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1 Introduction and results

The spontaneous breaking of a U(1) symmetry and the associated phenomenon of superflu-
idity is one of most studied subjects of contemporary Physics. Superfluidity characterizes
the low temperature behavior of systems ranging from the two isotopes of Helium, cold
atoms and conventional superconductors. For these systems, microscopic descriptions are
available. More generally, their low energy dynamics are captured by a universal effective
theory (EFT) originally due to Landau and Tisza based on an extension of hydrodynam-
ics [1, 2] and soon after extended to relativistic superfluids [3–8] — see also [9–12] for more
recent treatments.

Hydrodynamics posits that slow deviations about local thermodynamic equilibrium
can be captured by a small set of conservation equations following from the symmetries
of the system, together with constitutive relations for the spatial currents associated to
the conserved densities. For a superfluid, these equations need to be supplemented by a
‘Josephson’ relation, which follows from gauge invariance and relates the time derivative
of the Goldstone following from the spontaneously broken U(1) symmetry to the chemical
potential of the system. This equation is derived from the realization that the Goldstone
is canonically conjugate to the charge density of the system [9].

In the hydrodynamic theory, the dynamics at finite temperature can be thought of as
the superposition of two types of flows, a normal flow and a superfluid flow. The normal
flow is dissipative and is carried by a fraction of the total charge density ρ, the normal
density ρn. On the other hand, the superfluid flow is dissipationless and is responsible for
the phenomenon of superfluidity. It is carried by the superfluid fraction ρs of the total
density, such that the total density ρ = ρn + ρs.

In all the systems mentioned above, the normal density vanishes at zero temperature
ρ

(0)
n ≡ ρn(T = 0) = 0, leaving only the superfluid component of the flow, ρ(0) = ρ

(0)
s .

This is consistent both with microscopic calculations, [13, 14] and relativistic superfluid
effective field theories (EFT) [15–17]. Thus the zero temperature EFT only needs to
account for a single, linearly-dispersing degree of freedom, the Goldstone mode.1 Under
these assumptions, the following expression has been derived for normal density at leading
order in a small temperature expansion (see e.g. [14])

ρn '
sT

µc2
ir

+ . . . (1.1)

where s is the entropy density and c2
ir the effective lightcone velocity. The dots stand

for subleading corrections in temperature and cir. In general, the superfluid EFT yields
ρn ∼ T d+1, [17], in agreement with the result (1.1) for 4Helium, see e.g. [14]. In this work,
we will derive an improved expression (1.1) for the low temperature behavior of the normal
density in relativistic superfluid phases, which holds for finite cir.

The result from the superfluid EFT (1.1) is in line with the general expectation [13, 18]
that ρ(0)

n = 0. One of the arguments in favor of ρ(0)
n = 0 provided in [13, 18] is based on

1The Goldstone is also referred to as ‘superfluid phonon’ in the literature, in relation to the extra sound
mode it sources compared to normal fluids.
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linearized hydrodynamics. In [19], we have shown that this argument does not correctly
account for the source of superfluid velocity fluctuations, and that one cannot conclude
that ρ(0)

n = 0 from these equations. This is not entirely surprising, as the specific temper-
ature dependence of various thermodynamic quantities is an input to the hydrodynamic
equations, which only allow to obtain the general expression for the collective modes and re-
tarded Green’s functions at late times and long wavelengths. The temperature dependence
of thermodynamic quantities and transport coefficients must instead be computed given a
specific microscopic theory. Another argument was given in [18]. However it assumes the
existence of coherent (quasi-)particles, which need not be true in strongly-coupled systems.

Indeed, the vanishing of the normal density at zero temperature has recently been
questioned by measurements of the superfluid density in overdoped high Tc superconduc-
tors [20]. There, it was found that the superfluid density was anomalously low at low
temperatures, and scaled linearly with temperature ρs ' ρ(0)

s + #T . Later, measurements
of the optical conductivity in the superconducting phase at low temperature revealed a
very modest depression of the spectral weight inside the low frequency Drude peak [21],
in tension with the expectation that ρ(0) = ρ

(0)
s . In a BCS superconductor, the normal

density vanishes towards zero temperature exponentially quickly, see e.g. [13]. Thus, as
T < Tc, the normal spectral weight in the Drude peak is strongly suppressed and is trans-
ferred to the superfluid delta function. A legitimate concern is whether these expectations
can be spoiled by disorder effects. However, these systems are expected to be quite clean,
as evidenced by their very low residual resistivities. Moreover, disorder should induce a
crossover from a linear to quadratic temperature dependence of the superfluid density at
the lowest temperatures, which is not observed in the data [20]. This led [20, 21] to argue
that the anomalously low superfluid density could not originate from pair breaking effects
due to disorder, although counter-arguments have been presented in [22–24] in the context
of the ‘dirty BCS’ theory.

