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1 Introduction

The study of General Relativity using scattering amplitudes techniques is in a golden

era thanks to state of the art computations for interacting black holes and the possibil-

ity to relate classical gravitational observables to scattering amplitudes [1–6]. Nowadays,

the literature is vast and includes different approaches to deal with post-Newtonian and

post-Minkwoskian black holes [7–19], including also classical spin effects for Kerr black

holes [20–36] and tidal effects [37, 38]. The existence of this literature might seem surpris-

ing, given that we are trading General Relativity for an even more complicated quantum

gravitational system and its classical limit. However, the introduction of concepts such

as unitarity and double-copy [39–61] has made possible not only the computation of ob-

servables relevant for LIGO/Virgo [62] but also to unravel new structures in classical field

theory, proving that quantum mechanics can help us in elucidating the essence of classical

physics. In fact, the EOB approach [63], which led to accurate models of gravitational

wave signals for a binary system, was inspired by these ideas [64]. Along this line, this

paper describes perturbative solutions in General Relativity using the scattering ampli-

tude approach recently developed by Kosower, Maybee and O’Connell [4]. We focus on

the Aichelburg-Sexl metric describing a gravitational shock wave sourced by a massless

particle [65]. Derived almost simultaneously by Aichelburg, Sexl, Penrose [66] and Bon-

nor [67], it has been central to our understanding of graviton dominance in high energy

scattering [68], and in the past years it has been studied in different settings [69–73]. As

we will see, an alternative derivation is also possible using a novel relation between pertur-

bative solutions to Einstein’s field equations and scattering amplitudes. Several authors

have conjectured a similar connection and in the case of a static massive source, it has
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led to the computation at second order in GN of the Schwarzschild1 and Kerr-Newman

solution [75–78]. However, the lack of a covariant framework has made it impossible to

treat more general cases such as those described by an energy momentum tensor sourced

by massless particles with spin. This work is a step toward this direction. We start by

first reviewing the original derivation by Aichelburg and Sexl of a gravitational shock wave

employing an ultrarelativistic boost of a Schwarzschild solution. We then present a rela-

tion between classical solutions in General Relativity and the classical part of three point

functions from quantum field theory. Using a massless particle coupled to a graviton, we

derive the complete Aichelburg-Sexl metric as an exact solution to Einstein field equations.

The region where the radiation is localized has a well known distributional profile and it

is now recovered from the amplitude itself, bypassing the introduction of singular coordi-

nate transformations as used in General Relativity. We also generalize the computation

to arbitrary D dimensions finding agreement in the literature [79, 80] with the ultrarel-

ativistic boost of the so called Tangherlini metric [81, 82]. We then extend the classical

double copy for static black holes to gravitational shock waves, showing that their single

copy is described by electromagnetic ones. For a spinning source, using the exponential

form of three point amplitudes, we infer a remarkable relation between gravitational shock

waves and spinning ones, also known as gyratons. From this, we obtain solutions describ-

ing spinning gravitational shock waves directly from the spinless case, avoiding the use of

ultrarelativistic boosts on Kerr black holes [83]. To our knowledge, the existence of such

a relation between exact solutions in General Relativity was previously unknown. Inter-

estingly, this relation resembles the Newman-Janis algorithm [84] which provides a Kerr

solution from a complex deformation of Schwarzschild, recently studied by Arkani-Hamed,

Huang and O’Connell in [24]. We then compute the phase shift of a particle in a back-

ground of shock waves, finding agreement with earlier computations for particles in the

high energy limit [85, 86]. Applied to a gyraton, it provides a result for the scattering

angle valid to all orders in the spin.

We will work throughout in natural units and in mostly negative signature.

2 The Aichelburg-Sexl metric

Aichelburg and Sexl derived for the first time an exact solution to Einstein field equations

describing the gravitational field generated by a massless particle [65]. Their procedure

employed the use of an ultrarelativistic boost of a Schwarzschild solution, previously used

by D’Eath to address the scattering of two ultrarelativistic black holes [87]. Let us review

their original derivation. We start by introducing the Schwarzschild metric in isotropic

coordinates [88]

ds2 =
(1−A)2

(1 +A)2
dt2 − (1 +A)4

(
dx2 + dy2 + dz2

)
, A =

mGN

2
√
x2 + y2 + z2

(2.1)

