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ABSTRACT: We study aspects of two-dimensional nonlinear sigma models with Wess-
Zumino term corresponding to a nonclosed 3-form, which may arise upon dimensional
reduction in the target space. Our goal in this paper is twofold. In a first part, we investi-
gate the conditions for consistent gauging of sigma models in the presence of a nonclosed
3-form. In the Abelian case, we find that the target of the gauged theory has the structure
of a contact Courant algebroid, twisted by a 3-form and two 2-forms. Gauge invariance
constrains the theory to (small) Dirac structures of the contact Courant algebroid. In the
non-Abelian case, we draw a similar parallel between the gauged sigma model and certain
transitive Courant algebroids and their corresponding Dirac structures. In the second part
of the paper, we study two-dimensional sigma models related to Jacobi structures. The
latter generalise Poisson and contact geometry in the presence of an additional vector field.
We demonstrate that one can construct a sigma model whose gauge symmetry is controlled
by a Jacobi structure, and moreover we twist the model by a 3-form. This construction is
then the analogue of WZW-Poisson structures for Jacobi manifolds.
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1 Introduction

The Poisson sigma model is a two-dimensional topological quantum field theory whose
target space is a Poisson manifold [1, 2]. It features a number of attractive properties and
applications, the most well-known being that its path integral quantization (when viewed
as an open string theory on a disk) provides a physical interpretation of the Kontsevich
formula for deformation quantization of Poisson manifolds and the noncommutativity of
string endpoint coordinates [3, 4]. Furthermore, the model may be directly related to two-
dimensional gravity with or without torsion [5, 6], to the completely gauged topological
Wess-Zumino-Witten (WZW) models [7] and to the A and B models [8]. We refer to [9]
for further developments and literature.

There exist two interesting generalizations of the Poisson sigma model, which will be
relevant in the present paper. The first generalization is to Dirac sigma models, first in-
troduced in ref. [10] as interpolations between the Poisson sigma model and G/G WZW
models. They owe their name to the fact that they correspond to target spaces being Dirac
manifolds [11], a concept that includes Poisson and presymplectic as special cases. The
study of Dirac manifolds is where the Courant bracket naturally appears, whose proper-
ties are systematically encoded in the notion of a Courant algebroid [12], all these being



central concepts in generalized geometry [13] and its applications in physics, notably in
string theory.

On the other hand, Dirac sigma models bear a strong relation to gauging models of
strings in backgrounds of a metric G and a closed 3-form H. Starting with the early work
of [14, 15], the gauging of sigma models with Wess-Zumino term has been revisited in
recent years in light of the developments in generalized geometry, and it has been realised
that Dirac structures are strongly related to consistency of the gauging procedure [16-20].
See also [21, 22] for an interesting Hamiltonian perspective. It is this feature that we wish
to study further in this paper. To be specific, the 3-form H in all above studies is assumed
closed, a property that plays a crucial role in the analysis and in particular in the derivation
of the constraints that gauge invariance imposes to the theory. However, it can happen
that the 3-form is not closed. Ultimately, this is the case in heterotic string theory, where
the 3-form acquires o’ corrections. Here we will be interested in simpler situations and
comment on the heterotic case in the concluding section. Nonclosed 3-forms may also arise
upon dimensional reduction in the target space, for instance when it has the structure of
a circle fibration [23, 24] and more generally in reduction of Courant algebroids [25-29].

Motivated by the above, in section 2 we study the gauging of two-dimensional sigma
models in the presence of a nonclosed 3-form that can arise upon dimensional reduction
as mentioned above. The gauging is performed along vector fields that leave invariant
the background fields of the theory and satisfy, in general, a non-Abelian Lie algebra.!
We examine separately the cases when there is a single extra dimension in the theory
before dimensional reduction (we call this case Abelian) and when there are multiple extra
dimensions (non-Abelian case.) In the Abelian case, we find that gauge invariance of the
gauged theory imposes additional constraints, as expected from the corresponding results
with closed 3-form. These constraints acquire an elegant geometric interpretation when
one considers the structure of a contact Courant algebroid over the extended vector bundle
TMeRPRET™ M twisted by three tensors, specifically a 3-form H and two 2-forms (2 and F'
whose product controls the 4-form dH [23, 29]; they are identified with conditions for Dirac
structures of the twisted contact Courant algebroid. The same geometric interpretation
persists in the more general, non-Abelian case, with the difference that the corresponding
higher structure is a nonexact Courant algebroid of the type described in [27], over an
extended bundle TM & G & T*M, with G a bundle of quadratic Lie algebras.

The second interesting generalization of the Poisson sigma model that we would like
to discuss,? is the so-called Wess-Zumino or H-twisted Poisson sigma model introduced
n [31], and the associated WZW-Poisson manifolds [32]. These are obtained by adding
a topological 3-form term to the Poisson sigma model and realising that gauge invariance
under an extension of its characteristic symmetries can be maintained as long as the 3-form
controls in a specific way the nonvanishing of the Schouten bracket of the quasi-Poisson

!We do not consider here the more general setting of [19, 30], where strict invariance can be relaxed.

2To avoid confusion, we mention that as long as Dirac sigma models contain a Wess-Zumino term, this
generalization is included in them. However, conceptually it is different and it is one that precedes the
construction of Dirac sigma models. Here we follow an order of presentation more suitable for the flow of
the present paper.



structure with itself. Note that the BV and BFV formulations of this model were found
only recently [33].

Motivated by the Poisson sigma model and the existence of its H-twisted extension,
our second goal is to investigate from the viewpoint of gauging whether similar structures
exist for Jacobi manifolds. Jacobi structures and the associated manifolds are a natural
generalization of their Poisson counterparts [34]. A simple way to introduce them is the
observation that if a Poisson bivector P is multiplied by a smooth function f, then the
resulting structure is not Poisson any longer, unless the Hamiltonian vector field of f
vanishes [35]. The resulting structure is called Jacobi and it is given by a bivector II along
with a vector field V satisfying certain conditions to be presented below. Jacobi structures
are rigid under multiplication by smooth functions. Alternatively, recalling that a Poisson
bracket endows the space of functions with a Lie algebra structure and it satisfies the
Leibniz rule, the Jacobi bracket relaxes the latter property to just being an operation of
the local type [36].

Vector fields on manifolds, Poisson and odd-dimensional contact manifolds are all ex-
amples of Jacobi manifolds. Interestingly, there exists a Poissonization of a Jacobi manifold
(M,I1,V), meaning that one may construct a Poisson structure P on M x Ry out of 11
and V| see e.g. [35]. This is the analog of dimensional oxidation in physics parlance (or,
inversely seen, dimensional reduction,) and it will be useful in section 3. There we con-
struct a two-dimensional sigma model with target space a Jacobi manifold, as a natural
generalization of the Poisson sigma model. Indeed, we show that the action functional of
the model is gauge invariant under certain infinitesimal gauge transformations provided
that the characteristic conditions that define a Jacobi structure are satisfied. Moreover, we
study the gauge algebra and show that it is an open one, namely it closes only on-shell, as
expected. Using Poissonization, we discuss the relation of the Jacobi sigma model to the
Poisson sigma model in one target space dimension higher. Furthermore, we consider the
extension of the action functional of a Jacobi sigma model by Wess-Zumino terms. This
is similar in spirit to the H-twisted Poisson sigma model. We show that there are two
such terms, corresponding to 3-form and 2-form twists in the defining relations of a Jacobi
structure. The gauge structure of the corresponding field theory is shown to be consistent
with the twisted Jacobi structure of [37].

2 Gauging nonlinear sigma models with nonclosed 3-form

2.1 Preliminaries

The propagation of strings in target spacetimes M is described by nonlinear sigma models.
These are two-dimensional field theories on a Riemann surface Y, the worldsheet.? The
basic fields of the theory are dim M = d scalars X*, the components of the sigma model
map X : Yo — M. The nonlinear couplings of the theory correspond to target space
background fields, which are typically pull-backs of geometric data defined on M. In the

3For our purposes, we restrict in this section to worldsheets at the lowest order in the string perturba-
tion expansion.



simplest closed bosonic string case, these are a (pseudo-)Riemannian metric G and a 2-
form, the Kalb-Ramond field B, or more generally its curvature H = dB, which is a closed
3-form.* When written in terms of H, the sigma model contains a Wess-Zumino term which
is supported on a three-dimensional source manifold ¥3 with boundary the worldsheet 3s.
In that case, the map X is extended to one from 33 to M. Moreover, the 3-form H does
not have to be exact; however, as long as it defines an integral cohomology class, its Wess-
Zumino term does not depend on the choice of Y3 and although it is ambiguous up to an
integer constant, the corresponding path integral is not ambiguous [38]. It is in this sense
that we will deal with Wess-Zumino terms in the following.

