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1 Introduction

Three dimensions have been the playground for investigating various aspects of gravity.
Vacuum Einstein spacetimes are locally flat or locally anti-de Sitter (for zero or negative
cosmological constant). Hence, they are characterized by their global properties, encoded in
the asymptotic charges. These are computed after specifying a set of boundary conditions,
which shape the asymptotic symmetries. In order to implement the boundary conditions
and perform the subsequent analyses, it is customary to fix the gauge. Two gauges, called
Bondi and Fefferman-Graham, have played a distinguished role.

The Bondi gauge was introduced in [1–3] for four-dimensional asymptotically flat space-
times. It set the stage for the emergence of the celebrated Bondi-van der Burg-Metzner-
Sachs algebra and recently received revitalized interest from various perspectives [4–6], in-
cluding the potential implications of this symmetry in infrared physics (see e.g. the review
article [7]). The Bondi gauge features a null radial coordinate, and its defining conditions
are compatible with asymptotically anti-de Sitter spacetimes. It was extended in this di-
rection in ref. [8], while the corresponding flat limit for the three-dimensional case was
shown to be consistent in [9]. In refs. [10–12] (see also [13]) less stringent conditions were
considered, allowing for a unified formulation of four-dimensional asymptotically locally
anti-de Sitter and asymptotically locally flat spacetimes.

Fefferman and Graham proposed an alternative gauge in [14, 15], suitable for asymp-
totically anti-de Sitter spacetimes, but singular in the Ricci-flat limit. In this gauge the
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radial coordinate is space-like. It defines a family of time-like hypersurfaces, which asymp-
totes to the conformal boundary. The role of the Fefferman-Graham gauge in holography
was recognized in the early developments of this field as a tool for unravelling the confor-
mal class of boundary metrics together with the boundary conformal energy-momentum
tensor [16, 17].1

Although, contrary to Fefferman-Graham, the Bondi gauge has not been significant in
holography, it has common features with the derivative expansion of fluid/gravity corre-
spondence: both are of the Eddington-Finkelstein type with one null radial coordinate and
a retarded time [19–27]. This intimate relationship holds in the conventional AdS/CFT
holography as well as in the more recent and embryonic Ricci-flat/Carrollian-field-theory
limit of the former, in its Ricci-flat-gravity/Carrollian-fluid emanation [28, 29].

This latter viewpoint arouses new challenges around the Bondi gauge. Not only should
we further delve into its rather novel anti-de Sitter side and understand the mass and
angular momentum aspects, the news tensor, the asymptotic symmetries etc., but also
translate the properties of the bulk in terms of the boundary geometric and hydrodynamical
data, irrespective of the situation — asymptotically AdS or flat. This last feature is utterly
unexplored, and three dimensions provide again a vast arena.

The motivations of the present work on three-dimensional Einstein gravity are multi-
ple, and concern evenly locally anti-de Sitter and locally flat spacetimes. At the first place
we would like to discuss the complete solution spaces, as they appear from fluid/gravity cor-
respondence, in Bondi, or in Fefferman-Graham gauge (when applicable). Our aim for such
an exhaustive analysis is bound to the fact that the solution spaces are the antechamber
for determining the asymptotic charges and their general algebras. According to [30–34],
these algebras are expected to be bigger than the standard double Virasoro or bms3, but
concrete realizations in terms of solutions are rather sparse.2 Prior to investigating the
algebras, we need to unveil the residual diffeomorphisms and this is our second task, which
goes along with setting the precise diffeomorphisms required to pass from one gauge to
another. This last step enables us to clarify the interplay between the Bondi gauge and the
derivative expansion of fluid/gravity, and describe Bondi data in terms of boundary fluid
variables, which is our third intent.

The general solution space emerging from fluid/gravity correspondence is analyzed in
section 2, grounded in two-dimensional hydrodynamics, which we recall for that purpose.
This study covers both relativistic and Carrollian fluids, together with their gravity-dual
anti-de Sitter or Minkowski spacetimes. Six arbitrary functions of two boundary coordi-
nates define the solution spaces, and the residual diffeomorphisms are generated by four
functions, for which we provide the variations and composition rules. The Bondi gauge
is introduced in section 3, accompanied with its solution space (five functions) and the
corresponding residual diffeomorphisms (three functions). Its relation to the fluid/gravity
gauge is also discussed there, and amounts to simply switching off one of the six functions

1Extend the Fefferman-Graham gauge so that Weyl covariance be manifest has been achieved only
recently in ref. [18].

2In ref. [29], specific corners of the solution space were illustrated within fluid/gravity correspondence.
These exhibit indeed different subalgebras of the expected complete algebra of asymptotic charges.
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present in the fluid/gravity description. This function is one component of the fluid veloc-
ity, and consequently the Bondi gauge amounts to choosing a specific hydrodynamic frame.
The coordinate transformation necessary to reach the Bondi gauge from any point of the
fluid/gravity solution space is a specific residual diffeomorphism of the latter, generating
a change of hydrodynamic frame, i.e. a local Lorentz or Carrollian boost. We exhibit ex-
plicitly this diffeomorphism. Finally, section 4 is devoted to the Fefferman-Graham gauge,
following the usual pattern: solution space (five functions), residual diffeomorphisms (three
functions) and the explicit coordinate transformation necessary to reach Fefferman-Graham
from Bondi. An appendix supplements our exposition with some detailed expressions for
the Bondi gauge (appendix A), and a note (appendix B) on the algebra of residual diffeo-
morphisms, as it emerges from our study in section 2.2, nicely fitting the results available
in the current literature. An alternative and complementary presentation, including a use-
ful Mathematica notebook and summarizing the current analysis is also available in the
conference contribution [35].

2 The fluid/gravity correspondence and its derivative expansion

2.1 From the boundary . . .

The standard relativistic fluids. A relativistic fluid flows on a pseudo-Riemannian
spacetime along a congruence u with norm ‖u‖2 = −k2 (k plays here the role of velocity
of light and will be related in the next section to the bulk cosmological constant). The
heat current q being transverse, it is aligned in two dimensions with the Hodge-dual3 ∗u,
normalized as ‖ ∗ u‖2 = k2:

q = χ ∗ u with χ = − 1
k2 ∗ u

µTµνu
ν (2.1)

the local heat density, appearing here as the magnetic dual of the energy density

ε = 1
k2Tµνu

µuν . (2.2)

In these expressions, we have used the energy-momentum tensor T = Tµνdxµdxν , which is
symmetric. The spacetime metric ds2 = gµνdxµdxν can also be expressed in the Cartan
coframe {u, ∗u} as

ds2 = 1
k2

(
−u2 + ∗u2

)
. (2.3)

The energy-momentum tensor takes the form:

T = 1
2k2

(
(ε+ χ) (u + ∗u)2 + (ε− χ) (u− ∗u)2

)
+ 1
k2 (p− ε+ τ) ∗ u2, (2.4)

where, τ is the viscous stress scalar, unique component of the viscous stress tensor

τµν = τhµν with hµν = 1
k2 ∗ uµ ∗ uν (2.5)

the projector onto the space transverse to the velocity field. The trace reads: Tµµ = p−ε+τ .

3Our conventions are: ∗uρ = uσησρ with ησρ =
√
| det g| εσρ and ε01 = +1 (there is a minus sign with

respect to [35]). Hence ηµσησν = δµν . The Hodge-dual of a vector is the Hodge-dual of the form with the
index raised. Vectors are spelled with plain text letters (u), while one-forms will be displayed in ordinary
boldface (u).
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It is admitted — and extensively discussed in the literature (see e.g. [36–42]) — that
one can perform local Lorentz boosts on the velocity congruence, while keeping intact
the energy-momentum tensor and the entropy current. This freedom may be reduced by
setting some constraint, locking the fluid in a specific hydrodynamic frame. At this stage,
we wish to keep the freedom on the fluid velocity field complete: on the one hand, because
a hydrodynamic-frame transformation is not totally innocuous (see [40]), in particular
regarding global properties, as shown in [29]; on the other hand, because the core of the
present work relies on the control of the bulk gauge freedom, and a boundary velocity
transformation amounts to a specific bulk diffeomorphism, which we will exhibit in the
next section.

There is no shear or vorticity in two spacetime dimensions. The only non-vanishing
first-derivative tensors of the velocity are the expansion scalars Θ = ∇µuµ and Θ∗ = ∇µ∗uµ,
equivalently defined as the exterior derivatives of the velocity forms4

d ∗ u = Θ
k2 ∗ u ∧ u and du = Θ∗

k2 ∗ u ∧ u, (2.6)

or in the Lie bracket of the velocity vectors

[u, ∗u] = Θ∗u−Θ ∗ u. (2.7)

All information about the Levi-Civita connection in the frame {u, ∗u} is encapsulated
in Θ and Θ∗. In particular, the acceleration is expressed as aµ = uν∇νuµ = Θ∗ ∗uµ. These
data can be combined into the Weyl connection one-form

A = 1
k2 (a −Θu) = 1

k2 (Θ∗ ∗ u−Θu) . (2.8)

The corresponding field strength is a two-form with a Hodge-dual scalar

F = ∗dA = ηµν∂µAν = 1
k2 (∗u(Θ)− u(Θ∗)) . (2.9)

This scalar features the Weyl curvature of the two-dimensional geometry. The ordinary
Christoffel-Riemann curvature is

R = 2d†A = 2
k2

(
u(Θ) + Θ2 − ∗u(Θ∗)−Θ∗2

)
. (2.10)

Under Weyl transformations ds2 → ds2/B2 the velocity-form components uµ are mapped
to uµ/B. The Weyl connection one-form transforms as A → A − d lnB, and its scalar
field strength F has weight 2 — as opposed to the Christoffel-Riemann scalar, which
has a weight-2 anomalous transformation. In order to preserve the Weyl transformation
properties of a conformal tensor, the ordinary covariant derivative ∇ should be traded for
the Weyl-covariant combination D = ∇+wA, w being the conformal weight of the tensor.

4Some remarks on notation are necessary in order to avoid confusion. The hodge-dual of a scalar spells
with a suffix star and is a two-form; Θ∗ is just another scalar. For any vector v and a function h, v(h) stands
for vµ∂µh. We remind the following identities: dh = 1

k2 (∗u(h) ∗ u− u(h)u), ∗dh = 1
k2 (∗u(h)u− u(h) ∗ u),

d†w = ∗d ∗w = −∇µwµ and �h = −d†dh = 1
k2 (∗u(∗u(h)) + Θ∗ ∗ u(h)− u(u(h))−Θu(h)). We quote also

∗ (u ∧ ∗u) = k2.
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The dynamics of a relativistic fluid, subject to an external force of density fν is captured
by the equations

∇µTµν = fν , (2.11)

supplemented with an equation of state. In holographic systems, the local-equilibrium
equation of state is conformal, ε = p, and the energy as well as heat densities have weight 2.
For non-vanishing viscous stress scalar, the fluid is conformal only when global equilibrium
is assumed.

Anticipating the analysis of section 2.2, we will here introduce a special class of fluids,
dubbed holographic, for which

τ = R

8πG = 1
4πGk2

(
u(Θ) + Θ2 − ∗u(Θ∗)−Θ∗2

)
(2.12)

and
fν = −∇µDµν (2.13)

with Dµν the components of the following symmetric and traceless tensor:

Dµνdxµdxν = 1
8πGk4

((
u(Θ) + ∗u(Θ∗)− k2

2 R
)(

u2 + ∗u2
)
− 4 ∗ u(Θ)u ∗ u

)
. (2.14)

The force vanishes if and only if the boundary geometry is flat and Weyl-flat. Com-
bining (2.11), (2.12), (2.13) and (2.14), we find the longitudinal (energy) and transverse
(momentum) fluid equations:L ≡ u(ε) + 2Θε+ ∗u(χ) + 2Θ∗χ− 1

4πG [∗u(F ) + 2Θ∗F ] = 0,
kT ≡ ∗u(ε) + 2Θ∗ε+ u(χ) + 2Θχ = 0.

