tree scattering amplitudes for gravitons coupled to the infinite
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tower of massive higher spin particles necessary for UV completion. But consideration of
amplitudes involving massive higher spin particles is necessary for any possible uniqueness,
since as shown in [15], deformations of the string scattering amplitudes with only gravitons
as external particles, compatible with all the standard rules, have been identified. This is
not at all surprising. Since we know the presence of gravity makes massless higher spin
particles impossible, the coexistence of gravity unified with an infinite tower of massive
higher spin particles must involve the strongest consistency conditions imaginable. Again,
the massive amplitude formalism we have discussed in this paper trivializes kinematical
issues so that important physics points can be studied with an unobstructed view, and with
this in hand we will return to string theory and the challenge of UV completion in [15].
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A Conventions

In this paper we follow the mostly minus convention (+,−,−,−), and an on-shell momen-
tum satisfies p2 = m2. The SL(2,C) and SUL(2) indices are raised and lowered as

ψα = ψβεαβ , ψα = εαβψβ , εαβεβγ = δαγ (A.1)

where we use εαβ = −εαβ =
(

0 −1
1 0

)
. The spinor contraction can be converted to vector

contraction following
pαα̇1 p2αα̇ = 2pµ1p2µ , (A.2)

and hence for massive momenta, pαα̇pαα̇ = 2m2. The vector indices are converted to
spinorial ones as:

γµ =
(

0 σµ
αβ̇

σ̄µα̇β 0

)
→ ( 6p+m) =

(
mδβα pαβ̇
pα̇β mδα̇

β̇

)
(A.3)

B SU(2) irreps as symmetric tensors

In this appendix we review, mostly to set notation, the elementary treatment of represen-
tations of SU(2) as symmetric tensors, and briefly discuss some of its standard applictions,
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such as a transparent determination of spherical harmonics. The standard treatment of
representations of SU(2) is the one encountered by most undergraduates in beginning quan-
tum mechanics courses. Since we can mutually diagonalize ~J2 and Jz, eigenstates of these
operators are labeled by |s, jẑ〉, where the ẑ reminds us that we have chosen to diagonalize
the operator Jz, and we have ~J2|s, jẑ〉 = s(s + 1)|s, jẑ〉, Jz|s, jẑ〉 = m|s, jẑ〉. The irrep is
(2s+ 1) dimensional with jẑ taking all the values −s ≤ jẑ ≤ +s. The spin information in
a general state |ψ〉 is then entirely contained in specifying 〈s, jẑ|ψ〉.

But for our purposes it is more convenient to describe an irrep of SU(2) as a completely
symmetric SU(2) tensor with 2j indices:

ψi1···i2s (B.1)

where i is the SU(2) index. The inner product 〈χ|ψ〉 between two states is given by

〈χ|ψ〉 = εi1j1 · · · εi2sj2s(χi1···i2s)∗ψj1···j2s (B.2)

Saying that ψ is an SU(2) tensor is just the statement that the rotation generators ~J act as

( ~Jψ)i1···i2s =
(1

2~σ
)j1
i1

ψj1···i2s + · · ·+
(1

2~σ
)j2s
i2s

ψi1···j2s (B.3)

Note that the dimensionality of ths space is precisely 2×3×· · ·×(2j+1)/(1×2×· · ·×2j) =
(2j + 1) as desired. Using that ~σji · ~σlk = 2δjkδli − δ

j
i δ
l
k, we trivially see that ( ~J2ψ)i1···i2s =

s(s + 1)ψi1···i2s . If we choose to diagonalize σz with eigenstates (σz)ji ζ
ẑ,±
j = ±ζ ẑ,±i , then

the spin s tensor that is an eigenstate of Jz with eigenvalue jẑ is

ψs,jẑ = (ζ ẑ,+)s+jẑ(ζ ẑ,−)j−jẑ (B.4)

where here and in what follows, since the tensor indices on ψ are always symmetrized there
is no need to write them explicitly when no confusion can arise. We can also express the
same fact in a different way, telling us how to extract 〈s, jẑ|ψ〉 from the tensor ψi1,··· ,i2s :

