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1 Introduction

In recent years holographic models in which translations are broken either spontaneously or
pseudo-spontaneously have been intensively studied. These models include Q-lattices [1–
10], massive gravity [11–20] and phases with spatially modulated charge density [21–23].

On a parallel side, hydrodynamic models have been developed which describe the phys-
ical behavior, at late times and large distances, of charged fluids in the presence of (pseudo)-
Goldstone modes related to the (pseudo)-spontaneous breaking of translations [24–29]. The
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dynamics predicted by these effective theories has been tested, in the appropriate regime,
against holographic models and been found to concur with a great accuracy.

Of particular relevance for experiments, is the study of the thermo-electric transport
properties of these systems in the presence of an external magnetic field, as this is a very
common feature in many experimental setups testing the transport behavior of strongly
coupled condensed matter materials. This includes for example high-temperature supercon-
ductors [24, 30]. Along this line, hydrodynamic models describing the magneto-transport
properties of these systems in vacua that minimize the free energy have been developed
in [26, 27]. On the holographic side, some of the consequences of the presence of an external
magnetic field on the (pseudo)-spontaneous breaking of translations have been analyzed
in the massive gravity context in [19] and in Q-lattices in [10]. Still a complete study of
the transport properties of these holographic models in the hydrodynamic regime with an
external magnetic field is missing.

In this paper we generalize the holographic Q-lattice model with a (pseudo)-
spontaneous symmetry breaking of translation, initially described in [2, 3], in order to
include an external magnetic field. We will take this magnetic field to be non-zero in the
thermodynamics and thus at the same order as the chemical potential in the derivative
counting of hydrodynamics. We analyze the model’s thermo-electric transport properties.
As already observed in [2–4, 8], these kind of models correctly describe the physical be-
havior of systems exhibiting a spontaneous or pseudo-spontaneous symmetry breaking of
translations even though they are metastable; namely, the background vacuum does not
minimize the free energy. Due to this fact, it was pointed out in [28, 29, 31, 32] that existing
hydrodynamic approaches (see e.g. [24, 25] and references therein) do not apply straight-
forwardly to these models, and a more general formulation must be followed [28]. This is
due to the appearance of an additional term - the lattice pressure - in the thermodynamics.
In stable systems which minimize the free energy this lattice pressure, Pl, vanishes [5, 29]
and its thermodynamic derivatives (∂µPl, ∂TPl) can be absorbed into re-definitions of the
transport coefficients. In such situations we can then employ the expressions of [33]. This
will not be the case here and thus one of the main results of the paper is the generalization
of the formalism of [28] to include the effects of pseudo-spontaneous symmetry breaking
and an external magnetic field. Moreover, by combining the hydrodynamic correlators
obtained in this way with the method outlined in [27, 33], we will provide an expression
for the hydrodynamic AC correlators in terms of the DC conductivities of the model.
The latter quantities can be computed analytically for the model at hand and have been
known for a long time [14, 34]. Thus, we can eventually provide an analytic expression
for the holographic AC thermo-electric correlators in terms of the horizon data up to one
coefficient, the pinning frequency, which has to be determined numerically. Finally, we
show that our analytic result is in excellent agreement with the numerically computed
holographic correlators.

The paper is organized as follows. In section 2 we generalize the hydrodynamic method
of [28] to take into account pseudo-spontaneous symmetry breaking of translations and an
external magnetic field. Combining the results with the method outlined in [27, 33] we
provide a closed form for the AC hydrodynamic correlators which depends solely on their
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DC values and the pinning frequency. In section 3 we compute the same correlators in
the holographic Q-lattice model with an external magnetic field. Using the known analytic
results for the DC conductivities we provide a closed form for the thermo-electric correlators
in terms of horizon data and one undetermined parameter, the pinning frequency, which
we determine numerically finding excellent agreement with the expected result. Finally we
comment upon some features of the model and we conclude the paper in section 4.

2 Broken translation invariance with non-zero lattice pressure

The equations of motion for the (almost-)conserved hydrodynamic charges are the con-
servation equations for the stress tensor and the charge current. For our system, which
includes the presence of translation breaking scalar operators OI , these take the form

∂µ〈Tµν〉 = F νµ〈Jµ〉 −
(
∂νΦI(xi)

)
〈OI〉 , ∂µ〈Jµ〉 = 0 , (2.1)

where Tµν = 〈Tµν〉 is the stress tensor, Fµν an external electromagnetic field strength,
Jµ = 〈Jµ〉 a U(1) charge current and ΦI(x) are spatially modulated sources for the scalars
OI . In addition we will need the “Josephson relation” which can be thought of as generating
the evolution of the translation breaking scalars. This latter relation must be derived order
by order in derivatives and doing so in the presence of an external magnetic field, and in
the case of explicit breaking an additional non-zero phase relaxation, is one of the main
thrusts of this section.

2.1 Homogeneity and the Ward identities

The conservation equations (2.1) allow one to consider a broad range of translation break-
ing scenarios. Here we will restrict ourselves to systems where the vev of the operators OI
are proportional to the spatial coordinates, 〈OI〉 ∝ xiδiI (in the spontaneous case). On the
other hand, for explicit breaking, we take the source to be proportional to the spatial co-
ordinates ΦI(x) = ϕxiδiI with ϕ a constant. Consequently the space-time derivative of the
sources in the ground state of our system are constants. This symmetry breaking pattern
can be realised in models with spatial translation invariance and where the scalar operators
OI have a constant shift symmetry such that the diagonal subgroup of this pair of sym-
metries remains unbroken. This ensures homogeneity of our equations of motion. Indeed,
this kind of breaking has been extensively considered in the literature as a description of
various systems including lattice phonons [35, 36], classifications of solid state phases [37]
and hydrodynamic [24, 25] and holographic [2–4, 7–9, 16, 17, 19, 20, 22, 23, 32, 38, 39]
constructions of charge density wave state effective field theories.

Regarding the constant ϕ setting the value of the scalar operator source, we can use
it to qualitatively classify the explicitly broken regime into two cases: pseudo-spontaneous
and truly explicit. The first case consists of situations where ϕ � |∂i〈Oi〉| so that the
Goldstone bosons of spontaneously broken translation invariance have acquired a small
mass and can be thought of as pseudo-Goldstone bosons. This small mass is called the
“pinning frequency” which we shall denote by ω2

0. On the other hand, a truly explicit case
occurs when ϕ & |∂i〈Oi〉|. This happens for example in the models of [40], where only the
source is non-zero and the vev is vanishing.
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With these restrictions and definitions in place, we note that from the one-point func-
tion Ward identities (2.1) we can also derive Ward identities for the two-point functions. In
particular, imposing homogeneity of the source term for the scalar operators ∂iΦI = ϕδIi ,
and employing the convention

f(t, ~x) =
∫
d2kdω

(2π)3 f(ω,~k)e−i(ωt−i~k·~x) , (2.2)

one finds at zero-wavevector (~k = 0) the following relations

iω〈QiQj〉 = −
(
iωµδik − F ik

)
〈QkJ j〉+ ϕ〈QiOJ〉δjJ − iω (χππ − µn) δij , (2.3a)

iω〈QiJ j〉 = −
(
iωµδik − F ik

)
〈JkJ j〉+ ϕ〈J iOJ〉δjJ − iωnδij , (2.3b)

iω〈QiOJ〉 = −
(
iωµδik − F ik

)
〈JkOJ〉 − ϕ〈OIOJ〉δiI + δiJ , (2.3c)

where Qi = T it − µJ i is the canonical heat current. These will be crucial in our second
aim, deriving analytic expressions for the hydrodynamic transport coefficients, following
the approach of [33] and [27].

In brief, the method for generating these analytic expressions for the transport coef-
ficients relies on the existence of a ladder structure in (2.3) which reduces the number of
independent correlators from six to three: 〈OIOJ〉, 〈J iOJ〉 and 〈J iJ j〉. As a consequence
one finds that the leading terms in the ω → 0 limit of the original six correlators are all
contained in the low frequency expansion of the independent correlators. Hence, knowing
the DC values of all the correlators is as good as knowing the low frequency expansion
of the independent correlators. Comparing the hydrodynamic expressions at low frequen-
cies with what is imposed by the Ward identities (2.3) allows us to fix the hydrodynamic
transport coefficients analytically when we know the DC terms analytically (such as in our
holographic model).

2.2 Spontaneous case

Given that the formalism is slightly simpler we shall first consider the case of sponta-
neous breaking (ϕ = 0). In the spontaneous case fluctuations of the scalar operators OI

correspond to the Goldstone modes of spontaneously broken translation symmetry.