(2.15)

These equations are Weyl-covariant of weight 3.
We conclude this rapid overview of the two-dimensional relativistic dynamics with a

generic parameterization of u and ∗u, in terms of four arbitrary functions, Γ, ∆, vφ and
γ, of two coordinates {u, φ}. This will be useful, when dealing with a specific gauge, as in
section 3. The expressions for the forms are5

u = k2
(
−du
γ

+ ∆
(
dφ− vφdu

))
, ∗u = kΓ

(
dφ− vφdu

)
, (2.16)

and equivalently for the vectors

u = γ
(
∂u + vφ∂φ

)
, ∗u = k

Γ
(
∂φ + ∆γ

(
∂u + vφ∂φ

))
. (2.17)

Among the four functions, vφ and γ have a clear physical meaning: the physical velocity
of the fluid and its Lorentz factor. The boundary metric (2.3) reads:

ds2 = −k2du2

γ2 + 2k2 ∆
γ
du
(
dφ− vφdu

)
+
(
Γ2 − k2∆2

) (
dφ− vφdu

)2
. (2.18)

5Using eqs. (2.6) we obtain the relativistic expansions: Θ∗ = k
Γ

(
−∂φ ln γ + γ

(
∂u∆ + ∂φ

(
∆vφ

)))
and

Θ = γ
Γ

(
∂uΓ + ∂φ

(
Γvφ
))
.
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The more exotic Carrollian fluids. The Carrollian world emerged with the seminal
work of Lévy-Leblond [43]. Although kinematically restricted due to the vanishing veloc-
ity of light (here k), the corresponding symmetry is as big as for Galilean systems, and
provides a rich palette of mathematical [44–53, 55–57] and physical [58–63] applications,
mostly in relation with asymptotic symmetries of Ricci-flat gravitational backgrounds, and
possibly with their holographic duals [64–69]. Assuming the latter exist, the study of their
hydrodynamic regime calls for a theory of Carrollian fluids. Discussions or attempts for
designing Carrollian (or generalized Galilean) hydrodynamics can be found in [70–77]. A
comprehensive study was performed in [78]. This is based on the systematic analysis of
relativistic hydrodynamics in the limit of vanishing light velocity. It has led to a set of
Carrollian fluid equations, proven successful when applied to the description of flat holog-
raphy [28, 29]. Going beyond the hydrodynamic regime requires a deeper understanding
of Carrollian field theory, yet at a primitive stage (see e.g. [79]).

Carrollian fluids “flow” on Carrollian manifolds. The intrinsic definition of a Carrollian
spacetime is very precise: it is a fiber bundle equipped with a degenerate metric of one-
dimensional kernel and an Ehresmann connection. What a Carrollian fluid is, from first
principles, is not so clear because motion is forbidden when the light cone shrinks. For this
reason we rather consider it as a limiting instance of a relativistic fluid. The zero-k limit
is not a priori well defined, and assumptions should be made both for the fluid and for the
metric of the original spacetime.

It is possible to choose a specific gauge (like the Papapetrou-Randers of [78], or the
light-cone coordinates introduced in [29]) so that, in the Carrollian limit, the fluid equations
are manifestly covariant under Carrollian diffeomorphisms i.e. coordinate transformations
such that u′ = u′(u, x) and x′ = x′(x). In these coordinates u is the time, and the vector
∂u defines the kernel of the Carrollian metric.6 In the systems at hand, space has a single
direction, carried by ∂φ (note that φ is not necessarily compact). We will nevertheless
refrain from locking the gauge at this stage. The equations will be less explicit but more
convenient for our purposes.

The kinematics of the fluid goes along with the geometry (it is encoded in the metric
— see (2.3)). We must therefore assume the appropriate behavior of the forms {u, ∗u}
and vectors {u, ∗u} for the Carrollian limit to exist, and use this behavior to define their
Carrollian counterparts. This is inferred from the simplest example of a fluid at rest in
flat spacetime with metric ds2 = −k2du2 + dφ2; hence the forms read u = −k2du and
∗u = kdφ, whereas the corresponding vectors are u = ∂u and ∗u = k∂φ. With this, we
define the Carrollian forms

µµµ = lim
k→0

u
k2 , ∗µµµ = lim

k→0

∗u
k
, (2.19)

so that7

d`2 = lim
k→0

ds2 = ∗µµµ2 (2.20)

6Usually time is spelled t. However, when the holographic map is realized in Eddington-Finkelstein
coordinates, the boundary time is associated with the bulk advanced time u, which should not be confused
with the boundary fluid velocity vector u or form u, the components of the latter being uu, uφ and uu, uφ.

7Slanted bold fonts will be generally used to designate Carrollian forms. They will carry different names
since no map exists between tangent and cotangent spaces — the metric is degenerate.
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is the Carrollian metric. Similarly, for the vectors, the prescription is

υ = lim
k→0

u, ∗υ = lim
k→0

∗u
k
. (2.21)

These obey
µµµ(υ) = −1, ∗µµµ(∗υ) = 1, ∗µµµ(υ) = 0, µµµ(∗υ) = 0, (2.22)

so that the Carrollian-time direction υ is the kernel of the degenerate metric (2.20) (i.e. the
vertical subbundle of the Carrollian manifold) — see also [53, 54]. Due to this degeneracy,
forms and vectors are not related to each other by lowering/raising indices, and this is why
we have assigned different symbols to them. Simultaneously, we have implicitly defined the
Hodge duality, that cannot be introduced with its usual definition because the determinant
of the metric vanishes.8

Using the scalings (2.19), (2.21), as well as the definitions (2.6), (2.7), we reach the
Carrollian expansions θ and θ∗ via

d ∗µµµ = θ ∗µµµ ∧µµµ and dµµµ = θ∗ ∗µµµ ∧µµµ, (2.23)

or with the Lie bracket of the Carrollian velocity vectors

[υ, ∗υ] = θ∗υ − θ ∗ υ. (2.24)

These are related to the relativistic expansions through9

θ = lim
k→0

Θ, θ∗ = lim
k→0

Θ∗

k
. (2.25)

Furthermore, the Carrollian spacetime defined with the forms µµµ, ∗µµµ, vectors υ, ∗υ and
degenerate metric d`2 is naturally equipped with a Carrollian Weyl connection and its
descendent Carrollian curvature scalars. These are obtained using the vanishing-k limit of
the relativistic data, but everything could be defined from first Carrollian principles — and
will be ultimately expressed in terms of the above Carrollian building blocks. We obtain
the Carrollian Weyl connection

AAA = lim
k→0

A = θ∗ ∗µµµ− θµµµ (2.26)

and its Carrollian curvature (the minus sign is conventional)

s = − lim
k→0

kF = υ(θ∗)− ∗υ(θ) = − ∗ dAAA. (2.27)

The ordinary Riemann-Christoffel curvature R defined in (2.10) is singular, and allows to
define two Carrollian curvature scalars as the coefficients of the terms of order 1/k2 and
1 respectively: rL = 2

(
υ(θ) + θ2) and rT = 2

(
∗υ(θ∗) + θ∗2

)
, where the indices stand

8In order to make this definition complete, we should further require that µµµ = ∗∗µµµ as well as ∗ (µµµ ∧ ∗µµµ) =
1, and similarly for the vectors. We will not expand these formal issues here. We refer instead to the
appendix A of [54], where the Carrollian Hodge dual at hand was defined — eq. (A.41).

9The scalar θ defined here is slightly more general than previously introduced in [28, 29, 78]. It accounts
for extra contributions, which were separately displayed in those references.
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for longitudinal and transverse with respect to υ (kernel of the Carrollian metric). These
scalars can also be defined from first Carrollian principles as pieces of a curvature introduced
in [78], or alternatively as parts of a torsion [54].

A Carrollian fluid has dynamical variables inherited from the ancestor relativistic hy-
drodynamics, namely energy and heat density. Following [29, 78], we will assume that in
the zero-k limit, the energy density is finite and non-vanishing. In order to avoid cluttering
of notation, we will keep the same symbol ε for the Carrollian variable. Regarding the heat
current, it must vanish linearly so that

ζ = lim
k→0

χ

k
(2.28)

will play the role of Carrollian heat density.10

Given the above kinematical data µµµ, ∗µµµ, υ, ∗υ and the dynamical variables ε, ζ describ-
ing a Carrollian fluid flowing over a Carrollian manifold, the holographic fluid equations
are obtained as the Carrollian limit of the longitudinal L and transverse T relativistic
equations11 given in (2.15):limk→0 L = υ(ε) + 2θε+ 1

4πG [∗υ(s) + 2θ∗s] = 0,
limk→0 T = ∗υ(ε) + 2θ∗ε+ υ(ζ) + 2θζ = 0.

(2.29)

An alternative version of Carrollian fluid equations can be found in refs. [29, 78]. There,
the equations are displayed in the Papapetrou-Randers gauge, where the invariance under
Carrollian diffeomorphisms and conformal transformations is manifest.

Following the parameterization (2.16) and (2.17) for the relativistic data, we present
here their Carrollian relatives:12

µµµ = −du
γ

+ ∆
(
dφ− vφdu

)
, ∗µµµ = Γ

(
dφ− vφdu

)
,

υ = γ
(
∂u + vφ∂φ

)
, ∗υ = 1

Γ∂φ + ∆γ
Γ
(
∂u + vφ∂φ

)
.

(2.30)

Among the four arbitrary functions Γ(u, φ), ∆(u, φ), vφ(u, φ) and γ(u, φ), only two pertain
to the Carrollian metric (2.20), which takes the form

d`2 = Γ2
(
dφ− vφdu

)2
. (2.31)

2.2 . . . to the bulk

Locally anti-de Sitter spacetimes. The fluid/gravity correspondence maps relativistic
fluid configurations onto Einstein spacetimes. In this holographic duality, the fluid flows on
the conformal boundary of the asymptotically (locally) anti-de Sitter bulk. The metric of

10This quantity was spelled χπ in [29], referring to a Carrollian heat current πππ introduced in that work.
11The factor k in the definition of T (eq. (2.15)) is instrumental for delivering a sensible Carrollian limit

in the momentum equation. A similar precaution is necessary for dealing with the Galilean limit (see the
standard textbook [36], or [78] for a simultaneous and general treatment of Galilean and Carrollian limits).

12The Carrollian expansions are defined in eqs. (2.23). They read: θ∗ =
1
Γ

(
−∂φ ln γ + γ

(
∂u∆ + ∂φ

(
∆vφ

)))
and θ = γ

Γ

(
∂uΓ + ∂φ

(
Γvφ
))
.
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the latter is obtained in the form of a derivative expansion [19–22], inspired from the fluid
homonymous expansion. The fluid derivative expansion consists in expressing the heat
current and the stress tensor as expansions in increasing derivatives of the fluid velocity
and temperature fields (and possibly chemical potentials — see [36–39]). Similarly, the
derivative expansion of the bulk metric is set up order by order in inverse powers of the
holographic coordinate r, which is a null radial coordinate.

The fluid/gravity correspondence is not bijective. Not every Einstein space is dual to
a relativistic fluid — a simple counting of degrees of freedom upholds this statement. This
reservation is lapsed the moment we allow for non-hydrodynamic modes, which bring about
extra contributions in the fluid and metric expansions, not captured in velocity derivatives.
It is customary to keep calling this a “fluid/gravity derivative expansion,” even though it
is, strictly speaking, neither fluid, nor derivative, and use it as a framework to describe any
Einstein spacetime. This direction has been pursued in a series of works [23–27], dealing
at the same time with the possibility of resumming the expansion (see below).

Concretely, the fluid/gravity derivative expansion appears in an Eddington-Finkelstein
form without complete gauge fixing — as opposed to Bondi or Fefferman-Graham (see
sections 3 and 4). At each order enter the boundary tensors of appropriate conformal
weight, ensuring the invariance of the bulk with respect to boundary Weyl transformations.
These tensors are usually, but not necessarily, derivatives of the velocity field. The radial-
evolution Einstein equations fix this expansion, whereas the constraint equations translate
into the boundary fluid dynamics.

In some general classes, the derivative expansion can be resummed. In those instances,
the heat current and the stress tensor are exactly determined by geometric tensors, hence
expressed as finite-order derivatives of elementary fields. This is expected to hold in arbi-
trary dimensions, and has been demonstrated in four-dimensional bulk, where the boundary
Cotton tensor is the fundamental geometric object that provides the fluid data.

