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1 Introduction

Black holes in string theory must be made by taking bound states of objects — strings
and branes — present in the theory. The D1D5P system provides a very useful example
of such a construction. One finds that the entropy and the rate of low energy emission
from string states matches the expectations from gravitational thermodynamics [1–4]. The
D1 and D5 branes form a bound state whose dynamics can be given as an effective 1 + 1
dimensional conformal field theory. The momentum charge P is given by the difference in
energy between the left moving and right moving excitations in this CFT.

The CFT has a ‘free point’ which is given by a 1 + 1 dimensional sigma model whose
target space is an orbifold [5–12]. The orbifold theory consists of N copes of a c = 6 CFT,
joined up in different ‘twist sectors’. In each twist sector the excitations are just given
by free left and right moving bosons and fermions, with an overall symmetry condition
to enforce the orbifold symmetry. At this orbifold point, any state with no right moving
oscillator excitations is extremal.

The situation changes as we deform the theory away from the orbifold point. Sets
of extremal states can join up into larger multiplets and lift to higher energies, leaving
a smaller set of states that remain extremal. The count of states that remain unlifted is
given by an index. This index was computed in [1] for the case where the compactification
is K3 × S1 and in [13] for the compactification T 4 × S1. Our interest is in finding the
actual states that are unlifted, the supermultiplet structure for groups of states that do
lift, and the value of this lift. In particular we are interested in understanding the value
of the twist for sectors where typical lifted and unlifted states arise, since this is relevant
for the physical picture of the extremal hole. States in highly twisted sectors correspond
to gravity states with deep throats, while states in sectors with low twist describe shallow
throats. (For constructions of ‘fuzzball’ microstates dual to different CFT states see for
example [14–18].)

In [19] the lift was computed, in a certain approximation scheme, for the situation
where most of the CFT copies are in the untwisted sector and one set is in a twisted sector.
Low energy excitations of this sector can be mapped, in the gravity dual, to strings in an
AdS3 × S3 × T 4 spacetime. Apart from a small set of states in the graviton multiplet,
these string states are all lifted. On the other hand we know from the index computation
of [13] that if we go to sufficiently high energies and twists to reach black hole states, then
a large number of states must remain unlifted: the index of [13] agrees with the Bekenstein
entropy of extremal holes for large charges. It would be very interesting to understand
better what properties of the highly excited states makes them remain ‘unlifted’.

In this paper, we consider a CFT with N = 2; this means that the product of the
number N1 of D1 branes and N5 of D5 branes is N1N5 ≡ N = 2. We work to second order
in the perturbation off the orbifold point. In [20] this problem was studied for the lowest
nontrivial amount of momentum charge P = 1, and the pattern of lifting was found. In
the present paper, we will extend the results to P = 4 and make some observations about
the general nature of the unlifted states.
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Our steps and results are as follows:

(i) We study the constraints on lifting from the index. We find the number of states that
can be lifted upto level P = 6. We describe the structure of the long supermultiplets
which relate these states. We identify the class of states that can be lowest members
of long supermultiplets.

(ii) We give explicitly the wavefunctions for these lowest members of the long supermul-
tiplets, upto level P = 3. (The wavefunctions for P = 4 is found in a similar way but
the expressions are rather unwieldy, so we do not write them down in this paper.)
We calculate the lift for all states to level P = 4 at O(λ2) in the perturbation. We
find that at this order the lift is nonzero for all these states. Thus all states upto this
level that are allowed to lift by the index are in fact lifted at order O(λ2).

(iii) We discuss the general nature of states that remain unlifted at O(λ2). First consider
the case N = 2, and states in the untwisted sector. Let the left and right sectors
both be fermionic, so that the overall state of each multiwound copy is bosonic. We
observe that if the right moving sector is antisymmetric in the two copies, then the
state will remain unlifted at O(λ2). We then extend this observation to the case
N > 2, including the situation where the component strings that are joined may
have windings k1, k2 greater than unity.

Before proceeding, we note that there are many earlier works that study conformal
perturbation theory, the lifting of the states, the acquiring of anomalous dimensions, and
the issue of operator mixing, in particular in the context of the D1D5 CFT see for ex-
ample [21–35]. Also, for more computations in conformal perturbation theory in two and
higher dimensional CFTs see, e.g. [36–47].

2 The D1D5 CFT

In this section, we summarize some properties of the D1D5 CFT at the orbifold point and
the deformation operator that we will use to perturb away from the orbifold point. For
more details, see [21, 22].

Consider type IIB string theory, compactified as

M9,1 →M4,1 × S1 × T 4 (2.1)

Wrap N1 D1 branes on S1, and N5 D5 branes on S1×T 4. The bound state of these branes
is described by a field theory. We think of the S1 as being large compared to the T 4, so
that at low energies we look for excitations only in the direction S1. This low energy limit
gives a conformal field theory (CFT) on the circle S1.

It has been conjectured that we can move in the moduli space of couplings in the string
theory to a point called the ‘orbifold point’ where the CFT is particularly simple. At this
orbifold point the CFT is a 1+1 dimensional sigma model. We will work in the Euclidized
theory, where the base space is a cylinder spanned by the coordinates

τ, σ : 0 ≤ σ < 2π, −∞ < τ <∞ (2.2)

– 3 –



J
H
E
P
1
1
(
2
0
2
0
)
1
4
5

The target space of the sigma model is the ‘symmetrized product’ of N1N5 copies of T 4,

(T 4)N1N5/SN1N5 , (2.3)

with each copy of T 4 giving 4 bosonic excitations X1, X2, X3, X4. It also gives 4 fermionic
excitations, which we call ψ1, ψ2, ψ3, ψ4 for the left movers, and ψ̄1, ψ̄2, ψ̄3, ψ̄4 for the right
movers. The fermions can be antiperiodic or periodic around the σ circle. If they are
antiperiodic on the S1 we are in the Neveu-Schwarz (NS) sector, and if they are periodic
on the S1 we are in the Ramond (R) sector. The central charge of the theory with fields
Xi, ψi, i = 1 . . . 4 is c = 6. The total central charge of the entire system is thus

c = 6N1N5 ≡ 6N (2.4)

2.1 Symmetries of the CFT

The D1D5 CFT has (4, 4) supersymmetry, which means that we have N = 4 supersym-
metry in both the left and right moving sectors. This leads to a superconformal N = 4
symmetry in both the left and right sectors, generated by operators Ln, G±±,r, Jan for the
left movers and L̄n, Ḡ±±,r, J̄an for the right movers. The full symmetry is actually larger: it
is the contracted large N = 4 superconformal symmetry [13, 48]. The algebra generators
and commutators are given in appendix A.

Each N = 4 algebra has an internal R symmetry group SU(2), so there is a global
symmetry group SU(2)L × SU(2)R. We denote the quantum numbers in these two SU(2)
groups as

SU(2)L : (j,m); SU(2)R : (j̄, m̄) (2.5)

In the geometrical setting of the CFT, this symmetry arises from the rotational symmetry
in the 4 space directions ofM4,1: we have SO(4)E ' SU(2)L×SU(2)R. Here the subscript E
stands for ‘external’, which denotes that these rotations are in the noncompact directions.
We have another SO(4) symmetry in the four directions of the T 4. This symmetry we call
SO(4)I (where I stands for ‘internal’). This symmetry is broken by the compactification of
the torus, but at the orbifold point it still provides a useful organizing principle. We write
SO(4)I ' SU(2)1×SU(2)2. We use spinor indices α, ᾱ for SU(2)L and SU(2)R respectively.
We use spinor indices A, Ȧ for SU(2)1 and SU(2)2 respectively.

The 4 real fermions of the left sector can be grouped into complex fermions ψαA. The
right fermions have indices ψ̄ᾱA. The bosons Xi are a vector in the T 4. One can decompose
this vector into the (1

2 ,
1
2) representation of SU(2)1 × SU(2)2, which gives scalars XAȦ.

2.2 Deformation of the CFT

The deformation of the CFT off the orbifold point is given by adding a deformation operator
D to the Lagrangian

S → S + λ

∫
d2zD(z, z̄) (2.6)

where D has conformal dimensions (h, h̄) = (1, 1). A choice of D which is a singlet under
all the symmetries at the orbifold point is

D = 1
4ε

ȦḂεαβεᾱβ̄G
α
Ȧ,− 1

2
Ḡᾱ
Ḃ,− 1

2
σββ̄ (2.7)
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where σββ̄ is a twist operator of rank 2 in the orbifold theory. Here G and Ḡ are the left
and right moving supercharge operators at the orbifold point.