2.2.1 Constitutive relation

We employ the formalism of [29], making minor appropriate changes to account for the
presence of a magnetic field. The indices I represent coordinates on the unbroken ISO(2)
manifold (the “crystal” in the terminology of [28, 29]) and we define eIµ = ∂µO

I to be
the pullback map from the (2 + 1)-dimensional spacetime onto this 2-dimensional “crystal
manifold”. Subsequently we can define an inverse metric on the crystal hIJ = gµνeIµe

J
ν using

the inverse spacetime metric gµν . The tensor hIJ can be used to raise crystal indices. We
further adopt the convention of [29] and define the lower index tensor hIJ by hIJ = (h−1)IJ .
Crystal indices will be lowered with respect to hIJ .

The non-linear strain tensor uIJ measures the distortions of the crystal from a reference
“rest” configuration denoted hIJ . This non-linear strain tensor is defined as the difference
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between hIJ and this reference configuration i.e. uIJ = (hIJ − hIJ)/2. For our purposes
we choose the reference configuration hIJ = δIJ/α

2 because it respects homogeneity and
spatial isotropy. We interpret the constant parameter α to be the inverse size of the crystal.
We make a choice to set it to one in the following since situations where α 6= 1 can be
obtained by a trivial rescaling of the fields OI → αOI [28].

Assuming small strain we can construct the free energy F of the crystal plus fluid order
by order in the amplitude of uIJ . This free energy is the integral over the total pressure
F =

∫
d2x
√
−gP with the total pressure up to and including quadratic terms in the strain

given by

P = Pf −mB + Pl
(
uII + uIJuIJ

)
− 1

2K
(
uII

)2
−G

(
uIJuIJ −

1
2
(
uII

)2
)

+O(u3) . (2.4)

In the above expression, Pf is the thermodynamic fluid pressure, m the magnetisation den-
sity, Pl the lattice pressure and K and G are respectively the bulk and shear modulus. This
should be compared to the total pressure P as reported in [27] with the major difference
between our current system and those considered in [27] being the non-zero lattice pressure
(Pl) term.

With the free energy to hand (2.4) we can now order by order in derivatives construct
the constitutive relations. To keep our notation compact we will use the projectors Pµν =
gµν + uµuν and P Iµ = PµνeIν and define the electric field by Eµ = Fµνu

ν . From here, the
constitutive relations for an isotropic fluid in the Landau frame are

Jµ = nuµ − P IµσIJP Jν
(
T∂ν

µ

T
− Eν

)
− P IµγIJuνeJν , (2.5a)

Tµν = (ε+ P )uµuν + Pgµν − rIJeIµeJν − P I(µP Jν)ηIJKLP
K(ρPLσ)∇ρuσ , (2.5b)

where P is the total pressure of (2.4), ε, n and s are the total energy, charge and entropy
densities and rIJ is a thus-far undetermined quantity - the elastic stress tensor. These
quantities are related by the thermodynamic relations

dP = s dT + n dµ+m dB + 1
2rIJh

IJ , ε+ P = sT + nµ , (2.6)

which defines rIJ in terms of the derivative of P . The total charge density and entropy
can further be decomposed into free quantities, given by variation of Pf with respect to
the thermodynamic parameters dPf = sf dT +nf dµ+m dB, and the lattice contributions
dPl = sl dT+nl dµ. We will assume that both the free and lattice thermodynamic quantities
have formally similar integrated first laws, up to contribution of the magnetisation, i.e. εf +
Pf = sfT + nfµ+mB and εl + Pl = slT + nlµ.

In addition to the constitutive relations for the (almost-)conserved currents Jµ and Tµν ,
as discussed above, we must supply an evolution equation for the crystal (or Goldstone)
fields. At zeroth order in hydrodynamics such equations correspond to constancy of the
scalars along a fluid worldline. At first order in derivatives one finds

σφIJu
µeIµ + γ′JKP

Kµ
(
T∂µ

µ

T
− Eµ

)
+∇µ

(
rJKe

Kµ
)

= Kext
J , (2.7)
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where σIJ , γIJ , γ′IJ , σ
φ
IJ and ηIJKL are all dissipative transport matrices and Kext

J is
an external background source coupled to OI that will be zero in global thermodynamic
equilibrium. We will restrict ourselves to models which have time-reversal symmetry, such
that the Onsager relation 〈OIJ j〉 = −〈J iOJ〉 requires that γ′IJ = −γIJ [28].

The form of the constitutive relations (2.5) is the same for all values of uIJ - in
particular one can in principle use the complete pressure and not its small amplitude
expansion (2.4). However, in practice, it is sufficient to consider fluctuations about a state
of global thermodynamic equilibrium and linearise in small amplitude uIJ . In this small
strain regime the transport coefficient matrices can be taken to be strain independent at
first order in derivatives. Additionally, in the presence of a constant, background, external
magnetic field, we must allow for the possibility of Hall transport coefficients [33] and
subsequently decompose the transport matrices as(

γ, σ, σφ
)
IJ

=
(
γ, σ, σφ

)
(L)
δIJ +

(
γ, σ, σφ

)
(H)

FIJ , (2.8)

where we have defined FIJ = Fµνe
µ
I e
ν
J . As we decompose with respect to FIJ rather than

εIJ the Hall coefficients are spatial parity invariant. We identify σ(L,H) to be the longitu-
dinal and Hall components of the charge conductivity, σφ(L,H) to be the crystal diffusivity
components and γ(L,H) the mixed scalar-charge conductivities. In principle we could also
decompose ηIJKL in terms of longitudinal and Hall bulk and shear viscosities, but because
we are only interested in the diffusive sectors at zero wave-vector the viscous terms will
not be relevant.

2.2.2 AC conductivities

We will fluctuate about a flat background gµν = ηµν , with a constant magnetic field
F 12 = B and vanishing external source for the Goldstone field Kext

I = 0. The corresponding
equilibrium configuration has a fixed temperature T = T0 and chemical potential µ = µ0,
no spatial velocity uµ = (1,0) and a uniform value for the scalars OI = xI . We linearise
the constitutive relations around this equilibrium configuration,1

T → T0 + δT , µ→ µ0 + δµ ,

uµ → (1, vi) , OI → xI − δOI , (2.9)

and find the two-point functions by solving the non-conservation equations for fluctuations
of the hydrodynamic variables in the presence of plain wave sources for the U(1) field
strength δF 0i ∼ exp(−iωt + ikjx

j) and the source terms δKext
I and δgµν . Following this

procedure allows us to find the independent correlators: 〈J iJ j〉, 〈J iOJ〉 and 〈OIOJ〉. Sub-
sequently, by applying the Ward identities (2.3) we can derive expressions for correlators
involving the canonical heat current.

We have chosen to focus on the canonical heat current as it is the natural quantity
that appears in the Ward identities (2.3) and we wish to connect our work to previous
works [2, 3, 18, 28, 29, 31]. This is not the thermodynamic heat current from which

1Note that the sign of the δOI is the opposite to that used in [27] to match the conventions of [29].
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positivity constraints for entropy production can be derived. Interesting results are known
about the form of the correlators involving the thermodynamic heat current [6, 10]; in
particular, the lattice pressure no longer appears in the finite frequency, linearised response
of the system. An interested reader can readily obtain some correlators involving the
thermodynamic heat current, from our constitutive relations (2.5a) and (2.7), by computing
the variation of the U(1) charge current and scalar with respect to the metric.

The above approach, involving explicit electric and Goldstone sources, should be con-
trasted to the more standard Martin-Kadanoff method which is made difficult in the pres-
ence of lattice pressure due to the appearance of double time and mixed space/time deriva-
tives in the constitutive relations (this is hidden in the rIJ containing terms of (2.5a)
and (2.7)).

We define the following AC conductivities in the spontaneous case2(
σij , αij , γiJ

)
(ω) =

( 1
iω
〈J iJ j〉, 1

iω
〈QiJ j〉, 〈J iOJ〉

)
, (2.10)(

κij , XIJ , θiJ
)

(ω) =
( 1
iω
〈QiQj〉, iω〈OIOJ〉, 〈QiOJ〉

)
. (2.11)

We have split them into two sets; the leading low frequency terms of the first set (2.10)
are fixed by symmetry [27, 33] and are the same for every system satisfying our general
assumptions. The second set (2.11) depend on the specific microscopic theory of the system.
With that said, due to the ladder nature of the Ward identities (2.3), the arbitrary frequency
values of αij(ω), κij(ω) and θiJ(ω) can all be derived from σij(ω) and θiJ(ω). The coefficient
XIJ(ω) stands on its own at the level of the spontaneous two-point Ward identities being
not related to any of the others. Hence the independent conductivities are σij(ω), γiJ(ω)
and XIJ(ω) and we shall give hydrodynamic expressions for these.