In this paper, we are interested in a more general situation, where the 3-form H €
Q3(M) is not closed. Since its exterior derivative dH is a 4-form, we assume that M is
also equipped with two 2-forms, say 2 and F', such that

dH = —(F AQ), (2.1)

where the angle brackets denote the fact that the 2-forms may be also valued in additional
bundles; for example they can have a gauge index, as will be the case here, in which case a
trace should be taken in the right-hand side. In this general setting, we therefore consider
F,Q € Q?(M;G), where G is a bundle of quadratic Lie algebras where the two 2-forms take
values. This means that G is equipped with a nondegenerate, symmetric inner product
(-,)g, which is ad-invariant, essentially a G-metric.’

As mentioned in the introduction, such cases can arise upon dimensional reduction in
the target space. Specifically, let us assume that the target has the structure of a circle
fibration with d-dimensional base M and S fibers and it is equipped with a metric G and
a closed 3-form H. The sigma model with Wess-Zumino term in this target space is

So=— [ LG, (X)dxr nsdX” - / L e (R)AX" A XY AR, (2.2)

0, 2 s 3!

where X is the sigma model map to the (d + 1)-dimensional target space. Background
fields are pull-backs in the sense that e.g. GW(X ) =X *G v (T), where Z# are coordinates
on the target space. We use differential form notation, where the metric of the worldsheet
is hidden in the Hodge star operator, and we assume that Yo has Lorentzian signature. To
proceed with dimensional reduction, we make the further assumption that the background
fields are invariant under the isometry generated by the Killing vector field on S'. In
adapted coordinates 7 = (z°, ®) where the Killing vector is simply 0/0®, this assumption
simply translates to the metric and 3-form being independent of ®. This corresponds to a
Kaluza-Klein reduction,® where the Ansatz for the metric G takes the characteristic form
(in terms of the line element)

d3* = Gyj(x)dr'da? + Gee(z)(dD + a)?, (2.3)

4In addition, there is also the scalar dilaton field, which we will not consider further in this paper.

5More precisely a pseudo-metric, but we will simply refer to it as metric here.

SNote that in more general cases one could in principle consider Scherk-Schwarz reductions, where the
higher-dimensional fields depend on the internal coordinates but the dependence drops out in the lower-
dimensional theory due to the symmetry structure of the higher-dimensional one. Such cases are beyond
the scope of the present paper.



with a = a;dz? being the Kaluza-Klein vector with field strength F = da. In the usual
Kaluza-Klein parametrization, Gg¢ is the exponential of a scalar field, however we keep
the discussion general here. Furthermore, the 3-form is decomposed accordingly as

H=H+QA(d®+a), (2.4)

where the 3-form H and the 2-form 2 depend only on the lower-dimensional spacetime, i.e.
they are independent of ®. Then, given that dH = 0, one finds that the lower-dimensional
3-form is not closed but instead satisfies

dH = —-QAF, (2.5)

whereas ) is itself a closed 2-form, d2 = 0. This is then how (2.1) is obtained upon
dimensional reduction. With this starting point, [24] studied the generalised geometry
of the lower-dimensional target space theory. Instead, our purpose is to study the corre-
sponding sigma model with Wess-Zumino terms from the lower-dimensional viewpoint and

its gauging.
In the above set up, one may then consider as starting point the following action

functional:
So = So,kin + So,w7z , (2.6)

split into a kinetic sector and one that contains Wess-Zumino terms, corresponding precisely
to the Kaluza-Klein reduction Ansatz (2.3) and (2.4) respectively:

1 ; o1
SO,kin = —/Z <2Gij(X)Xm A xd X7 + quxp(X)A A *A> , (2.7)
2
1 . ) 1 . .
Sowz = _/Z (?)'Hijk(X)dX’ AdXT A X + 2 0(X)AXT A dXT A A) L (28)
3 ! !

Here, A is the (pull-back of the) 1-form A = d® + a, and ®(0) is the additional scalar
corresponding to the reduction picture explained above, which is a function of the local
coordinates on the worldsheet. Note that none of the components of the background fields
depend on this additional field.

The action (2.2) can have target space symmetries generated by a set of vector fields
Pa = p(X )0,, that satisfy a non-Abelian Lie algebra

[ﬁav ﬁb] = Cabcﬁc . (2.9)

Typically, Cy¢ are structure constants; however, in general they may be X -dependent
structure functions, as explained for instance in [19], in which case one can have a Lie
algebroid instead.” In the present section, this statement will be somewhat neglected;
from now on, one may safely assume that Cy;© are constants, albeit keeping in mind that
this can be generalized in a straightforward way. In the reduction spirit employed here,
these vector fields may be decomposed as

Pa = PL(X)0; + fa(X)0o , (2.10)

"Recall that a Lie algebroid is a vector bundle E over M with a (anchor) map p: E — TM and a Lie
algebra structure [, -] on the sections I'(E) that satisfies the Leibniz rule [e1, fe2] = fle1,e2] + p(e1)f - ea.




where f, are functions on M (see also section 5.3.6 of [23].) This leads to a set of vector
fields p, satisfying the algebra

[pas po] = Cappe (2.11)
with the same structure constants as before. Moreover, it immediately follows that
20,4y = Carfe. (2.12)

In the following, we consider another parametrization for these functions, specifically
fao=fa— tp.a, (2.13)
in which case (2.12) becomes an equation for the functions f, and reads
2L,,[adfb} =Capfe = tpgtp, F s (2.14)

where F' = da is the Abelian field strength of the 1-form a. The symmetries generated
by pe for the action functional (2.6) manifest themselves upon considering the following
transformations for the scalar fields X* and ®:

6X' = plet, (2.15)
5B = foe®, (2.16)

where € are rigid symmetry parameters. Moreover, for future reference, it is useful to
calculate the transformation of the 1-form A, which turns out to be

0N = d(fa€®) + 1p, F €. (2.17)

We observe that in reference to A, the combination f,e* behaves as a single transformation
parameter, and moreover the second 2-form F' appears in the transformation rule. Note
that in the Abelian case, both I’ and €2 are closed, namely dF = 0 = d).

One can now compute the transformation of the action Sy under (2.15) and (2.16) for
constant transformation parameters ¢ and examine under which conditions the action is

invariant. Taking into account that dH = —F A €, one can show that this is true if and
only if
L,,G=0, Ly),God =0, Lo ' = —dfa, (2.18)
too H + fa) — go F = dbg, Lp, S = dgq , (2.19)

where 6, and g, are arbitrary 1-form and function respectively. Note that p, are Killing
vector fields for the metric G = G;j(z)dz' ®da? of the Kaluza-Klein Ansatz (2.3). However,
one should keep in mind that this is not the full nonlinear coupling in the kinetic term of
the scalar fields X. As can be seen from (2.7), the components of the full metric should be
identified with G;; + Gosa;a;, i.e. the usual Kaluza-Klein metric in the lower-dimensional
space. The vectors p, are not isometries of this metric though. This is expected in view
of the higher-dimensional origin of these conditions; indeed, the higher-dimensional vector
pe 1s a Killing vector for G.



A similar discussion follows for the non-Abelian case, where Q¢ and F'* are G-valued
and there is a worth of dimG 1-forms A* = d®* + a®, where « is a gauge index. The
transformation rule of the scalars X* remains the same as in (2.15), whereas the one of A®
reads as

ON* = d(fe") + 1p,da”e®. (2.20)

Note that in our conventions, the non-Abelian field strength is given as
1
F* =da” — iKamaﬂ ANa’, (2.21)

where K®g, are the structure constants of G; however, it should be noted that only da®
appears in the transformation of A%. The ungauged action functional has the form

1 ) . 1 ) )
So = So.xin — /E <3'Hijk(X)Xm AdXI A dXF 4 51 Qe (X)AXT A dXT A AO‘)
s \3! !

1 1

- / <—2Kaﬁ7Aa AAP A a? + 37 Kapy A A AP A AV) : (2.22)
3 !

where we use the same symbol Sy as in the Abelian case, since the latter is simply obtained

from the non-Abelian one in an obvious way. Note that the gauge indices are raised and

lowered with the G-metric (essentially the Killing form), which in a basis of Lie algebra

generators {T} we denote as k2. Then the conditions (2.19) generalize in the non-Abelian

case to
toa H + £ Q0 — gaada® — % agvf:]aa AP =db,, (2.23a)
Lo (Qa - %Kamaﬁ A cﬂ) = dgaa , (2.23b)
Lo (Fa + %Ka57a5 A cﬂ) = —dfe, (2.23¢)
provided that
dQ% + Kopya® Ada? =0 (2.24)

and that K,g, fg is constant. These conditions and their interpretation will be revisited
in more detail in the gauged version of the theory.