Three dimensions are peculiar because most geometric and fluid tensors vanish (like
the shear or the vorticity). As a consequence, only a few quantities, compatible with
conformal invariance remain.13 These include the heat current, which enters freely and as
an independent function the derivative expansion. The latter terminates at finite order
and we find:

ds2
Einstein = 2 u

k2

(
dr + r

k2 (Θ∗ ∗ u−Θu)
)

+ r2ds2 + 8πG
k4 u (εu + χ ∗ u) , (2.32)

ε = p and χ being the energy and heat densities of the fluid, u and ∗u its velocity and dual
velocity form fields, and ds2 the boundary metric expressed as in (2.3). When inserted in
Einstein’s equations with Λ = −k2, adopting the triad {dr,u, ∗u} as Cartan coframe, the
metric (2.32) solves

• the radial components, rr, ur and ∗ur;

• the transverse components, uu, ∗u∗u and ∗uu, provided the fluid energy-momentum
tensor (2.4) obeys

∇µ (Tµν +Dµν) = 0, (2.33)
13Reminder: u, ∗u, r, ε and χ have weights −1, −1, 1, 2 and 2.
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where Dµν are given in (2.14), and the viscous stress scalar τ carries the conformal
anomaly (2.12). The covariant derivative in (2.33) is associated with the Levi-Civita
connection of the boundary metric ds2, and eqs. (2.33) are equivalently spelled in the
form (2.15).

According to the method of ref. [16], the holographic energy-momentum tensor of the
bulk metric (2.32) turns out to be the sum

T̃µν = Tµν +Dµν . (2.34)

Hence, an alternative for the holographic-fluid energy-momentum tensor could have been
T̃µν . Decomposed as in (2.4), the latter would have led to different energy and heat densities
than ε and χ, namely

ε̃ = ε+ 1
8πGk2 (u(Θ) + ∗u(Θ∗))− R

16πG,

χ̃ = χ− 1
4πGk2 ∗ u(Θ),

(2.35)

whereas τ̃ = τ because Dµν has vanishing trace. This option would have rendered the
expression for the bulk metric less natural, and somehow blurred its Carrollian limit (dis-
cussed in the next paragraph), because of divergences at vanishing k, occurring in the tilde
energy and heat densities (see [29] for details). It is nonetheless important for discussing
the boundary local Lorentz transformations i.e. the changes of holographic-fluid boundary
frame, and their translation into bulk diffeomorphisms.

A comment is worth making at this stage. Even though all relevant information carried
by the energy-momentum tensor (ε, χ, τ , u and ∗u) is used for the reconstruction of the
bulk metric (2.32), in the gauge at hand, the energy-momentum tensor does not appear in
the metric as a single piece of holographic boundary data. This is to be contrasted to what
happens in the Fefferman-Graham gauge, where the entire energy-momentum emerges at
a specific order in the radial, holographic expansion — see section 4.

Expression (2.32) is partly on-shell. It depends on six functions: ε(u, φ), χ(u, φ), the
two components of u (uu(u, φ) and uφ(u, φ)) and those of ∗u (∗uu(u, φ) and ∗uφ(u, φ))
— as displayed e.g. in eqs. (2.16). It exhibits the most general locally AdS spacetime
in Eddington-Finkelstein coordinates, whenever these six functions obey (2.15). There is
one more function than in Bondi gauge, as we will see in section 3, precisely because the
derivative expansion is not constructed as a gauge, i.e. it ensures only a partial gauge
fixing. In fact, the extra degree of freedom corresponds to the (local) arbitrariness of
hydrodynamic frame, and is absent in Bondi gauge — where the fluid flows in a frame
dubbed Bondi hydrodynamic frame.

Given (2.32), it is legitimate to wonder what the residual diffeomorphisms are. These
are transformations, which keep (2.32) form-invariant, while modifying its building blocks,
u, ∗u, ε and χ. Our motivation for such an analysis is twofold. At the first place this will set
up the stage for the comparison with Bondi or Fefferman-Graham gauges. In addition, the
set of residual diffeomorphisms is a prerequisite for determining the asymptotic charges and
their algebra. With the universal form of the derivative expansion at hand, it is expected
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to recover the general algebra advertised in [30, 32], extending thereby the partial results
obtained in [29].

Since the derivative expansion is a partial gauge fixing, the residual diffeomorphisms
encompass an arbitrary function of all bulk coordinates [13]. These are generated by a bulk
vector field, expressed either in the natural bulk frame {∂r, ∂µ}, or in the Cartan frame
{∂r, u, ∗u} that can be adopted for the bulk:

ξ = ξr∂r + ξµ∂µ = ξr∂r −
uµξ

µ

k2 u + ∗uµξ
µ

k2 ∗ u, (2.36)

where all three components depend on r and xµ. They can be expressed as an 1/r power
series. Inspired by the analysis performed in Bondi gauge, we make here the ansatz to
terminate this series at first order:

ξr = rξr(−1) + ξr(0) + 1
r
ξr(1), ξµ = ξµ(0) + 1

r
ξµ(1), (2.37)

where ξ(0) = ξµ(0)∂µ and ξ(1) = ξµ(1)∂µ are boundary vector fields, and ξr(−1), ξ
r
(0) as well as

ξr(1) boundary scalars. The subsequent analysis is based on the Lie derivative of the bulk
metric along ξ; it is ultimately recast in boundary language.

The condition14 LξGrr = 0 enforces transversality for ξ(1) with respect to u:

ξ(1) = Z

k
∗ u (2.38)

with Z an arbitrary boundary scalar function. The conditions stemming out from LξGrµ
result in

ξr(−1) = S, ξr(1) = −4πG
k

χZ, (2.39)

where S is another arbitrary boundary function, while χ is the boundary fluid heat density.
The treatment of LξGµν imposes

ξr(0) = −∇µξµ(1) = −1
k

(Θ∗Z + ∗u(Z)) , (2.40)

whereas the boundary vector ξ(0) remains unconstraint and expressed in terms of two
arbitrary functions f and Y :

ξ(0) = fu + Y

k
∗ u. (2.41)

Summarizing, the residual diffeomorphisms are linearly encoded in four arbitrary func-
tions of the boundary coordinates: f , Y , S and Z. The components of their generating
vector fields are

ξ =
(
rS − 1

k
(Θ∗Z + ∗u(Z))− 4πG

kr
χZ

)
∂r + fu + 1

k

(
Y + Z

r

)
∗ u. (2.42)

14In order to avoid any confusion, we will generically spell the bulk metric as

ds2
bulk = GMNdxMdxM = Grrdr2 + 2Grαdrdxα +Gµνdxµdxν ,

where GMN are functions of all coordinates.
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The effect of these diffeomorphisms on the bulk metric (2.32) is reflected entirely in the
variation they produce on the boundary data, which uniquely define the bulk solution
space. These data are the velocity field and its dual form, for which15

δξuµ = −
(
S + Θ∗

k
Y + u(f)

)
uµ + k

(
Z − Θ∗

k
f + ∗u(f)

k

)
∗ uµ (2.43)

and
δξ ∗ uµ = 1

k

(
k2Z −ΘY + u(Y )

)
uµ −

(
S + Θf + ∗u(Y )

k

)
∗ uµ, (2.44)

as well as the energy and heat densities:

δξε = −Y ∗u(ε)
k
− fu(ε) + 2Sε− 2kZχ+ 1

4πG

[
kFZ −Θ∗u(Z)

k
− u(∗u(Z))

k

]
(2.45)

and

δξχ = −Y ∗u(χ)
k
− fu(χ) + 2Sχ− 2kZε+ 1

4πG

[
Θ∗ ∗u(Z)

k
+ ∗u(∗u(Z))

k

]
. (2.46)

Under these transformations, the relativistic hydrodynamics equations (2.15), obeyed by
the boundary data, remain unaltered.

The variations of the velocity fields (2.43) and (2.44) are of the generic form including
a longitudinal and a transverse component

δξuµ = −ψuµ + ψ∗ ∗ uµ, δξ ∗ uµ = ω∗uµ − ω ∗ uµ, (2.47)

where ψ∗, ψ, ω and ω∗ are read off directly in eqs. (2.43) and (2.44) (see also (B.1),
(B.2), (B.3), (B.4)). These four functions provide a choice for parameterizing a residual
diffeomorphism, alternative to f , Y , S and Z. The variations of the corresponding vectors
and of the boundary metric read simply16

δξu
µ = ψuµ + ω∗ ∗ uµ, δξ ∗ uµ = ψ∗uµ + ω ∗ uµ, (2.48)

and
δξds2 = 2

k2

(
ψu2 − ω ∗ u2 + (ω∗ − ψ∗) u ∗ u

)
. (2.49)

A boundary Weyl transformation is therefore induced with ω∗ = ψ∗ and ω = ψ. Ultimately,
the boundary metric is invariant if furthermore ω = ψ = 0; ψ measures therefore the
change of scale in the metric (see appendix B for a more elaborate discussion). We will
now interpret ψ∗.

A local Lorentz transformation is a one-parameter subset of the residual diffeomor-
phisms that leave the boundary metric invariant. It acts on the velocity fields as(

δLu
δL ∗ u

)
= ψ∗

(
∗u
u

)
and

(
δLu
δL ∗ u

)
= ψ∗

(
∗u
u

)
, (2.50)

15Our convention for the variation δξ is the opposite of that used in [35].
16We also quote: δξΘ = ψΘ + ω∗Θ∗ + ∗u(ω∗)− u(ω) = SΘ− u(S)− fu(Θ)− Y ∗u(Θ)

k
+ k (ZΘ∗ + ∗u(Z))

and δξΘ∗ = ψ∗Θ + ωΘ∗ − ∗u (ψ)) + u (ψ∗) = SΘ∗ − ∗u(S)− fu(Θ∗)− Y ∗u(Θ∗)
k

+ k (ZΘ + u(Z)).
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where anticipating the output, we have used the parameter ψ∗ appearing in eqs. (2.47),
(2.48) and (2.49). This transfromation produces

δLΘ = ∗u (ψ∗) + Θ∗ψ∗, δLΘ∗ = u (ψ∗) + Θψ∗. (2.51)

By definition, this is the hydrodynamic-frame transformation, which keeps invariant the
boundary geometry (i.e. the metric (2.3) and its Riemann-Christoffel curvature R (2.10)),
together with the energy-momentum tensor T̃µν given in (2.34). The latter requirement
sets (see [29]) (

δLε̃

δLχ̃

)
= −2ψ∗

(
χ̃

ε̃

)
− ψ∗

(
0
τ̃

)
, (2.52)

while δLτ̃ = 0 because τ̃ = τ = R/8πG (see (2.12)). Applied to (2.35), the transformation
rules (2.50), (2.51) and (2.52) lead to the actual energy and heat-density variations

δLε = −2ψ∗χ+ 1
4πG

[
Fψ∗ −Θ∗u (ψ∗)

k2 − u(∗u (ψ∗))
k2

]
(2.53)

and
δLχ = −2ψ∗ε+ 1

4πG

[
Θ∗ ∗u (ψ∗)

k2 + ∗u(∗u (ψ∗))
k2

]
. (2.54)

Comparing (2.50), (2.53), (2.54) with the general expressions (2.47), (2.45), (2.46), we
conclude that the hydrodynamic-frame transformations of the boundary fluid correspond
to a subset of the bulk residual diffeomorphisms generated by a vector field (2.42) with
f = Y = S = 0 and ψ∗ = kZ:

ξL = − 1
k2 (Θ∗ψ∗ + ∗u (ψ∗)) ∂r −

ψ∗

r

(4πG
k2 χ∂r −

∗u
k2

)
. (2.55)

In the parameterization (2.16), the Lorentz transformation (2.50) acts as

δLΓ = kψ∗∆, δL∆ = ψ∗Γ
k
, δLv

φ = kψ∗

γΓ , δLγ = kψ∗γ∆
Γ . (2.56)

Considering again the complete family of residual diffeomorphisms parameterized by
four functions f , Y , S and Z, one may wonder how these are composed. The answer to this
question requires the use of a modified Lie bracket (see e.g. [5]), which suitably accounts
for the effect that the geometry variation produces on the generators:

ξ3 = [ξ1, ξ2]M = [ξ1, ξ2] + δξ1ξ2 − δξ2ξ1. (2.57)

This bracket endows the family of generators (2.42) with the structure of a Lie algebra,
which in turn provides the composition rules of f1, Y1, S1, Z1 and f2, Y2, S2, Z2:

f3 = S1f2 − S2f1 + Z1Y2 − Z2Y1 + Θ∗

k
(Y1f2 − Y2f1) + δξ1f2 − δξ2f1, (2.58)

Y3 = S1Y2 − S2Y1 + k2 (Z1f2 − Z2f1) + Θ (f1Y2 − f2Y1) + δξ1Y2 − δξ2Y1, (2.59)

S3 = f1u (S2)− f2u (S1) + 1
k

(Y1 ∗ u (S2)− Y2 ∗ u (S1)) + δξ1S2 − δξ2S1, (2.60)

Z3 = f1u (Z2)− f2u (Z1) + 1
k

(Y1 ∗ u (Z2)− Y2 ∗ u (Z1)) + δξ1Z2 − δξ2Z1. (2.61)
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In these expressions, the last two terms (δξ1f2− δξ2f1 etc.) vanish whenever fa, Ya, Sa and
Za are field-independent diffeomorphism parameters. This happens e.g. for the Lorentz
boosts discussed above (where furthermore Z3 = 0 as a manifestation of their abelian
nature), but needs not be so in general. We will not elaborate any longer on the above
algebra, some further information is available in appendix B. It is very general and allows
to recover some previous results [29–32, 34, 46] aiming at extending the standard Witt
(or BMS — see next paragraph) residual-symmetry algebras emerging in three spacetime
dimensions. This analysis is the starting point for the determination of the surface charges.