Since the analytic expressions for the conductivities are rather large, we employ a
matrix notation similar to the one used in [27]. We construct the following matrices of
hydrodynamic transport coefficients (first line) and AC conductivities (second line)

(σ̂, σ̂φ, γ̂) = (σ, σφ, γ)(L)12 − (σ, σφ, γ)(H)F , (2.12)
(σ̂, α̂, κ̂, γ̂, X̂, θ̂)(ω) = (σ, α, κ, γ,X, θ)(L)(ω)12 − (σ, α, κ, γ,X, θ)(H)(ω)F−1 . (2.13)

We also define the following additional terms for notational convenience

σ̂′ = γ̂2 + σ̂ · σ̂φ ρ̂ = 2γ̂ + F · σ̂ − nf12 . (2.14)

The coefficients of (2.12) are the transport coefficients appearing in the constitutive rela-
tions (2.5). In terms of them the three independent AC conductivities are

σ̂(ω) = Λ̂−1 ·
[
ωPl (inf ρ̂− ωwf σ̂) + n2

f σ̂φ − (nfF + iωχππ12) σ̂′
]
, (2.15a)

γ̂(ω) = Λ̂−1 ·
(
iωwf γ̂ − nf σ̂φ + F · σ̂′

)
, (2.15b)

X̂(ω) = Λ̂−1 · (F · ρ̂+ iωwf12 − σ̂φ) , (2.15c)

Λ̂ = ωPl (iF · ρ̂− ωwf12) + σ̂φ(Fnf − iωχππ12)− F 2 · σ′ , (2.15d)
2We explicitly include an argument in the AC conductivities of (2.10) and (2.11) to differentiate them

from hydrodynamic transport coefficients as there is some notational overlap between such quantities in
the literature e.g. the hydrodynamic electric conductivity σij and the AC electric conductivity σij(ω).
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where we defined wf to be the fluid enthalpy density wf = εf +Pf . The above expressions
are a result of hydrodynamics alone following from using our constitutive relations (2.5).

Undetermined in the above are the hydrodynamic transport coefficients: σIJ , σφIJ and
γIJ . For the spontaneous case, we will write these coefficients as functions of XiJ(0), θIJ(0)
and κij(0) by employing the Ward identities (as in [27, 33]). We find

σ̂ = Φ̂−1 ·
(
κ̂(0) + 2χππ θ̂(0)− χ2

ππX̂(0)− µ2nfF
−1
)

+ nfF
−1 , (2.16a)

σ̂φ = Φ̂−1 ·
[
F · (P 2

l X̂(0)− κ̂(0)− 2Plθ̂(0)) + µ(µnf − 2wf )12
]
· F , (2.16b)

γ̂ = Φ̂−1 ·
[
F ·

(
PlχππX̂(0) + (wf − 2χππ)θ̂(0)− κ̂(0)

)
+ µ(µnf − wf )12

]
,

(2.16c)

Φ̂ =
(
µ12 − F · θ̂(0)

)2
+ (F · κ̂(0)− µ(µnf − 2χππ)12) · F · X̂(0) . (2.16d)

The expressions (2.15) and (2.16) correctly reduce to the expressions obtained in [27] at
Pl = 0 once appropriate identifications are made between the transport coefficients to
account for the differing ways that the constitutive relations were constructed.

2.3 Pseudo-spontaneous and explicit cases

We now consider the cases of pseudo-spontaneous and explicit breaking of translation
invariance by the scalars. The distinction between these two cases is somewhat loose, but
we remind the reader that we identify the former as satisfying ϕ� |∂i〈Oi〉| while the latter
consists of all other situations. Again, we will employ the formalism of [29], but now we
must account for a non-zero phase relaxation in addition to the existence of an external
magnetic field.

2.3.1 Constitutive relation

In the explicit case the procedure for constructing the effective hydrodynamic theory is
broadly the same. In particular, the constitutive relations (2.5) and charge conservation
equations remain unchanged modulo the inclusion of an explicit mass term for the scalar
fields in the evolution equation for the spatial momentum

∂tP
i + ∂jT

ij = F iµJµ −Kext
I eIi + ω2

0χππO
IδIi , (2.17)

where ω2
0 is the pinning frequency. This addition follows directly from the one-point Ward

identities (2.1) when the scalars are sourced by a homogeneous and isotropic term of the
form ΦI = ϕxI . In particular, we identify ϕ = ω2

0χππ as in [27].
While the conservation equations are mostly unchanged, to describe the evolution of

the scalars accurately we must also account for the fact that they are no longer massless and
will have a tendency to spread out in space-time. We can phenomenologically track this
effect by adding a non-zero phase relaxation term ΩIJOJ to the Josephson relation [27] i.e.

σφIJu
µeIµ + γ′JKP

Kµ
(
T∂µ

µ

T
− Eµ

)
+∇µ

(
rJKe

Kµ
)

= ΩIJOJ +Kext
J . (2.18)
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The phase-relaxation tensor ΩIJ , like the other hydrodynamic transport coefficients dis-
cussed here, decomposes with respect to SO(2) rotation invariance and microscopic par-
ity invariance

ΩIJ = Ω(L)δ
IJ + Ω(H)F

IJ . (2.19)
While in principle the new phase relaxation term in (2.18) is independent of the other
transport coefficients, it turns out that Onsager relations impose a constraint on its value,
in particular we found that

ΩIJ = ω2
0χππδ

IJ . (2.20)
This may seem surprising given that in previous works [27] the phase relaxation is an
independent transport coefficient with a non-zero Hall term. What is missing here is that
compared to the formalism of [27], the time evolution of the scalar field (i.e. the first term
of (2.18)) is not normalised to the identity matrix. Consequently, in the present formalism,
the inverse crystal diffusivity (σφ)−1 plays the same role as the phase-relaxation tensor
of [27]. To compare the results with [27], in the limit of vanishing lattice pressure, one
must rescale (2.18) with the inverse crystal diffusivity and identify the phase relaxation
tensor of [27] to be ω2

0χππ(σφ)−1.

2.3.2 AC conductivities
To compute the AC conductivities and identify the hydrodynamic transport coefficients we
proceed as for the spontaneous case. The global thermodynamic equilibrium configuration
is unchanged and we can fluctuate again with (2.9) to find the linearized expressions.
However, to express the results in a compact form we once more require some additional
notation. To begin with we define two new AC transport terms:

($iJ , ζIJ)(ω) = 1
iω

(
〈J iOJ〉, 〈OIOJ〉 − 1

ϕ
δIJ
)
. (2.21)

Contrasted to (2.10) and (2.11) these contain differing overall powers of the frequency
reflecting the differing behaviour of the explicit correlators at low frequencies. Subsequently
we decompose our AC conductivities as new matrices

(σ̂, α̂, κ̂, $̂, ζ̂)(ω) = (σ, α, κ,$, ζ)(L)(ω)12 + (σ, α, κ,$, ζ)(H)(ω)F . (2.22)

The use of F in the explicit case, rather than F−1 as we used in the spontaneous case (2.13),
reflects the smoothness of these latter conductivities as B → 0. We also introduce one
additional new quantity,

Γ = ω2
0χππ − ω2Pl , (2.23)

not to be confused with any explicit momentum loss tensor.
With these definitions to hand we find that the three independent AC correlators are

then given by

σ̂(ω) = Ξ̂−1 ·
[
Γωwf σ̂ + ωn2

f σ̂φ − i(ω2 − ω2
0)χππσ̂′ − nf

(
iΓρ̂+ ωF · σ̂′

)]
, (2.24a)

$̂(ω) = Ξ̂−1 ·
(
ωwf γ̂ + i(nf σ̂φ − F · σ̂′)

)
, (2.24b)

ζ̂(ω) = 1
ω2

0χππ
Ξ̂−1 ·

(
ωχππσ̂φ − ωPl (F · ρ̂+ iωwf12) + iF · (nf σ̂φ − F · σ̂′)

)
, (2.24c)

Ξ̂ = Γ (ωwf12 − iF · ρ̂) + ωnfF · σ̂φ − i(ω2 − ω2
0)χππσ̂φ − ωF 2 · σ̂′ . (2.24d)
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Consequently, by employing the Ward identities (2.3) the three hydrodynamic transport
matrices σ̂, σ̂φ and γ̂ can be expressed in terms of the DC values of the electric, thermo-
electric and thermal conductivity σ̂(0), α̂(0) and κ̂(0) hydrodynamic transport coefficients:

σ̂ = −Ψ̂−1 · π̂(0) , (2.25a)

σ̂φ = Ψ̂−1 ·
[
w2
f12 + (F · π̂(0)− 2wf (α̂(0) + µσ̂(0))) · F

]
+ nfF , (2.25b)

γ̂ = Ψ̂−1 · [F · π̂(0)− wf (α̂(0) + µσ̂(0))] + nf12 , (2.25c)
Ψ̂ = µ2σ̂(0) + 2µα̂(0) + κ̂(0) , (2.25d)

where we have defined
π̂(0) = α̂2(0)− κ̂(0) · σ̂(0) , (2.26)

i.e. minus the determinant of the DC thermoelectric conductivity matrix. Notice that,
compared to the spontaneous case, in the explicit case the DC electric, thermo-electric and
charge-scalar conductivities are not fixed by symmetries. This implies that the value of the
transport coefficients (2.25) can be in principle obtained in a real experiment by measuring
only the DC electric thermo-electric and thermal conductivities.