2.2 Gauging with nonclosed 3-form

The global symmetries generated by the vector fields p, + fa&;} can be promoted to local
symmetries of the action upon considering transformation parameters ¢* = €%(o) that de-
pend on the worldsheet coordinates. This allows us to consider gaugings of the action (2.6)
along the foliation generated by the corresponding vector fields. By gauging we mean find-
ing a new action functional S that depends on additional 1-form gauge fields A coupled to
the theory, such that when A are set to zero one obtains the original ungauged action Sy
and in addition S possesses a gauge symmetry associated to the vector fields.®

8See [19] for more refined definitions, including the concept of strict gauging which we will not explore
further here.



According to the above, we consider additional worldsheet 1-forms A% that we wish
to couple to the theory. These gauge fields take values in some gauge bundle &, in which
we may consider a local basis of sections e, such that A = A%,. £ is taken to be a Lie
algebroid, with a bundle map p to the tangent bundle of M such that p(e,) = po. The
requirement of a Lie algebroid means that the map p is a homomorphism of bundles. As
such, if the bracket operation on £ satisfies

[ea, e = Cap“ec, (2.25)

then (2.9) follows. For the purposes of the present paper, we consider that £ is a direct
sum bundle & = L & L’ over M, for some bundles L and L’. For instance, this allows us to
consider Lie algebroids such as TM @& R and T*M & R in the Abelian case; the fact that
these are indeed Lie algebroids is discussed for example in [39] (see also [40]).

As typical for sigma model actions with Wess-Zumino term, gauging proceeds by a non-
minimal coupling of the gauge fields A® to the topological sector of the theory, while they
are coupled minimally to the kinetic sector. This is facilitated by the following candidate
gauged action functional

1
S = Skin — / (A“ AN0Og + gaa AT N AN + 5W,A“ A A”)
P

1 : : 1 : :
- /Z (?)'Hijk(X)Xm AdX7 A dXF 4 51 (X)X A dXT A Aa)
, \3! !

1 1
_ / (—2KaB’YAa AN A+ ey A% A AP A A”) : (2.26)
33 :

where 0, = 0,4dX", gaa, Yap are arbitrary 1-form and functions of X respectively. The
gauge fields A® transform as is typical for a nonlinear gauge theory?

SAY = de® + O Abel . (2.27)
Moreover, the gauged kinetic sector takes the form

1 ; o1 N N
Skin = — . §GijDXZ A*xDX7 + §Ga5Aa VAN *A’B, (2.28)
2

where the worldsheet differential DX and the 1-form A are defined as
DX =dX'— pi A%, (2.29)
A% = DO + a?DX" (2.30)

9This is certainly not the most general transformation for the gauge field in this context, but it is
the one considered in the original papers [14, 15]. It corresponds to the standard case where the gauge
symmetry originates from a corresponding global symmetry, which we also assume here. More generally,
one can examine whether a gauge theory exists even without an underlying global symmetry, by adding
terms proportional to DX* and *DX" to the transformation rule, essentially introducing two vector bundle
connections on the Lie algebroid, see e.g. [18, 19]. We do not examine this apparently more general situation
here. However, this does not affect the main result which is presented below, since in both cases one obtains
conditions for Dirac structures of a Courant algebroid. The only difference regards the background fields,
which in the present case are assumed invariant, while in the general case this assumption is relaxed.



with D®® = do® — nga. They are both covariant as worldsheet 1-forms, since they
transform as

SDX' = 9;pLe®DX? and A = (8;f, + (1p,da);)e’ DX" . (2.31)

Note that in principle one can also consider additional equation of motion symmetries in the
transformation of A%, also called trivial gauge transformations [41], which are important
when the gauge algebra of the model is open. In the present section we consider only gauge
algebras that close off shell, but in section 3 we will encounter also open algebras and we
will then take into account such additional gauge symmetries.

We now examine under which conditions the action S is invariant under the above
gauge transformations. As for the kinetic sector, this is separately gauge invariant provided
that (2.18), or the corresponding non-Abelian extension of them, hold. On the other hand,
the topological sector imposes additional constraints. In order to cancel all terms supported
on Y3, we take into account the following identities

dH = —F*AQ,, (2.32a)
dF* = —-K“g,da’ Aa”, (2.32b)
d0® = K%, da’ Aa7, (2.32¢)

where we have defined the improved 3-form

1
H=H-— gKaﬂvao‘ Aa® Aa?. (2.33)

Note that although F' and €2 seem related in view of (2.32), we have treated them separately
because in the Abelian case they can be independent. Then it is straightforward to show
that the topological sector of the action S transforms as

5Stop = _/ (’Yab - Péebi - fggba> de® A Ab
3o
a 1 « 1 k « i 7
_/ € igaijfa + QpaHijk —gaac“)iaj — 81-0,1]- dX"'ANdX
3o
) Q Ba7) dXP A A 4 - T pial) A* A AP
+ (_ i 9ac T pZL aji — Kaﬁﬂyfa Cli) X' A + QKaﬁw (fa - paai) N
+ (Chbei — P00 — 0j0ipl — GraDi s — Gha(1puda®);) AXT A A
. 1 .
+ (C’gbgca — pzﬁigba) A A A+ (2pf16fybc — Cgb’ch) Ab A AC] , (2.34)

where we have also used the Jacobi identity for the structure constants K,g,. Requiring
invariance of the action thus leads to the following conditions on the background fields,

Lo H + fo Q0 — gaada® = db,, (2.35a)
Lo Qo — Kopy fP07 = dgaa (2.35h)
Kapy f1 =0. (2.35¢)



Note that in comparison to the conditions found in the rigid case, Kamfg is zero rather
than constant because € is not a rigid parameter. This affects only the non-Abelian case,
since in the Abelian case K,3, = 0 anyway. In the non-Abelian case it implies a relation
between the functions f& and the contraction of the fundamental gauge field a® with the
vector fields p,. We comment further on this below. In addition, there are three constraints
that must be satisfied in order to obtain a consistent gauge theory. First, we note from the
first term in the variation of the action that

Yab = tp, O + kap OGP . (2.36)

Then the three constraints read as

V(ab) = 0 (2.37&)
Lp,00 = Ciyfe — g5 (Afaa + tp Fo+ Kagy f07) | (2.37b)
tpadgy = Capge - (2.37¢)

Finally, there is a further requirement due to the very last, quadratic in As, term in (2.34),

LpaVoe = Cg[c%]d , (2.38)

which, however, is identically satisfied once the previous conditions are taken into account.

Summarizing the findings of this section, the gauged action functional (2.26) is in-
variant under the infinitesimal transformations (2.15), (2.20) and (2.27) if and only if the
conditions (2.35) hold and the constraints (2.37) are satisfied, and at the same time the
vector fields p, generate isometries for the metric G, respectively the higher-dimensional
vector fields pa+f§‘8¢a generate isometries for the metric G. Our next goal is to understand
the geometric meaning of these constraints.

2.3 The Abelian case and contact Courant algebroids

Let us first investigate in more detail the Abelian case where the bundle of quadratic Lie
algebras is G = M x R® R, in which case K3, = 0. The gauged action functional (2.26)
then contains only the terms appearing in the first two lines. Moreover, from (2.32) we
learn that both F and 2 are closed 2-forms, while the exterior derivative of the 3-form H
is the opposite of their wedge product. Note that nothing necessitates any further relation
between the two 2-forms in the present case. Moreover, the third of conditions (2.35) is
identically satisfied and does not play any role, in particular it does not relate f, with ¢,,a.