Locally Minkowskian spacetimes. In the conventional fluid/gravity holographic cor-
respondence, the relativistic fluid flows on the conformal boundary. In the limit of vanishing
cosmological constant, the conformal boundary is traded for null infinity, which is indeed
a Carrollian spacetime. Simultaneously, the relativistic fluid is mapped onto its Carrol-
lian limit, defined at null infinity. One therefore expects that, for well-behaved relativistic
fluid configurations, i.e. such that the limits (2.19), (2.21) hold, the Carrollian counter-
parts should provide the building blocks for reconstructing asymptotically flat spacetimes
with a Carrollian derivative expansion. This was successfully analysed in refs. [28, 29].
Indeed, under the assumptions recalled here, expression (2.32) is regular at vanishing k
with the limit

ds2
flat = 2µµµ (dr + r (θ∗ ∗µµµ− θµµµ)) + r2d`2 + 8πGµµµ (εµµµ+ ζ ∗µµµ) . (2.62)

The boundary (more precisely null-infinity) data are the Carrollian velocity forms µµµ and
∗µµµ (their expansions θ and θ∗ are defined in (2.23) or (2.24)), the energy density ε and the
Carrollian heat density ζ (see (2.28)). The Carrollian degenerate metric d`2 is built on ∗µµµ
(see (2.20)), and the Carrollian geometry is completed with the data υ and ∗υ, associated
with the Carrollian fluid velocity.

The metric (2.62), abusively called flat derivative expansion, has a finite number of
terms and it is not completely off-shell as it satisfies Rrr = Rµµµr = R∗µµµr = 0 (we use
the Cartan triad {dr,µµµ, ∗µµµ}). However, the remaining components of the bulk Ricci tensor
Rµµµµµµ, R∗µµµ∗µµµ and R∗µµµµµµ vanish if and only if the Carrollian fluid equations (2.29) are satisfied.

The above is a remarkable result, which provides the general expression of locally flat
spacetimes in Eddington-Finkelstein coordinates. Again, six functions of two boundary
coordinates describe the dynamics: µµµ = µu(u, φ)du + µφ(u, φ)dφ and ∗µµµ = ∗µu(u, φ)du +
∗µφ(u, φ)dφ (possibly parameterized following (2.30)), as well as ε(u, φ) and ζ(u, φ). As in
AdS, this is one more than in Bondi gauge (see section 3).

The residual diffeomorphisms of the locally flat metric (2.62) are parameterized in
terms of the same functions as its anti-de Sitter counterpart (2.32). These are f , Y , S and
Z, and depend on the two boundary coordinates. They appear at the first place in the
variations of the holographic data µµµ, ∗µµµ, ε and ζ, which in turn transform the bulk metric
in a form-invariant manner.

The generating vector fields for the residual diffeomorphisms are of the form (2.36),
and can be explicitly obtained through an analysis of the metric Lie derivatives, similar
to that performed in the anti-de Sitter case. The result coincides with the zero-k limit
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of (2.42), which can be spelled in the bulk vector frame {∂r, υ, ∗υ}:

ξ =
(
rS − θ∗Z − ∗υ(Z)− 4πG

r
ζZ

)
∂r + fυ +

(
Y + Z

r

)
∗ υ. (2.63)

Again, these vectors depend on four arbitrary functions. Using (2.43) and (2.44)) together
with (2.19), (2.21) and (2.25), we find

δξµµµ = − (S + θ∗Y + υ(f))µµµ+ (Z − θ∗f + ∗υ(f)) ∗µµµ,
δξ ∗µµµ = (υ(Y )− θY )µµµ− (S + θf + ∗υ(Y )) ∗µµµ,

(2.64)

as well as

δξυ = (S + θ∗Y + υ(f)) υ + (υ(Y )− θY ) ∗ υ,
δξ ∗ υ = (Z − θ∗f + ∗υ(f)) υ + (S + θf + ∗υ(Y )) ∗ υ.

(2.65)

These relations enable us to write the transformation of the Carrollian metric:17

δξd`2 = 2 ∗µµµδξ ∗µµµ = −2 (S + θf + ∗υ(Y )) d`2 + 2 (υ(Y )− θY )µµµ ∗µµµ. (2.66)

The transformations at hand keep the Carrollian metric degenerate. They induce a Weyl
transformation under the condition υ(Y ) = θY (see appendix B for further details). If
furthermore S + θf + ∗υ(Y ) = 0, the bulk diffeomorphisms do not affect the boundary
Carrollian metric; they include local Carrollian boosts, as we will see in a short while.

Finally, starting from (2.45) and (2.46), we obtain the Carrollian counterparts of the
energy and heat density transformations:

δξε = −Y ∗ υ (ε)− fυ(ε) + 2Sε− 1
4πG [sZ + θ ∗ υ(Z) + υ (∗υ(Z))] (2.67)

with s being the Carrollian Weyl curvature (2.27), and

δξζ = −Y ∗ υ (ζ)− fυ (ζ) + 2Sζ − 2Zε+ 1
4πG [θ∗ ∗ υ(Z) + ∗υ (∗υ(Z))] . (2.68)

The transformations under consideration respect the Carrollian fluid equations (2.29).
Before ending this paragraph, we should discuss the fate of the boundary local Lorentz

transformations, i.e. the hydrodynamic-frame freedom in the Carrollian limit. Although
by essence this freedom is lost, requiring the scaling of the parameter ψ∗ as kα in the
transformation rules (2.50), enables us to recover a non-trivial Carrollian remnant as

δCµµµ = α ∗µµµ, δC ∗µµµ = 0, δCυ = 0, δC ∗ υ = αυ, (2.69)

resulting in
δCθ = 0, δCθ

∗ = υ(α) + θα, (2.70)
17Following footnote 16, we find here: δξθ = Sθ − υ(S) − fυ(θ) − Y ∗ υ(θ) and δξθ

∗ = Sθ∗ − ∗υ(S) −
fυ(θ∗)− Y ∗ υ(θ∗) + Zθ + υ(Z).
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and keeping the Carrollian metric (2.20) invariant (see (2.66)). This is a local Carrollian
boost. Thanks to the scaling ψ∗ = kα, eqs. (2.53) and (2.54) have a smooth vanish-
ing-k limit,

δCε = − 1
4πG [sα+ θ ∗ υ(α) + υ(∗υ(α))] (2.71)

and
δCζ = −2αε+ 1

4πG [θ∗ ∗ υ(α) + ∗υ(∗υ(α))] . (2.72)

We can compare (2.69), (2.71) and (2.72) with (2.64), (2.65), (2.67) and (2.68). We observe
that the Carrollian descendants of the hydrodynamic-frame transformations are a subset
of the bulk residual diffeomorphisms generated by (2.63) with f = Y = S = 0 and Z = α:

ξC = − (θ∗α+ ∗υ(α)) ∂r −
α

r
(4πGζ∂r − ∗υ) . (2.73)

This is indeed the Carrollian limit of (2.55). Again, using the parameterization (2.30), the
transformation (2.69) results in

δCΓ = 0, δC∆ = αΓ, δCv
φ = 0, δCγ = 0, (2.74)

which is the vanishing-k limit of (2.56).
Finally, using the modified Lie bracket (2.57), the set of generators (2.63) acquires

the structure of an algebra with composition rules fitting the vanishing-k limit of (2.58),
(2.59), (2.60), (2.61):

f3 = S1f2 − S2f1 + Z1Y2 − Z2Y1 + θ∗ (Y1f2 − Y2f1) + δξ1f2 − δξ2f1, (2.75)
Y3 = S1Y2 − S2Y1 + θ (f1Y2 − f2Y1) + δξ1Y2 − δξ2Y1, (2.76)
S3 = f1υ (S2)− f2υ (S1) + Y1 ∗ υ (S2)− Y2 ∗ υ (S1) + δξ1S2 − δξ2S1, (2.77)
Z3 = f1υ (Z2)− f2υ (Z1) + Y1 ∗ υ (Z2)− Y2 ∗ υ (Z1) + δξ1Z2 − δξ2Z1. (2.78)

Observe the different Y composition (2.76), compared to its anti-de Sitter counter-
part (2.59). It reflects the known differences among residual symmetries in flat and anti-de
Sitter spacetimes, as e.g. the BMS substituting the Witt algebra. The above result gener-
alizes and unifies previous discussions on this matter [29, 33, 46].

With the achievements collected in the current section, we are equipped for com-
paring the AdS or flat fluid/gravity Eddington-Finkelstein gauge with Bondi or Feffer-
man-Graham gauges.

3 The Bondi gauge and its hydrodynamic frame

3.1 Gauge fixing, solution space and residual diffeomorphisms

In Bondi gauge, the metric takes the form [1, 3, 5]

ds2 = e2β V

r
du2 − 2e2βdudr + g (dφ− Udu)2 . (3.1)
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Four undetermined functions define a priori the three-dimensional metric: β(u, φ, r),
V (u, φ, r), g(u, φ, r) and U(u, φ, r). The gauge-fixing conditions are indeed

Grr = 0, Grφ = 0, (3.2)

plus the determinant condition

∂r

(
Gφφ
r2

)
= 0, (3.3)

which leads to g = r2e2ϕ with ϕ a function of (u, φ).
Bondi gauge can be generalized in higher dimensions. In contrast with the fluid/gravity

derivative expansion, it is defined a priori off-shell, and accounts exactly for the local degrees
of freedom irrespective of the dynamics. It can be used for finding Einstein or Ricci-
flat spacetimes — or non-vacuum solutions. Generically, Bondi gauge possesses residual
diffeomorphisms generated by vectors ξ(u, φ, r) = ξr∂r + ξu∂u + ξφ∂φ, and obtained by
requiring (see e.g. [5])

LξGrr = 0, LξGrφ = 0, ∂r
(
GφφLξGφφ

)
= 0. (3.4)

Solving the latter, we find

ξu = ξu(0), (3.5)

ξφ = ξφ(0) − e−2ϕ∂φξ
u
∫ +∞

r

dr′

r′2
e2β , (3.6)

ξr = r
[
ω + U∂φξ

u − ∂φξφ − ξφ∂φϕ− ξu∂uϕ
]
, (3.7)

where ξu(0), ξ
φ
(0) and ω are arbitrary functions of (u, φ). It turns out that GφφLξGφφ = 2ω.

In order to compare (3.1) with the fluid/gravity expressions (2.32) or (2.62), we must
solve the rr, rφ and ru components of Einstein’s equations with and without cosmological
constant. Since Grr = 0 irrespective of Λ = −k2, the radial equation is Rrr = 0. This is
solved with β = β0(u, φ). Similarly, the rφ equation is Rrφ = 0 and leads to

U = U0 + 2
r
e2(β0−ϕ)∂φβ0 −

N

r2 e
2(β0−ϕ) (3.8)

with U0(u, φ) and N(u, φ) two arbitrary functions. Finally, the ru equation depends ex-
plicitly on Λ, and so does its general solution, which reads:

V

r
= −r2k2e2β0 − 2r (∂uϕ+ ∂φU0 + U0∂φϕ) +M + 4N

r
e2(β0−ϕ)∂φβ0 −

N2

r2 e2(β0−ϕ) (3.9)

with M(u, φ) yet another function. In summary, the metric is parameterized by five arbi-
trary functions of (u, φ): ϕ, U0, β0, M and N .