Finally, we can again take the limit of Pl → 0 and match these expressions, (2.24)
and (2.25), against those in [27] with the appropriate identifications. The agreement
is perfect.

3 Holographic model

To test our hydrodynamic theory in a precise scenario we now study the transport prop-
erties of a holographic model consisting of a bidimensional ‘Q-lattice’ [41] with action

S =
∫
d3+1x

√
−g
(
R− V [φ]− 1

2(∂φ)2 − Z[φ]
4 F 2 − 1

2Y [φ]
∑
i=1,2

(∂ψi)2
)
. (3.1)

This model is suitable for describing the symmetry breaking pattern we considered in
previous sections since it enjoys a shift symmetry ψi → ψi+ci. Indeed, we will impose that

ψi = kxi , xi = {x, y} , (3.2)

which breaks spatial translations and the shift symmetry to a diagonal U(1). This form
for the background values of ψi allow us to find solutions where the metric, U(1) gauge
field and scalar φ in (3.1) depend only on the radial coordinate; translations are broken
homogeneously [2–4, 8, 9, 30]. From this point onward, given our choice of background
axion in (3.2) we will now identify capital Latin indices I, J,K,L, . . . which labeled crystal
directions with the equivalent spatial indices i, j, k, l, . . ..

We take as an ansatz for our background solution to the equations of motion coming
from (3.1) the following:

ds2 = 1
r2

(
−f(r)dt2 + dr2

f(r) + g(r)d~x2
)
, A = a(r)dt−B ydx , φ = φ(r) . (3.3)
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The expressions in (3.3) can accommodate configurations which are asymptotic to AdS,
provided we impose particular φ→ 0 asymptotics for the scalar couplings

V [φ] = −6− φ2 +O(φ3) , Z[φ] = 1 +O(φ) , Y [φ] = Υ
2 φ

2 +O(φ3) . (3.4)

As has been thoroughly discussed in [2, 4, 8], the asymptotic behavior of φ towards the
boundary of AdS will determine whether translations are broken explicitly or sponta-
neously. Given the asymptotics of (3.4), the scalar φ(r) behaves as

φ(r) = λr + φvr
2 +O(r3) . (3.5)

Briefly, these asymptotic choices for the scalar and axions allow one to repackage the fields
(φ, ψi) into a pair of complex scalars Φi ∼ φ exp(iψi) as in [42]. Solutions with λ = 0 corre-
spond to a theory where the operators dual to ψi break translations spontaneously, while
backgrounds with λ 6= 0 break them explicitly. At zero magnetic field, both spontaneous
and explicit solutions with potentials satisfying (3.4) have been constructed in [2–4, 30].
In this section we will explore such solutions further, focusing on their transport properties
in the presence of an external magnetic field, and for a choice of potentials where

V [φ] = −6 cosh
(
φ√
3

)
, Z[φ] = exp

(
− φ√

3

)
, Y [φ] =

(
1− eφ

)2
. (3.6)

Consequently we set Υ = 2 in (3.4).

3.1 Summary of the thermodynamics

To match the holographic model to our hydrodynamic theory, we first need to determine
the thermodynamic quantities in the boundary field theory corresponding to our back-
grounds (3.3). On the boundary, the thermodynamic state of our theory is determined by
the temperature T , the chemical potential µ, the external magnetic field B and in principle
the wavelength k of the crystal. In our models however we will treat k as an external pa-
rameter and not minimize the free energy with respect to this quantity. That this approach
gives, at the level of the transport properties, the same result as a more sophisticated model
(see e.g. [22, 23]) where k is fixed by minimizing the free energy, is discussed for example
in [2, 9]. Additionally, to specify the groundstate at the boundary we require either the vev
of the scalar in the spontaneous case (φv) or the boundary source (λ) in the explicit case.

As detailed in appendix C we construct numerical solutions corresponding to non-zero
temperature and charge density states in an external magnetic field. In addition to (3.5),
one can show that the boundary behavior of the functions in our background ansatz (3.3)
is of the form

f(r) = 1− λ2

4 r
2 − εf

6 r
3 +O(r4) , (3.7a)

g(r) = 1− λ2

4 r
2 − λφv

3 r3 +O(r4) , (3.7b)

a(r) = µ− nfr +O(r3) , (3.7c)

– 11 –



J
H
E
P
1
1
(
2
0
2
1
)
0
1
1

where in the gauge field expansion (3.7c) we recognise the chemical potential µ, and the
free electric charge density nf . Similarly in (3.7a) we find the energy density εf appearing
at some subleading order. Solutions dual to states at finite temperature present a horizon
at a finite rh in the bulk. The asymptotic behavior of our background fields towards the
horizon read

ds2 = −4πT (rh − r)dt2 + dr2

4πT (rh − r)
+ sf

4π (dx2 + dy2) , (3.8)

a(r) = ah,1(rh − r) + . . . , φ = φh + . . . , (3.9)

where T and sf correspond respectively to the temperature and the free entropy density
of the dual system.

We can make further progress in determining the thermodynamics of the system in
terms of the near-horizon asymptotics of our solutions by making use of two radially-
conserved quantities that follow from the background equations of motion. First, the
Maxwell equation implies the conservation of

− g(r)Z[φ(r)]a′(r) , (3.10)

which asymptotes to the free electric charge density nf at the boundary (hence the overall
sign choice). Consequently, the leading term in the near horizon expansion of the gauge
field (ah,1) can be given in terms of the boundary electric charge density n,

ah,1 = −4πnf
sfZh

, Z[φh] = Zh . (3.11)

The second radially conserved quantity follows from the Einstein equations which imply[
nfa(r) + g2(r)

r2

(
f(r)
g(r)

)′
− k2IY (r)−B2IZ(r)

]′
= 0 , (3.12)

where we have introduced the integrals

IY (r) =
∫ r

w=0
dw

Y [φ(w)]
w2 , IZ(r) =

∫ r

w=0
dw

Z[φ(w)]
g(w) . (3.13)

The former of these represents the thermodynamic response of the theory to broken trans-
lation invariance which is captured in the “lattice pressure” [28] Pl = −k2IY (rh), while
the latter is related to the magnetisation density, m = −BIZ(rh), as discussed in [34, 43].
Importantly, at the horizon and boundary (3.12) takes the following values

boundary : µnf + λφv −
ε

2 , horizon : −sfT +mB + Pl . (3.14)

Equating these expressions shows that these thermodynamic quantities satisfy a Smarr-
type relation

εf = 2 (sfT + µnf −mB − Pl + λφv) . (3.15)
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3.2 Conserved bulk radial currents at the fluctuation level

It will be possible to compute analytically the zero frequency value of several correlators
in the holographic model. These will include our input data for the hydrodynamic model
(e.g. the DC conductivities3). To do this we shall turn on a constant background electric
field at the level of fluctuations and compute the response of the theory. We therefore
consider the following perturbations for the gauge field and metric

δAx(r) = ax(r)− px(r)t , δgtx(r) = 1
r2 (hx(r)− p̃x(r)t) , δgrx(r) = 1

r
h̃x(r) , (3.16a)

δAy(r) = ay(r)− py(r)t , δgty(r) = 1
r2 (hy(r)− p̃y(r)t) , δgry(r) = 1

r
h̃y(r) , (3.16b)

where the radial functions px(r), py(r), p̃x(r) and p̃y(r) will correspond to turning on a
small electric field at the fluctuation level. The difference between the spontaneous and
explicit case will be encoded in the axion fields. In the former case they are taken to have
the form

δψx(r) = χx(r)
r
− kδVxt , δψy(r) = χy(r)

r
− kδVyt , (3.17)

where δVx and δVy are sliding modes which encode an ambiguity in the definition of the
vev of the axions at the boundary [2, 5, 6, 46]. This ambiguity is fixed by conditions at
the horizon. Meanwhile in the explicit case the axions are purely radial functions

δψx(r) = χx(r) , δψy(r) = χy(r) , (3.18)

with no sliding mode ambiguity.
The explicit time dependence of the ansätze (3.16) will drop out from the linearised

equations of motion provided that px(r), py(r), p̃x(r) and p̃y(r) take particular forms:

px(r) = p(0)
x + nf Ēxa(r) , p̃x(r) = −nf Ēxf(r) , (3.19a)

py(r) = p(0)
y + nf Ēya(r) , p̃y(r) = −nf Ēyf(r) , (3.19b)

where p(0)
x , p(0)

y , Ēx and Ēy are free constants. This perturbation represents a stationary
state where the applied electric field is balanced against momentum loss at the fluctuation
level. From this starting point one can construct Frobenius expansions for the fluctua-
tion fields in the near horizon region and at the boundary. At the horizon we impose
regularity conditions.