We proceed in analyzing the three constraints (2.37), taking into account the first two
conditions (2.35). First, the constraint (2.37c) may be rewritten as

c i i i (2.35b) . 4 i g
Cavde = PaOigb = 29[, 0098 + P0iga = 2p[,0)i190) T PuPLSYji 5 (2.39)

or

a

chgc = 2Lp[adgb} —Llp, Lpr, (240)

where (anti)symmetrization is taken with weight 1 and vertical bars denote exclusion from
it. This equation looks like closure of a bracket operation and indeed we are going to

~10 -



interpret it as such. Turning to the constraint (2.37b), a similar rewriting is possible
as follows:

C’g;ﬂc = Epaeb"‘gbdfa‘i‘gbbpaF (2'41)
1
= 2£P[a 91,} —dbp[a Hb} + B d (Lpa(gb—i-bpb@a) +Lpbd9a +gpd f, +gptp, I
(2.35a)
= 2£p[a9b} —dL,,[GGb} +de(a0b) —Lpaapr—&—Zg[pra]F+gbdfa+faLpr

(2.35b)
= 2[,,)[a Qb} —de[a Qb} —Lpg Lpr+2g[pra] F—Qf[bbpa] Q—l—g[bdfa] +f[bdga} ,

where in the second line we used the Cartan relation
L=tod+dou, (2.42)

and in the last line we also used the constraint (2.37a), which may be written explicitly as

—_

3 (Lpa‘gb + tpyba + fage + fvga) = 0. (2.43)

In order to provide a geometric interpretation of these results, let us recall the defini-
tions of twisted contact Courant algebroids and their Dirac structures. Contact Courant
algebroids twisted by a 3-form H and two 2-forms F and € are defined in ref. [23]'°
as follows. Consider the vector bundle ¥ = TM & R & T*M & R, whose sections are
X = (X, f,n,9), where X is a vector field, n an 1-form and f, g are functions. Then the
twisted contact Courant algebroid is given by the data (E, [, ]g, (,-),a : E — TM) of the
above vector bundle, a skewsymmetric bracket, a nondegenerate symmetric bilinear form
and an anchor map, given as

(X1, Xo)p = ([X1, Xo], X1(f2) — Xo(f1) + ix,tx, F,

1
Lx,m2 — Lx,m + gorx, F — grex, F — sd(ex,m2 — tx,m)

2
4592y~ 01dfo — fadgs + fadgr) — x, 00, H — fote, 0+ i,
X1(g2) — Xa(g1) — tx,0x,9) (2.44)
(Xy,Xg) = % (txyime + txom + fig2 + fag1) (2.45)
a(X) = X, (2.46)

with dF' = 0 = dQ and dH = —F A€). (Note that in comparison to [23] we have a different
sign convention for H and €2.) It is now clear what the constraints we derived above mean
in this geometric setting. First, the 1-forms 6, and the functions g, can be associated to
the following maps

0:&—T"M g:&€—=R
ea — 0(eq) =0, eq — g(€q) == gq - (2.47)

9The version in terms of non-skewsymmetric bracket is found in [29].
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Together with p and f, one then obtains a map

p=pdfPOPg:E—FE
eaHPA(ea) = pa+ fa+0a+ ga = Pa. (2-48)

Then, combining (2.9) and (2.14) with the two constraints written in the form (2.40)
and (2.41), we directly obtain

[pas Pz = Coppe (2.49)

in other words the generalised sections p as defined above are closed under the bracket
of the twisted contact Courant algebroid. In addition, the remaining constraint (2.43)
states that

(Pas o) = 0. (2.50)

This means that the generalized sections p are constrained in a subbundle of F, which is
isotropic and involutive with respect to the twisted Courant bracket (2.44). Subbundles of
the standard Courant algebroid on the vector bundle T'"M ®&T* M with the above properties
where first encountered in the context of constrained Hamiltonian systems via an analysis
based on the Dirac bracket and are therefore called Dirac structures [11]. Dirac structures
interpolate between presymplectic and Poisson ones and they give rise to topological sigma
models in two dimensions which were dubbed Dirac sigma models [10]. Here we encounter
the analogous structure for the contact Courant algebroid on TM &R & T*M & R, with
the respective contact Dirac structures as constrained subbundles.

From an alternative point of view, first proposed in [42] for the standard case, the
gauging of the original sigma model can be interpreted as a constraining of a different
action functional, which is essentially the dimensional reduction of the universal action
functional described in [42]. The starting point for this interpretation is the introduction
of two auxiliary 1-forms V¢ and W; taking values in T*M and TM respectively, and two
auxiliary functions v and w. Then we can write the action functional

1 . |
S=- *GijDXz/\*DXJ—}—*G@q))\/\*)\— H+QANA
¥ 2 2 s

S 1 A
— [ WiA <dXZ — VZ) —/ w A {d@ - —v+q <dXz - V’)} , (2.51)
E2 2 SQ 2 2

where DX® = dX? — V? and A = d® — v + a;(dX’ — V?). This action functional has the
property that when the auxiliary fields are unconstrained it is equivalent to the ungauged
action functional Sy, whereas when the auxiliary fields are appropriately constrained it
yields the gauged versions of the model corresponding to the action functional S. Regarding
the first part of this statement, the field equations for the four auxiliary fields read

Vi=2dX", v+ @V =2(dd+ q;dX?), w=2Ges*\,
Wi + a;w = 2G4 * DX? + 0;,Gaq * \. (2.52)

Substituting them in S, one directly obtains the ungauged action Sp. On the other hand,
if the auxiliary fields are constrained to live on a Dirac structure of the contact Courant
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algebroid on TM @RARGT* M, then S yields the gauged action S upon the identifications
Vi=pl A% 0= [, A%, W;=04A%, w=g,A". (2.53)

This identification only works if v, = ¢,,0, + fags, Which is precisely the relation obtained
from the consistency of the gauging procedure. Thus we see that, in analogy to [42], one
may think of the gauging not as an extension of the given action Sy by additional gauge
fields but as a restriction of the equivalent action S to a constrained set of fields.

2.4 The non-Abelian case and nonexact Courant algebroids

Let us now examine the meaning of the constraints arising from the gauged action functional
in the non-Abelian case. First of all, condition (2.35c) implies that

fo = tp,a”. (2.54)

a

Secondly, the fact that dF® = —dQ® # 0 prompts us to identify!'!

0% =—-F, (2.55)
therefore the first of (2.32) becomes
AH = kop F* N FP (2.56)
Then the first constraint is written explicitly as
1 a, B a B
3 (Lpﬁb + tonba + Kapla gy + kapfy ga) =0. (2.57)

Furthermore, similar manipulations to the Abelian case lead to the following form of con-
straints (2.37b) and (2.37c) respectively,

2001, 4G5 = tp 1y 2" — Ky 1 i) = Copgl (2.58)
and
Cgbec = 2£P[agb] B dLP[agb] B LPaLPbH +2 (gﬁ; + f[(l);l) Lpa]Fa + gfl;vfa]oc + fﬁ;vya]a )
(2.59)

where we have defined
(Vga)® := dgg + K%gyg507 (2.60)
and similarly for f&. In addition to these constraints, condition (2.54) implies that:

Cefe = Coppa® 2y

= 1p,dip,a” — 1p,dipa® — 1y Lp,da”

=20, dff = tpytp F + K% f7 1)

_ @ e’ e B £

=2y, (Vi) = totp P = K, f2F7 (2:61)

"\More precisely, at this stage the two 2-forms differ by an exact 2-form. The properties of Courant

o a a
P8 = Lpalp@ Loy Lp,a

algebroids with nonclosed 3-form [27] provide an a posteriori justification for the proportionality of the
2-forms 2 and F'.
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which is a non-Abelian version of the assumption (2.14) that we have made in the beginning.
This means that, unlike the Abelian case, in the non-Abelian case this follows directly from
the conditions on the background fields.

In a similar spirit to the Abelian case, our goal now is to identify the resulting con-
straints in terms of a bracket and bilinear in an appropriate Courant algebroid. Note
that exactly because of the additional structure G, this cannot be an exact Courant alge-
broid. Recall that a Courant Algebroid is called exact if its vector bundle F fits into the
exact sequence

0>TM%ESTM -0, (2.62)

where p is the anchor map. Exact CAs are classified by the Severa class, a degree-3 class
in the de Rham cohomology of the smooth manifold M [25].

To understand the geometric meaning of the above result, we employ the definition of
a regular Courant algebroid found in ref. [27]. First recall that the image of the anchor
map p generates a foliation of M. Let us denote the corresponding distribution as

F = p(E). (2.63)

A foliation is called regular if its leaves are of equal rank, otherwise it is called singular.
Most foliations are clearly singular, however, if we concentrate on regular ones the corre-
sponding Courant algebroid is called regular [27]. In general, the anchor has a nontrivial
kernel, due to the Courant algebroid property

poDf =0, (2.64)

for any smooth function f, where the derivation D is defined through

(e, Df) = 5p(e)S (2.65)

for every section e of E [12]. Moreover, one can define the complement of the kernel,
(ker p)*, with respect to the bilinear form on E. A general statement is that the kernel of

the anchor map is coisotropic, which means that
(ker p)* C kerp. (2.66)
This is simple to prove, since by definition
(ker p)t = {e € E|(e,€') =0, Ve’ € E such that p(e/) = 0}. (2.67)

From (2.65) we directly see that every e in the complement of the kernel necessarily belongs
to the kernel itself.