3 Computation of the lift using the Gava-Narain method

We are interested in finding states which have well defined scaling dimensions, and the
values of these dimensions, as we move away from the orbifold point. We will work in
the Ramond sector. We measure the dimensions from the Ramond ground state, which is
( c

24 ,
c

24). WE use the term ‘level n’ for the states with dimensions

(h, h̄) = (n, 0) (3.1)

Let these states be labelled by indices a, b, . . . , and written as
∣∣∣O(0)

a

〉
etc.

It turns out that while such states receive corrections at first order in λ, the dimensions
get corrections only starting at O(λ2). The computation involves pulling down two copies
of the deformation operator D from the action, and then integrating the positions of these
two D operators. We first compute the matrix elements

Xba(T ) =
〈
O

(0)
b

(
T

2

) ∣∣∣∣ (∫ d2w1D(w1, w̄1)
)(∫

d2w2D(w2, w̄2)
) ∣∣∣∣O(0)

a

(
−T2

)〉
(3.2)

Then we compute the matrix

E
(2)
ba = lim

T→∞
− λ

2

2T e
E(0)TXba(T ) (3.3)

where E(0) is the energy of the states |O(0)
a 〉 at the orbifold point. The eigenstates of this

matrix then give the linear combinations of the |O(0)
a 〉 which have definite dimensions and

the eigenvalues give the lift in energy of the corresponding states.
Such O(λ2) corrections were computed for some simple states in [44, 45]. In general

the computation of a correlation functions with deformation operators involves going to
a covering space where the effect of the twists is undone, and one gets a correlator of
operators not involving twists on this covering space. But the covering space can be a
sphere in some cases, and a torus in other cases. While correlators on a sphere are easy
to compute, they can be difficult to find on a torus. (A central reason for this difficulty
is that the correlators on the covering space can involve spin fields. On a sphere we can
remove these spin fields by spectral flows, but it is not clear how to do this on a higher
genus surface.)

If we cannot explicitly compute the amplitudes (3.2), then how can we find the lifting?
In [19] Gava and Narain gave a method by which amplitudes like (3.2) could be written as
modulus squared of amplitudes involving just one twist. Computing these one-twist ampli-
tudes always gives a covering space that is a sphere, so the computation is straightforward.

In [49] this proposal of [19] was studied in detail. Let us recall the results of this study.
We find

εȦḂε
ᾱβ̄E

(2)
ba = 2λ2

〈
O

(0)
b

∣∣∣{Ḡᾱ(P )
Ȧ,0 , Ḡ

β̄(P )
Ḃ,0

}∣∣∣O(0)
a

〉
(3.4)
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We will refer to the matrix E
(2)
ba as the lifting matrix E(2). The operators Ḡᾱ(P )

Ȧ,0 are
defined as

Ḡ
ᾱ(P )
Ȧ,0 = πPG+

Ȧ,− 1
2
σ−ᾱP (3.5)

where the operator P is a projection operator, which projects any state to the subspace
spanned by the unperturbed states |O(0)

a 〉 which have the dimensions (3.1).
From the above relation we see that the lifting matrix (3.3) can be written using either

of the following two equivalent expressions

E
(2)
ba = 2λ2

〈
O

(0)
b

∣∣∣{Ḡ+(P )†
+,0 , Ḡ

+(P )
+,0

}∣∣∣O(0)
a

〉
= 2λ2

〈
O

(0)
b

∣∣∣{Ḡ+(P )†
−,0 , Ḡ

+(P )
−,0

}∣∣∣O(0)
a

〉
(3.6)

Further, it was noted in [49] that the operators Ḡᾱ(P )
Ȧ,0 give the supersymmetric structure

of long multiplets. At the orbifold point the states can be grouped into short multiplets.
As we deform away from the orbifold point, four of these short multiplets can join into a
long multiplet and lift. The structure of this long multiplet is indicated in the following
diagram:

φ+

φ φ+−

φ−

Ḡ
+(P )
−,0Ḡ

+(P )
+,0

Ḡ
+(P )
−,0 Ḡ

+(P )
+,0

φ+

φ φ+−

φ−

Ḡ
−(P )
−,0

Ḡ
−(P )
+,0

Ḡ
−(P )
−,0

Ḡ
−(P )
+,0

(3.7)

The state φ is at the bottom of this long multiplet. Note that φ is a member of a short
multiplet created by operators that are not depicted in the diagram. The operators Ḡ+(P )

+,0

and Ḡ+(P )
−,0 play the role of the two raising operators which take us to states φ+, φ− which

are members of two other short multiplets. Acting with both these raising operators takes
us to the short multiplet represented by the state φ+−. We can move along this multiplet
in the reverse direction using the lowering operators Ḡ−(P )

+,0 and Ḡ−(P )
−,0 .

Suppose we have diagonalized the matrix E(2) given in eq. (3.6). Let |O(0)〉 be an
eigenstate of this matrix. Let the corresponding eigenvalue, which gives the lift of this
operator, be called E

(2)
O . Then from (3.6) we find that E(2)

O can be written as a sum of
modulus-squared terms

E
(2)
O = 2λ2

(∣∣∣Ḡ+(P )
+,0 |O

(0)〉
∣∣∣2 +

∣∣∣Ḡ−(P )
−,0 |O

(0)〉
∣∣∣2) = 2λ2

(∣∣∣Ḡ+(P )
−,0 |O

(0)〉
∣∣∣2 +

∣∣∣Ḡ−(P )
+,0 |O

(0)〉
∣∣∣2)
(3.8)

In the long multiplet described in (3.7) each of the four states φ, φ+, φ− and φ+−
have the following property: if it can be raised by Ḡ+(P )

+,0 , then it will be annihilated by the
Ḡ
−(P )
−,0 ; conversely, if it can be lowered by Ḡ−(P )

−,0 then it will be annihilated by the Ḡ+(P )
+,0 . A

similar statement holds for the raising operators Ḡ+(P )
−,0 and the lowering operators Ḡ−(P )

+,0 .
Thus in each of the two expressions in (3.8), only one of the two terms is nonzero.

In summary, one can get the value of the lift and the corresponding eigenstates by
diagonalizing the lifting matrix E(2) (3.6). Four short multiplets join into a long multiplet
as shown in eq. (3.7) and the lifting can be calculated from (3.8).
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In the cases that we will encounter below, there is a unique state |O(0)
a 〉 with the

relevant quantum numbers, so we will not have to diagonalize a matrix E(2)
ba to first find

the eigenvectors |O(0)〉.

4 The character decomposition

The CFT has a left and a right moving superconformal symmetry, with each of these
described by the contracted large N = 4 superconformal algebra [13, 48]. The algebra
generators and commutation relations are given in appendix A.

These symmetries remain true for all values of the coupling. Thus states related by
these symmetries will have the same lift E(2). We would like to group states into multiplets
that are related by these symmetries, so that we can reduce the number of independent
lifting computations that we have to perform. In this section, we will count the number of
multiplets by using the character decompostion (see the related works [50, 51]). The main
result of this section is given in table 1 below.

In subsection 4.1, we recall the partition function of the orbifold theory. In subsec-
tion 4.2, we count the number of multiplets by writing the partition function in terms
of characters. In subsection 4.3, we consider the constraints on lifting that arise from
considering the index.