3.2.1 Spontaneous case

Given the perturbations we have switched on, it is relatively straightforward to massage
the bulk equations of motion into sets of conservation equations for radial currents. For
example, from the Maxwell equations for the gauge field perturbation one can identify the
following radially conserved currents:

δJx(r) = Z[φ(r)]f(r)
(
a′x(r) + rB

g(r) h̃y(r)
)
− nf
g(r)hx(r)− nfBĒyIZ(r) , (3.20a)

δJy(r) = Z[φ(r)]f(r)
(
a′y(r)−

rB

g(r) h̃x(r)
)
− nf
g(r)hy(r) + nfBĒxIZ(r) . (3.20b)

3See also [5, 6, 44, 45] for the derivation of holographic DC quantities in analogous models.
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At the boundary these currents encode electric charge conservation in the zero frequency
limit and their form as expressed above does not depend on whether we are considering
the spontaneous or explicit case. We can arrange for these bulk currents to tend to the
vev of the electric charge current as r → 0 i.e. δJi(0) = limr→0 ∂rai(r) = 〈J i〉. We do not
make any explicit magnetisation subtractions. This requires that we make the following
identifications

p(0)
x =

(
sfT −mB − k2IY

)
Ēx −

B

nf
〈Jy〉+ δsx

nf
, (3.21a)

p(0)
y =

(
sfT −mB − k2IY

)
Ēy + B

nf
〈Jx〉+ δsy

nf
, (3.21b)

δsi := kφ2
vχi(0) , (3.21c)

in the spontaneous case where 〈J i〉 is the vev of the total spatial electric charge current
at the boundary and δsi is the boundary source for the Goldstone field. As the values of
p

(0)
x and p

(0)
y were free in (3.19) this presents no difficulty. That the identification of the

phonon source is correct and unambiguous was addressed in [4, 7].
There are also a pair of conserved currents related to heat transport. These have

the form

δQx(r) = −f(r)
(
hx(r)
r2

)′
+
(
f(r)
r2

)′
hx(r) +

(
a(r)− B2

nf
IZ(r)

)
〈Jx〉

+BĒy
(
MQ(r)− (sfT + nfa(r)−mB − k2IY )IZ(r)

)
− B
nf
δsyIZ(r)− k2δVxIY (r) , (3.22a)

δQy(r) = −f(r)
(
hy(r)
r2

)′
+
(
f(r)
r2

)′
hy(r) +

(
a(r)− B2

nf
IZ(r)

)
〈Jy〉

−BĒx
(
MQ(r)− (sfT + nfa(r)−mB − k2IY )IZ(r)

)
+ B

nf
δsxIZ(r)− k2δVyIY (r) , (3.22b)

where we have taken4

MQ(r) = −2nfB
∫ r

0
dw

Z[φ(w)]a(w)
g(w) , MQ = MQ(rh) . (3.23)

It can be shown using the asymptotic expansions that these expressions (3.22) tend to the
canonical heat current at the boundary; again we have made no magnetisation subtractions.

4There is an ambiguity in the definition of MQ(r) as it appears in the bulk heat current. In particular,
redefining MQ(r) to be the linear combination

MQ(r) = −2nfB
∫ r

0

dw

g(w)

(
(α− 1)a(w)Z[φ(w)] − (α+ 1) IZ(w)

Z[φ(w)]

)
,

where α is an arbitrary constant, also leads to a conserved heat current that tends to the correct form at
the boundary. However, it differs at the horizon and leads to a shift of the thermal Hall conductivity. We
have chosen MQ such that MQ(rh) = ME − µm where ME is the thermodynamic magnetisation energy.
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Additionally there are radially conserved currents corresponding to fluctuations of the
axions. These turn out to be linear combinations of the bulk heat and electric charge
currents so we relegate their expressions to appendix B.

Comparing the bulk electric charge current and heat currents at the horizon and bound-
ary allows us to compute the DC conductivities in the standard manner. Firstly, it is
possible to identify the boundary electric field (Ei) and thermal gradients (∂iT/T ) from
the Frobenius expansions

Ei = − lim
r→0

∂t

(
δai + µr2

f(r)δgti

)
,

∂iT

T
= lim

r→0
∂t

(
r2

f(r)δgti

)
. (3.24)

Substituting asymptotic solutions for our field fluctuations into (3.24) we find the following
relations

〈J i〉 = (F−1)ij
(
nfEj + (sfT − Pl −mB)∂jT

T
− δsj

)
, Ēi = ∂iT

nfT
. (3.25)

Consequently in the spontaneous case one can immediately read off all DC values of the
transport coefficients involving the electric charge current i.e.

σ(H)(0) = −nf , α(H)(0) = − (sfT −mB − Pl) , γ(H)(0) = −1 , (3.26)

with all other conductivities involving the current operator being zero. We can derive
these without reference to the near horizon values of the bulk current because they are the
transport coefficients dictated by symmetry.

The other DC observables in the spontaneous case can be found by matching the near
horizon and boundary values of the conserved radial heat currents. Unfixed thus far are
the expectation value of the boundary stress tensor and the values of the sliding mode
coefficients δVi. Employing our expressions (3.25), one can write the bulk heat currents
δQi in terms of Ei, ∂iT/T and δsi. The resultant thermal conductivities obtained from
this bulk current are then:

κ(L)(0) = 1
T

(
Zh (sfT − Pl)2

n2
f +B2Z2

h
+ 4πP 2

l

sfYh

)
, κ(H)(0) = − nf (sfT − Pl)2

T
(
n2
f +B2Z2

h

) − MQ

nfT
, (3.27)

and the thermal-Goldstone zero frequency terms are

θ(L)(0) = 4πIY
sYh

− (sfT − Pl)Zh
n2
f +B2Z2

h
, θ(H)(0) = nf (sfT − Pl)Zh

n2
f +B2Z2

h
. (3.28)

Meanwhile, the DC term corresponding to the Goldstone-Goldstone correlator can be ob-
tained from (2.7). To do this we work in equilibrium, vary both sides of equation (2.7)
with respect to δsi and then take the limit of ω → 0. In this limit we can identify Xij(0)
with the residue of 〈OiOj〉 at ω = 0, see (2.15). Consequently we find

Xij(0) = −δV
i

δsj
, (3.29)

As we have already determined the sliding mode δVi in terms of the boundary sources (the
expression is too long to include here) we readily find

X(L)(0) = −
(

4π
k2sfYh

+ Zh
n2
f +B2Z2

h

)
, X(H)(0) = nf

(n2
f + Z2

hB
2)
. (3.30)
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3.2.2 Explicit case

The expressions for the bulk electric charge currents (3.20) are unchanged between the
explicit and spontaneous case. However the identifications of the constants p(0)

x and p
(0)
y

of (3.19) are different

p(0)
x =

(
sfT −mB − k2IY

)
Ēx −

B

nf
〈Jy〉 − 〈O

x〉
nf

, (3.31a)

p(0)
y =

(
sfT −mB − k2IY

)
Ēy + B

nf
〈Jx〉 − 〈O

y〉
nf

, (3.31b)

〈Oi〉 := kλ2χ′i(0) . (3.31c)

Consequently, in the explicit case, the expressions for the boundary current (3.25) are
modified to

〈J i〉 = (F−1)ij
(
nfEj + (sfT − k2IY −mB)∂jT

T
+ 〈Oj〉

)
, (3.32)

where again we have employed (3.24).
The bulk (radially conserved) heat currents in the explicit case are

δQx(r) = −f(r)
(
hx(r)
r2

)′
+
(
f(r)
r2

)′
hx(r)

+
(
a(r)− B2

nf
IZ(r)

)
〈Jx〉+ B

nf
〈Oy〉IZ(r)

+BĒy
(
MQ(r)− (sfT + nfa(r)−mB − k2IY )IZ(r)

)
, (3.33)

δQy(r) = −f(r)
(
hy(r)
r2

)′
+
(
f(r)
r2

)′
hy(r)

+
(
a(r)− B2

nf
IZ(r)

)
〈Jy〉 − B

nf
〈Ox〉IZ(r)

−BĒx
(
MQ(r)− (sfT + nfa(r)−mB − k2IY )IZ(r)

)
, (3.34)

These differ from the spontaneous case through the dropping of terms dependent on the
sliding modes δVi and the replacement of δsi by terms proportional to 〈Oi〉.