For every regular Courant algebroid, the kernel and its complement are smooth sub-
bundles of E and the quotients of F by them are Lie algebroids. In particular, there is a
canonical isomorphism

E/kerp ~ F. (2.68)
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On the other hand, the quotient E/(ker p)* := Ag is also a Lie algebroid — it is called
the ample Lie algebroid of E in [27]. In addition, the quotient

G = ker p/(ker p)* (2.69)

is defined. Obviously it is trivial when the complement of the kernel is all the kernel of the
anchor. This is the case, for instance, if we consider the standard (and regular) Courant
algebroid over M with anchor being the projection to the tangent bundle T'M; then the
kernel is T*M, its complement is also the same and G is trivial. On the other hand, for
the contact Courant algebroid that we encountered in the previous section, the kernel of p
and its complement are

kerp=ROT*M &R, (kerp)t=T*M, (2.70)

and therefore G is nontrivial, being R @& R. In general, using the projection 7 : ker p — G,
one can turn G into a bundle of quadratic Lie algebras, i.e. a vector bundle with every fiber
being a quadratic Lie algebra (with a bracket determined by the bracket on E) in the sense
that it admits a nondegenerate, ad-invariant inner product on its vector space [27]. For
completeness, recall that every bundle of Lie algebras on a smooth manifold defines a Lie
algebroid with zero anchor.

In the case of the contact Courant algebroid, the vector bundle is thus identified with
TM®GHT*M. It turns out that this holds more generally for regular Courant algebroids.
Specifically, [27] define an isomorphism ¥ of vector bundles — which is called a dissection
of E — as

V:FeogaF = E, (2.71)

such that
1
<\I/<771 -+ S1 + Xl), \11(772 + S92 + X2)> = §(X1(772) + X2(771)) + <81, 82>g . (272)

This isomorphism is useful in the case of nonexact Courant algebroids, since it offers an
alternative definition which to some extent is better fitted to the structure. Instead of
the quadruple (E,[-,]g, (-,-), p) of a vector bundle, a skew-symmetric binary operation,
a symmetric bilinear form and an anchor, satisfying the properties laid out for example
in [12], one can consider a quintuple (F,G,V, F,H). It comprises the distribution F, the
bundle of quadratic Lie algebras G and three canonical maps. A connection

V:TI(F)eTI'(G) - T'(G) (2.73)
satisfying linearity and Leibniz rule

Vixs= fVxs, (2.74)
Vx(fs) = fVxs+(X(f))s, (2.75)

a C'*°-bilinear map (analogous to a G-valued curvature 2-form)

F : T(A’F) = T(G) (2.76)
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and a C'*°-bilinear map (analogous to a 3-form)
H : @3T(F) = C°(M). (2.77)

This structure is a Courant algebroid if a number of additional properties are satisfied
(see [27] for a detailed exposition of the corresponding identities):

dH = (F A F), (2.78a)
L, (s, sc> = (V. 5bs SC> + (sp, Vpasc>g , (2.78Db)
L[5, 5¢9 = [V pu5p, 869 + [55, Vo 5e)9 (2.78¢)
Vo F(py, pc) — F([pas ppl; pe) +c.p. = 0, (2.78d)
2vp[avpb] Sec — v[pa,pb]sc = [F(paa pb)a Sc]g s (2.786)

where the 4-form on the right-hand side is given as
(F,F)(X1, X2, X3,Xy) := %ngn(axF(Xa(l),Xa(z)), F(X,(3), Xo)Y (2.79)

and o runs over all permutations of four objects. In this setting, the standard (nonexact)
Courant algebroid is equipped with the following Courant bracket,
X1, Xo] = ([X1, Xal, Vx50 = Viays1 + [51,52) + tx, 0, F,

§d (LX1772 - LX2771) - LX1LX2H

+ ((Vsl, Sg>g — <V82, 81>g> + 2<81, LX2F>Q — 2<82, LX1F>g) s (280)

£X1772 - £X2771 -

for sections X = (X,s,n) € F G & F*.

We are now ready to provide an interpretation of the gauging constraints in terms
of the structures reviewed here. To this end we consider G = G, & Gg for the bundle of
quadratic Lie algebras, and decompose its sections accordingly as s = (f,g) with f € G,
and g € Gg. For the inner product in G we identify

1
<5a, 3b>g = ikaﬁ( agb + gccleb ) (2'81)
Then the first constraint (2.57) takes the general form

(W(p), ¥ (p')) =0 (2.82)

in terms of the dissection W, where p, 9’ € I'(E) . Furthermore, comparing the bracket (2.80)
and the gauging constraints (2.58) and (2.59), the above identification directly leads to the
closure of the bracket, namely

[Pas Pb] = Cappe , (2.83)
with the Lie bracket in G being

[(far 9a)s (For 0))% = K, (fO 1), FOF) + fPa) — £ g2) - (2.84)
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All properties (2.78) are satisfied with this identification, as they correspond to the con-
ditions (2.35) on the background fields and the choice of connection (2.60). This directly
generalizes the corresponding result of the Abelian case. The fields of the gauged theory
are constrained on Dirac structures of the nonexact Courant algebroid over TM ®GPHT*M.

Before we close this section, it is worth comparing in more general terms the Abelian
and non-Abelian cases. It should be clear that the Abelian case is not fully contained in the
non-Abelian one. One difference, as already mentioned, is the absence of condition (2.35c¢)
in the Abelian case. As a result, condition (2.61) is absent in the Abelian case. Further-
more, the fields F' and  are independent in the Abelian case, while in the non-Abelian
they are related through (2.55). Finally, it would seem that the Courant bracket obtained
in the Abelian version is different from the non-Abelian one. However, the way that the
Courant bracket is defined here does include the Abelian case as well. It turns out that
there is more freedom in satisfying properties (2.78) if F' is closed since in that case it is
possible for F' to act independently on Gy, and Ggr. Specifically, we take

F((fayga)v (fb7gb)) - (F(fa7fb)7 _Q(gaagb>) . (2'85)

In the non-Abelian case this is not possible since the bracket would not satisfy all of the
necessary properties.

2.5 Examples

Let us now discuss a couple of simple examples of gauging along vector fields p, in the
presence of a nonclosed 3-form H. Both examples refer to the Abelian case of subsection 2.3
and they differ in that p, form an Abelian algebra in the first and a non-Abelian one in
the second.

In both examples, we take as M a real, Euclidean 4-manifold with coordinates z* =
(z,y,z,w) — and we denote the corresponding pull-backs X? with the same lower case let-
ters. The additional direction (of the circle bundle) is denoted by ® as before. Furthermore,
we consider the following 3-form and 2-forms

H=zdyANndzAdw, Q=dyAdz, F=—-dzAdw. (2.86)

Evidently, both 2 and F' are closed 2-forms, whereas the 3-form H is not closed and it
satisfies dH = —F A ). We should also specify the manifold, in particular its metric G,
which we do separately in each case.

First, we consider a single vector field p,, specifically

Pz = y0, — 20y . (2.87)

This vector field generates rotations and any manifold M with metric G which is invariant
under this rotation, namely for which p, is a Killing vector field, is admissible. Here we
consider the flat metric for simplicity,

ds? = da? + dy? + d2% + dw?. (2.88)
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Our goal now is to specify fz, g, and 6, such that all consistency conditions (2.35) and
constraints (2.37) for gauging along the vector field p, are satisfied — in the present Abelian
case, for K3, = 0 and « taking only one value. First, from (2.35b), we can determine the
function g, at least up to exact terms. We find

__y2+z2
9z = 5 .

(2.89)

It may be directly checked that the constraint (2.37c) is then identically satisfied. Next,
condition (2.35a) is consistent only if df, = 0, as can be checked by acting on it with the
exterior derivative d. Thus, f, should be a real constant. Then, one can determine the
1-form 6, up to exact terms,

_ T2 I yds —
0, = 2<y +z)dw+2(ydz zdy) . (2.90)

This makes sure that the constraints (2.37a) and (2.37b) are identically satisfied, therefore
all the necessary and sufficient conditions for consistent gauging hold. The gauged action
functional, containing the single gauge field A,, reads explicitly as

§=— [ 11dalP+ [y + 24| + lldz — g || + | ]
P

1
- iAx A (ydz — zdy) + f(y2 +2HA, ANdw — Z(y° + 2 A A A
5y 2 2 2
—/ rdyNdz Adw+dy Adz A A, (2.91)
X3

where we denote the inner product ||w||?> = 4w A *w and the fiber 1-form is A = d® — zdw.
The infinitesimal gauge transformations are

oy =—ze, dz=ye, 0D=fe, OA;=de, (2.92)

where € is the single gauge parameter of the model. It is worth emphasizing that from the
point of view of the higher-dimensional geometry of the target space M x S', the 3-form
supported on X3 is closed; indeed, it can be written as dy Adz Ad®, which is then the Wess-
Zumino term for the action S. However, from a dimensional reduction perspective, lower
dimensional fields are not identified using d® as an expansion 1-form but using instead the
1-form A = d® + a, where presently a = —zdw is the “Kaluza-Klein” gauge field. This
is precisely what we did above by identifying H and € as in (2.86). Indeed, then the full
3-form in the higher-dimensional theory is closed, whereas the 3-form of the dimensionally
reduced theory is not and it is given as above. It is precisely this Kaluza-Klein perspective
that prompted us to write the Wess-Zumino term in (2.91) as such.