With these results, the Bondi metric (3.1), now partly on-shell, fits exactly the
fluid/gravity expressions (2.32) or (2.62), provided the boundary-fluid velocity field is
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chosen appropriately, namely with uφ or µφ frozen to zero. This defines a specific hy-
drodynamic frame, which will be referred to as Bondi frame.

• For relativistic fluids, uφ = 0 amounts to setting ∆ = 0 in eqs. (2.16) and (2.17).
Thus, the Bondi-frame velocity forms are

u = −k2du
γ
, ∗u = kΓ

(
dφ− vφdu

)
. (3.10)

These expressions bear three arbitrary boundary functions, i.e. one less than for
generic velocity fields. With those, the boundary metric (2.18) reads:

ds2 = −k2du2

γ2 + Γ2
(
dφ− vφdu

)2
. (3.11)

• For Carrollian fluids, the equivalent objects are again expressed in terms of three
arbitrary functions, Γ(u, φ), vφ(u, φ) and γ(u, φ):

µµµ = −du
γ
, ∗µµµ = Γ

(
dφ− vφdu

)
. (3.12)

The Carrollian degenerate metric (2.31) is now

d`2 = Γ2
(
dφ− vφdu

)2
. (3.13)

The fluid/gravity geometric and kinematic data Γ, vφ and γ are related to the partly
on-shell Bondi functions ϕ, U0 and β0 as follows:18

Γ = eϕ, vφ = U0, γ = e−2β0 . (3.14)

Finally, the fluid energy and heat densities read:

8πGε = e−2β0M + 4e−2ϕ (∂φβ0)2 (3.15)

and
4πGχ = −ke−ϕN or 4πGζ = −e−ϕN (3.16)

for the relativistic or Carrollian situation, respectively. These exhibit the expected rela-
tionship between the Bondi mass and the fluid energy density, as well as the remarkable
identification of the angular-momentum aspect with the fluid heat density.

The bulk metrics at hand solve all Einstein’s equations, provided the energy and heat
densities obey the hydrodynamic equations (2.15) or (2.29), respectively for the relativistic
and Carrollian case. Indeed, the remaining uu, uφ and φφ equations are the uu, ∗u∗u and
∗uu equations in the anti-de Sitter triad, or the µµµµµµ, ∗µµµ∗µµµ and ∗µµµµµµ in the flat counterpart.

18Using the expressions for the expansions displayed in footnotes 5 and 12, we obtain Θ∗

k
= θ∗ =

− 1
Γ∂φ ln γ = 2e−ϕ∂φβ0 and Θ = θ = γ

(
∂u ln Γ + vφ∂φ ln Γ + ∂φv

φ
)

= e−2β0 (∂uϕ+ U0∂φϕ+ ∂φU0).
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The hydrodynamic equations can be expressed explicitly in terms of the functions ϕ, U0,
β0, M and N , with non-vanishing or vanishing k. These are displayed in (A.1) and (A.2).

In section 2.2, we presented a detailed analysis of the residual diffeomorphisms. Irre-
spective of Λ, these were generated by four arbitrary functions f , Y , S and Z. For these
diffeomorphisms to respect the Bondi hydrodynamic frame, we must require that δξuφ = 0
or δξµφ = 0. Using eqs. (2.43) or (2.64) and imposing uφ = 0 or µφ = 0 we find:

ψ∗ = 0⇔ Z = Θ∗

k
f − ∗u(f)

k
or Z = θ∗f − ∗υ(f), (3.17)

in anti de Sitter or Minkowski respectively. Using (3.14), this is recast as

Z = − 1
γΓ∂φ(γf) = −e−ϕ (∂φf − 2f∂φβ0) (3.18)

and the corresponding ξ (eq. (2.42) or (2.63)) fits the Bondi residual diffeomorphism gen-
erator found in (3.5), (3.6), (3.7) with

ξu(0) = e−2β0f, ξφ(0) = e−ϕY + e−2β0fU0, (3.19)

and
ω = S + Θf + ∗u(Y )

k
, or ω = S + θf + ∗υ(Y ), (3.20)

fitting exactly the ω introduced in eqs. (2.47) as an auxiliary function (together with ω∗,
ψ and ψ∗).

The effect of these diffeomorphisms on the data defining the solutions (Γ, vφ, γ,
ε, and χ versus ζ, or ϕ, U0, β0, M and N) is inferred from the general expres-
sions (2.43), (2.44), (2.45) and (2.46), or (2.64), (2.67) (2.68), by setting uφ = 0 or µφ = 0
and using Z as given in (3.17) or (3.18). We gather these formulas in appendix A and
carry out the algebra of Bondi residual diffeomorphisms (depending on three functions, f ,
Y and S) in appendix B.

3.2 From an arbitrary hydrodynamic frame to the Bondi frame

We would like to close this section and investigate the class of diffeomorphisms connecting
the Bondi frame to arbitrary frames of the fluid/gravity Eddington-Finkelstein gauge. This
amounts to restoring (or removing) the sixth function of the solution space (uφ or µφ) using
some appropriate (and non-unique) combination of the four functions labeling the general
residual diffeomorphism. Put differently, this specific combination will parameterize the
component uφ or µφ.

To this end, we should perform an appropriate residual diffeomorphism, and the most
economical corresponds to a boundary local Lorentz or Carrollian boost. This family has
been identified in section 2.2 as generated by the vectors (2.55) or (2.73), labeled by a
unique arbitrary function of boundary coordinates, ψ∗ or α. We will provide a unified
treatment for anti-de Sitter or Minkowski, using Z = ψ∗/k = α.

In the universal parameterization (2.16) or (2.30), the form components uφ/k or µφ
are identified with ∆, and the effect of the diffeomorphisms under consideration on the
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function ∆ is precisely a shift (see eqs. (2.56) or (2.74)):

δ∆ = ZΓ. (3.21)

Hence, starting from a frame with non-vanishing ∆, i.e. laying outside the Bondi gauge,
we can reach the latter using a diffeomorphism generated by (2.55) or (2.73) with ψ∗/k =
α = Z = −∆/Γ, assuming ∆ small. Keeping the lowest ∆-order in the components of the
generating vector field, we find the following coordinate transformation:

rB = r + ξr|O(∆) +O
(
∆2
)

= r − ∆
Γ2∂φ ln γ + 1

Γ∂φ
∆
Γ + 4πG∆

rΓ ζ +O
(
∆2
)
, (3.22)

uB = u+ ξu|O(∆) +O
(
∆2
)

= u+O
(
∆2
)
, (3.23)

φB = φ+ ξφ
∣∣∣
O(∆)

+O
(
∆2
)

= φ− ∆
rΓ2 +O

(
∆2
)
. (3.24)

We have dropped the index L or C in the generating vectors (2.55) or (2.73) because,
expressed in terms of ∆ (and ζ instead of χ), the latter do not depend on k. The infinitesi-
mal coordinate transformation (3.22), (3.23), (3.24) relating the Bondi frame to some more
general hydrodynamic frame is the same, irrespective of the bulk being AdS or Minkowski.
However, due to the explicit k-dependence of the variations produced by this generator
(see (2.43), (2.44), (2.45), (2.46)), their integrated, finite transformations will depend on
k, as we will shortly see.

In order to treat situations with arbitrary ∆, i.e. initially far from the Bondi gauge,
one should integrate the orbits of the above generating vector fields. This can be performed
in a series expansion in powers of 1/r, and at lowest order the diffeomorphism leads to

rB − r = γ

Γ2

[
∆
γ
∂φ ln ∆

γΓ + vφ

k2K + 1 (∆∂φ∆−KΓ∂φΓ) + ∂φv
φ

k2K + 1
(
∆2 −KΓ2

)
+ 1
k2K + 1 (∆∂u∆−KΓ∂uΓ)

]
+O(1/r), (3.25)

uB − u = −γK
r

+O(1/r2) (3.26)

and
φB − φ = −1

r

(∆
Γ2 + γvφK

)
+O(1/r2). (3.27)

The function K(u, φ) is defined as

K = 1
k2

√
1 + k2∆2

Γ2 − 1
k2 , (3.28)

and the coordinate transformation at hand is regular in the flat limit thanks to

lim
k→0

K = ∆2

2Γ2 . (3.29)

The functions ε and χ (or ζ) will appear at higher order in the 1/r expansion.
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4 The Fefferman-Graham gauge for anti de Sitter

The mathematical foundations of holography rely on the existence of the Fefferman-Graham
expansion for asymptotically anti-de Sitter Einstein spacetimes [14, 15]. This expansion is
based on the following ansatz, which defines the Fefferman-Graham gauge:

ds2 = dρ2

k2ρ2 +Gαβ(ρ, x)dxαdxβ , (4.1)

reflecting the gauge-fixing conditions

Gρρ = 1
k2ρ2 , Gρβ = 0. (4.2)

As for the Bondi gauge, there are residual gauge diffeomorphisms, which preserve the
gauge-fixing conditions (4.2). Their generators satisfy

LξGρρ = 0, LξGρβ = 0. (4.3)

The explicit solutions to these equations are given by

ξρ = ρσ, ξα = ξα(0) −
1
k2∂βσ

∫ ρ

0

dρ′

ρ′
Gαβ(ρ′, x), (4.4)

where σ and ξα(0) are three arbitrary functions of xα.
In the gauge at hand, one can find the general three-dimensional solution to Einstein’s

equations in the form of a truncated series expansion in powers of ρ2. We impose the
preliminary boundary condition Gαβ = O(1/ρ2) — the conformal boundary is located at
ρ = 0. Solving the ρρ and ρβ Einstein’s equations we obtain

Gαβ(ρ, x) = ρ−2G
(0)
αβ(x) +G

(2)
αβ(x) + ρ2G

(4)
αβ(x), (4.5)

where G(4)
αβ is determined by G(0)

αβ and G(2)
αβ as

G
(4)
αβ = 1

4G
(2)
αγG

γδ
(0)G

(2)
δβ . (4.6)

This simple computation illustrates the general Fefferman-Graham ambient metric con-
struction [80], according to which asymptotically locally anti-de Sitter spacetimes are de-
termined by a set of independent boundary data, here G(0)

αβ and G(2)
αβ .

The first piece, G(0)
αβ , is interpreted as the boundary metric, generically spelled gαβ .

It is not subject to any conditions. The second, G(2)
αβ , appears as a boundary tensor,

the trace of which, computed with the boundary metric, must be proportional to the
Riemann-Christoffel scalar of the latter: Tr

[
G(2)

]
= − R

2k2 . It is related to the holographic
energy-momentum tensor [16, 81] as19

T̃αβ = k2

4πG
(
G

(2)
αβ − gαβTr

[
G(2)

])
. (4.7)

19We normalize the energy-momentum tensor with an extra factor 2k compared to the quoted literature.
This heterodox choice is made to comply with the normalizations used in the fluid/gravity approach of
section 2, based on the standard relativistic-fluid energy-momentum tensor (2.4).
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This tensor is tracefull with T̃αα = kc
12πR, where c = 3/2kG is the three-dimensional Brown-

Henneaux central charge [82, 83]. In particular, the remaining αβ field equations trans-
late into the covariant conservation of T̃αβ with the boundary Levi-Civita connection:
∇αT̃αβ = 0. This is a set of differential equations for the boundary data, encoded in five
arbitrary functions.