4.1 The partition function

In this subsection we recall the partition function of the orbifold CFT. The partition
function for a single c = 6 copy of the CFT is defined as

Z = Tr(−1)2J3
0−2J̄3

0 qL0−c/24q̄L̄0−c/24y2J3
0 ȳ2J̄3

0 ≡
∑

h,h̄,j3,j̄3

c(h, h̄, j3, j̄3)qhq̄h̄y2j3 ȳ2j̄3 (4.1)

We work with the case where the 4-manifold is T 4. There are U(1) charges that arise from
momentum and winding charges around this T 4, but we work in the sector where all such
charges have been taken to be zero. For this choice, one finds

Z(T 4) =
(
θ1
η

)2 1
η4

(
θ1
η

)2 1
η4 (4.2)

where

θ1 = i(y1/2 − y−1/2)q1/8
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn)

η = q1/24
∞∏
n=1

(1− qn) (4.3)

Using the above we can find the partition function for the case where the target space of
the 1 + 1 dimensional CFT is the symmetric product SymN (T 4). The partition function
for a symmetric product target space Z(SymN (X)) is given by

Z(p, q, q̄, y, ȳ) =
∞∑
N=0

pNZ(SymN (X)) =
∞∏
n=1

′∏
h,h̄,j3,j̄3

1
(1− pnqh/nq̄h̄/ny2j3 ȳ2j̄3)c(h,h̄,j3,j̄3)

(4.4)
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where
∏′
h,h̄,j3,j̄3

is restricted so that (h − h̄)/n is an integer. The c(h, h̄, j3, j̄3) are the
degeneracies appearing in the partition function for the CFT with a single copy of the
space X. We write

Z(p, q, q̄, y, ȳ) =
∑

N,h,h̄,j3,j̄3

c(N,h, h̄, j3, j̄3)pNqhq̄h̄y2j3 ȳ2j̄3 (4.5)

This yields the degeneracies c(N,h, h̄, j3, j̄3) of the states with total winding of the effective
string N and quantum number h, h̄, j3, j̄3.

4.2 The character decomposition

We now write the partition function in terms of the characters of the contracted large
N = 4 superconformal symmetry. We let the total winding number of the effective string
be N = 2, and consider states with h̄ = 0. From (4.4) and (4.5), the partition function for
this case is

Z(N = 2; h̄ = 0) =
∑
h,j3,j̄3

c(N = 2, h, h̄ = 0, j3, j̄3)qhy2j3 ȳ2j̄3 (4.6)

There are two different twist sectors for N = 2: the case of two singly wound copies
which we call N = (1, 1), and the case of a single doubly wound copy which we call
N = (2). The expression (4.6) includes the contribution from both these twist sectors. We
are however interested in obtaining the contribution separately from these two different
twist sectors. It turns out that with a little effort we can separate the two contributions in
the expression (4.6). This is done as follows:

N = (1, 1) sector: in (4.4), restrict the product to terms with n = 1 and collect
all the terms with dependence p2.

N = (2) sector: in (4.4), restrict the product to terms with n = 2 and collect
all the terms with dependence p2.

In this way, we can separate the two contributions

Z(N = 2; h̄ = 0) = Z(N = (1, 1); h̄ = 0) + Z(N = (2); h̄ = 0) (4.7)

For each of these two sectors, we find the following character decomposition

Z(q, y, ȳ) =
∑

j=1/2,1
j̄3=−1,−1/2,0

csj;j̄3χ
s
j(q, y)χ̄j̄3(ȳ) +

∑
j=1

j̄3=−1,−1/2,0

clj,h;j̄3χ
l
j,h(q, y)χ̄j̄3(ȳ) (4.8)

where χsj and χlj,h are given in appendix B. They are characters of a left moving contracted
large N = 4 algebra. The χsj is the character for a short representation in which the
primary has dimension h = 0. The χlj,h is the character for a long representation in which
the primary has dimension h > 0. From appendix B for N = 2, we see that the possible
values of j for a short representation are j = 1/2, 1 and for a long representation is j = 1.

For the character χ̄j̄3 of the right mover, we consider the sub-algebra formed by d̄ᾱA0 .
The lowest weight states are defined by

d̄−A0 |φ〉 = 0 (4.9)
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level sector χlj=1,hχ̄j̄3=−1 χlj=1,hχ̄j̄3=−1/2 χlj=1,hχ̄j̄3=0 sector χlj=1,hχ̄j̄3=−1/2

φ unlifted φ+− φ+, φ−, unlifted

h = 1 (1, 1) 3 0 3 (2) 6

h = 2 (1, 1) 1 16 1 (2) 28

h = 3 (1, 1) 18 8 18 (2) 98

h = 4 (1, 1) 15 72 15 (2) 282

h = 5 (1, 1) 68 80 68 (2) 728

h = 6 (1, 1) 89 264 89 (2) 1734

Table 1. The character decomposition at the orbifold point.

with charge
J̄3

0 |φ〉 = j̄3|φ〉 (4.10)
There are two fermionic raising operators d̄+±

0 . Application of these operators once to a
lowest weight state, which has charge j̄3, gives two states with charges j̄3 + 1/2. Applying
again gives a state with charge j̄3 + 1

j̄3 → 2(j̄3 + 1/2)→ j̄3 + 1 (4.11)

The character is defined by the trace over the irreducible representation. We find

χ̄j̄3(ȳ) = Tr(−1)−2J̄3
0 ȳ2J̄3

0 = −(−ȳ)2j̄3+1(ȳ1/2 − ȳ−1/2)2 (4.12)

The possible values of j̄3 for N = 2 are j̄3 = −1,−1/2, 0. The results of the character
decomposition (4.8) of N = 2 are

(i) For the coefficients cs
j;j̄3 in (4.8), which tell us the numbers of primaries with dimen-

sion h = 0 and with charges j and j̄3, the results are

(1, 1) : 4χsj=1/2χ̄j̄3=−1/2 + χsj=1χ̄j̄3=−1 + χsj=1χ̄j̄3=0

(2) : χsj=1/2χ̄j̄3=−1/2 (4.13)

(ii) For the coefficients cl
j,h;j̄3 , which tell us the numbers of primaries with dimension

h > 0 and with charges j and j̄3, the results are shown in table 1.

4.3 The constraints on lifting from the index

Let us first recall how the index is computed. Consider the exact supercharge operators
Ḡ+
Ȧ
, Ȧ = +,− of the perturbed CFT. These operators are the ones that join four short

multiplets into a long multiplet. Let us see the structure of the set of states that will join
into a long multiplet. Each of the operators Ḡ+

Ȧ
increases the SU(2)R charge by 1/2 and

does not change the SU(2)L charge. Thus the four short multiplets joining into a long
multiplet must have the same left moving character but their right moving characters will
be as follows:

χ̄j̄3 2χ̄j̄3+1/2 χ̄j̄3+1 (4.14)
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Whenever we can group states in the manner indicated by such a set of characters, then
we find a set of states that have the charges to join into a long multiplet. We therefore
exclude such sets of states from the index. If there are states left over that cannot group
into a set with characters (4.14), then we count those states in the index, since they cannot
possibly join into a long multiplet and lift.

Now let us look at table 1. In the row h = 1, it is possible to join 3χlj=1,hχ̄j̄3=−1
and 3χlj=1,hχ̄j̄3=0 in the (1, 1) sector and 6χlj=1,hχ̄j̄3=−1/2 in the (2) sector into 3 long
multiplets. In second order perturbation theory, they indeed join into 3 long multiplets [20].
In the row h = 2, it is possible to join χlj=1,hχ̄j̄3=−1 and χlj=1,hχ̄j̄3=0 in (1, 1) sector and
2χlj=1,hχ̄j̄3=−1/2 into a long multiplet. The 2 of χlj=1,hχ̄j̄3=−1/2 can come from the 16 in the
(1, 1) sector or the 28 in the (2) sector. In second order perturbation theory, it should come
from the (2) sector because the operators (3.5) joining short multiplets into long multiplets
change the twist sector.

In general, in second order perturbation theory for any level h > 0, the operators (3.5)
join χlj=1,hχ̄j̄3=−1 and χlj=1,hχ̄j̄3=0 in the (1, 1) sector and 2χlj=1,hχ̄j̄3=−1/2 in the (2) sector
into a long multiplet. In table 1, the number in the column χlj=1,hχ̄j̄3=−1/2 in the (2)
sector grows faster than twice of the number in the column χlj=1,hχ̄j̄3=−1 or χlj=1,hχ̄j̄3=0
in the (1, 1) sector. Thus it is possible that all the states in the columns χlj=1,hχ̄j̄3=−1 and
χlj=1,hχ̄j̄3=0 in the (1, 1) sector will be lifted by pairing with states in the (2) sector. In the
following, we will find that states in these two columns with dimension up to h = 4 are
indeed lifted.

5 The method for finding the lifted primaries

The primaries and their descendents have same lift. Thus we can focus on the primaries,
which are counted in table 1. To find all the lifted primaries, we need to construct the
primaries in the χlj=1,hχ̄j̄3=−1 column explicitly. Then applying the two raising operators
Ḡ

+(P )
±,0 gives all the four lifted primaries in a long multiplet as in (3.7).