As a second example, we would like to consider a set of non-Abelian vector fields p,.
To this end, we consider the same background fields in the topological sector as in the first
example, and the vector fields

Pz = Oz, py = Oy + 20, , Py =0,. (2.93)
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We observe that there is one nonvanishing commutator, namely

[pyv pz] = Pz, (2.94)

therefore one nonvanishing structure constant C7, = 1. This is nothing but a three-
dimensional nilpotent Lie algebra. The background metric should then be invariant under
this symmetry, and this is indeed the case for the following metric,

ds® = (dz — zdy)? + dy® + dz* + dw? . (2.95)

Given the above background data, one may readily check that all conditions (2.35) and
constraints (2.37) are satisfied for the following

fx:(), fyzflzfz, (2.96)
9o =1, Gy =%, 9: =Y, (2.97)
0, = xzdw, 0y = dz — ydz + xzdw, 0, =dr —ydz — zydw. (2.98)

This leads to a gauged action functional of the form,

5:—/2 lda — zdy — Ag|[* + [|dy — Ay|]” + [|dz — A:[]* + [|dw|]”
2
—/ rA; Ndw + Ay A (dz — ydz + x zdw) + A, A (dz — ydz — 2 ydw)
3o
[ et 2y =y A AR A A (A + A2 = (g + DA, A A
P

—/ rdyANdzAdw+dy AdzAA, (2.99)
3

where similar comments to the ones below (2.91) apply here.

3 Jacobi structures, Jacobi sigma models & twists

Contact structures, such as the ones encountered in section 2.3, may be viewed as special
cases of Jacobi structures for odd dimensional manifolds. Our purpose in this section is
to investigate which sigma models are associated to Jacobi structures and whether such
theories can be twisted in a sense to be explained below.!? In essence, the analysis and
results of the present section are independent from section 2. However, they can be viewed
as a natural generalisation in the direction of allowing the background fields to depend on
the additional spacetime direction. This is in contrast to trivial dimensional reduction and

we comment on this in the following.

12S00n after our paper was completed, the paper [56] on Jacobi sigma models appeared, with some
overlapping results with our sections 3.1 and 3.2.
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3.1 Jacobi structures

Let us first recall some basic facts about Jacobi structures. A Jacobi manifold (M,II, V)
is a smooth manifold M endowed with a pair (IT, V') of a bivector field I € T'(A* TM) and
a vector field V € I'(T'M), which satisfy the conditions [34]

[,I)s =2V ATl and [I,V]s =0, (3.1)

where [-,-]s : A°TM & N9TM — NPT TM is the Schouten-Nijenhuis bracket of mul-
tivector fields. Jacobi manifolds are a simultaneous generalization of Poisson manifolds
(obtained when the vector field vanishes), manifolds with a vector field (when the bivector
vanishes), and contact manifolds (when V' AII" # 0 and dim M = 2n + 1; V is then the
Reeb vector field). The Lie bracket on the space of functions that generalizes the Poisson
bracket is then given as

{f,9},5 =1(df,dg) + frvdg — guvdf. (32)

Unlike the Poisson bracket, the Jacobi bracket does not satisfy the Leibniz rule for deriva-
tions. By direct computation one finds instead

{fa hg}JABA = {fa h‘}J.B.g + h{f, g}J.B. +hguwdf. (3'3)

However, the Jacobi bracket is obviously antisymmetric and satisfies the Jacobi identity.
The latter is equivalent to conditions (3.1). The space of smooth functions on a Jacobi
manifold equipped with a Jacobi bracket is then a local Lie algebra as suggested by Kir-
illov [44].

As mentioned in the Introduction, multiplication of a Poisson structure by a function
results in a Jacobi structure. Indeed, assuming that a bivector P on M is Poisson and thus
it satisfies

[P,Pls =0, (3.4)

we may use it to construct the bivector
I=fP, f:M-—>R. (3.5)

However, clearly the new bivector does not have a vanishing Schouten-Nijenhuis bracket
with itself; it is straightforward to calculate

[, Ts = fO; fPUPKO; NO A8, =2V AT, (3.6)
with the identification
V =0,fP99; = P(df) = fTTI(AS), (3.7)

assuming that f is invertible. This is a first relation between Poisson and Jacobi structures.
However, there exists a second interesting relation between these two structures. Given the
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data (II, V') of a Jacobi structure on a smooth manifold M, one can construct a Poisson
structure on the manifold M = M x Ry with bivector field

=~ s 0
Pime (H+a(1)/\V), (3.8)
and ® being the coordinate on R. Indeed, one can directly check that the Schouten-
Nijenhuis bracket of P with itself vanishes and thus it defines a Poisson bracket on M.
This is called Poissonization of the Jacobi structure. In physics parlance it corresponds
to a dimensional oxidation, the procedure of obtaining a higher-dimensional theory from
a lower-dimensional one, i.e. the inverse of dimensional reduction. We will find a field-
theoretical incarnation of this feature in the following subsection.

3.2 Jacobi sigma models

Our main goal here is to investigate the construction and symmetries of nonlinear sigma
models when the target space is associated to a Jacobi structure. In other words, we wish
to show that there is a correspondence between Jacobi manifolds and a certain class of
sigma models, henceforth called Jacobi Sigma Models.

In order to proceed, one may start with the Poisson sigma model [1, 2], whose action
functional is simply

Spsm[X, A] = . A NAXT %7?” (X)A; N A, (3.9)
2

where A; are 1-forms on the two-dimensional source space X9 and P¥(X) = X*P¥(x) are
pull-back functions of the components of the Poisson bivector on the target space M with
coordinates 2 by the pull-back function of the sigma model map X : ¥y — M. Recall
that the differential dX? reads explicitly as dX? = 9,X*do®, where %, a = 0,1 are local
coordinates on the two-dimensional worldsheet. The above action functional is invariant
under the following set of infinitesimal gauge transformations,

5X' = Pile;, (3.10)
0A; = de; + 0; P Ajey, (3.11)

with Yo-dependent scalar gauge parameter ¢;. Gauge invariance is guaranteed precisely by
the property of P being Poisson, i.e. satisfying (3.4). Note that this model may be obtained
via gauging as well, precisely in the spirit of section 2, ignoring the metric term and the 3-
form and 2-form twists. One should then consider the Lie algebroid £ = 7*M, with anchor
being given in terms of the Poisson structure and bracket being the Koszul-Schouten one.
Identifying p’ with the components P of the anchor and 6,; with the constant 5{ , one
indeed ends up with the Poisson sigma model after gauging. More details are found in [18].

Motivated by the discussion in section 3.1, we consider multiplying the Poisson struc-
ture with a function f, which we henceforth parametrize as f = e~® for later convenience.
This will directly spoil the symmetries of the Poisson sigma model, and in order to restore
gauge invariance one must add a BF-type term involving the function f and a topological
term based on the (pull-back of) the components of a vector field V. In order to be explicit,
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we should note that eventually the function f, or equivalently ®, will depend on the local
coordinates 0% of the two-dimensional worldsheet. Here, in a similar spirit to section 2,
we consider only an explicit such dependence, thus ® = ®(o) being a map from Y5 to R.
Since we are still considering the sigma model map X : 35 — M from the two-dimensional
source manifold ¥ to the d-dimensional target manifold M, one may also think in terms of
the combination of the d 4 1 scalar fields to a map X = (X%, ®) : ¥y — M x R; this points
to a higher-dimensional viewpoint where the target space is (d + 1)-dimensional, as was
the case in the concept of Poissonization discussed at the end of the previous subsection.
The action functional we consider for a Jacobi sigma model is

Sism[X, @, A, Ag) = g A NAXT+ Ag A dD + %e_‘t’ﬂij(X)A,» ANAj+ e ?VI(X)Ag A A; .

’ (3.12)
One may view the combination of the worldsheet 1-forms A; and Ag as taking values in
T*M @y R. The background fields now are I1¥(X) and V#(X). Note though that the
vector field V' is arbitrary and it is not given in terms of II as in (3.7). In order to interpret
the action functional (3.12) as a nonlinear gauge theory, we now consider the following
infinitesimal gauge transformations,

X' = e (e + Viey) (3.13)

60 = —e 2Vie;, (3.14)

0A; = de; + e_qD(%ijAjek — e ®9, v (Ajeo — Aoej) (3.15)

5Ag = deg — e P  Ajep, + eV (Ajeg — Aoej) (3.16)

where €; and € are two Ys-dependent scalar gauge parameters and 0 := d(, ). Our

aim is to find under which conditions these gauge transformations leave the action func-
tional (3.12) invariant. By straightforward calculations, the transformation of (3.12) is
found to be

1 . ) 1 -
5SisMm = / e 22 <eiAj A Ay (21'[”611?"’ + IMe I + gvznﬂk + VkH”>
P
1 . . )
+ €Ai N Aj (zvkﬁkﬂ” + kaakw>
+ eido A Ay (TTRORV7 — TRV — VRgITT ) ) (3.17)

Using the local coordinate expression for the Schouten-Nijenhuis bracket for multivector
fields, see e.g. [36], we infer that for IT = %H”@i A9j and V = V19,

[, V]s = Gviainj’f + Hijal-v’f> d; A Oy, (3.18)

[T, TT]g = IO T17%0; A D) A O - (3.19)

This immediately shows that the action functional is gauge invariant if and only if the
bivector II and the vector V' constitute a Jacobi structure, i.e.