Owing to the solution (4.5), we can reconsider the residual diffeomorphisms of the
gauge at hand, eq. (4.4). These are given in a closed form, where the ρ dependence is
explicit. Expanding in powers of ρ we find

ξρ = σρ, ξα = ξα(0) −
k2ρ2

2 gαβ∂βσ + k2ρ4

4 gαγG
(2)
γδ g

δβ∂βσ +O
(
ρ6
)
. (4.8)

Under these residual gauge diffeomorphisms, the unconstrained part of the solution space
transforms as

δξgαβ = −Lξ(0)gαβ + 2σgαβ , (4.9)

while the constrained part transforms as

δξG
(2)
αβ = −Lξ(0)G

(2)
αβ + 1

2k2 L∂σgαβ (4.10)

with ∂σ = gαβ∂βσ∂α. Equation (4.9) provides the transformation of the boundary metric,
whereas the variation of the energy-momentum tensor (4.7) can be extracted from (4.10).

For the sake of completeness, we would like to mention a further restriction on the
boundary, often called in the literature Brown-Henneaux condition [82]: the boundary met-
ric is frozen to be the flat metric gµν = ηµν . When imposing this condition we recover the
usual asymptotic symmetry group in AdS3, i.e. the conformal group. Indeed, (4.9) becomes

δξηµν = −Lξ(0)ηµν + 2σηµν = 0. (4.11)

Therefore the symmetry algebra is uniquely specified by a boundary vector ξ(0) that belongs
to the boundary conformal algebra. Using this phase space, one can compute the associated
surface charges and their algebra, and deduce the Brown-Henneaux central charge.

We would like to end this overview on the Fefferman-Graham approach, and relate it to
the Bondi gauge discussed in section 3. In both gauges, the solution space is spanned by five
functions, obeying a system of two conservation equations. Suppose we start with a locally
AdS spacetime in Bondi gauge, coordinatized with (r, u, φ) and labelled by ϕ(u, φ), U0(u, φ)
and β0(u, φ), as well as M(u, φ) and N(u, φ). What is the explicit diffeomorphism that
achieves the mapping of the spacetime under consideration onto the Fefferman-Graham
gauge, and what are the fundamental data labelling the solution in this gauge?

In order to answer these questions, we follow [10, 11] and proceed in two steps. We
firstly move from Bondi to tortoise coordinates (r, u, φ)→ (r∗, t∗, φ∗):

kr = − cot (kr∗) , u = t∗ − r∗, φ∗ = φ. (4.12)
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Fefferman-Graham coordinates (ρ, t, ϑ) are reached in the second step as series expansions:

r∗ = R1(t, ϑ)ρ+R2(t, ϑ)ρ2 +R3(t, ϑ)ρ3 +O
(
ρ4
)
, (4.13)

t∗ = t+ T1(t, ϑ)ρ+ T2(t, ϑ)ρ2 + T3(t, ϑ)ρ3 +O
(
ρ4
)
, (4.14)

ϑ∗ = ϑ+ Θ1(t, ϑ)ρ+ Θ2(t, ϑ)ρ2 + Θ3(t, ϑ)ρ3 +O
(
ρ4
)
. (4.15)

The functions Ti(t, ϑ), Ri(t, ϑ) and Θi(t, ϑ) can be worked out explicitly. For the sake of
brevity, we report here only the first orders:R1(t, ϑ) = 1

k2 ,

R2(t, ϑ) = − 1
k4 e−2β0 (∂φU0 + U0∂φϕ+ ∂tϕ) ,

(4.16)

T1(t, ϑ) = 1
k2

(
1− e−2β0

)
,

T2(t, ϑ) = − 1
k4 e−4β0

[
e2β0∂φU0 + U0

(
∂φβ0 + e2β0∂φϕ

)
+ ∂tβ0 + e2β0∂tϕ

] (4.17)

and Θ1(t, ϑ) = − 1
k2 e−2β0U0,

Θ2(t, ϑ) = 1
2k2

[
2e−2ϕ∂φβ0 + 1

k2 e−4β0
(
∂tU0 + U0 (∂φU0 − 2∂tβ0)− 2U2

0∂φβ0
)]
.

(4.18)
In all these expressions, the functions ϕ, U0 and β0 have arguments (t, ϑ).

The transformations (4.12), (4.13), (4.14), (4.15), map the metric (3.1) with (3.8)
and (3.9) onto (4.1). In the latter Fefferman-Graham form, we read off the boundary data
G

(0)
αβ and G(2)

αβ , equivalently cast as boundary metric gαβ and boundary energy-momentum
tensor T̃αβ . We find

gαβdxαdxβ = −k2e4β0dt2 + e2ϕ (dϑ− U0dt)2 , (4.19)

which is precisely (A.3) with (u, φ) replaced by (t, ϑ), whereas T̃tt, T̃tϑ and T̃ϑϑ coincide with
T̃uu, T̃uφ and T̃φφ displayed in (A.4), (A.5), (A.6) with all arguments (u, φ) traded for (t, ϑ).
In the same vein, the transformations (4.12), (4.13), (4.14), (4.15), map the Bondi residual
diffeomorphisms (3.19), (3.20) onto the residual gauge diffeomorphisms found in (4.8) for
the Fefferman-Graham gauge with

ξt(0) = e−2β0f, ξϑ(0) = e−ϕY + e−2β0fU0,

σ = −ω + e−ϕ∂ϑY + e−2β0f (∂tϕ+ U0∂ϑϕ+ ∂ϑU0) = −S.
(4.20)

The latter result is valid at leading order only, because the residual-diffeomorphism gen-
erators are field-dependent. In order to achieve the exact mapping, one has to take this
feature into account [84].

These results do not come as a surprise. The conformal boundary is located at
ρ = 0 in the Fefferman-Graham gauge, which corresponds to infinite r according to
the above diffeomorphism. This is in agreement with the analysis performed in the
fluid/gravity side (section 2), which includes the Bondi gauge (section 3). On the
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conformal boundary, the Fefferman-Graham/Bondi coordinate transformation trivializes
(see (4.12), (4.13), (4.14), (4.15)): u = t and φ = ϑ. Hence, the boundary metric and the
holographic energy-momentum tensor remain unaltered. This observation does not down-
play the present analysis. As already stressed in section 2.2, although the holographic
reconstruction of the bulk from the boundary is successfully conducted in the Eddington-
Finkelstein gauge of fluid/gravity correspondence, the holographic energy-momentum ten-
sor cannot be singled out in the derivative expansion — in dimension higher than three it is
actually scattered in many orders in the 1/r series. The information is present though, and
our observation here is that it can be recomposed by an appropriate diffeomorphism, which
does not alter the boundary. The radial coordinate is space-like for Fefferman-Graham and
light-like in Bondi gauge (and in more general hydrodynamic frames of the fluid/gravity
correspondence), but their complicated relationship simplifies on the boundary.

5 Conclusion

The salient features of the present work come as our response to two basic questions. What
is the solution space of the fluid/gravity derivative expansion viewed as a gauge, and what
are its residual diffeomorphisms? Where do the conventional Bondi and Fefferman-Graham
gauges stand regarding fluid/gravity, and how is this web woven?

The fluid/gravity derivative expansion is a sort of Eddington-Finkelstein gauge, where
the anti-de Sitter or flat bulk spacetimes are described in terms of six functions. These
account for all boundary data: geometry, fluid kinematics and fluid dynamics — relativistic
or Carrollian, i.e. for AdS or Minkowski, respectively. These data obey two evolution
equations, the energy and momentum conservation laws, which feature the two transverse
Einstein’s bulk equations.

The set of residual diffeomorphisms is generated by bulk vectors depending on four
arbitrary functions. These parameterize the variations produced in the bulk, reflecting
faithfully the variations of the boundary data, and mapping on-shell fluid configurations
onto each other. Of these transformations, one has a special status. It generates boundary
local boosts (Lorentz or Carrollian), which leave the geometry as well as the fluid dynamics
invariant, but modify its kinematics. This is the well-known hydrodynamic-frame freedom,
generically valid for relativistic fluids, which occasionally survives in specific Carrollian or
even Galilean instances.

One of the six defining functions can be used to lock the boundary-fluid velocity.
Equivalently one of the four residual diffeomorphisms provides the designated tool for
changing hydrodynamic frame. Remarkably, the Bondi gauge is part of the fluid/gravity
landscape with the mass identified to the fluid energy density, and the angular momentum
to the heat density. It corresponds to a specific hydrodynamic frame we have named Bondi
frame. This explains why, from the fluid side, the Bondi solution space is supported by
five arbitrary functions (obeying two equations), while it is form-invariant under a three-
parameter family of diffeomorphisms. It also makes the relationship of the Bondi to the
general fluid/gravity gauge straightforward: every general fluid/gravity configuration is
amenable to Bondi frame using a diffeomorphism associated with a boundary local boost.
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Integrating the generating vector into a finite transformation is challenging, and should be
considered as a noticeable achievement of the present work.

The Fefferman-Graham gauge stands somehow aside. It is valid exclusively in anti
de Sitter and its holographic coordinate is space-like. The holographic data, metric and
energy-momentum tensor, appear at precise leading and subleading orders. This is a key
feature of this gauge, to be opposed to what happens in Bondi or more generally in the
fluid/gravity derivative expansion, where the information stored in the energy-momentum
tensor is spread in various orders of the radial expansion. In the Fefferman-Graham gauge
the fluid is immaterial, no quantity such as a fluid velocity exists, and the solution space
is described by five arbitrary functions satisfying two equations. It has residual diffeo-
morphisms generated by three functions, as in Bondi gauge. Our original contribution
was to uncover explicitly the diffeomorphism relating them, mapping the fluid bound-
ary data in the Bondi frame onto the Fefferman-Graham holographic metric and ener-
gy-momentum tensor.

This work sets the stage for further investigation in several directions. The most
straightforward and appealing part of this program is definitely the determination of the
phase space and asymptotic charges. We unravelled here the algebra obeyed by the residual
diffeomorphisms of the fluid/gravity solution space. This is the first step towards a complete
understanding of asymptotic symmetries,20 which are expected to be richer than the double
copy of Virasoro or bms3 appearing in Feffermann-Graham or Bondi gauge. This fact has
been demonstrated in [29] with a circumscribed determination of charges, sufficient though
to unveil the role of the hydrodynamic-frame change, pointing towards an improper gauge
transformation.21 It echoes some previous works stipulating that a complete gauge fixing
should definitely eliminate this sort of transformations [32, 33]. We expect more general
algebras to be concretely realized in the complete three-dimensional flat and anti-de Sitter
spacetimes discussed here within the fluid/gravity gauge, as those anticipated in [30–34].

Extending the present approach to higher dimensions is important and challenging. At
the first place, the fluid/gravity bulk reconstruction is based on a genuine expansion, ex-
cept when special assumptions are made, which guarantee its resummation [28]. Secondly,
contrary to what happens in three dimensions, the Bondi gauge is intersecting with (rather
than embedded in) the fluid/gravity Eddington-Finkelstein framing. Thirdly, the group of
Lorentz boosts has more than one parameter. All this disports a severe accretion of diffi-
culty, which should not be discouraging since translating Bondi into fluid data, including
Ricci-flat and anti-de Sitter backgrounds, is expected to be physically rewarding.
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A Solutions, diffeomorphisms and variations in Bondi gauge

We assemble in this appendix some explicit formulas in Bondi gauge. These include the
solution space and the variations induced by residual diffeomorphisms.