In subsection 5.1, we will construct the right movers of all the primaries explicitly.
In subsection 5.2, we will construct the left movers of the primaries in the χlj=1,hχ̄j̄3=−1
column up to level h = 4.

5.1 Right movers

The right movers of primaries satisfying (4.9) with total winding N = 2 were found in [20].
There are two classes:

(i) The following set of right moving states can join into a long multiplet and lift at
second order in perturbation theory

(1, 1) χ̄j̄3=−1 : |φR〉 = |0̄−R〉|0̄
−
R〉

(2) χ̄j̄3=−1/2 : |φR+〉 = |φR−〉 = |0̄2−
R 〉

(1, 1) χ̄j̄3=0 : |φR+−〉 = 1
2(d̄++(1)

0 − d̄++(2)
0 )(d̄+−(1)

0 − d̄+−(2)
0 )|0̄−R〉|0̄

−
R〉 (5.1)
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(ii) The following right moving state cannot join with other states into a long multiplet
and thus states of this type cannot lift at second order in perturbation theory

(1, 1) χ̄j̄3=−1/2 : (d̄+A(1)
0 − d̄+A(2)

0 )|0̄−R〉|0̄
−
R〉 (5.2)

The first and third right movers in (5.1) and the right mover in (5.2) are the three right
moving primaries listed for the (1, 1) sector in table 1. The second right mover in (5.1) is
the right mover of the primary in the (2) sector in table 1.

The right mover of the operator Ḡᾱ(P )
Ȧ,0 is Pσ̄ᾱ. Thus the long multiplet structure (3.1)

for the right movers is as given in the following diagram:

φR+

φR φR+−

φR−

Pσ̄+Pσ̄+

Pσ̄+ Pσ̄+

φR+

φR φR+−

φR−

Pσ̄− Pσ̄−

Pσ̄−Pσ̄−

(5.3)

The states in class (i) satisfy the properties in (5.3). Thus they can join into a long
multiplet and have nonzero lifting. The states in class (ii) are annihilated by Pσ̄ᾱ. Thus
states who have right mover (5.2) have zero lift at O(λ2).

5.2 Left movers

In this subsection, we will explain how to find the left movers of primaries in the χl
j=1,hχ̄j̄3=−1

column in table 1.
In the (1, 1) sector, the global modes (A.10) are defined as

O(g)
n = O(1)

n +O(2)
n (5.4)

Thus these modes are applied symmetrically to the two copies of the CFT. The primaries φ
with dimensions h > 0 of the contracted large N = 4 superconformal algebra are defined by

L(g)
n |φ〉 = G

+(g)
Ȧ,n
|φ〉 = J3(g)

n |φ〉 = J+(g)
n |φ〉 = 0 n > 0

G
−(g)
Ȧ,n
|φ〉 = J−(g)

n |φ〉 = 0 n ≥ 0 (5.5)

and
α

(g)
AȦ,n
|φ〉 = dαA(g)

n |φ〉 = 0 n > 0 (5.6)

From the algebra in appendix A, all the conditions in eq. (5.5) follow from the conditions

J
−(g)
0 |φ〉 = J

+(g)
1 |φ〉 = G

−(g)
Ȧ,0 |φ〉 = 0 (5.7)

To find all states satisfying the relations (5.6), we define operators that are antisymmetric
between the two copies:

O(A)
n = O(1)

n −O(2)
n (5.8)
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level number of long multiplets (jA, jȦ) E(2)/π2λ2

h = 1 3 (1, 0) 1

h = 2 1 (0, 0) 15/8

h = 3 18 (2, 1), (1, 0) 3, 64/39

h = 4 15 (1, 1), (2, 0), (0, 0) 3, 5/2, 2695/1024

Table 2. The energy lift at second order.

From the algebra in appendix A, one finds

[α(g)
AȦ,n

, α
(A)
BḂ,m

] = 0, {dαA(g)
n , dβB(A)

m } = 0 (5.9)

Thus the states satisfying eq. (5.6) are the states built by acting with the antisymmetric
operators α(A)

AȦ,n
and dαA(A)

n on the Ramond ground state |0−R〉|0
−
R〉.

Therefore, to find the primaries in the χlj=1,hχ̄j̄3=−1 column, we can first build states
using the antisymmetric operators α(A)

AȦ,n
and dαA(A)

n . Then on this space of states we find
the solutions of eq. (5.7). This procedure gives the required primaries. The results are
described in section 6 below.

6 Long multiplets and lifting

In this section, we will find the long multiplets and their lift up to level-4. For each level,
we will first construct the primaries in the χlj=1,hχ̄j̄3=−1 column. Then we will apply the
two raising operators Ḡ+(P )

±,0 to get all the four primaries in a long multiplet. Because the
four primaries in a long multiplet have the same lift, we will only calculate the lift of the
primaries in the χlj=1,hχ̄j̄3=−1 column. For these states, the lift (3.8) becomes

E
(2)
φ = 2λ2

∣∣∣Ḡ+(P )
+,0 |φ〉

∣∣∣2 = 2λ2
∣∣∣Ḡ+(P )
−,0 |φ〉

∣∣∣2 (6.1)

In the following, we will organize primaries into A and Ȧ charge multiplets, which will
be labeled by (jA, jȦ). We will only write the result of the lowest weight states explicitly
for each A and Ȧ charge multiplet.

We find that up to level-4 all states that can lift do actually lift at second order. The
lifts are listed in table 2.

6.1 Level-1

The 3 primaries in the χlj=1,hχ̄j̄3=−1 column can be organized into a A charge triplet and
Ȧ charge singlet; we label this as (1, 0).
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For the lowest weight state of the (1, 0) multiplet, the normalized left movers of the
long multiplet are

|φL〉 = |φL+−〉 = 1
2d
−−(A)
−1 d

+−(A)
0 |0−R〉|0

−
R〉

|φL+〉 = 1√
2
d−−−1/2α++,−1/2|02−

R 〉

|φL−〉 = 1√
2
d−−−1/2α+−,−1/2|02−

R 〉 (6.2)

while the normalized right movers are in eq. (5.1). Applying (6.1) to the primary φ, one
finds the lift

E
(2)
1,(1,0) = π2λ2 (6.3)

6.2 Level-2

The one primary in the χlj=1,hχ̄j̄3=−1 column is a A charge singlet and Ȧ charge singlet;
thus we have the representation (0, 0).

The normalized left movers of the long multiplet are

|φL〉 = |φL+−〉 = 1
2
√

10

[
d
−+(A)
−1 d

−−(A)
−1 d

+−(A)
0 d

++(A)
0

+d−+(A)
−1 d

+−(A)
−1 + d

++(A)
−1 d

−−(A)
−1 − d−+(A)

−2 d
+−(A)
0 + d

−−(A)
−2 d

++(A)
0

−α(A)
++,−1α

(A)
−−,−1 + α

(A)
−+,−1α

(A)
+−,−1

]
|0−R〉|0

−
R〉

|φL+〉 = 1
4
√

6
∑

A=+,−

[
αA+,−3/2d

−A
−1/2 − 3αA+,−1/2d

−A
−3/2

−3
2αA+,−1/2d

+A
−1/2d

−+
−1/2d

−−
−1/2

+(α+−,−1/2α−+,−1/2 − α++,−1/2α−−,−1/2)αA+,−1/2d
−A
−1/2

]
|02−
R 〉

|φL−〉 = 1
4
√

6
∑

A=+,−

[
αA−,−3/2d

−A
−1/2 − 3αA−,−1/2d

−A
−3/2

−3
2αA−,−1/2d

+A
−1/2d

−+
−1/2d

−−
−1/2

+(α+−,−1/2α−+,−1/2 − α++,−1/2α−−,−1/2)αA−,−1/2d
−A
−1/2

]
|02−
R 〉

(6.4)

Applying (6.1) to the primary φ, one finds the lift

E
(2)
2,(0,0) = 15

8 π
2λ2 (6.5)
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6.3 Level-3

The 18 primaries in the χlj=1,hχ̄j̄3=−1 column can be organized into a A charge quintet and
Ȧ charge triplet and a A charge triplet and Ȧ charge singlet; thus the representations are
(2, 1) and (1, 0).