Once more, we use our identifications in (3.24), and the matching of the bulk currents
at boundary and horizon, to express the subleading term in the boundary expansion of
the bulk graviton and 〈Oi〉 in terms of the boundary electric field Ei and the temperature
gradient ∂iT/T - there is no explicit axion source term in our expressions to worry about.
Doing this fixes 〈Oi〉 appearing in (3.32) in terms of the boundary fluctuations of tem-
perature and electric field. Consequently we can read off the various DC thermo-electric
conductivities. For example, the electric charge conductivities are

σ(L)(0) =
k2sfYh

(
k2sfYhZh + 4π(n2

f +B2Z2
h)
)

(4πnfB)2 + (k2sfYh + 4πZhB2)2 , (3.35)

σ(H)(0) = −
8πnf

(
k2sfYhZh + 2π(n2

f +B2Z2
h)
)

(4πnfB)2 + (k2sfYh + 4πZhB2)2 . (3.36)
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Figure 1. Spontaneous case AC correlators at k/µ = 10−1. Grey dots are numerical data, solid
lines are our analytic hydrodynamic expressions and the dashed grey line is the DC value of the
coefficient. Left column: the thermal conductivities (κ(ω)) at T/µ = 0.06 and B/µ2 ≈ 4.4× 10−4.
Central column: the heat-Goldstone correlators (θ(ω)) at T/µ = 0.04 and B/µ2 ≈ 3.9×10−4. Right
column: the Goldstone-Goldstone correlators (X(ω)) at T/µ = 0.02 and B/µ2 ≈ 3.5× 10−4.

The rest of the expressions are relegated to appendix A. Our expressions involving the
conserved currents agree with those computed in [34] and we have also determined the zero
frequency limits for correlators involving the scalars. Finally, from the DC limit of the
electric-axion correlator one can identify

ζ(L)(0) = nf (k2sfYh)2

(4πnfB)2 + (k2sfYh + 4πB2Zh)2 , (3.37)

ζ(H)(0) =
k2sfBYh

(
k2sfYhZh + 4π

(
B2Z2

h + n2
f

))
(4πnfB)2 + (k2sfYh + 4πB2Zh)2 (3.38)

The remaining DC terms in the explicit case are listed in appendix A.

3.3 AC correlators

With exact expressions for the DC values of the various correlators we can now employ
our hydrodynamic expressions for the correlators and compare to the equivalent quantities
obtained from holography. Naturally many of our observations in this section will be model
dependent at the quantitative level; however certain features we expect to hold in general
models. Moreover, we can put our hydrodynamic theory to a precision test.

3.3.1 Spontaneous case

There are twelve potential AC correlators to display including the transport coefficients,
the current-Goldstone correlators and the Goldstone-Goldstone correlators. Given the
difficulties in the past of matching the thermal DC conductivities to hydrodynamics we
shall choose to display these and not the other conductivities as they tend to be quite
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Figure 2. The pinning frequency against λ/µ at k/µ = 0.1, B/µ2 = 10−2 and T/µ = 5 × 10−2.
The solid purple line is a best fit to the data points with an expression proportional to

√
|λ|/µ.

robust to small errors. We shall also show the AC thermal-Goldstone correlator and the
Goldstone-Goldstone correlators with a magnetic field as these types of correlators are
novel in the literature.

As can be seen in figure 1 the matching between our analytic hydrodynamic expressions
and the holographic model is excellent over a wide range of parameters. In fact, it is
somewhat surprising that they work so well down to rather low temperatures and relatively
high magnetic fields. There exists one peak at ω > 0 in the electric, thermo-electric and
thermal conductivities corresponding to the cyclotron mode.

Somewhat new to the literature, but perhaps not unexpected, is the smoothing of
the low frequency Goldstone-Goldstone correlators. It was observed in previous works [7]
that these correlators have a double pole in frequency located at ω = 0. Taking the zero
magnetic field limit of our longitudinal expression for the Goldstone-Goldstone correlator
one again finds this double pole emerging. For finite B however one of the degenerate poles
is displaced and becomes the cyclotron modes; leaving an isolated pole at ω = 0. This can
be seen from the lack of any ω → 0 divergence in X(L)(ω) and X(H)(ω) as displayed in
figure 1.

3.3.2 Explicit case

Hydrodynamics and the DC conductivities almost fix the transport coefficients appearing
in our hydrodynamic expressions, (2.25), completely. There remains a single parameter
that must be determined numerically: ω0. This is the pinning frequency of the phonon-like
mode. There are a couple of methods by which this may be determined, and we have
tested that both are consistent. Firstly, one may examine the quasinormal modes of the
theory and solve for ω0 using their position in the complex plane. Alternatively, one may
take any of the correlators at low frequency (so that we are in the hydrodynamic regime)
and request that the analytic expression match the numerically determined one. Doing so
allows one to solve for the pinning frequency.

Regarding the pinning frequency, for a range of |λ/µ| ∈ (10−5, 10−2) we have found
that the pinning frequency ω0 is proportional to

√
|λ|/µ. This is in accordance with the

behavior found in the same holographic model at zero magnetic field in [4] and with more
general quantum field theory arguments, as explained in [1]. We display the flow of ω0
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Figure 3. Conductivities in the (pseudo-) explicit breaking regime. Left: the AC longitudinal
thermal conductivity at λ/µ = −10−5, k/µ = 0.1, B/µ2 ≈ 3 × 10−4 and T/µ = 10−2. Notice
the two peaks, both displaced from ω = 0. Right: the frequency of the maxima (red) and minima
(blue) in the hydrodynamic longitudinal electric charge conductivity as a function of temperature
at λ/µ = −10−5, k/µ = 0.1 and B/µ2 = 10−3. At the lowest temperatures we have two peaks in
the ω > 0 half-line and also a minimum at ω = 0. As the temperature increases the two pseudo-
Goldstone modes join (T/µ ≈ 0.083) to become a single Drude-like peak at zero frequency. This
zero frequency peak eventually drops out of the correlator, becoming a trough, at T/µ ≈ 0.237.

with λ for a particular choice of temperature and magnetic field in figure 2. For increasing
temperature the pinning frequency gets progressively smaller.

Now let us consider the behaviour of the suite of thermo-electric AC conductivities.
In figures 3 and 4 we plot the electric and thermal conductivities showing an excellent
agreement between our hydrodynamic expressions (2.24) and the exact holographic data.
Notice that in the explicit case it is possible that these thermo-electric correlators have two
peaks on the ω > 0 half-line, both displaced from ω = 0 to some finite value of ω; i.e. the
point ω = 0 is a minimum. An example of this phenomenon is displayed in the left hand plot
of figure 3 for the longitudinal thermal correlator. On the right hand side of the same figure
we show the flow of the maxima and minima of the analytic hydrodynamic longitudinal
conductivity as a function of T/µ for a particular choice of λ/µ and B/µ2. One can identify
a low temperature ‘phonon regime’ where two peaks at nonzero frequency are observed.
At intermediate temperatures the correlator displays a Drude-like peak at the origin and
a cyclotron peak at finite ω. We denote this temperature range as ‘Drude regime’. These
two peaks, and the underlying quasinormal modes, can be qualitatively interpreted as the
magnetophonon and mangnetoplasmon resonances expected in the hydrodynamic regime of
a weakly-pinned Wigner crystal [26]. At high temperatures only a cyclotron peak at finite
ω is observed and we expect the correlator to be well described by magnetohydrodynamics
with a decay rate (i.e. see [47] for further discussion). The two inflection points marking
the transition between the three regimes occur when the following conditions are satisfied

ζ ′(L)(0) = 0 , ζ ′′(L)(0) = 2
(
3µ2σL(0) + 4µα(L)(0) + κ(L)(0)

)
, (3.39)

which can be obtained from the Ward identity by requiring ω = 0 to be an inflection point.
In the Drude-like regime the peak at nonzero frequency is associated with the cyclotron

mode and the corresponding pair of quasinormal modes. The peak at ω = 0 is however
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Figure 4. AC electric conductivities at B/µ2 = 10−3, T/µ = 10−1 and k/µ = 10−1. Red lines are
the analytic hydrodynamic expressions while grey dots are numerical data. Left: the longitudinal
conductivities in two regimes - the pseudo-spontaneous (top) where λµ/φv ≈ 0.004 and a strongly
explicit regime (bottom) where λµ/φv ≈ 0.95. In both cases our hydrodynamic expressions closely
match the data. Right: the Hall conductivities in the same regimes.

a little unusual in that it is not associated with a single (imaginary) quasinormal mode,
but instead with two complex modes. While we have termed this the ‘Drude regime’
on account of the single peak at small frequency, one must be careful in interpreting
this since, as explained in details in [27], it has nothing to do with any explicit coherent
momentum decay rate in the hydrodynamic theory. If one looks at hydrodynamics in an
external magnetic field with a non-zero momentum decay rate tensor Γij , and no translation
breaking scalars, one finds only two quasinormal modes in the diffusive sector which can
be identified as displaced cyclotron modes. In particular there is no Drude-like peak in
such a system.