1See also [74] for a derivation up to G3
N using EFT methods.
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and we decompose it as

ds2 = dt2−dx2−dy2−dz2 +

[
(1−A)2

(1 +A)2
−1

]
dt2−

[
(1 +A)4−1

](
dx2 + dy2 + dz2

)
. (2.2)

If we apply a Lorentz transformation to eq. (2.1) on the x -direction,

t =
t̄− vx̄√
1− v2

, x =
x̄− vt̄√
1− v2

, y = ȳ , z = z̄ (2.3)

the previous line element changes to

ds2 = dt̄2 − dx̄2 − dȳ2 − dz̄2 +

[
(1−A′)2

(1 +A′)2
− 1

]
(dt̄− vdx̄)2

1− v2

−
[
(1 +A′)4 − 1

]((dx̄− vdt̄)2

1− v2
+ dȳ2 + dz̄2

)
(2.4)

A′ =
mGN

√
1− v2

2 {(x̄− vt̄)2 + (1− v2) (ȳ2 + z̄2)}1/2
(2.5)

We write m = p
√

1− v2 and expand (2.4)–(2.5) around v = 1 for a fixed value of p to find

ds2 = dt̄2 − dx̄2 − dȳ2 − dz̄2 − 4pGN
|t̄− x̄|

(dt̄− dx̄)2 , x̄ 6= t̄ (2.6)

In order to include also the missing region given by x̄ = t̄, Aichelburg and Sexl proposed a

coordinate transformation which becomes singular in the limit for v = 1

x′ − vt′ = x̄− vt̄
x′ + vt′ = x̄+ vt̄− 4pGN log[

√
(x̄− vt̄)2 + (1− v2)− (x̄− t̄)]

(2.7)

Using the following relation

lim
v→1

[
1√

(x′ − vt′)2 + (1− v2)ρ
− 1√

(x′ − vt′)2 + (1− v2)

]
= −2δ(t′ − x′) log(ρ) (2.8)

the line element assumes the usual form of an impulsive pp-wave

ds2 = dt′2 − dx′2 − dy′2 − dz′2 + 4pGNδ(t
′ − x′) log(y′2 + z′2)(dt′ − dx′)2 (2.9)

The latter defines a global solution given by two copies of Minkwoski space connected by a

singularity along a light cone coordinate. Among the relevant properties of this solution we

can notice that in going from eq. (2.1) to eq. (2.9) we have changed the algebraic type of the

Weyl tensor from Petrov type D to the radiative type N [89], a property first discovered by

Pirani [90]. Moreover, from the computation of the associated Einstein tensor we can infer

that the energy momentum tensor is simply that of a massless particle, thus confirming

the physical interpretation of the metric.
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3 Gravitational shock waves from scattering amplitudes

The idea to perturbatively solve Einstein field equations using quantum field theory tech-

niques dates back to a paper by Duff [76] where the Schwarzschild solution was derived

up to G2
N order. After, several authors used known relations among off-shell scattering

amplitudes and form factors so as to include quantum effects in the latter, confirming

the same results for the classical part [78]. Both approaches require the knowledge of the

Einstein-Hilbert action expanded around a fixed background which becomes intractable

already after few iterations in the coupling k =
√

32πGN . In order to have a better control

on the complexity of the calculation, it would be desirable to relate scattering amplitudes

directly to the metric tensor in the same way as these have been related to classical observ-

ables in [4]. To this end we start by considering a Riemannian manifold and a Minkwoskian

background. We then introduce an off-shell continuation of the second quantized solution

to the linearized Einstein field equations

ĥµν(x) =
k

2

∑
λ

∫
dΦoff(q)

[
ελµν(q)âλq e

−iq·x + (ελµν)†(q)(âλq )†eiq·x
]

(3.1)

To ensure the gauge dependence of the metric, the sum runs over longitudinal polarizations

and the measure of integration used in [4] has been replaced with

dΦon(q) =
dDq

(2π)D
2πδ(q2)θ(q0) → dΦoff(q) =

dDq

(2π)D
1

q2
(3.2)