For the lowest weight state of the (2, 1) multiplet, the normalized left movers of the
long multiplet are

|φL〉 = |φL
+−〉 = 1

4α
(A)
+−,−1α

(A)
+−,−1d

−−(A)
−1 d

+−(A)
0 |0−R〉|0

−
R〉 (6.6)

|φL
+〉 = 1

2
√

6

[
α+−,−3/2α++,−1/2α+−,−1/2d

−−
−1/2−

1
2α++,−3/2α+−,−1/2α+−,−1/2d

−−
−1/2

+α+−,−1/2d
−−
−3/2d

+−
−1/2d

−−
−1/2+1

2α++,−1/2α+−,−1/2α+−,−1/2d
−−
−3/2

−1
2α++,−1/2α+−,−1/2α+−,−1/2α+−,−1/2α−+,−1/2d

−−
−1/2

+1
2α++,−1/2α++,−1/2α+−,−1/2α+−,−1/2α−−,−1/2d

−−
−1/2

+1
4α++,−1/2α+−,−1/2α+−,−1/2d

+−
−1/2d

−+
−1/2d

−−
−1/2

]
|02−

R 〉 (6.7)

|φL
−〉 = 1

2
√

6

[
1
2α+−,−3/2α+−,−1/2α+−,−1/2d

−−
−1/2+1

2α+−,−1/2α+−,−1/2α+−,−1/2d
−−
−3/2

−1
2α+−,−1/2α+−,−1/2α+−,−1/2α+−,−1/2α−+,−1/2d

−−
−1/2

+1
2α++,−1/2α+−,−1/2α+−,−1/2α+−,−1/2α−−,−1/2d

−−
−1/2

+1
4α+−,−1/2α+−,−1/2α+−,−1/2d

+−
−1/2d

−+
−1/2d

−−
−1/2

]
|02−

R 〉 (6.8)

Applying (6.1) to the primary φ, one finds the lift

E
(2)
3,(2,1) = 3π2λ2 (6.9)

For the lowest weight state of the (1, 0) multiplet, the normalized left movers of the
long multiplet are

|φL〉 = |φL+−〉 = 1
2
√

46

[
d
−−(A)
−3 d

+−(A)
0 −2d−−(A)

−2 d
+−(A)
−1 −d+−(A)

−2 d
−−(A)
−1

+3
2d
−−(A)
−2 d

−−(A)
−1 d

++(A)
0 d

+−(A)
0 −3

2d
+−(A)
−1 d

−−(A)
−1 d

−+(A)
−1 d

+−(A)
0

+3
2(α(A)

++,−1α
(A)
−−,−1−α

(A)
+−,−1α

(A)
−+,−1)d−−(A)

−1 d
+−(A)
0

+α(A)
++,−2α

(A)
+−,−1−α

(A)
+−,−2α

(A)
++,−1

]
|0−R〉|0

−
R〉 (6.10)

|φL+〉 = 1√
897

[15
16α++,−5/2d

−−
−1/2−

29
8 α++,−3/2d

−−
−3/2+75

16α++,−1/2d
−−
−5/2

+27
16α−−,−3/2α++,−1/2α++,−1/2d

−−
−1/2−

27
16α−+,−3/2α++,−1/2α+−,−1/2d

−−
−1/2
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−43
16α+−,−3/2α++,−1/2α−+,−1/2d

−−
−1/2−α+−,−3/2α++,−1/2α++,−1/2d

−+
−1/2

+21
8 α++,−3/2α+−,−1/2α−+,−1/2d

−−
−1/2+ 1

16α++,−3/2α++,−1/2α−−,−1/2d
−−
−1/2

+α++,−3/2α++,−1/2α+−,−1/2d
−+
−1/2−

21
8 α++,−1/2α+−,−1/2α−+,−1/2d

−−
−3/2

+21
8 α++,−1/2α++,−1/2α−−,−1/2d

−−
−3/2−

29
16α++,−3/2d

+−
−1/2d

−+
−1/2d

−−
−1/2

−21
4 α−+,−1/2d

−−
−3/2d

+−
−1/2d

−−
−1/2−

3
16α++,−1/2d

−−
−3/2d

+−
−1/2d

−+
−1/2

−81
32α++,−1/2d

−−
−3/2d

++
−1/2d

−−
−1/2−

81
32α++,−1/2d

−+
−3/2d

+−
−1/2d

−−
−1/2

+75
32α++,−1/2d

+−
−3/2d

−+
−1/2d

−−
−1/2

−21
16α++,−1/2α+−,−1/2α−+,−1/2d

+−
−1/2d

−+
−1/2d

−−
−1/2

+21
16α++,−1/2α++,−1/2α−−,−1/2d

+−
−1/2d

−+
−1/2d

−−
−1/2

+21
16α++,−1/2α+−,−1/2α+−,−1/2α−+,−1/2α−+,−1/2d

−−
−1/2

−21
8 α++,−1/2α++,−1/2α+−,−1/2α−+,−1/2α−−,−1/2d

−−
−1/2

+21
16α++,−1/2α++,−1/2α++,−1/2α−−,−1/2α−−,−1/2d

−−
−1/2

]
|02−
R 〉 (6.11)

Because φL is a Ȧ charge singlet, φL− is given by doing the following replacement in φL+.

αA±,n → iαA∓,n (6.12)

Applying (6.1) to the primary φ, one finds the lift

E
(2)
3,(1,0) = 64

39π
2λ2 (6.13)

6.4 Level-4

The 15 primaries in the χlj=1,hχ̄j̄3=−1 column can be organized into a A charge triplet and
Ȧ charge triplet (1, 1), a A charge quintet and Ȧ charge singlet (2, 0) and a A charge singlet
and Ȧ charge singlet (0, 0). Their lifts are

E
(2)
4,(1,1) = 3π2λ2

E
(2)
4,(2,0) = 5

2π
2λ2

E
(2)
4,(0,0) = 2695

1024π
2λ2 (6.14)

Since the states are very complicated, we will not write them explicitly here.
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6.5 Properties of lifting at O(λ2)

In this subsection, we summarize the properties of the lift at O(λ2) for primaries in the
theory with total winding N = 2.

(i) From the index, we expect that primaries in the columns χl
j=1,hχ̄j̄3=−1 and χl

j=1,hχ̄j̄3=0

are lifted. At order O(λ2), we find that primaries up to level-4 are all lifted. They
are the states φ and φ+− in the long multiplet (3.7).

From eq. (5.1) we see that the right movers of primaries in these two columns
are symmetric between the two copies. In the orbifold CFT the overall state of each
string must be symmetric between the copies. Thus primaries in these two columns
must be symmetric between the copies in both the left and right sectors separately.

(ii) From the index, we expect that primaries in the column χlj=1,hχ̄j̄3=−1/2 in the (1, 1)
sector are unlifted. At order O(λ2), we find that primaries at any level in this column
are unlifted. The reason is the following. The right moving state is (5.2), which is
antisymmetric between the two copies. Thus primaries in this column are antisym-
metric in the left and right sectors separately. Because the projection operator (3.5)
treats the left mover and right mover of the two copies symmetrically in the lifting
computation, antisymmetry in both the left and right sectors leads to zero lift.

(iii) The lifting properties of primaries in the (2) sector determined by the details of
operator (3.5). Because number of primaries in the (2) sector grows faster than
the numbers of primaries in the columns χlj=1,hχ̄j̄3=−1 and χlj=1,hχ̄j̄3=0 in the (1, 1)
sector, most of the primaries in the (2) sector will be unlifted. The lifted states are
the φ+ and φ− in the long multiplet (3.7).

7 Unlifted states in the untwisted sector

In section 6, we found that in our study upto level-4, the unlifted states in the (1, 1) sector
are states that have a right moving sector that is antisymmetric between the two copies.
In this section, we will study the consequences of this antisymmetry in more detail, and
generalize it to the situation where the component strings have higher twists.

In section 7.1, we study the antisymmetry of the right movers for two singly wound
strings. In section 7.2, we generalize this antisymmetry to the situation where we have
many singly wound strings. In section 7.3, we generalize this discussion to the case where
we have two component strings with winding numbers k1 and k2.