The solution space of locally anti-de Sitter or locally Minkowski three-dimensional
spacetimes in Bondi gauge (3.1) is parameterized by five functions Γ, vφ, γ, ε, and χ or ζ,
in the boundary-fluid language, or equivalently by ϕ, U0, β0, M and N . The map between
these two analogue sets is given in eqs. (3.14), (3.15) and (3.16). The functions ε and χ

obey the hydrodynamic equations (2.15) or (2.29), which can be recast for M(u, φ) and
N(u, φ) as

∂uM = −2M∂uϕ+ 2M∂uβ0 − 2M∂φU0 + 2MU0∂φβ0 − 2MU0∂φϕ− U0∂φM

+ 2k2e4β0−2ϕ [∂φN +N (4∂φβ0 − ∂φϕ)]− 2e2β0−2ϕ×

×
{
∂φU0

[
8 (∂φβ0)2 − 4∂φϕ∂φβ0 + (∂φϕ)2 + 4∂2

φβ0 − 2∂2
φϕ
]
− ∂3

φU0

+ U0
[
∂φβ0

(
8∂2

φβ0 − 2∂2
φϕ
)

+ ∂φϕ
(
∂2
φϕ− 2∂2

φβ0
)

+ 2∂3
φβ0 − ∂3

φϕ
]

+2∂u∂φβ0 (4∂φβ0 − ∂φϕ) + ∂u∂φϕ (∂φϕ− 2∂φβ0) + 2∂u∂2
φβ0 − ∂u∂2

φϕ
}

(A.1)

and

∂uN +N∂uϕ = 1
2∂φM +M∂φβ0 − 2N∂φU0 − U0 (∂φN +N∂φϕ)

+ 4e2β0−2ϕ
[
2 (∂φβ0)3 − ∂φϕ (∂φβ0)2 + ∂φβ0

(
∂2
φβ0

)]
. (A.2)

Equations (A.1) and (A.2) coincide with (2.15) for generic k, corresponding to bulk anti-de
Sitter spacetimes i.e. relativistic holographic fluids. These are defined on the conformal
boundary equipped with metric (3.11)

ds2 = −k2e4β0du2 + e2ϕ (dφ− U0du)2 , (A.3)

and their dynamics (A.1) and (A.2) qualifies the conservation of T̃ defined in (2.34).
We expicitely display the latter, putting together all available information ((2.4)
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and (2.14), (3.10), (3.14), (3.15) and (3.16)):

T̃uu = 1
8πGe−4β0−2ϕ

{
4k2e8β0

[
2 (∂φβ0)2 − ∂φβ0∂φϕ+ ∂2

φβ0
]

+ e4β0+2ϕ
[
k2e2β0 (M − 4NU0)−

(
(∂φU0)2 + U2

0

(
4∂2

φϕ− 8∂φβ0∂φϕ+ (∂φϕ)2
)

+ (∂tϕ)2 + 2∂φU0 (U0 (3∂φϕ− 4∂φβ0) + ∂tϕ)

+ 2U0
(
2∂2

φU0 + (∂φϕ− 4∂φβ0) ∂tϕ+ 2∂t∂φϕ
))]

+ e4ϕU2
0

[
e2β0M + k−2

(
(∂φU0)2 + U2

0

(
2∂2

φϕ− 4∂φβ0∂φϕ+ (∂φϕ)2
)

+ 2∂φϕ∂tU0 + ∂tϕ(∂tϕ− 4∂tβ0) + 2∂φU0 (2U0 (∂φϕ− ∂φβ0)− 2∂tβ0 + ∂tϕ)

+ 2U0
(
∂2
φU0 − 2∂φβ0∂tϕ+ ∂φϕ (∂tϕ− 2∂tβ0) + 2∂t∂φϕ

)
+ 2

(
∂t∂φU0 + ∂2

t ϕ
) )]}

, (A.4)

T̃uφ = 1
8πGe−4β0

{
2k2e6β0N − 2e4β0

[
∂φU0 (2∂φβ0 − ∂φϕ)− ∂2

φU0

+ U0
(
2∂φβ0∂φϕ− ∂2

φϕ
)

+ 2∂φβ0∂tϕ− ∂t∂φϕ
]

− e2ϕU0
[
e2β0M + k−2

(
(∂φU0)2 + U2

0

(
2∂2

φϕ− 4∂φβ0∂φϕ+ (∂φϕ)2
)

+ 2∂φϕ∂tU0 + ∂tϕ (∂tϕ− 4∂tβ0) + 2∂φU0 (2U0 (∂φϕ− ∂φβ0)− 2∂tβ0 + ∂tϕ)

+ 2U0
(
∂2
φU0 − 2∂φβ0∂tϕ+ ∂φϕ (∂tϕ− 2∂tβ0) + 2∂t∂φϕ

)
+ 2

(
∂t∂φU0 + ∂2

t ϕ
) )]}

, (A.5)

and

T̃φφ = 1
8πGe−4β0+2ϕ

{
e2β0M + k−2

[
(∂φU0)2 + U2

0

(
2∂2

φϕ− 4∂φβ0∂φϕ+ (∂φϕ)2
)

+ 2∂φϕ∂tU0 + ∂tϕ (∂tϕ− 4∂tβ0) + 2∂φU0 (2U0 (∂φϕ− ∂φβ0)− 2∂tβ0 + ∂tϕ)

+ 2U0
(
∂2
φU0 − 2∂φβ0∂tϕ+ ∂φϕ (∂tϕ− 2∂tβ0) + 2∂t∂φϕ

)
+2
(
∂t∂φU0 + ∂2

t ϕ
) ]}

. (A.6)

In the bulk flat limit, reached at boundary velocity of light k = 0, eqs. (A.1) and (A.2)
fit (2.29). They describe the hydrodynamics of Carrollian fluids defined on a boundary
equipped with the degenerate metric (3.13):

d`2 = e2ϕ (dφ− U0du)2 . (A.7)

In Bondi gauge, the residual diffeomorphisms are generated by a vector ξ with compo-
nents displayed in (3.7), U given in (3.8) and (3.19) in terms of three arbitrary functions
f , Y and ω. The effect of these diffeomorphisms on the above data (ϕ, U0, β0, M and
N) defining the solutions is inferred from the general expressions (2.43), (2.44), (2.45)
and (2.46), or (2.64), (2.67) (2.68), by setting uφ = 0 or µφ = 0 and using Z as given
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in (3.17) or (3.18). We find:

δξϕ = −ω, (A.8)

δξU0 = k2e2(β0−ϕ) (2f∂φβ0 − ∂φf)
− e−ϕ [Y (∂φU0 + U0∂φϕ+ ∂uϕ) + U0∂φY + ∂uY ] , (A.9)

δξβ0 = −ω2 + 1
2e
−2β0 [U0 (f∂φϕ− ∂φf)− ∂uf + f (∂φU0 + ∂uϕ)]

+ 1
2e
−ϕ (∂φY − 2∂φβ0Y ) , (A.10)

as well as

δξN = ωN + e−ϕ (Y N∂φϕ− Y ∂φN − 2N∂φY ) + e−2β0 {∂uN
− f [U0 (∂φN +N∂φϕ) +N (2∂φU0 + ∂uϕ)]−M (∂φf − 2f∂φβ0)}

+ e−2ϕ
{
∂φf

[
2 (∂φϕ)2 − ∂2

φϕ+ 4∂φβ0∂φϕ− 8 (∂φβ0)2 − 4∂2
φβ0

]
+ 2f

[
2∂φϕ (∂φβ0)2 + ∂φβ0

(
∂2
φϕ− 2∂2

φβ0 − 2 (∂φϕ)2
)

+ 3∂φϕ∂2
φβ0 + 4 (∂φβ0)3 − ∂3

φβ0
]
− 3∂φϕ∂2

φf + ∂3
φf
}
, (A.11)

and

δξM = ωM − e−ϕ (Y ∂φM +M∂φY )− e−2β0 {f (U0∂φM + ∂uM)
+M [U0 (∂φf + f (∂φϕ− 2∂φβ0)) + ∂uf + f (∂φU0 − 2∂uβ0 + ∂uϕ)]}

+ 2e−2ϕ
{
−2k2e2β0N (∂φf − 2f∂φβ0)− 2∂φf∂φU0∂φϕ+ ∂φU0∂

2
φf − ∂φf∂2

φU0

+ U0
[
∂φf

(
2∂φβ0∂φϕ− 2∂2

φβ0 − 2∂2
φϕ− 4 (∂φβ0)2 + (∂φϕ)2

)
− 2∂φϕ∂2

φf

+ ∂3
φf + 2f

(
(2∂φβ0 − ∂φϕ)

(
∂φβ0∂φϕ− 2∂2

φβ0
)

+ ∂φβ0∂
2
φϕ− ∂3

φβ0
)]

+ 2∂uf∂φβ0∂φϕ− 4∂uf (∂φβ0)2 − 2∂uf∂2
φβ0 + ∂φf∂φϕ∂uϕ− ∂uϕ∂2

φf

− ∂φϕ∂u∂φf − 2∂φf∂u∂φϕ+ ∂u∂
2
φf + 2f∂φU0∂φβ0∂φϕ− 4f∂φU0 (∂φβ0)2

− 2f∂φU0∂
2
φβ0 + 4f (∂φβ0)2 ∂uϕ− 2f∂φβ0∂φϕ∂uϕ+ 2f∂uϕ∂2

φβ0

+ 2f∂φϕ∂u∂φβ0 + 2f∂φβ0∂u∂φϕ− 8f∂φβ0∂u∂φβ0 − 2f∂u∂2
φβ0

+ 2e2β0∂φβ0∂φω + 2e2β0−ϕ∂φβ0
(
∂φϕ∂φY − ∂2

φY
)}

. (A.12)

Again these expressions are valid for non-vanishing or vanishing k, i.e. for locally AdS or
locally Minkowski. The corresponding algebras, however are distinct.

B On the algebra of residual diffeomorphisms

The most general three-dimensional Einstein or Ricci-flat solution in Eddington-Finkelstein
gauge of fluid/gravity correspondence has been worked out in section 2.2. It depends on
six arbitrary functions and possesses residual diffeomorphisms, generated by the vector ξ
given in (2.42) for anti de Sitter, and parameterized by four functions of the boundary
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coordinates: f , Y , S and Z. Four auxiliary functions have also been introduced:

ψ = S + Θ∗

k
Y + u(f), (B.1)

ψ∗ = kZ −Θ∗f + ∗u(f), (B.2)

ω = S + Θf + ∗u(Y )
k

, (B.3)

kω∗ = k2Z −ΘY + u(Y ), (B.4)

as coefficients in the variations of the fundamental fields uµ and ∗uµ (eqs. (2.47)).
With the modified Lie bracket introduced in (2.57), the generating vector fields form

an algebra, which obeys eqs. (2.58), (2.59), (2.60), (2.61). We have already pointed out
that if fa, Ya, Sa, Za are field-dependent, the last terms, like δξ1f2 − δξ2f1 in (2.58), do
not vanish. This happens if we chose as fundamental parameters some of the auxiliary
functions introduced in (B.1), (B.2), (B.3), (B.4), or any combination thereof, in which
case the fa, Ya, Sa, Za will depend on the boundary velocity fields and be sensitive to
another diffeomorphism. A standard paradigm stems out of the requirement that the
boundary vector ξ(0) (2.41), which packages conveniently two of the four functions (f and
Y ) and is duplicated here for clarity

ξ(0) = fu + Y

k
∗ u, (B.5)

be a fundamental parameter i.e. field-independent. Demanding δξ1ξ(0)2 = 0 and using the
transformation rules (2.48), we find

δξ1f2 = −ψ1f2 − ψ∗1
Y2
k
, δξ1Y2 = −kω∗1f2 − ω1Y2. (B.6)

With those variations, eqs. (2.58), (2.59) are recast as

f3 = f1u (f2)− f2u (f1) + Θ∗

k
(f1Y2 − f2Y1) + 1

k
(Y1 ∗ u (f2)− Y2 ∗ u (f1)) ,

Y3 = 1
k

(Y1 ∗ u (Y2)− Y2 ∗ u (Y1)) + Θ (Y1f2 − Y2f1) + f1u (Y2)− f2u (Y1) ,
(B.7)

which are equivalent to
ξ(0)3 =

[
ξ(0)1, ξ(0)2

]
. (B.8)

Equations (2.60), (2.61) can also be expressed using the boundary vector fields ξ(0)a:

S3 = ξ(0)1 (S2)− ξ(0)2 (S1) + δξ1S2 − δξ2S1, (B.9)
Z3 = ξ(0)1 (Z2)− ξ(0)2 (Z1) + δξ1Z2 − δξ2Z1. (B.10)

The general structure of the algebra is a semi-direct product of the {f, Y } component
with two extra factors, S and Z. The final form of the latter depends on the variations
of S and Z.