We have added the subscripts on-off to denote that every integral carrying such measure

of integration will lead to an integrand with a momentum which is respectively on-shell

or off-shell. In our case, eq. (3.2) ensures the off-shellness of the graviton and the fact we

are not looking for radiative modes of the metric tensor. The iε prescription is implicitly

assumed. We then propose the following wave-function describing our system in absence

of interactions

|Ψin〉 =

∫
dΦon(p)φ(p) |p〉 ⊗ |0〉 , dΦon(p) =

dDp

(2π)D
δ̂(+)(p2 −m2) (3.3)

where δ̂(+)(p2 −m2) = 2πδ(p2 −m2)θ(p0). The state |0〉 denotes the vacuum state of the

gravitational field while φ(p) is a proper wave-packet describing the source. We now define

the metric tensor satisfying the non linear Einstein field equations as

gµν(x) = ηµν + hµν(x) , hµν(x) = 〈ΨI(t)| ĥIµν(x) |ΨI(t)〉 (3.4)

The operator ĥIµν(x) is defined as the action of Uint(+∞, t) on (3.1), while the state |ΨI(t)〉
is defined as the evolution at time t of the initial state under Uint(t,−∞). We can now

express (3.4) as follows

hµν(x) = 〈ΨI(t)|U †int(+∞, t)ĥµν(x)Uint(+∞, t) |ΨI(t)〉 (3.5)

= 〈inΨ|U †int(t,−∞)U †int(+∞, t)ĥµν(x)Uint(+∞, t)Uint(t,−∞) |Ψin〉 (3.6)

= 〈inΨ|S†ĥµν(x)S |Ψin〉 (3.7)
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where we have the introduced the S matrix of the system. In doing so, we have been able

to relate the solution to the complete Einstein field equations with a plane wave operator,

by encoding all non linearities in the S matrix alone. Using then S = 1+ iT we can expand

eq. (3.7) neglecting for the moment terms proportional to TT †

hµν(x) = i 〈Ψin|
(
ĥµν(x)T − T †ĥµν(x)

)
|Ψin〉 (3.8)

From which

hµν(x) =
ik

2

∑
λ

∫
dΦoff(q)dΦon(p)dΦon(p′)φ(p)φ†(p′)×

[〈p′qλ|T |p〉 ελµν(q)e−iq·x − 〈p′|T † |pqλ〉 (ελµν)†(q)eiq·x] (3.9)

= −k
∑
λ

∫
dΦoff(q)dΦon(p)dΦon(p′) Im

[
φ(p)φ†(p′) 〈p′qλ|T |p〉 ελµν(q)e−iq·x

]
(3.10)

Matrix elements in eq. (3.10) usually describe on-shell scattering amplitudes thanks to

the covariant measures which have a Dirac delta in each integrated momentum. Having

assumed instead an off-shell integration measure for gravitons, the term in eq. (3.10) won’t

be an on-shell scattering amplitude but an off-shell three point function given by

〈p′qλ|T |p〉 = (2π)DδD(p− q − p′) (ελαβ)†(q)Mαβ(p, p′, q) (3.11)

We now choose harmonic coordinates which amounts to requiring the following identity

to hold ∑
λ

ελµν(q)(ελαβ)†(q) =
1

2

(
ηµαηνβ + ηµβηνα −

2

D − 2
ηµνηαβ

)
≡ Pµναβ (3.12)

Using this, eq. (3.10) becomes

hµν(x) =− k
∫
dΦoff(q)dΦon(p)dΦon(p′) Im

[
φ(p)φ†(p′)×

(2π)DδD(p′ + q − p) PµναβMαβ(p, p′, q)e−iq·x
]

(3.13)

We now proceed by making explicit the integration measure for the source particle. Inte-

grating over p′ we obtain

hµν(x) =− k
∫
dΦoff(q)

dDp

(2π)D
dDp′

(2π)D
δ̂(+)(p2 −m2)δ̂(+)(p′2 −m2)×

Im
[
φ(p)φ†(p′)(2π)DδD(p− q − p′) PµναβMαβ(p, p′, q)e−iq·x

]
(3.14)

hµν(x) =− k
∫
dΦoff(q)

dDp

(2π)D
δ̂(+)(p2 −m2)δ̂(+)((p− q)2 −m2)×

Im
[
φ(p)φ†(p− q) PµναβMαβ(p, p′, q)e−iq·x

]
(3.15)
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where it is implicitly assumed that Mαβ(p, p′, q) is constrained with p′ = p − q. Making

also explicit the off-shell integration measure we obtain,

hµν(x) =− k
∫

dDq

(2π)D
1

q2

∫
dDp

(2π)D
δ̂(+)(p2 −m2)δ̂(+)(q2 − 2q · p)×

Im
[
φ(p)φ†(p− q) PµναβMαβ(p, p′, q)e−iq·x

]
(3.16)