3.4 On the spurious pole

Our final observation concerns the number of poles implied by our hydrodynamic expres-
sions. Curiously, the formalism of [28, 29] predicts the existence of an additional gapped
pole with respect to the hydrodynamic approach of [27]. The existence of this additional
pole is related to the presence of the lattice pressure Pl as one can see from the frequency
dependent term in (2.23), which gives rise to an extra zero in the denominator of the corre-
lators (2.24d), not present in hydrodynamic approach of [25–27]. For the systems we have
investigated, this extra pole has always a very large imaginary part (which we checked
numerically) and its effect on the diffusive correlators can be ignored.
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Figure 5. The longitudinal electric charge conductivity against frequency at small frequencies in
the Drude-like regime with λ/µ = −10−5, k/µ = 10−1, T/µ = 0.3 and B/µ2 ≈ 0.066. The solid red
line corresponds to the hydrodynamic expression, the grey dots are numerical data, and the dashed
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In the papers where this formalism was developed a small frequency expansion was
taken to eliminate this additional pole from the diffusive sector [48]. In our systems, we
could not take a low frequency expansion without washing out all of our poles as the
external magnetic field gaps the system. Instead, when comparing our expressions with
data, we checked that this additional “spurious” pole must reside deep in the complex plane
according to our hydrodynamic expressions and as such could be ignored.

We did check to determine whether there was a hint that this spurious pole existed
within the system by examining the numerical correlators at complex frequency around the
position predicted by our hydrodynamic expressions. Thus far we have found no evidence of
its presence in the diffusive part of the spectrum. In fact, we found that other quasinormal
modes become relevant before any hint of this additional pole appears.

In order to check that this additional pole is not an artifact of the frame choice, we
computed the Green functions for the spontaneous case using the method described in
section 2, at zero magnetic field and in two distinct frames, and we found the same results
as for the Landau frame. In particular we considered a pseudo-Eckart frame (eliminating
all first derivative terms from the electric charge current (2.5) except for the γ term) and
the true Eckart frame where Jµ = quµ to all orders in derivatives. Notice that the γ
term in (2.5) is naively order zero in derivatives until one substitutes for uµeIµ using the
configuration equation.

4 Conclusions

In this paper we have provided a complete hydrodynamic description of holographic Q-
lattice models which present a spontaneous or a pseudo-spontaneous breaking of transla-
tions in the presence of an external magnetic field. To take into account the presence of a
non-trivial lattice pressure term Pl in the thermodynamics of these holographic models, we
have generalized the hydrodynamic approach of [28, 29] in order to include both a small
mass for the Goldstone boson related to translation symmetry breaking and an external
magnetic field. Moreover, using the method of [27, 33], we have been able to express all the
hydrodynamic AC correlators in terms of their DC values and the pinning frequency. Since
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the DC holographic thermo-electric conductivities have a closed analytic form in terms of
horizon data, combining the hydrodynamic result with holography we have provided an
analytic form for the holographic correlators in terms of the horizon data of the model and
one undetermined quantity, the pinning frequency, which we have obtained numerically.
The correlators computed in this way match excellently the holographic numerical result,
and the behavior of the pinning frequency agrees with the one reported previously for the
same model in the absence of an external magnetic field [4]. Finally, the identification of
a regime where the AC correlators feature a deep IR peak that can be identified with the
magnetophonon collective mode opens the way for a further exploration of the holographic
Q-lattice models as avatars of strongly coupled electronic phases of matter.
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A Explicit DC transport coefficients

In this appendix we list the expressions for the DC transport coefficients that follow from
the computations in section 3.2 with

ϑij(ω) = 1
iω
〈QiOj〉 . (A.1)

Explicit

(L) (H)

σ̂(0) k2sfYh
(
k2sfYhZh+4π(n2

f+B2Z2
h)
)

(4πnfB)2+(k2sfYh+4πZhB2)2 −8πnf
(
k2sfYhZh+2π(n2

f+B2Z2
h)
)

(4πnfB)2+(k2sfYh+4πZhB2)2

α̂(0) 4πk2s2
fTnfYh

(4πnfB)2+(k2sfYh+4πZhB2)2
(4πnf )2(Bm−sfT )+(k2sfYh+4πB2Zh)(k2msfYh−4πBZh(sfT−mB))

(4πnfB)2+(k2sfYh+4πZhB2)2

κ̂(0) 4π(sfT )2(k2sfYh+4πB2Zh))
(4πnfB)2+(k2sfYh+4πZhB2)2 − nf (4πsfT )2

(4πnfB)2+(k2sfYh+4πZhB2)2 −
MQ

nfB

$̂(0) nf (k2sfYh)2

(4πnfB)2+(k2sfYh+4πZhB2)2 −k2sfYh
(
k2sfYhZh+4π(n2

f+B2Z2
h)
)

(4πnfB)2+(k2sfYh+4πZhB2)2

ϑ̂(0) s2
fTYh(k2sfYh+4πB2Zh)

(4πnfB)2+(k2sfYh+4πZhB2)2 − k2IY − 4πk2s2
fTnfYh

(4πnfB)2+(k2sfYh+4πZhB2)2

ζ̂(0) − 4πk2s2
fTnfYh

(4πnfB)2+(k2sfYh+4πZhB2)2 −B2k2sfYh
(
k2sfYhZh+4π(n2

f+B2Z2
h)
)

(4πnfB)2+(k2sfYh+4πZhB2)2
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B Scalar bulk currents

Finally there exist radially conserved bulk currents corresponding to the fluctuation of the
scalar. These take the form

δIx(r) = Y [φ(r)]g(r)
r2 f(r)

(
χ′x(r)− rk

g(r) h̃x(r)
)

+ knf ĒxIY (r) , (B.1)

δIy(r) = Y [φ(r)]g(r)
r2 f(r)

(
χ′y(r)−

rk

g(r) h̃y(r)
)

+ knf ĒyIY (r) , (B.2)

in the explicit case. In this case these currents tend to something proportional to the
vev of the axion fields at the boundary. To obtain the spontaneous case one replaces
χi(r) → χi(r)/r. In this latter case these currents tend to something proportional to the
source of the Goldstone field as r → 0. In either case the bulk currents associated with the
axions/Goldstone bosons are not independent of the other bulk radial currents.

C Numerical solutions

In this appendix we detail the numerical simulations leading to the results presented in
section 3 . We will first describe how to construct the background geometries which are
very similar to those at vanishing magnetic field studied previously in [4, 7]. Next we will
study the fluctuations around those backgrounds in order to characterize the transport
properties of the dual system.

C.1 Black hole geometries

The holographic model considered in section 3 admits black hole geometries of the
form (3.3). In order to construct numerical solutions within that ansatz we will integrate
the equations of motion resulting from (3.1) from the horizon at r = rh to the boundary
at r = 0. One can easily find the following near-horizon solution for our problem

φ(r) = φh +O(rh − r) , a(r) = ah,1(rh − r) +O((rh − r)2) , (C.1a)
f(r) = fh,1(rh − r) +O((rh − r)2) , g(r) = gh + gh,1(rh − r) +O((rh − r)2) , (C.1b)

where for the potentials (3.6) one has

fh,1 =
e
− φh√

3

[
g2
h

(
6 + 6e

2φh√
3 − r4

h a
2
h,1)

)
−B2r4

h

]
− 2k2r2

h gh
(
1− eφh

)2

2rh gh (2gh + gh,1 rh) , (C.2)

which determines the temperature of the black hole T = −fh,1/(4π). All higher order
coefficients in (C.1) are fixed in terms of φh, ah,1, gh, and gh,1.

One can easily check that the equations of motion are invariant under the scaling
transformation (t, x, y, r)→ α (t, x, y, r), At → At/α, B → B/α2, and k → k/α, which we
use to set rh = 1 in the following. We can now obtain numerical solutions by integrating
the equations from the horizon (r = 1) to the boundary (r = 0). However, a generic
solution will not feature the UV asymptotics (3.7), but will behave as g(r) = g0 +g1 r+ . . .,
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and one would need to tune the horizon parameters to look for solutions where g0 = 1, and
g1 = 0. Instead we can use a second scale invariance of the equations under (x, y)→ β(x, y),
k → k/β, B → B/β2, g → g/β2, to set g0 = 1. This means we can fix gh and we are
left with three horizon parameters, φh, ah,1, gh,1, and one boundary condition g0 = 1.
Therefore, upon fixing the value of B and k we expect to obtain a two-parameter family of
solutions which we can parametrize in terms of the two dimensionless ratios λ/µ and T/µ.

C.2 Time-dependent fluctuations

In order to compute the AC correlators studied in section 3 we study the following set of
fluctuations

δgtx = hx(r) e−iωt , δAx = ax(r) e−iωt , δψx = ξx(r) e−iωt , (C.3a)
δgty = hy(r) e−iωt , δAy = ay(r) e−iωt , δψy = ξy(r) e−iωt . (C.3b)

At linear order, the equations of motion resulting from (3.1) form a consistent set of six
coupled second order differential equations.