7.1 Right movers for the (1, 1) sector

Consider the case where N = 2 and we have two singly wound strings. Let us focus on the
right movers. We have used the fact that we can write the right movers on the two strings
using the sum and difference of the oscillators on the two strings. Thus we get the global
modes

d̄
+A(1)
0 + d̄

+A(2)
0 (7.1)
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which are symmetric between the two copies, and the antisymmetric modes

d̄
+A(1)
0 − d̄+A(2)

0 (7.2)

which are antisymmetric between the two copies. We have seen that states where the right
moving sector contains one antisymmetric mode are unlifted, while those containing zero
or two antisymmetric modes are lifted. Thus unlifted states have an antisymmetric right
sector while lifted states have a symmetric right sector. For example, the right moving
states

d̄
+±(1)
0 d̄

+±(2)
0 |0̄−R〉

(1)|0̄−R〉
(2) = 1

2(d̄+±(1)
0 d̄

+±(2)
0 − d̄+±(2)

0 d̄
+±(1)
0 )|0̄−R〉

(1)|0̄−R〉
(2) (7.3)

and
(d̄++(1)

0 d̄
+−(2)
0 − d̄++(2)

0 d̄
+−(1)
0 )|0̄−R〉

(1)|0̄−R〉
(2) (7.4)

are antisymmetric and thus lead to zero lift.

7.2 More general states

Let us now consider the case N > 2. We will see that we can use the above notion of
antisymmetrization of the right sector to make a large class of states that are unlifted
at O(λ2).

We first illustrate the idea by a simple example. Consider 3 singly wound strings. Let
the left and right sectors of each string be fermionic, so that each string is overall in a
bosonic state. Let the left sides of each string be in a different excited state:

|ψ1
L〉, |ψ2

L〉, |ψ3
L〉 (7.5)

Let the right sides be given by

d̄
+A1(1)
0 |0̄−R〉

(1), d̄
+A2(2)
0 |0̄−R〉

(2), d̄
+A3(3)
0 |0̄−R〉

(3) (7.6)

Thus the overall state is

|Ψ〉 = −[d̄+A1(1)
0 d̄

+A2(2)
0 d̄

+A3(3)
0 ] |ψ1

L〉|0̄−R〉
(1) |ψ2

L〉|0̄−R〉
(2) |ψ3

L〉|0̄−R〉
(3) (7.7)

We now look at different cases

(i) All Ai are the same: let us set Ai = + for all i. Thus the state is

|Ψ〉 = −[d̄++(1)
0 d̄

++(2)
0 d̄

++(3)
0 ] |ψ1

L〉|0̄−R〉
(1) |ψ2

L〉|0̄−R〉
(2) |ψ3

L〉|0̄−R〉
(3) (7.8)

As shown in (7.3), the right mover is antisymmetric between any two copies. If we
twist any two strands together, then we get zero, so this state is unlifted to O(λ2).

(ii) One Ai is different: let us set A1 = +, A2 = +, A3 = −. The state is

|Ψ1〉 = −[d̄++(1)
0 d̄

++(2)
0 d̄

+−(3)
0 ] |ψ1

L〉|0̄−R〉
(1) |ψ2

L〉|0̄−R〉
(2) |ψ3

L〉|0̄−R〉
(3) (7.9)
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There is no lift if we twist together strands 1, 2. But there is a lift for strands 2, 3.
Thus let us take instead the antisymmetrized state

|Ψ2〉 = −[d̄++(1)
0 d̄

++(2)
0 d̄

+−(3)
0 − d̄++(1)

0 d̄
++(3)
0 d̄

+−(2)
0 − d̄++(3)

0 d̄
++(2)
0 d̄

+−(1)
0 ]

|ψ1
L〉|0̄−R〉

(1) |ψ2
L〉|0̄−R〉

(2) |ψ3
L〉|0̄−R〉

(3)

= −[d̄++(1)
0 d̄

++(2)
0 d̄

+−(3)
0 + d̄

++(1)
0 d̄

+−(2)
0 d̄

++(3)
0 + d̄

+−(1)
0 d̄

++(2)
0 d̄

++(3)
0 ]

|ψ1
L〉|0̄−R〉

(1) |ψ2
L〉|0̄−R〉

(2) |ψ3
L〉|0̄−R〉

(3) (7.10)

Now we find that there is no lift at O(λ2) from twisting any pair of strings.

We can now see that the above example is easily generalized. We can take any set
of states with arbitrary left excitations, and antisymmetrize the right movers. This will
make the states unlifted at O(λ2). Note that when two strings have the same bosonic right
movers, their antisymmetrization will lead to a vanishing of the state. Thus this method
of making unlifted states can only be used when we have fermionic right movers.

7.3 Strings with winding numbers k1 and k2

In section 7.1, we had considered the case where two singly wound strings joined to a doubly
wound string. In this subsection, we consider the analogous problem for the situation where
a string with winding k1 and a string with winding k2 join to a string with winding k1 +k2.

Right movers in the (k1, k2) sector can be built by the global modes

d̄
+A(k1)
0 + d̄

+A(k2)
0 (7.11)

and the modes
1
k1
d̄

+A(k1)
0 − 1

k2
d̄

+A(k2)
0 (7.12)

acting on the ground state
|0̄k1−
R 〉|0̄k2−

R 〉 (7.13)

The global modes (7.11) do not contribute to the lift. In appendix D, we find that the op-
erators Ḡᾱ(P )

Ȧ,0 annihilate the right moving states containing one operator of type (7.12); the

operators Ḡᾱ(P )
Ȧ,0 do not annihilate the right moving states containing zero or two operators

of (7.12).
Thus the contribution to the lift from the interaction joining together strings with

winding numbers k1 and k2 is zero for states with right movers containing one operator
of (7.12).

Note that the twist interaction can also break the strings of winding k1 or k2 into
shorter strings. But we do not consider this effect here; if the windings k1, k2 are much
smaller than the total number N of component strings, then combinatorical factors suppress
the interactions where one strand of the string twists together with another strand of the
same string.

The modes (7.11) and (7.12) are the analogues of the symmetric and antisymmetric
modes (7.1) and (7.2). However, they do not have definite symmetry properties.
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Now let us consider states with a fermionic right moving sector for each string. Consider
the right moving states

d̄
+±(k1)
0 d̄

+±(k2)
0 |0̄k1−

R 〉|0̄k2−
R 〉

= − k1k2
k1 + k2

(d̄+±(k1)
0 + d̄

+±(k2)
0 )

( 1
k1
d̄

+±(k1)
0 − 1

k2
d̄

+±(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉 (7.14)

and

d̄
++(k1)
0 d̄

+−(k2)
0 − d̄++(k2)

0 d̄
+−(k1)
0

= − k1k2
k1 + k2

[
(d̄++(k1)

0 + d̄
++(k2)
0 )

( 1
k1
d̄

+−(k1)
0 − 1

k2
d̄

+−(k2)
0

)
+(d̄+−(k1)

0 + d̄
+−(k2)
0 )

( 1
k1
d̄

++(k1)
0 − 1

k2
d̄

++(k2)
0

)]
|0̄k1−
R 〉|0̄k2−

R 〉 (7.15)

States with right movers (7.14) and (7.15) will be unlifted because each term contains only
one mode of (7.12). Note that these two right moving states are antisymmetric under the
change k1 ↔ k2. If we consider other possible right moving states that lead to zero lift,
then we find that there is no definite symmetric property of such states in general; what
we have noted here is that in the case where we have fermionic right movers for each string
the state is antisymmetric under the change k1 ↔ k2.

Thus, we can generalize the discussion in subsection 7.2. We take states with arbi-
trary winding numbers, arbitrary left excitations and only fermionic right movers. An-
tisymmetrizing the fermionic right movers will make the states unlifted at O(λ2), in the
approximation where we only consider the effect of twisting two strings into a longer string
and ignore the breaking of the strings to shorter strings.

8 Discussion

To understand the AdS/CFT correspondence we need to match quantities between the
gravity and field theory descriptions. The principal difficulty in this match is the fact
that one of these descriptions is weakly coupled, then the other is strongly coupled. There
have been much progress in understanding black holes by comparing quantities in the free
CFT to results with weakly coupled gravity; however a more detailed comparison will
necessarily need us to perturb the CFT away from its free (i.e. orbifold) point. The most
basic quantity we can study under such a perturbation is the energy levels of states in the
CFT as a function of the perturbation parameter λ.