For a wave-packet sharply peaked around a given momentum p0,2 we obtain

hµν(x) = −k
∫

dDq

(2π)D
δ̂(+)(q2 − 2q · p0)

q2
Im[PµναβMαβ(p0, p

′ = p0 − q, q)e−iq·x] (3.17)

We are thus left with a remarkable relation between the classical metric tensor satisfying

Einstein field equation and three point functions with an external graviton, valid both for

massive and massless sources

hµν(x) = −k
∫

dDq

(2π)D
δ̂(+)(q2 − 2q · p0)

q2
Im[PµναβMαβ(p0, p

′ = p0 − q, q)e−iq·x] (3.18)

Let us consider the massless case. Taking advantage of this covariant relation, we can

proceed to explore which space-time corresponds to a three point function with an off-shell

graviton and a massless source. Based on what has been discussed in section 2, this should

correspond to a gravitational shock wave. We start at tree level from the interaction of a

graviton with a massless source

Mµν(p1, p2) =
ik

2

(
pµ1p

ν
2 + pµ2p

ν
1 − ηµνp1 · p2

)
(3.19)

PµναβMαβ(p, q) =
ik

2

[
2pµpν − pµqν − pνqµ + ηµνp · q

]
(3.20)

where in the last equation we have expressed the whole contributions in terms of pµ and

qµ, being the former the incoming momenta. The whole metric tensor depends on only

two functions

hµν(x) = −k
2

2

[
2pµpνΘ(x)− pµΘν(x)− pνΘµ(x) + ηµνp

αΘα(x)
]

(3.21)

Θ(x) =

∫
dDq

(2π)D
δ̂(+)(q2 − 2q · p)cos(q · x)

q2
(3.22)

Θµ(x) =

∫
dDq

(2π)D
δ̂(+)(q2 − 2q · p)qµ

q2
cos(q · x) (3.23)

In the classical limit we implement the limit for small q by considering the integration

domain where p � q. This amounts to disregarding the Heaviside theta in eq. (3.18) as

well as the q2 term in its Dirac delta

δ̂(+)(q2 − 2q · p) → 2πδ(2q · p) (3.24)

2For further details, see [4], section 4.
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In this limit Θµ(x) is vanishing being the integrand an odd and real valued function and

we are thus left with the computation of Θ(x). Using then the integral representation for

a Dirac delta together with the Schwinger parametrization we obtain

Θ(x) = −i
∫
R
ds

∫
R+

dt

∫
dDq

(2π)D
e−iq·(x−2ps)+iq2t (3.25)

The latter is a complex Gaussian integral and its computation gives

Θ(x) = −
(
i

4π

)D
2
∫
R
ds

∫
R+

dt
e−i

(x−2ps)2

4t

t
D
2

(3.26)

Expanding the square in the exponential,

Θ(x) = −
(
i

4π

)D
2
∫
R
ds

∫
R+

dt
e−i

(x−2ps)2

4t

t
D
2

(3.27)

= −2π

(
i

4π

)D
2
∫
R+

dt

t
D
2

e−
ix2

4t δ

(
p · x
t

)
(3.28)

= −2π

(
i

4π

)D
2

δ(p · x)

∫
R+

dt

t
D
2

e
−ix2

4y |t| (3.29)

Changing variables to t = 1
u , we get

Θ(x) = −2π

(
i

4π

)D
2

δ(p · x)

∫
R+

du
e

−iux2

4

u
6−D

2

(3.30)

At this point, we should carefully distinguish the computation in D = 4 from other di-

mensions. One can realize it by computing separately the two cases and by a comparison

afterwords. We start from the case with D = 4,

Θ(x) =
1

8π
δ(p · x)

∫
R+

du

u
e−

iux2

4 (3.31)

In order to compute this integral, we consider its partie finie (Pf) to find

Θ(x) =
1

8π
δ(p · x) Pf lim

z→0

∫ +∞

z

du

u
e−

iux2

4

=
1

8π
δ(p · x) Pf lim

z→0

∫ +∞

1

du

u
e−

izux2

4

=
1

8π
δ(p · x) Pf lim

z→0
E1

(
zix2

4

) (3.32)

where we have introduced the exponential integral E1(x). Using the Puiseux series