• If S and/or Z are chosen as fundamental parameters the last two terms in eqs. (B.9)
and/or (B.10) drop: δξ1S2 = δξ2S1 = 0 and/or δξ1Z2 = δξ2Z1 = 0.
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• It may be convenient to select alternatively ψ and/or ψ∗ as fundamental parame-
ters, and thus demand δξ1ψ2 = δξ2ψ1 = 0 and/or δξ1ψ∗2 = δξ2ψ

∗
1 = 0, which, us-

ing (B.1), (B.2), (B.3), (B.4), make it possible to determine δξ1S2, δξ2S1, δξ1Z2 and
δξ2Z1. Putting everything together, we find

ψ3 = ψ∗1ω
∗
2 − ψ∗2ω∗1

= ψ∗1
k

(u (Y2)−ΘY2 − k ∗ u (f2) + kΘ∗f2)

− ψ∗2
k

(u (Y1)−ΘY1 − k ∗ u (f1) + kΘ∗f1) , (B.11)

and/or

ψ∗3 = ψ∗1 (ω2 − ψ2)− ψ∗2 (ω1 − ψ1)

= ψ∗1
k

(∗u (Y2)−Θ∗Y2 − ku (f2) + kΘf2)

− ψ∗2
k

(∗u (Y1)−Θ∗Y1 − ku (f1) + kΘf1) , (B.12)

showing in passing that the directions ψ and ψ∗ are inequivalent inside the algebra.

Possible combinations defining the full algebra, besides ξ(0), are {S,Z}, {ψ,Z}, {S, ψ∗}
or {ψ,ψ∗}.

The same pattern can be pursued for locally Minkowski three-dimensional spacetimes.
Again four functions f , Y , S and Z capture all information about the asymptotic Killing
vectors (2.63), which now obey (2.75), (2.76), (2.77) and (2.78). The boundary vector (B.5)
subsists as a tangent field over the Carrollian boundary spacetime

ξ(0) = fυ + Y ∗ υ, (B.13)

and requiring its invariance as δξ1ξ(0)2 = 0, is equivalent to

δξ1f2 = −ψ1f2 − α1Y2, δξ1Y2 = − (υ(Y )− θY ) f2 − ω1Y2. (B.14)

Observe that the auxiliary functions ψ and ω, defined in (B.1) and (B.3), are well-defined
in the Carrollian limit, as is α = ψ∗/k in (B.2):

ψ = S + θ∗Y + υ(f), (B.15)
α = Z − θ∗f + ∗υ(f), (B.16)
ω = S + θf + ∗υ(Y ). (B.17)

However, kω∗ in (B.4) ceases depending on Z: its vanishing-k limit is υ(Y ) − θY , and
this is at the heart of the breakup between flat and anti-de Sitter asymptotic symmetry
algebras. Equations (2.75), (2.76) now read:

f3 = f1υ (f2)− f2υ (f1) + θ∗ (f1Y2 − f2Y1) + Y1 ∗ υ (f2)− Y2 ∗ υ (f1) ,
Y3 = Y1 ∗ υ (Y2)− Y2 ∗ υ (Y1) + f1 (υ (Y2)− θY2)− f2 (υ (Y1)− θY1) ,

(B.18)
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so that (B.8) still holds for the vectors (B.13), and the full algebra includes (B.9) and (B.10).
Again, we can chose δξ1α2 = δξ2α1 = 0 and/or δξ1ψ2 = δξ2ψ1 = 0, and express (B.9)
and (B.10) for ψ and/or α using (B.16):

ψ3 = α1 (υ (Y2)− θY2)− α2 (υ (Y1)− θY1) , (B.19)
α3 = α1 (ω2 − ψ2)− α2 (ω1 − ψ1)

= α1 (∗υ (Y2)− θ∗Y2 − υ (f2) + θf2)
− α2 (∗υ (Y1)− θ∗Y1 − υ (f1) + θf1) . (B.20)

The option still exists to adopt S and/or Z as fundamental parameters, in which case
eqs. (B.9) and/or (B.10) are in use, after discarding the last two terms.

At first glance, the asymptotic symmetries of three-dimensional locally flat or anti-
de Sitter spacetimes seem very similar (e.g. eqs. (B.7) vs. (B.18)). However, significant
differences turn up when investigating specific corners of the above algebras, as we perceive
for instance in comparing (B.11) and (B.19). This deserves a separate comprehensive study,
out of place here. We can nonetheless rapidly browse through a few illustrations.

1. Boundary Weyl transfromations. The variation of the boundary metric un-
der general residual diffeomorphisms of anti-de Sitter bulk solutions is captured in
eq. (2.49):

δξds2 = 2
k2

(
ψu2 − ω ∗ u2 + (ω∗ − ψ∗) u ∗ u

)
. (B.21)

We infer from the latter that a diffeomorphism generates a boundary Weyl trans-
formation under the conditions ψ = ω and ψ∗ = ω∗, which explicitly read (us-
ing (B.1), (B.2), (B.3) and (B.4)):

u(f) + Θ∗

k
Y = ∗u(Y )

k
+ Θf, u(Y )−ΘY = k ∗ u(f)− kΘ∗f. (B.22)

These equations are equivalent to demanding that ξ(0) be a boundary conformal
Killing field.22 Indeed, the Lie derivative of ds2 along ξ(0) evaluates to23

Lξ(0)ds
2 = 2

k2

(
− (ψ − S) u2 + (ω − S) ∗ u2 + (ψ∗ − ω∗) u ∗ u

)
, (B.23)

which under the above Weyl conditions, simplifies to Lξ(0)ds2 = 2 (ω − S) ds2. Hence,
the diffeomorphisms at hand are still characterized by four functions f , Y , ψ and ψ∗

(or S and Z), although the former two are not arbitrary, but must obey (B.22). Their
algebra is the product of the boundary conformal algebra (satisfying (B.8)) with two
extra factors (obeying (B.11) and (B.12)): the boundary local Lorentz boosts ψ∗ —
hydrodynamic-frame transformations — and the boundary rescalings ψ. Both are
abelian ideals due to the Weyl conditions: ψ3 = 0 and ψ∗3 = 0. The result for ψ is

22Setting γ = Γ = 1 and ∆ = vφ = 0 in the parameterization (2.16), conditions (B.22) translate into the
usual chirality requirements: ∂uf = ∂φY and ∂uY = k2∂φf .

23We use result
[
ξ(0), u

]
= (S − ψ) u+(kZ − ω∗)∗u and

[
ξ(0), ∗u

]
= (kZ − ψ∗) u+(S − ω)∗u, which has

a Carrollian counterpart:
[
ξ(0), υ

]
= (S − ψ) υ + (θY − υ(Y )) ∗ υ and

[
ξ(0), ∗υ

]
= (Z − α) υ + (S − ω) ∗ υ.
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in line with the analysis of [5]. We have more here with ψ∗ — vanishing in Bondi
gauge.

In locally flat bulk spacetimes, residual diffeomorphisms produce variations of the
form (2.66) on the Carrollian degenerate boundary metric,

δξd`2 = 2 ∗µµµδξ ∗µµµ = −2ωd`2 + 2 (υ(Y )− θY )µµµ ∗µµµ, (B.24)

which are Weyl transformations if

υ(Y ) = θY (B.25)

with no further restriction on ω or ψ. This is a generalization of the more familiar
requirement ∂uY = 0, reached for υ = ∂u (i.e. γ = Γ = 1, ∆ = vφ = 0 in the
parameterization (2.30)), which confers Y the status of circle-diffeomorphism (or line,
more generally) generator. Condition (B.25) simplifies the Y component in (B.18):

Y3 = Y1 ∗ υ (Y2)− Y2 ∗ υ (Y1) , (B.26)

giving the {f, Y } algebra the standard semi-direct-product structure of conformal
Carroll groups (see e.g. [48, 49]). The imprint of the conformal nature of the symme-
tries at hand is also visible in the Lie derivative of the Carrollian metric along ξ(0):

Lξ(0)d`
2 = 2 (ω − S) d`2 + 2 (υ(Y )− θY )µµµ ∗µµµ. (B.27)

Summarizing, the residual diffeomorphisms of flat spacetimes that induce a Weyl
transformation on the Carrollian boundary are described in terms of four functions
f , Y , ψ and α (or S and Z) subject to the constraint (B.25). The algebra has
three (semi-)direct factors, associated with Y , ψ and α (or S and Z). Amongst
the last two, the former, corresponding to boundary rescalings, is abelian under the
requirement of induced boundary Weyl transformations because ψ3 = 0 (see (B.19)),
in agreement with [5, 46]. However, according to (B.20), α3 6= 0 so that local Carroll
boosts do not define an abelian ideal; this should be contrasted with the analogue
anti-de Sitter situation.

Bulk diffeomorphisms leaving the boundary metric invariant are the subset ω = 0 of
those under consideration here. These include the Lorentz or Carroll boosts (ψ∗ or α)
studied in more detail in section 2.2, together with the boundary diffeomorphisms
generated by conformal Killing vector fields (f and Y ). For locally Minkowski solu-
tions, the fourth direction ψ remains unaffected, while it drops for anti de Sitter.

2. Locking the hydrodynamic frame. The function ψ∗ (or equivalently Z) controls
the diffeomorphisms that produce a change in the boundary hydrodynamic frame
— see section 2.2. Firming-up ψ∗ disables those transformations. This occurs in
the Bondi gauge, and can be generalized by keeping uφ or µφ non-zero but fixed, as
opposed to Bondi, where uφ = 0 or µφ = 0, realized with ∆ = 0. Hence, imposing
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δξuν = 0 or δξµν = 0 in (2.47) or (2.64) with ∆ 6= 0, we obtain a generalization
of (3.17):

ψ∗ = k
∆
Γ ψ or α = ∆

Γ ψ. (B.28)

The residual diffeomorphisms are parameterized by f , Y and ψ. For anti de Sitter,
these diffeomorphisms obey the algebra (B.8) and (B.11), while (B.12) drops off:

ψ3 = ∆
Γ

[
ψ1
k

(u (Y2)−ΘY2 − k ∗ u (f2) + kΘ∗f2)

− ψ2
k

(u (Y1)−ΘY1 − k ∗ u (f1) + kΘ∗f1)
]
. (B.29)

For locally Minkowski spacetimes the algebra is (B.18) and (B.19):

ψ3 = ∆
Γ [ψ1 (υ (Y2)− θY2)− ψ2 (υ (Y1)− θY1)] . (B.30)

In Bondi gauge, where ∆ = 0, ψ supports an abelian ideal irrespective of k, which
completes the {f, Y } component of the residual-diffeomorphism algebra. This en-
hancement of the symmetry algebra was obtained in ref. [30]. The abelian ideal
survives for non-vanishing ∆ = 0 if we further restrict the bulk diffeomorphisms to
those producing boundary Weyl transformations (we combine then (B.29) or (B.30)
with (B.22) or (B.25)). However, for generic locked-frame (i.e. ψ∗ = 0) residual
diffeomorphisms, this ideal is absent.

The next two situations are borrowed from ref. [29], where they were used to uncover that
different hydrodynamic frames describe fluids with distinct global properties, encoded in
their gravity duals.

3. Fluids without heat current. These are relativistic fluids with χ = 0, or Car-
rollian fluids with ζ = 0. They are dual to a narrowed space of anti-de Sitter or
Ricci-flat solutions with residual diffeomorphisms generically restricted to Z = 0, in
order to ensure δξχ = 0 or δξζ = 0 (see eqs. (2.46) and (2.68), respectively). The
algebra of these diffeomorphisms is spanned by f and Y , plus ψ (or S, as a matter
of convenience).

4. Fluids at rest. This is an antipodal situation with respect to 3, moving the degrees
of freedom of the fluid from the velocity to the heat current. According to a cer-
tain interpretation of the hydrodynamic-frame invariance, this confers an alternative
perspective on the same physical system. From our analysis the systems are distin-
guishable by the algebra of bulk conserved charges, foreseen in the set of residual
diffeomorphisms.

A fluid at rest is a sort of dual to a Bondi fluid. It has uφ = 0 or µφ = 0, which in
the parameterization (2.17) or (2.30) amounts to setting vφ = 0. Again, the solution
space has five functions subject to fluid equations, and the residual diffeomorphisms
must respect the defining condition. Using (2.48) or (2.65) we find ω∗ = 0 i.e.

k2Z = ΘY − u(Y ) or υ(Y ) = θY. (B.31)
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These conditions affect more the anti-de Sitter solutions, as the diffeomorphism al-
gebra contains now f , Y and ψ∗, than the Minkowski spacetimes, where all f , Y , α
and ψ (or S) remain with a restriction on Y only.

Further limitations to the solution space (and consequently on the residual diffeomor-
phisms) can be imposed on the situations 3 or 4, such as boundary Weyl-flatness or flat-
ness — making the holographic fluids in 3 genuinely perfect (according to (2.12) or its
Carrollian relative).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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