In this paper we have considered states which are BPS at the orbifold point, and asked
which states are lifted and by how much as we perturb away from this point. For most of
this paper we worked with the simplest system which allows a computation of the lift: the
case N = 2 where we have 2 copies of the basic c = 6 CFT making up the orbifold theory.
The lifted states must join into a supermultiplet in which all members will have the same
lift; we found this multiplet structure and the value of the lift to order O(λ2) for the first 4
levels above the Ramond ground state. For the first 3 levels we also explicitly write down
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the wavefunctions of the lifted states. We found that all the states that are allowed to lift
by the index are in fact lifted at O(λ2).

We observed that the unlifted states in the untwisted sector have a right moving sector
which was antisymmetric between the two copies of the c = 6 CFT. We then extended this
observation to the case N > 2, where we found states which would remain unlifted to order
O(λ2) by using a feature similar to this antisymmetry.

For large N , one can consider the gravity dual. In this gravity description a large class
of supergravity states called ‘superstrata’ were found in [52–57]. These are extremal states
that describe fully backreacted solutions arising from massless string quanta placed in the
AdS3 × S3 × T 4 geometry. The analysis of lifting carried out in the present paper may
help us to understand the nature of the CFT states that are dual to these BPS gravity
solutions. We hope to return to this issue in a future work.
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A Contracted large N = 4 superconformal algebra

We follow the notation in the appendix of [45]. The indices α = (+,−) and ᾱ = (+,−)
correspond to the subgroups SU(2)L and SU(2)R arising from rotations on S3. The indices
A = (+,−) and Ȧ = (+,−) correspond to the subgroups SU(2)1 and SU(2)2 arising from
rotations in T 4. We use the convention

ε+− = 1, ε+− = −1 (A.1)

The commutation relations for the contracted large N = 4 superconformal algebra are

[αAȦ,m, αBḂ,n] = − c6mεABεȦḂδm+n,0

{dαAr , dβBs } = − c6ε
αβεABδr+s,0 (A.2)

[Lm, αAȦ,n] = −nαAȦ,m+n [Lm, dαAr ] = −
(
m

2 + r

)
dαAm+r

{Gα
Ȧ,r
, dβBs } = iεαβεABαAȦ,r+s [Gα

Ȧ,r
, αBḂ,m] = −imεABεȦḂd

αA
r+m

[Jam, dαAr ] = 1
2(σTa)αβd

βA
m+r (A.3)

[Lm, Ln] = c

12m(m2 − 1)δm+n,0 + (m− n)Lm+n

[Jam, Jbn] = c

12mδ
abδm+n,0 + iεabcJ

c
m+n

{Gα
Ȧ,r
, Gβ

Ḃ,s
} = εȦḂ

[
εαβ

c

6

(
r2 − 1

4

)
δr+s,0 + (σaT )αγ εγβ(r − s)Jar+s + εαβLr+s

]
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[Jam, GαȦ,r] = 1
2(σaT )αβG

β

Ȧ,m+r

[Lm, Jan ] = −nJam+n

[Lm, GαȦ,r] =
(
m

2 − r
)
Gα
Ȧ,m+r (A.4)

We define J+
n , J

−
n as

J+
n = J1

n + iJ2
n

J−n = J1
n − iJ2

n (A.5)

From (A.3), one can see that dαAn with α = +,− is a SU(2)L charge doublet. We have

[J+
m, d

+A
r ] = 0, [J−m, d+A

r ] = d−Am+r

[J+
m, d

−A
r ] = d+A

m+r, [J−m, d−Ar ] = 0 (A.6)

From (A.4), one can see that Gα
Ȧ,r

with α = +,− is also a SU(2)L charge doublet. We have

[J+
m, G

+
Ȧ,r

] = 0, [J−m, G+
Ȧ,r

] = G−
Ȧ,m+r

[J+
m, G

−
Ȧ,r

] = G+
Ȧ,m+r, [J−m, G−Ȧ,r] = 0 (A.7)

It is believed that the contracted large N = 4 superconformal algebra is an exact symmetry
at any point of the moduli space.

Now let’s consider the orbifold point. Look at the winding sector (k1, k2, . . . , ki, . . .)
with the total winding N =

∑
i ki. For the ith twisted set of copies with winding number

ki, we have following mode expansions on the cylinder.

α
(i)
AȦ,n

= 1
2π

∫ 2πki

σ=0
∂wX

(i)
AȦ

(w)enwdw

dαA(i)
n = 1

2πi

∫ 2πki

σ=0
ψαA(i)(w)enwdw (A.8)

In terms of α and d modes, the J , G and L modes can be written as

Ja(i)
m = 1

4ki

∑
r

εABd
γB(i)
r εαγ(σaT )αβd

βA(i)
m−r , a = 1, 2, 3

J3(i)
m = − 1

2ki

∑
r

d++(i)
r d

−−(i)
m−r −

1
2ki

∑
r

d−+(i)
r d

+−(i)
m−r

J+(i)
m = 1

ki

∑
r

d++(i)
r d

+−(i)
m−r , J−(i)

m = 1
ki

∑
r

d−−(i)
r d

−+(i)
m−r

G
α(i)
Ȧ,r

= − i

ki

∑
n

d
αA(i)
r−n α

(i)
AȦ,n

L(i)
m = − 1

2ki

∑
n

εABεȦḂα
(i)
AȦ,n

α
(i)
BḂ,m−n −

1
2ki

∑
r

(
m− r + 1

2

)
εαβεABd

αA(i)
r d

βB(i)
m−r

(A.9)
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Let q be an integer. The mode numbers for α,L, J are n = q/ki. In the R sector, the
mode numbers for d and G are n = q/ki. In the NS sector, the mode numbers for d and
G are n =

(
q + 1

2

)
/ki. The modes (A.8) and (A.9) satisfy the contracted large N = 4

superconformal algebra (A.2)(A.3)(A.4) with c = 6ki.
We define the global modes O(g)

n by summing the terms from each copy

O(g)
n =

∑
i

O(i)
n (A.10)

where the modes O can be modes of α, d, L, J, G. The global modes satisfy the contracted
largeN = 4 superconformal algebra (A.2)(A.3)(A.4) with c = 6N . It is believed that global
modes satisfy the algebra at any point in the moduli space.

B The N = 4 character

In this appendix, we will present the character of the small and the contracted large N = 4
superconformal algebra. The characters are defined as follows:

χj,h(q, y) = Tr(−1)2J3
0 qL0− c

24 y2J3
0 (B.1)

where the trace is over states in the irreducible representation. In this paper we will work
in the Ramond sector. The primaries in these represenations have dimension h, which is
the eigenvalue of L0 − c

24 , and SU(2) charge j.

B.1 The small N = 4 character

The characters were computed in [58, 59]. The central charge is given by c = 6m, where
m is an integer. We use χ(S) to label the character in the small N = 4 algebra. There are
m+ 1 short representations with h = 0 and j = 0, 1/2, . . . ,m/2. Their characters are

χ
s(S)
j;m (τ, z) = (−1)2j

(
iθ1(τ, z)2

θ1(τ, 2z)η(τ)3

)
∑
k∈Z

q(m+1)k2+ky2(m+1)k+1

(1− yqk)2

(
qk(2j+1)y2j+1 − q−k(2j+1)y−(2j+1)

)
(B.2)

where we define q = e2πiτ and y = e2πiz. There are m long representations with h > 0 and
j = 1/2, 1, . . . ,m/2. Their characters are

χ
l(S)
j,h;m(τ, z) = qh(−1)2j

(
iθ1(τ, z)2

θ1(τ, 2z)η(τ)3

)∑
k∈Z

q(m+1)k2
y2(m+1)k

(
q2kjy2j − q−2kjy−2j

)
(B.3)

B.2 The contracted large N = 4 character

The characters were computed in [60, 61]. The central charge is given by c = 6m, where
m is an integer. There are m short representations with h = 0 and j = 1/2, 1, . . . ,m/2

χsj;m(τ, z) = q1/8L(τ, z)
η(τ)3 χ

s(S)
j−1/2;m−1(τ, z) (B.4)
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There are m− 1 long representations with h > 0 and j = 1, . . . ,m/2

χlj,h;m(τ, z) = q1/8L(τ, z)
η(τ)3 χ

l(S)
j−1/2,h;m−1(τ, z) (B.5)

where
L(τ, z) = χ

l(S)
j=1/2,h=0;m=1(τ, z) (B.6)

Here χs(S) and χl(S) are characters of the short and long multiplets (B.2)(B.3) of the small
N = 4 algebra.