E1(z) = −γ − log z −
∞∑
k=1

(−z)k

kk!
, |arg(z) < π| (3.33)
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The result is

Θ(x) = − 1

8π
δ(p · x) log(|x2|) , D = 4 (3.34)

As for the case D 6= 4, we evaluate it by first rescaling eq. (3.30),

Θ(x) = −2π

(
i

4π

)D
2

δ(p · x)

(
x2

4

) 4−D
2
∫
R+

du e−iuu
D−6

2 (3.35)

After a Wick rotation, the remaining integral defines a Gamma function, from which

Θ(x) =
π

2−D
2

4

Γ
(
D−2

2

)
D − 4

δ(p · x)

(x2)
D−4

2

, D > 4 (3.36)

We can thus summarize our results,3

Θ(x) =


− 1

8π δ(p · x) log(|x2|) , D = 4

π
2−D

2

4

Γ(D−2
2 )

D−4
δ(p·x)

(x2)
D−4

2

, otherwise
(3.37)

Using eq. (3.21) we can read the metric tensor related to a three point function with a

massless source and an off-shell graviton.

The final result is

hµν(x) =


4GNpµpνδ(p · x) log(|x2|) , D = 4

−8π
4−D

2 GNpµpν
Γ(D−2

2 )δ(p·x)

(D−4)(x2)
D−4

2

, otherwise
(3.38)

We will shortly argue that contributions from higher loops produce only divergences which

are removed from the cut terms proportional to TT † in (3.7). This procedure provides an

exact solution to Einstein field equations already at linear order in GN . In D = 4 the line

element reads

ds2 = gµνdx
µdxν = dt2 − dx2 − dy2 − dz2 + 4GNδ(p · x) log(|x2|)pµpνdxµdxν (3.39)

For a massless particle moving along the x direction we recover the Aichelburg-Sexl met-

ric (2.9) for a gravitational shock wave

ds2 = dt2 − dx2 − dy2 − dz2 + 4pGNδ(t− x) log(y2 + z2)(dt− dx)2 (3.40)

In D dimensions, the metric is in agreement with earlier computations describing the

ultrarelativistic boost of the Schwarzschild-Tangherlini metric in D dimensions [80]. As for

the coordinates associated with this metric, we notice that eq. (3.38) satisfies the harmonic

gauge condition, equivalent at linear order in GN with the linear harmonic,

ηαβΓµαβ = 0 → ∂αh
µα =

1

2
∂µh (3.41)

3One could also infer the D = 4 case from the following regularization
Γ(D−4

2 )
xD−4 → −2 log(x). This

amounts to remove a divergent quantity from the metric tensor with a gauge transformation.
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which can be easily seen to be satisfied thanks to eq. (3.38) being traceless. In D = 4

∂αh
µα = 4GNp

µpα∂αδ(p · x) log(|x2|) + 8GNp
µpαδ(p · x)

xµ
x2

= 0 (3.42)

with the same result in higher dimensions. This is consistent with the harmonic gauge

choice made in eq. (3.12). The advantages of this computation with respect to the deriva-

tion from classical General Relativity are several. The exactness of the solution already

at linear in GN can now be explained in light of the absence of classical contributions to

higher loops in three point functions with two massless scalars and a graviton [2]. This is in

contrast with the computation for a massive three point function where the classical part

from higher loop orders is non vanishing and needed in order to reproduce the expansion of

Schwarzschild in GN [78]. Remarkably, the distributional profile emerges in a natural way

from the amplitude itself, with no need to introduce singular coordinate transformations

as those in eq. (2.7). As we will see, this property is more general: it is valid also for

gravitational shock waves carrying a spin dependence.

4 A classical double copy for gravitational shock waves

In the previous section we have shown a relation between perturbative solutions to Einstein

field equations and scattering amplitudes. The latter can be introduced also for a gauge

theory as classical electromagnetism. We start by introducing the following operator for a

gauge potential

Âµ(x) =
∑
λ

∫
dΦoff(q)

[
ελµ(q)âλq e

−iq·x + (ελµ)†(q)(âλq )†eiq·x
]

(4.1)

Following the same steps seen before and working in Feynman gauge we can easily derive

a relation between a gauge potential Aµ(x) and three point functions in scalar QED with

an external photon,

Aµ(x) =

∫
dDq

(2π)D
δ̂(+)(q2 − 2q · p0)

q2
Im[Mµ(p0, p

′ = p0 − q, q)e−iq·x] (4.2)