§SjsM=0 < [ILV]s=0 and [ILI]g=2VAI, (3.20)
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which justifies the name of the model under consideration. Note that the target space in
this case is M x R, with M being a Jacobi manifold.

For completeness, one may proceed to find the equations of motion of the model and
the structure of its gauge algebra. The field equations for the action functional (3.12) are

5§JASM = DX :=dX'+ e POV (X)A; — e PVI(X)Ap =0, (3.21)
05sM | s R
5Xi =DA; . =dA; + 56 0;117 (X)AJ NAg+e 7oV (X)Ao A Aj =0, (3.22)
OSISM _ g 1= o + e ®VIX)A; =0, (3.23)
0Ag
0.555M 1 g e
5o = DAy :=dAy — 56 11 (X)AZ VAN Aj —e 'V (X)Ao ANA; =0. (324)

One can check that the equations of motion indeed transform covariantly, in other words
D acting on the fields is a covariant worldsheet derivative. For example, using the Jacobi
structure conditions, we find

dDX' = e (60,11 + €0;V') DX7 4 ~® (V¢ — Vie) DO,
§DP =e VDD — e Pe;0,VIDX".

Much like the Poisson sigma model, the gauge algebra in the Jacobi case is open, in
other words it only closes on-shell. The commutator algebra is found to be

[6(e),8(N] X" = 5(N X7, (3.25)
[6(€),d(e)]® = ("D, (3.26)
[6(€),6()]A; = 6(")A; + €/DP + e (ainkleke; - 8i@jk(€k€6 - 6062)) DX’ (3.27)
[6(€),6(e)]Ag = 6(¢")Ag — efD® — €/ DX, (3.28)

with the gauge parameters on the right hand side being
el = ?® (Qijke]f?g — Qi (ejely — 606;-)) , (3.29)
€ = —e® (Hijeie; — Vi(eiey — 606;)) , (3.30)

where we have defined the structure functions

Q’*F .= 9I’*  and Qi := V7. (3.31)

Moreover, as is typical for gauge theories, there are also trivial gauge symmetries (with
gauge transformations being proportional to the field equations, which is always possible).

Finally, one can now see that Poissonization applies directly to the two-dimensional
sigma model presented here. Recall that we defined the map X = (X!) = (X, ®) :
Yo - M xR, with I =1,...,dim M + 1. Similarly, the worldsheet 1-forms are packaged
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accordingly as A; = (4;, Ap). Then the action functional of the Jacobi sigma model may

be rewritten as

X A 1 ~..
Sysm[X, Al = [ A;ndXT 4+ 5 PUX) AN A, (3.32)
Yo

which is a Poisson sigma model with target space M , distinct from the one defined by (3.9).

3.3 Examples
3.3.1 Conformal symplectic manifolds

A list of examples of Jacobi structures may be found for instance in ref. [45]. One of
the basic classes is locally conformal symplectic manifolds. Assume that M is an even-
dimensional manifold. It is a locally conformal symplectic manifold if it is endowed with a
pair (©,w) of a nondegenerate 2-form and a globally defined 1-form (called the Lee form)
respectively, such that

dw=0 and dQ+wAQ=0. (3.33)

This structure can be obtained from a Jacobi structure as follows. One defines the vector
field V' and the bivector field II to satisfy

ivﬂ = —w and in(g)Q = —f (334)
for every £ € T*M. As such, w and II satisfy
Qoll=1d = Q% =%, (3.35)

where we presented the component expression for clarity and because it will be useful in the
following. Note that in the index-free equation (3.35) we made an abuse of notation, in that
Q and II denote also the corresponding isomorphisms from T'M to T*M and vice versa.
Let us now examine the corresponding Jacobi sigma model. We consider the equations
of motion for A; and Ay, given by eqs. (3.21) and (3.23) respectively. Since A; appears
only algebraically, if we are able to solve for it we could substitute it back into the action.
Since we have assumed nondegeneracy, this is presently possible. First, using (3.35), we

may rewrite (3.21) as
A; = —G(I)Qijde + w;Ag, (336)

where in the last term on the right-hand side we also used the first defining equation (3.34).
Turning then to the second field equation (3.23), substituting (3.36) and using once more
the defining conditions for the Jacobi structure, we readily obtain

w=—dd. (3.37)

Plugging these equations back in the original action functional of the Jacobi sigma model,
one obtains as a result a sigma model with locally conformal symplectic target given by

1 . .
STLossM = /E §6¢Qij(X)Xm AdX7 + QW(X) A Ap. (3.38)

2

Moreover, one may observe that although 2 is not a symplectic form, Q = e®Q is. On the
other hand, setting w to zero, one obtains the starting point of the topological A-model [46].
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3.3.2 Contact manifolds

Another example of Jacobi structure is given by a contact manifold. Let M be a manifold
of dimension 2n + 1 equipped with a (contact) 1-form w such that w A (dw)™ is nowhere
vanishing. The Reeb vector field can then be defined by the conditions:

tww=1 and tydw =0, (3.39)
while the bivector field of the Jacobi structure is defined through:
tieyw =0 and gdw = —§+ (éw, (3.40)
for all 1-forms &. These conditions can be written in component form:

MYw; =0, (3.41)
2ij8[kwﬂ = —5g + Viw; . (3.42)

We can now examine the corresponding Jacobi sigma model. Multiplying the equation
of motion for A;, given by eq. (3.21), with w;, we get an expression for Ay:

Ap = e®uwdX°. (3.43)

On the other hand, if we multiply the equation of motion for A; with (dw);x and use the
equation of motion for Ay, given by eq. (3.23), we get an expression for A;:

A; = e®(dw);d X7 — e®w;d®. (3.44)

Plugging these equations back in the action of the Jacobi sigma model, and assuming a
nontrivial boundary for 35, we obtain a 1-dimensional sigma model:

S, = / —d (eq)widXi) = —/ ePw;d X" (3.45)
22 822

Thinking in terms of a nontrivial path v = %5, and neglecting the additional scalar field @,
the action functional

S, : C>®°(S', M) - R

v / w, (3.46)
gl

determines the closed trajectories of the Reeb vector field, and therefore the Reeb

dynamics [43].

3.4 Twisting the Jacobi sigma model

In ref. [31], the authors considered a generalization of the Poisson sigma model in the spirit
of WZW models by assuming that the target space is equipped with a closed 3-form H,
dH = 0. Then one may add a term to the corresponding action functional as

Swzpsm = Spsm + . H(X), (3.47)
3
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where Y3 is a membrane worldvolume whose boundary is Yo and H(X) := X*(H) is the
pull-back of the 3-form to ¥3. It turns out that the twisted model is invariant under a
modified set of gauge transformations provided that the following twisted Poisson condi-
tion holds: 1

5P Pls = (H, ®3P) (3.48)

where the contraction on the right-hand side is with respect to the first entry of each
appearance of the bivector P. In local coordinates this means that the 3-vector on the left-
hand side is obtained by raising each of the indices of the 3-form by one P, in particular

3pligpik = pripaiprip, (3.49)

Our aim in this section is to study the analog of this twisted Poisson structure in the case of
the Jacobi sigma model. Although one might think that this is completely straightforward
due to the Poissonization trick, we will see that a proper twisted Jacobi structure requires
a cautious definition.