C The effect of the twist operator

The operator (3.5) contains the twist operator σ2. The action of this twist was studied
in [21, 22]. Here we recall some results about this action which will be of use to us later in
the computation of E(2).

We consider only the left sector. Start in the twist sector N = (1, 1) where we have
two singly wound copies of the CFT. Let the initial state be the Ramond ground state
|0−R〉|0

−
R〉. Let us apply the twist operator σ+

2 at the position w0 on the cylinder. This
action generates the state |χ〉

|χ〉 = σ+
2 (w0)|0−R〉|0

−
R〉 = e

∑
m≥1/2,n≥1/2 γ

B
mn[−α++,−mα−−,−n+α−+,−mα+−,−n]

e
∑

m≥1/2,n≥1/2 γ
F
mn[d++

−md
−−
−n−d

+−
−md

−+
−n ]|02−

R 〉 (C.1)

where

γBm′+1/2,n′+1/2 = 2
(2m′ + 1)(2n′ + 1)

a2(m′+n′+1)Γ
[

3
2 +m′

]
Γ
[

3
2 + n′

]
(1 +m′ + n′)πΓ[m′ + 1]Γ[n′ + 1]

γFm′+1/2,n′+1/2 = −
a2(m′+n′+1)Γ

[
3
2 +m′

]
Γ
[

3
2 + n′

]
(2n′ + 1)π(1 +m′ + n′)Γ[m′ + 1]Γ[n′ + 1] (C.2)

where a = ew0/2 and m′, n′ are negative integers.
For states containing one oscillator excitation on the vacuum |0−R〉|0

−
R〉, we have

σ+
2 (w0)α(A)

BḂ,n
|0−R〉|0

−
R〉

= 2
∑
p′≤−1

i

π

Γ
[

1
2 − n

]
Γ[−n]

Γ
[
−1

2 − p
′
]

Γ[−p′]
a2(n−p′)−1

2n− 2p′ − 1αBḂ,p′+1/2|χ〉 (C.3)

σ+
2 (w0)d+B(A)

n |0−R〉|0
−
R〉

= 2
∑
p′≤−1

i

π

Γ
[

1
2 − n

]
Γ[1− n]

Γ
[

1
2 − p

′
]

Γ[−p′]
a2(n−p′)−1

2n− 2p′ − 1d
+B
p′+1/2|χ〉 (C.4)
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and

σ+
2 (w0)d−B(A)

n |0−R〉|0
−
R〉

= 2
∑
p′≤−1

i

π

Γ
[

1
2 − n

]
Γ[−n]

Γ
[
−1

2 − p
′
]

Γ[−p′]
a2(n−p′)−1

2n− 2p′ − 1d
−B
p′+1/2|χ〉 (C.5)

where α(A)
BḂ,n

and d
βB(A)
n are the antisymmetric operators defined in (5.8). We use these

antisymmetric operators to build primaries in section 5.2.
We can also start with initial states that have more than one oscillator excitation; i.e.,

we can compute

σ+
2 (w0)

(∏
i

Oi,−ni

)
|0−R〉|0

−
R〉 (C.6)

The general method to compute the final state in this situation was given in [22]. We first
do all possible contractions in

∏
iOi,−ni using the following rules

C
[
α

(A)
AȦ,m

α
(A)
BḂ,n

]
= 2εABεȦḂ(2ia)2m+2n−n−1∑

k=0

mC−m−n−k
nCk(n+ k)−

−m−1∑
k=0

−n−1∑
q=0

mCk
nCq

m+kC−(n+q)(−1)m−k+1(n+ q)


(C.7)

and

C
[
d(A)+A

m d(A)−B
n

]
= 2εAB(2ia)2m+2n

[−n−1∑
q=0

m−1C−m−n−q
nCq+2

−n−1∑
q=0

m−1C−m−n−q−1
nCq

+
−m∑
k=0

−n−1∑
q=0

(−1)m−k m−1Ck
nCq

m+k−1C−n−q−1

+2
−m−1∑

k=0

−n−1∑
q=0

(−1)m−k−1 m−1Ck
nCq

m+kC−n−q−1

]
(C.8)

Then each of oscillators left is moved separately to the final state as indicated in the
relations (C.3)–(C.5) discussed above where we had only one initial operator.

D Twisting strings with winding numbers k1 and k2

The right moving part of the operators Ḡᾱ(P )
Ȧ,0 is given by Pσ̄ᾱ. The effect of twist operator

σ̄ᾱ on strings with winding numbers k1 and k2 was found in [62]. Including the projection
operator P, the effect of this operator on the ground state is

Pσ̄−2 |0̄
k1−
R 〉|0̄k2−

R 〉 = 0 (D.1)

Pσ̄+
2 |0̄

k1−
R 〉|0̄k2−

R 〉 = C
1/2
k1,k2
|0̄(k1+k2)−
R 〉 (D.2)

where
Ck1,k2 = k1 + k2

2k1k2
(D.3)
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A fermionic mode applied to one of the strings before the twist gives rise to a fermionic
mode on the joined string obtained after the twist

Pσ̄+
2 d̄

+A(k1)
0 |0̄k1−

R 〉|0̄k2−
R 〉 = k1

k1 + k2
C

1/2
k1,k2

d̄
+A(k1+k2)
0 |0̄(k1+k2)−

R 〉 (D.4)

Pσ̄+
2 d̄

+A(k2)
0 |0̄k1−

R 〉|0̄k2−
R 〉 = k2

k1 + k2
C

1/2
k1,k2

d̄
+A(k1+k2)
0 |0̄(k1+k2)−

R 〉 (D.5)

Thus
Pσ̄+

2

( 1
k1
d̄

+A(k1)
0 − 1

k2
d̄

+A(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉 = 0 (D.6)

We can also consider the action of Pσ̄−, but in this case we see that the final state on the
k1 +k2 wound string must have charge ᾱ = −1, which is not possible for a Ramond ground
state. Thus we have

Pσ̄−2
( 1
k1
d̄

+A(k1)
0 − 1

k2
d̄

+A(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉 = 0 (D.7)

For the case where we have two d̄0 operators on the initial strings, each such operator
can be moved to the final state string using (D.4) and (D.5). We thus have

Pσ̄+
2

( 1
k1
d̄

++(k1)
0 − 1

k2
d̄

++(k2)
0

)( 1
k1
d̄

+−(k1)
0 − 1

k2
d̄

+−(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉 = 0 (D.8)

In general there is also a contraction term between the two initial state operators. However
this contraction term will vanish in our present situation, since both the d̄0 operators have
positive ᾱ charge, and so they cannot contract with each other.

Now consider the action of Pσ̄− on the state with two initial excitations

Pσ̄−2
( 1
k1
d̄

++(k1)
0 − 1

k2
d̄

++(k2)
0

)( 1
k1
d̄

+−(k1)
0 − 1

k2
d̄

+−(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉

= [J̄−0 ,Pσ̄
+
2 ]
( 1
k1
d̄

++(k1)
0 − 1

k2
d̄

++(k2)
0

)( 1
k1
d̄

+−(k1)
0 − 1

k2
d̄

+−(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉

= −Pσ̄+
2 J̄
−
0

( 1
k1
d̄

++(k1)
0 − 1

k2
d̄

++(k2)
0

)( 1
k1
d̄

+−(k1)
0 − 1

k2
d̄

+−(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉

= −Pσ̄+
2

( 1
k1
d̄
−+(k1)
0 − 1

k2
d̄
−+(k2)
0

)( 1
k1
d̄

+−(k1)
0 − 1

k2
d̄

+−(k2)
0

)
|0̄k1−
R 〉|0̄k2−

R 〉

= −Pσ̄+
2

( 1
k1

+ 1
k2

)
|0̄k1−
R 〉|0̄k2−

R 〉

= −k1 + k2
k1k2

C
1/2
k1,k2
|0̄(k1+k2)−
R 〉 (D.9)

where to get the third line we used (D.8) and to get the fifth line we used the commuta-
tor (A.2).

In summary, we find that the operators Ḡᾱ(P )
Ȧ,0 annihilate the right moving states which

contain one operator of the type (7.12); this is shown in (D.6) and (D.7). But the operators
Ḡ
ᾱ(P )
Ȧ,0 do not annihilate the right moving sector containing zero or two operators of the

type (7.12); this is shown by (D.2) and (D.9).
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