We now consider electromagnetic shock waves [91]. We find natural to relate these to a

three point amplitude of a massless scalar particle coupled to a photon,

Mµ = −ie(2pµ − qµ) (4.3)

Using this, we can express the gauge potential Aµ(x) in terms of (3.22), (3.23),

Aµ(x) = −e
[
2pµΘ(x)−Θµ(x)

]
(4.4)

The final result for an electromagnetic shock wave is

Aµ(x) =


e

4π p
µδ(p · x) log(|x2|) , D = 4

− e
2π p

µ π
4−D

2
Γ
(

D−2
2

)
δ(p·x)

(D−4)(x2)
D−4

2

, otherwise
(4.5)
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We may now consider the classical double copy procedure shown in [42] in order to construct

a solution in General Relativity. This amounts to the following replacement

e→ 16πGN , pµ → pµpν (4.6)

Remarkably, this gives the correct gravitational shock wave in arbitrary D dimensions of

eq. (3.38) showing that gravitational and electromagnetic shock waves are related by a

classical double copy. This fact was shown to hold for static black holes [43, 45] and then

generalized to accelerating ones in [42]. Here, we have proven that a classical double copy

is satisfied also by shock waves in gravity and gauge theories.

5 Spinning gravitational shock waves

Having studied in depth the relation between massless particles and gravitational shock

waves, we find natural to investigate the same relation for the case of a spinning source.

As we will see, this leads to a family of classical solutions also known in the literature as

gyratons [92, 93]. For ease of discussion we restrict ourselves to the case D = 4. In order

to perform the computation, we take advantage of the exponential representation of three

point functions for a spinning massive particle emitting a graviton [22, 28]

MS
µν =Mµν e

a·q , aµ =
sµ

m
(5.1)

being Mµν the associated spinless three point amplitude and sµ the spin vector of the

source. In the massless limit we treat aµ as a constant and express the spin vector using

the representation of the Pauli-Lubanski pseudovector for a massless particle [94]

sµ =
1

E
Wµ , Wµ =

1

2
εµναβS

ναpβ (5.2)

Using this, the metric tensor reads

hSµν(x) = −k
2

2

(
2pµpνΘS(x)− pµΘS

ν (x)− pνΘS
µ(x) + ηµνΘS

α(x)pα
)

(5.3)

ΘS(x) =

∫
d4q

(2π)4
δ̂(+)(q2 − 2q · p)cos(q · x)ea·q

q2
(5.4)

ΘS
µ(x) =

∫
d4q

(2π)4
δ̂(+)(q2 − 2q · p)qµ

q2
cos(q · x)ea·q (5.5)

We can now prove a relation between spinless gravitational shock waves and gyratons. We

restrict to the classical limit by considering the integration region where p� q, thus

ΘS(x) =
Θ(x− ia) + Θ(x+ ia)

2
, ΘS

µ(x) =
Θµ(x− ia) + Θµ(x+ ia)

2
(5.6)

We now consider the behavior of Θ(x) under a complex shift. Introducing a =
√−aµaµ

we obtain the following expression

Θ(x− ia) = − 1

8π
δ(p · x) log(|x2 + a2|) (5.7)
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Eq. (5.7) is real valued due to the absence of linear terms in a · x. This is ensured by

the Dirac delta in p · x and the fact that the Pauli-Lubanski pseudovector and aµ are

proportional to pµ [94]. Thus,{
ΘS(x) = Θ(x− ia)

ΘS
µ(x) = Θµ(x− ia)

→ hSµν(x) = hµν(x− ia) (5.8)

Remarkably, thanks to the exponential form of the three point amplitude we can now read

the metric tensor sourced by a massless spinning source directly from the spinless case

using the shift xµ → xµ − iaµ. To our knowledge, this property between spinless shock

waves and gyratons was previously unknown and it relates to the exponential form of the

energy momentum tensor for linearized Kerr black holes [20], which is preserved after an

ultrarelativistic boost. The line element is

ds2 = dt2 − dx2 − dy2 − dz2 + 4GNδ(p · x) log(|(x2 + a2|)pµpνdxµdxν (5.9)

In particular, for a spinning particle moving along the x direction

ds2 = dt2 − dx2 − dy2 − dz2 + 4GNpδ(x− t) log(|y2 + z2 − a2|)(dt− dx)2 (5.10)

in agreement with an earlier computation by Ferrari and Pendenza [83] describing the

ultrarelativistic boost of a Kerr black hole. The derivation by a simple shift in aµ is

remarkable, since the same in classical General Relativity is much more complicated.