ζi ≡ α+ζ
ẑ,+
i + α−ζ

ẑ,−
i ; ζi1 · · · ζi2sψi1···i2s =

∑
jẑ

αs+jẑ+ αs−jẑ− 〈s, jẑ|ψ〉 (B.5)

The tensor representation makes it trivial to give explicit expressions for finite rota-
tions, and expand the eigenstate ψs,jn̂ for a general direction n̂ pointing in the usual (θ, φ)
direction, as a linear combination of ψs,jẑ ’s. We only need to know the relation for spin 1/2:(

ζ n̂,+

ζ n̂,−

)
=
(
c −s∗
s c

)(
ζ ẑ,+

ζ ẑ,−

)
where c ≡ cosθ2 , s ≡ sinθ2e

iφ (B.6)

We can then look at

ψs,jn̂ =
(
ζ n̂,+

)s+jn̂ (
ζ n̂,−

)s−jn̂
=
(
cζ ẑ,+ − sζ ẑ,−

)s+jn̂ (
s∗ζ ẑ,+ + cζ ẑ,−

)s−jn̂
=
∑
jẑ

Rsjn̂,jẑ(θ, φ)ψs,jẑ (B.7)
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with

Rsjn̂,jẑ(θ, φ) =
∑

m±,m++m−=s+jẑ

(
s+ jn̂
m+

)(
s− jn̂
m−

)
(c)m+(−s)s+jn̂−m+(c)s−jn̂−m−(s∗)m−

(B.8)
The tensor formalism also makes it trivial to construct spherical harmonics, which naturally
arise in building irreps of SU(2) which are polynomials in a 3-vector ~x. Of course we are
used to converting ~x to SU(2) indices by dotting with the σ matrices, but this gives us
an object ~σji · ~x with an upstairs and downstairs index, while for the purposes of building
irreps we would like to work with symmetric tensors and all downstairs indices. So it is
natural to look instead at xij = εikx

k
j ; explicitly we have

xji =
(

z x− iy
x+ iy −z

)
, xij =

(
−(x− iy) z

z (x+ iy)

)
(B.9)

We would like to make symmetric rank 2s tensors from a product of s xij ’s. But we don’t
need to do the symmetrizations explicitly; again because of the symmetrization all the
information is contained in

ζi1ζj1 · · · ζisζjsxi1j1 · · ·xisjs = (ζζx)s (B.10)

Putting ζi = (α+, α−) and so ζi = (−α−, α+), expanding the above gives us the generating
function for spherical harmonics. Letting ~x be the unit vector with (x + iy) = sin(θ)eiφ
and z = cos(θ), we have

(ζζx)s =
(
α2

+sin(θ)eiφ − 2α+α−cos(θ)− α2
−sin(θ)e−iφ

)s
≡
∑
jẑ

αs+jẑ+ αs−jẑ− Ys,jẑ(θ, φ)

(B.11)

C Explicit kinematics

For massless particles, we have

λα =
√

2E
(
c

s

)
, λ̃α̇ =

√
2E

(
c

s∗

)
(C.1)

For massive particles, we can write

λIα =
(√

E + pc −√E − ps∗√
E + ps

√
E − pc

)
, λ̃Iα̇ =

(√
E + pc −√E − ps∗√
E + ps

√
E − pc

)
(C.2)

We can write this equivalently as

λIα =
√
E + pζ+

α (p)ζ−I(k) +
√
E − pζ−α (p)ζ+I(k)

λ̃Iα̇ =
√
E + pζ̃−α̇ (p)ζ+I(k) +

√
E − pζ̃+

α̇ (p)ζ−I(k) (C.3)

where
ζ+
α =

(
c

s

)
, ζ̃−α̇ =

(
c

s∗

)
; ζ−α =

(
−s∗
c

)
, ζ̃+
α̇ =

(
−s
c

)
(C.4)
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We can read off the specific spin components as in the previous appendix, since by using
the above expressions for λIα, λ̃Iα̇ we can expand for any particle:

M{I1···I2S} =
∑
jz

(
(ζ+)S+jz(ζ−)S−jz

){I1···I2S}
M(jz) (C.5)

D Comparison with Feynman diagrams for Compton scattering

Here we directly construct Compton scattering from Feynman rules, and converting into
our notations. We begin with

3
2

t 1 t4

: εµ2 ε
ν
3 v̄1

(
γν( 6P12 +m)γµ

s−m2 + γµ( 6P13 +m)γν

u−m2

)
u4 , (D.1)

where Pij = pi + pj . Peeling off u4 and v̄1, we obtain two 4 × 4 numerator factor each
given by:

ns =
(

mε3αγ̇ε
γ̇δ
2 ε3αβ̇(P21)β̇γε2γδ̇

εα̇β3 (P12)βγ̇εγ̇δ2 mεα̇γ3 ε2γδ̇

)
, nu =

(
mε2αγ̇ε

γ̇δ
3 ε2αβ̇(P13)β̇γε3γδ̇

εα̇β2 (P13)βγ̇εγ̇δ3 mεα̇γ2 ε3γδ̇

)
.

(D.2)
Substituting the explicit polarization vectors one finds:

ns =

(
mλ3α[q̃2]qδ λ4α[q̃|P12|q〉λ̃2δ̇
q̃α̇〈3|p1|2]qδ mq̃α̇〈1q〉λ̃4δ̇

)
〈2q〉[3q̃] , nu =

(
mqα[2q̃]λδ3 qα[2|p1|3〉q̃δ̇

λ̃α̇2 〈q|P12|q̃]λδ3 mλ̃α̇2 〈q3〉q̃δ̇

)
〈2q〉[3q̃] (D.3)

where q, q̃ are the reference spinors for the polarization vectors. The elements in the 4× 4
matrix is in different SL(2,C) representations. We again judicially multiply factors of p/m
to convert it into our preferred basis, which has leg 1 in the undotted basis, and leg 4 in
the dotted basis. That is, we mupltiply:

(
pα̇α4
m δα̇

β̇

)(Oα δ Oαδ̇
Oβ̇δ Oβ̇ δ̇

) δβδ
pδ̇β1
m

 (D.4)

where the Os are stand ins for matrix elements of ns, nu. Summing up the terms and
choosing q = λ3 and q̃ = λ̃2, one finds:

〈3|p1|2](λ̃α̇2λ
β
3 − pα̇4αλα3 pβ1 δ̇λ̃δ̇2/m2)

(u−m2)(s−m2) . (D.5)

Contracting with external λ, λ̃s we recover eq. (5.21).
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E The high energy limit of massive three-point amplitude

Let us consider the HE limit of the three-point massive vector amplitude

gfabc

mambmc
[〈12〉[12]〈3|p1−p2|3] + cyc.] (E.1)

First consider the component amplitude (1−2−3+). Its high enerly limit is given by:

2−b

1−a

3+
c

→ gfabc (〈12〉[η̃1η̃2]〈η3|p1−p2|3] + 〈2η3〉[η̃23]〈1|p2−p3|η̃1] + 〈η31〉[3η̃1]〈2|p3−p1|η̃2])
mambmc

(E.2)

Since in the high energy limit we will be interested in the MHV configuration, we have:

λ̃1 = 〈23〉ξ̃, λ̃2 = 〈31〉ξ̃, λ̃3 = 〈12〉ξ̃ , (E.3)

and eq. (E.2) simplifies to:

gfabc (〈2η3〉[η̃23]〈1|p2−p3|η̃1] + 〈η31〉[3η̃1]〈2|p3−p1|η̃2])
mambmc

= 2gf
abc

mc

(
〈η32〉〈12〉2
〈23〉 + 〈η31〉〈12〉2

〈31〉

)
= 2gfabc 〈12〉3

〈23〉〈31〉 (E.4)

where we have repeatedly used identities such as [η̃13] = 〈12〉
〈23〉 [η̃11] = ma

〈12〉
〈23〉 , which holds

for MHV kinematics.
A more interesting component would be (102−30). Keeping in mind that extracting

the longitudinal term correspond to choosing λ{I λ̃J} → λλ̃−ηη̃, the relevant terms are:

2−b

1a

3c

→ gfabc

mambmc

{
〈12〉[1η̃2](〈3η1〉[η̃13]− 〈3η2〉[η̃23]− 〈1η3〉[η̃31] + 〈2η3〉[η̃32])

+ 〈23〉[η̃23](〈1η2〉[η̃21]− 〈1η3〉[η̃31]− 〈η12〉[2η̃1] + 〈η13〉[3η̃1])

−
(1

2〈23〉[3η̃2](〈η31〉[η̃31] + 〈η13〉[η̃13])− 1
2〈21〉[1η̃2](〈η31〉[η̃31] + 〈η13〉[η̃13])

)}
.

(E.5)

Substituting explicit representation for [η̃ij] for MHV kinematics, one finds:

gfabc

mamc

〈12〉〈23〉
〈31〉

(
m2
b −m2

c −m2
a

)
. (E.6)
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F Examples for 1 massive 3 massless amplitudes

For three-point amplitudes, since the all massless and one massive two massless amplitudes
are unique, this tells us that the massless residue for the 1 massive 3 massless amplitude
is unique. If the residue is non-local, then consistent factorization in the other channel
may forces the theory to have a particular one massless two massive interaction. Here we
present some examples.

We consider the four-point amplitude of arbitrary higher spin-S, two massless scalars
and a graviton:

M(1S203+240) . (F.1)

We can now look at the massless residue for s-channel,

S

2

J
4

3

P (λ2)S(λP )S [2P ]S
m2S−1 × [3P ]2[34]2

[4P ]2Mpl
= (λ2)S([2|p1)S−2

m2S−5
[34]2(λ4)2

〈23〉2Mpl
, (F.2)

where Mpl is the Plank mass. Note that we have double poles 1/〈23〉2, which is a general
feature for couplings involving gravitons. The presence of double poles indicate that we
have access to information in other channel. Let’s start with S = 2, dressing the residue
with 1/s propagator, we find:

m

Mpl

1
s

(λ2)2(λ4)2 [34]2
〈23〉2 = m

Mpl

(λ2)2(λ4)2[34][23]
〈32〉〈43〉t

→ M(12203+240) = m

Mpl

(λ2)2(λ2)2[34][23]
〈32〉〈34〉(u−m2) .

(F.3)

Note that the double pole has been converted into a t-channel massless and an u-
channel massive pole u −m2. The residue of the massive channel can be identified with
M3(1S=23+2PS=2) ×M3(PS=22040), where M3(1S=23+2PS=2) is the minimally coupling
between a graviton and massive spin-2 states. Indeed using minimal coupling in the u-
channel, we find the following residue:

P

23

4
S

J

x2
13 × [24]2(λ2)2(λ4)2 ∼ (λ2)2(λ4)2 [34][23]

〈43〉〈23〉 , (F.4)

which indeed matches that of eq. (F.3). This is a general feature for amplitudes of eq. (F.1),
consistent factorization will require the presence of a three point minimal coupling for
graviton to two massive states. Consider S = 3, the s-channel residue can be represented
in a way that it can readily be completed:

(λ2)S([2|p1)S−2 [34]2(λ4)2

〈23〉2
∣∣∣∣
〈34〉=0

= (λ2)3(λ4)3
(

[34]2[32]
〈23〉〈24〉 −

[42][34]2[23]
〈23〉t

)
, (F.5)
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Indeed putting back the s-channel propagator and writing −t→ (u−m2), we find the form
factor given as:

M(13203+240) = (λ2)3(λ4)3
( [34][32]
〈23〉〈24〉〈43〉 + [42][34][23]

〈23〉〈43〉(u−m2)

)
. (F.6)

It is not difficult to see that the massive residue of this amplitude contains the minimum
coupling for the spin-3 states:

x2
13(λ2)3(λ4)3[24]3 ∼ (λ2)3(λ4)3 [23][34][24]

〈23〉〈43〉 . (F.7)
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