Given that apart from X?, we now also have the additional scalar field ®, there are two
membrane terms one may add to the model. They are the pull-backs by the sigma model
map X = (X, ®) of a 3-form H € T(A*(T*M @ R)) and a 2-form Q € D(A2(T*M & R))
on the target space. Note that in principle one may also consider a second 2-form and a
vector, and then add their corresponding terms on Yo; however, we will argue that these
terms belong to the same cohomology classes of H and O respectively. Finally, we mention
that unlike the Poisson sigma model, here the 3-form H is not assumed to be closed from
the beginning; we examine its properties below. According to the above, we consider the
action functional

1 A ~ . . 1A A . .
SwzisM = SisMm +/ EHijk(X)dXz ANdX? /\ka + §Qij(X)dXZ ANdXINdD. (3.50)
33

33
For the time being, we do not specify further the dependence of the components ﬁijk
and Qij on the scalar field ®. Furthermore, we suggest the following extended infinitesimal
gauge transformations for the 1-form fields, denoted as b} , now including contributions from
the components of the Wess-Zumino terms,

A 1 N A ) ) )
0A; = 0A; — ie_q) (Hijk(Hklel + Vké()) + Qileel) (dX] - €_<I>H]mAm + e_cbVJA())

1 ” ) )
+ 5e*q’gz,-j(r[ﬂq + Vi) (dd — e V™ A,,), (3.51)

N 1 ~ . . .
6Ay =649 — 56—@ij(nqu + VFe)(dX? — e PTV™A,, + e 2VI Ap) , (3.52)

up to trivial gauge transformations. On the other hand, the transformations for the scalar
fields X* and ® remain unchanged. Note that the rightmost parentheses of each new term
contain combinations starting with dX* and d®; clearly these are not the derivatives DX
and D® and they do not transform covariantly themselves.
Next we examine the gauge invariance of the action functional (3.50). First, a necessary
condition is that
dH +dQAdd =0. (3.53)
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Thus we observe that at face value the 3-form H is not closed. Then the transformation
of (3.50) becomes:

0SwzisM = /

3o

e (;eoAi A (I Vs + e (BOLILY) - V) AV) )

1 1 . . ijk
+ gerdi A A; <V A= ST — e~ (H(H, I, 11) + Q(IT, TT) A V))

+ €540 A Ay ([I1, Vs + e~ (A (ILIL V) — Q(IL V) A V))”) . (3.54)
Therefore, gauge invariance is achieved if and only if the following conditions hold:

[0, M) = 2 (V AT = e A(ILIL ) — e~ ®V A Q(IL D)) (3.55)
[LV]s=e *VAQUILV)— e *HALILYV). (3.56)

Moreover, the result does not change essentially if we include from the beginning additional
terms on the worldsheet 5. Such terms could be the pull-back of a 2-form B and a 1-form
C of the type

1 5 i ; o i
/22 5 Big(X)dX" A dX7 4+ (X)X A do. (3.57)

The only difference then would be that the above conditions hold using instead the modified
by exact terms 3-form and 2-form

H— H+dB and Q— Q+dC, (3.58)

which belong to the same cohomology class as H and .

As a simple check at this stage, we observe that setting ® and V' to zero the twisted
Poisson condition (3.48) is immediately recovered. Then one could be tempted to call (3.55)
and (3.56) the twisted Jacobi structure. However, a puzzle arises by noticing that the left-
hand side of these conditions is independent of ®, while the right-hand side contains ®
explicitly. To resolve this puzzle, we are led to specify the dependence of H and ) on ®
by refining their definitions as follows:

H(X,®)=e®H(X) and Q(X, ) =e?Q(X). (3.59)

Taking into account eq. (3.53), it turns out that H is exact (and therefore closed), and in

particular
H=dQ. (3.60)

We conclude that the twisted Jacobi structure is appropriately defined as a triple (II, V, Q)
of a bivector field, a vector field and a nonclosed 2-form such that the following two con-
ditions hold,

%[n, Ms = V AT — dQ(IT, T, TT) — V A Q(IT, IT) (3.61)
[, V]s = V A QL V) — dQ(ILTL V). (3.62)
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This is in agreement with the corresponding definition of ref. [37], which we obtained here
using a field-theoretic approach and gauge invariance. Moreover, these observations show
that the action functional of the twisted Jacobi sigma model ends up being

1 . A 1 . .
Swzism = Sysm + / §e¢8ink(X)dX’ AdXT A dXE + ie%ij(){)dx% AdXIAdD,
23 23
and noting that de® = e®d®, the Wess-Zumino term is a total derivative and thus drops
to the boundary. Then the resulting theory is simply

SW7zISM = / A; A dx’ + Ag A dd+
3o
1 . ) . )
+ 5efcl’nw (X)A; A A+ e PVI(X)Ag A A +ePQi(X)dX A dXT . (3.63)

We remark that although the Poisson structure is a special case of Jacobi, this is no longer
strictly true for the corresponding twisted structures. Setting V' = 0 to (3.61) and (3.62),
one obtains a twisted Poisson structure, albeit for an exact 3-form only. In general though
the 3-form does not have to be exact but only closed. This shows that if one wishes to
recover the general twisted Poisson structure, the case should be distinguished already at
the level of conditions (3.55) and (3.56). Indeed, our previous argumentation for defining
the twisted Jacobi structure assumed that ® is nonvanishing. However, when & is zero,
then (3.53) yields H closed and with V also vanishing the aforementioned conditions result
in the twisted Poisson structure as already noted before.

4 Conclusions and outlook

Recent years have faced a lot of activity in the understanding of the interplay between
generalizations of geometry and physics, especially in the framework of string theory. Two-
dimensional nonlinear sigma models are a natural arena where this interplay takes place,
due to the identification of their couplings with a symmetric and antisymmetric 2-tensor
respectively, which may be combined in a so-called generalized metric. This is where inter-
polations of geometric structures, such as pre-symplectic and Poisson [11] or complex and
symplectic [47] become relevant. The symmetry structure of such generalized geometries
goes beyond diffeomorphisms due to the presence of antisymmetric tensor fields and it is
captured by generalizations of the Lie bracket of vector fields, notably by the Courant
bracket. In the presence of a closed 3-form, representing the field strength of the 2-form
and being identified with a Wess-Zumino term in the sigma model, these structures are
twisted. However, the possibility of a 3-form that is not closed has not been studied in
detail from this field-theoretical viewpoint. Nonclosed 3-forms may appear either through
dimensional reduction of closed 3-forms or in the context of Heterotic string theory, where
the Bianchi identity is modified due to o corrections.

Motivated by the above, we have studied two main aspects of nonlinear sigma models
with Wess-Zumino term. First, generalizing the approach of [16, 18, 19], we have studied
the gauging of a class of sigma models where the Wess-Zumino term is not closed, a situation
that can arise through dimensional reduction. We have shown that the constraints which
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guarantee consistency of the gauging procedure are directly associated with the structure
of a transitive Courant algebroid on the effective target space TM & G & T*M, where G
is a bundle of quadratic Lie algebras. In case that G = M x R @ R, the constraints are
identified with the conditions for isotropic and involutive subbundles of the fully twisted
contact Courant algebroid of [23], namely contact Dirac structures.

Furthermore, motivated by the fact that the Poisson sigma model can result from a
gauging procedure and moreover that it may be twisted by a 3-form in a way that defines a
generalization of Poisson manifolds [31], we have studied sigma models whose target space
is endowed with a Jacobi structure. Jacobi structures are generalizations of Poisson in the
presence of an additional vector field that controls the nonvanishing of the Schouten bracket
of the would-be Poisson bivector with itself. In addition, they are related to Poisson via
a Poissonization theorem stating that a Jacobi structure can be oxidized to a Poisson in
one dimension higher. Utilizing this fact, we have constructed Jacobi sigma models and
studied their gauge structure. Gauge invariance is controlled by the defining relations of
this more general structure and the gauge algebra is an open one. Finally, we have included
a Wess-Zumino term in the Jacobi sigma model and demonstrated that gauge invariance
leads to a twisted Jacobi structure, which we identify.

The above results can be useful in the context of Heterotic string theory and its sigma
model. Indeed, the Bianchi identity of the 3-form in Heterotic string theory is modified with
respect to type II superstrings, in that it acquires o corrections and thus is of the general
form studied in this paper. It would be interesting to construct Heterotic membrane sigma
models in analogy to the Courant sigma model [48], with the expectation that the Heterotic
Bianchi identity follows from the classical master equation in the BV-BRST formulation.
This is expected also in view of analogous results in the context of QP manifolds [49]. One
could then also expect to obtain a set of geometric and nongeometric fluxes for Heterotic
string and double field theory following the strategy of [50]. A further important goal would
then be to understand the geometry of o’ corrections. Recently, the inclusion of such leading
order corrections in the bracket and bilinear form of Courant algebroids was suggested [51—
53], as well as their relation to transitive Courant algebroids [24]. Moreover, [54] suggests
a method to account for higher order corrections. It would be interesting to understand
the geometric realization of this method in the context of higher Courant algebroids.

Aside string theory, contact and Jacobi structures are relevant in the study of time-
dependent and/or dissipative Hamiltonian systems [55]. Given that the origins of the
Courant bracket are found in the study of constrained Hamiltonian mechanics, with the
outcome that pre-symplectic and Poisson structures are essentially treated on an equal
footing, it would be interesting to explore this spirit with reference to pre-contact and
Jacobi structures too. This could find applications in classical time-dependent systems
and their quantization.
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