Interestingly, this procedure resembles the Newman-Janis algorithm [84] which pro-

vides a Kerr solution from a complex deformation of Schwarzschild, this last recently stud-

ied by Arkani-Hamed, Huang and O’Connell in [24]. As for the singularity at y2 + z2 = a2,

we interpret this as the remnant of the singularity in the equatorial plane.

6 The scattering angle in the high energy limit

The computation of geodesics in a gravitational shock wave background has been explored

by several authors [95, 96]. Since the whole space-time is Minkwoskian up to a region

defined by a null light cone coordinate, geodesics are fully determined from the net change

in momentum of a particle

∆pµ0 =
1

2

∫
R
dσ∂µhαβ(x(σ))pα0 p

β
0 (6.1)

where the subscript 0 denotes the particle, while σ the affine parameter of its world-line.

To leading order in GN we assume free motion

xµ0 (σ) = pµ0σ + bµ , b · p0 = 0 , b · p = 0 (6.2)

being bµ a covariant impact parameter and pµ the momentum associated with the shock

wave. The resulting change of impulse in D = 4 reads

∆pµ0 =
1

2
pα0 p

β
0

∫
R
dσ8GNpαpβ

[
δ (p · x0(σ))

xµ0 (σ)

x2
0(σ)

]
=

4GNp · p0

b · b
bµ (6.3)
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Having computed the change of momentum experienced by the particle, we can compute

the associated phase shift using

sin(θ) =
∆pµ0bµ
p0 b

(6.4)

where we have introduced b =
√
−bµbµ. The result is

sin(θ) =
4GNp · p0

p0 b
(6.5)

Let’s now consider the massless limit,

p · p0 = p p0 − ~p · ~p0 = 2p2
0 , s = 4p2

0 (6.6)

If we now apply the small angle approximation we obtain

θ =
4GN

√
s

b
(6.7)

in agreement with an earlier computation by Dray and t’Hooft [69]. Interestingly, as shown

by Amati, Ciafaloni and Veneziano, the same result agrees with the leading order scattering

angle between particles in the high energy limit [85]. We can generalize this result including

effects to all orders in spin using as a source the metric tensor for a gyraton derived in

eq. (5.8). This provides the following result

∆pµ =
4GNp · p0 b

µ

a2 − b2
(6.8)

The scattering angle in the massless limit and including effects to all order in spin reads

θ =
2GN

√
s

b− a
+

2GN
√
s

b+ a
(6.9)

Interestingly, this scattering angle in the high energy limit resembles a striking similarity

with the all order in spin result by Vines [20] including the pole at b = a.

7 Conclusion

We have derived a relation between perturbative solutions to Einstein field equations and

off-shell scattering amplitudes thanks to a covariant framework developed by Kosower,

Maybee and O’Connell [4]. We have studied to which gravitational field corresponds a

scattering amplitude with an off-shell graviton and two massless particles finding that the

latter describes a gravitational shock wave also known as Aichelburg-Sexl metric [65]. The

result has been easily generalized to arbitrary D dimensions finding agreement with previ-

ous computation of D dimensional shock waves in General Relativity [80]. The advantage

of this computation are several. We have been able to avoid singular coordinate trans-

formations which were used in General Relativity to deal with the singular behavior of

the gravitational field along a light cone coordinate. Remarkably, the distributional profile

emerges in a natural way from the amplitude itself, while the exactness of the classical
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solution at linear in GN can now be explained in light of the absence of classical contribu-

tions at higher loops for three point functions with massless particles. We have also shown

that a classical double copy is satisfied between gravitational and electromagnetic shock

waves and for a spinning source, using the exponential form of three point amplitudes, we

have inferred a remarkable relation between gravitational shock waves and spinning ones,

also known as gyratons. Using this property, we have been able to infer solutions describ-

ing spinning gravitational shock waves directly from the spinless case, thus bypassing the

derivation in General Relativity involving an ultrarelativistic boost of a Kerr black hole.

We have computed the phase shift of a particle in a background of shock waves finding

agreement with earlier computations for the scattering angle of particles in the high energy

limit [85, 86]. Applied to a gyraton, it has provided a result to all orders in the spin.
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