Naturally the boundary asymptotics of the fluctuations depend on the background
corresponding to a spontaenous (λ = 0) or explicit (λ 6= 0) solution. In the spontaneous
case they read

hi(r) = r−2
[
hi,0 + hi,3 r

3 +O(r4)
]
, (C.4a)

ai(r) = ai,0 + ai,1 r +O(r2) , (C.4b)

ξi(r) = ξi,−1/r + ξi,0 +O(r) (C.4c)

where i = x, y, and hi,3 takes the form

hx,3 = i

3ω
[
−iω nf ax,0 + k ξx,−1 φ

2
v +B (ay,1 − nf hy,0)

]
, (C.5a)

hy,3 = i

3ω
[
iω nf ay,0 − k ξy,−1 φ

2
v +B (ax,1 − nf hx,0)

]
. (C.5b)

The boundary behavior of the fluctuations in the explicit case is given by

hi(r) = r−2
[
hi,0 −

1
4λhi,0 r

2 + hi,3 r
3 +O(r4)

]
, (C.6a)

ai(r) = ai,0 + ai,1 r +O(r2) , (C.6b)

ξi(r) = ξi,0 + ξi,1 r +O(r2) , (C.6c)

with

hx,3 = i

3ω
[
iω (−nf ax,0 + λφv hx,0)− k λ2 ξx,1 +B (ay,1 − nf hy,0)

]
, (C.7a)

hy,3 = i

3ω
[
iω (−nf ay,0 + λφv hy,0)− k λ2 ξy,1 −B (ax,1 − nf hx,0)

]
. (C.7b)
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Since we want to compute the retarded correlators we impose ingoing boundary con-
ditions for the fluctuations at the horizon:

hi(r) (1− r)
iω
fh,1 = h

(h,1)
i (1− r) +O((1− r)2) , (C.8a)

ai(r) (1− r)
iω
fh,1 = a

(h,0)
i +O(1− r) , (C.8b)

ξi(r) (1− r)
iω
fh,1 = ξ

(h,0)
i +O(1− r) , (C.8c)

with

h(h,1)
x =

gh k ξ
(h,0)
x (1− eφh)2 − e−

φh√
3
(
nf gh a

(h,0)
x +B a

(h,0)
y

)
gh(iω/fh,1 − 1) , (C.9a)

h(h,1)
y =

gh k ξ
(h,0)
y (1− eφh)2 − e−

φh√
3
(
nf gh a

(h,0)
y −B a(h,0)

x

)
gh(iω/fh,1 − 1) , (C.9b)

and all other higher order coefficients in (C.8) fixed in terms of a(h,0)
i and ξ(h,0)

i too.
Finally, in order to compute the correlators we will make use of the following solutions

of the equations of motion

hx(r) = iω
g(r)
r2 , hy(r) = 0 ,

ax(r) = 0 , ay(r) = B , ξx = −k , ξy = 0 , (C.10a)

hx(r) = 0 , hy(r) = −iω g(r)
r2 ,

ax(r) = B , ay(r) = 0 , ξx = 0 , ξy = k , (C.10b)

which result from diffeomorphism transformations of the trivial solution.

C.2.1 AC correlators

We shall now compute the retarded correlators GRAB where A,B = hx, hy, ax, ay, ξx, ξy. We
follow [49] and write

GRAB = B +A . V . S−1 , (C.11)

where the matrices A and B can be extracted from the quadratic action once it is written as

S(2)
os =

∫
dω
(
AIJ v

J sI +BIJ s
J sI

)
. (C.12)

s and v are vectors made of the leading (sources) and subleading (vevs) coefficients of the
fluctuations at the boundary. Hence in the spontaneous case we have

s = (hx,0, ax,0, ξx,−1, hy,0, ay,0, ξy,−1) , v = (hx,3, ax,1, ξx,0, hy,3, ay,1, ξy,0) , (C.13)

in terms of the coefficients in (C.4), (C.5). Whereas in the explicit scenario s and v are

s = (hx,0, ax,0, ξx,0, hy,0, ay,0, ξy,0) , v = (hx,3, ax,1, ξx,1, hy,3, ay,1, ξy,1) , (C.14)

now in terms of the coefficients in (C.6), (C.7).
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By computing the quadratic on-shell action (see e.g. [9] for a derivation) one can check
that in the spontaneous case A and B take the form

A =



−3 0 0 0 0 0
0 1 0 0 0 0
0 0 φ2

v 0 0 0
0 0 0 −3 0 0
0 0 0 0 1 0
0 0 0 0 0 φ2

v


, B =



εf/2 0 0 0 0 0
−nf 0 0 0 0 0

0 0 0 0 0 0
0 0 0 εf/2 0 0
0 0 0 −nf 0 0
0 0 0 0 0 0


, (C.15)

while in the explicit regime B is unchanged and A reads

A =



−3 0 0 0 0 0
0 1 0 0 0 0
0 0 λ2 0 0 0
0 0 0 −3 0 0
0 0 0 0 1 0
0 0 0 0 0 λ2


. (C.16)

Finally, to construct the matrices S and V we need to generate six independent so-
lutions for the fluctuation fields hx, hy, ax, ay, ξx, ξy. Two of them are the pure gauge
solutions (C.10), and we generate another four solutions by numerically integrating the
equations of motion. As is clear from (C.8), there are four free parameters at the
horizon that allow us to generate four independent solutions. S and V are respec-
tively the matrices of sources and vevs constructed out of six independent solutions as
S = (sI, sII, sIII, sVI, sV, sVI), V = (vI, vII, vIIIvIV, vV, vVI). They read

S =



h
(I)
x,0 h

(II)
x,0 h

(III)
x,0 h

(IV)
x,0 0 iω

a
(I)
x,0 a

(II)
x,0 a

(III)
x,0 a

(IV)
x,0 B 0

ξ
(I)
x,−1 ξ

(II)
x,−1 ξ

(III)
x,−1 ξ

(IV)
x,−1 0 0

h
(I)
y,0 h

(II)
y,0 h

(III)
y,0 h

(IV)
y,0 −iω 0

a
(I)
y,0 a

(II)
y,0 a

(III)
y,0 a

(IV)
y,0 0 B

ξ
(I)
y,−1 ξ

(II)
y,−1 ξ

(III)
y,−1 ξ

(IV)
y,−1 0 0


, V =



h
(I)
x,3 h

(II)
x,3 h

(III)
x,3 h

(IV)
x,3 0 0

a
(I)
x,1 a

(II)
x,1 a

(III)
x,1 a

(IV)
x,1 0 0

ξ
(I)
x,0 ξ

(II)
x,0 ξ

(III)
x,0 ξ

(IV)
x,0 0 −k

h
(I)
y,3 h

(II)
y,3 h

(III)
y,3 h

(IV)
y,3 0 0

a
(I)
y,1 a

(II)
y,1 a

(III)
y,1 a

(IV)
y,1 0 0

ξ
(I)
y,0 ξ

(II)
y,0 ξ

(III)
y,0 ξ

(IV)
y,0 k 0


,

(C.17)
for the spontaneous case. For the explicit regime we have

S =



h
(I)
x,0 h

(II)
x,0 h

(III)
x,0 h

(IV)
x,0 0 iω

a
(I)
x,0 a

(II)
x,0 a

(III)
x,0 a

(IV)
x,0 B 0

ξ
(I)
x,0 ξ

(II)
x,0 ξ

(III)
x,0 ξ

(IV)
x,0 0 −k

h
(I)
y,0 h

(II)
y,0 h

(III)
y,0 h

(IV)
y,0 −iω 0

a
(I)
y,0 a

(II)
y,0 a

(III)
y,0 a

(IV)
y,0 0 B

ξ
(I)
y,0 ξ

(II)
y,0 ξ

(III)
y,0 ξ

(IV)
y,0 k 0


, V =



h
(I)
x,3 h

(II)
x,3 h

(III)
x,3 h

(IV)
x,3 0 0

a
(I)
x,1 a

(II)
x,1 a

(III)
x,1 a

(IV)
x,1 0 0

ξ
(I)
x,1 ξ

(II)
x,1 ξ

(III)
x,1 ξ

(IV)
x,1 0 0

h
(I)
y,3 h

(II)
y,3 h

(III)
y,3 h

(IV)
y,3 0 0

a
(I)
y,1 a

(II)
y,1 a

(III)
y,1 a

(IV)
y,1 0 0

ξ
(I)
y,1 ξ

(II)
y,1 ξ

(III)
y,1 ξ

(IV)
y,1 0 0


. (C.18)
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C.2.2 Quasinormal modes

We are interested in computing the QNMs at zero momentum in the sector given by the
fluctuations (C.3). These are the frequencies at which the retarded correlators GRAB(ω)
(with A,B = hx, hy, ax, ay, ξx, ξy) have poles. Again we folow [49] and employ the so-called
determinant method. The QNMs are given by the values of ω for which the determinant
of the matrix of sources S in (C.17) or (C.18) vanishes.

Open Access. This article is distributed under the terms of the Creative Commons
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