In the absence of a well-posed microscopic theory of strongly-coupled superfluids,
gauge-gravity duality offers an attractive framework to investigate the low temperature be-
havior of the normal density in superfluids. A pioneering achievement was the construction
of holographic systems spontaneously breaking a U(1) symmetry, [25–27]. While the origi-
nal constructions were ‘bottom-up’ and relied on including a simple charged, complex scalar
field in the bulk, holographic superfluids were subsequently studied in top-down string the-
ory models [28–36]. A number of studies also verified that the low energy dynamics of these
systems matched various aspects of relativistic superfluid hydrodynamics, [10, 11, 37–40].

In a recent paper, [19], we demonstrated that ρ(0)
n need not vanish for certain holo-

graphic superfluids in the vicinity of a quantum critical phase. The main purpose of this
work is to extend the results of that paper to general critical phases using gauge-gravity du-
ality methods, establish criteria for ρ(0)

n 6= 0 and work out the sub-leading low-temperature
dependence on the critical exponents characterizing the phase. In particular, we find that
the temperature dependence is not always given by (1.2).

Hints that ρ(0)
n 6= 0 in holographic superfluids have previously been reported, see e.g.

figure 7 of [38], though the reason for this was unclear at the time. Here, we explain
and generalize those results. Whether or not ρ(0)

n vanishes depends on the nature of the

– 2 –



J
H
E
P
1
1
(
2
0
2
0
)
0
9
1

zero temperature superfluid groundstate and on the spectrum of irrelevant deformations
in its vicinity. In the main text of this work, we derive the normal density for a general
translation invariant superfluid. We then apply this to Lifshitz superfluid groundstates
which have been constructed in previous literature [41, 42]. In appendix C, we extend this
analysis to include groundstates which feature hyperscaling violation [36, 43, 44] as well as
cases with novel superfluid actions.2

While the analysis involves a somewhat subtle competition between various defor-
mations, we can illustrate the general idea in two particularly simple and representative
examples. In [41], it was shown that for a quartic scalar potential, the IR groundstate has
an emergent conformal symmetry and is just another copy of Anti de Sitter. The existence
of this groundstate relies on a certain deformation sourced by the gauge field being irrele-
vant in the IR, which restores the isotropy between time and space. We find that in this
case ρ(0)

n vanishes as in (1.2):

ρn '
sT

µc2
ir

(
1− c2

ir

)
+ . . . (1.2)

where the dots denote subleading temperature dependence. (1.2) reduces to (1.1) in the
limit of small cir � 1, as expected. (1.2) can also be derived within the relativistic superfluid
EFT, [17, 46].

On the other hand, for different choices of the parameters in the scalar potential, the
deformation sourced by the gauge field becomes relevant and breaks the isotropy between
time and space. This leads to a groundstate invariant under Lifshitz scale transformations
with a non-trivial dynamical exponent z > 1. In this case, dimensional analysis tells us
that, for a Lifshitz-invariant state, the entropy density s ∼ T d/z and the effective IR velocity
cir ∼ T 1−1/z. Naively extrapolating (1.2) to the Lifshitz case implies that ρn ∼ T

d+2−z
z . For

sufficiently low values of z < d+2, ρn does vanish at zero temperature and a more detailed
calculation (see main text) reveals that it is still given by (1.2) at low temperatures, with
an appropriate definition of cir.

However, for z > d+ 2, the same (1.2) naively predicts that ρ(0)
n diverges. The actual

calculation (see main text) shows that it tends instead to a nonzero, finite value. This
feature explains in particular the results of [38].

Our results shed new light on the relation between charge densities in the boundary
theory and in the bulk, various aspects of which have been explored in previous litera-
ture [36, 43, 47–54]. In some of these works, semi-local geometries with z = +∞ were
singled out as they allow for Fermi surface-like features in their spectral functions. In such
cases, it would be natural to expect that these fermionic-like, uncondensed degrees of free-
dom lead to a non-vanishing normal density at zero temperature, as in superfluid systems
where Bogoliubov Fermi surfaces are formed, see e.g. [55].

In the case at hand, one might have expected a priori that the normal density should
be controlled by the charge behind the horizon ρin, and the superfluid density by the charge
carried by the condensate in the bulk (which can be thought as a proxy for the density
of condensed electrons). We find no such relation, and also do not find that z = +∞

2An analytic top-down solution featuring hyperscaling violation in the normal state can be found in [45].
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geometries play any special role. Instead, in conformal or Lifshitz IR phases with z < d+2,
while ρ(0)

n and ρ
(0)
in both vanish, they do so with a different temperature dependence. In

Lifshitz phases with z > d + 2, ρ(0)
n is non-vanishing as we noted above, but we still find

that ρ(0)
in vanishes. We are also able to find (see appendix F) phases similar to 4He, where

ρ
(0)
n vanishes but ρ(0)

in does not, as well as phases where ρ(0)
n and ρ(0)

in (the zero temperature
limit of the charge behind the horizon) are both non-vanishing, see appendix C. From
these results, we conclude that strongly-coupled holographic superfluids do not necessitate
any fermionic-like degrees of freedom to exhibit a non-vanishing normal density at zero
temperature, and provide an alternative mechanism to Bogoliubov Fermi surfaces.

In the remainder of this paper, we give the details of our holographic setup and of the
quantum critical superfluid groundstates we are interested in section 2. Then we explain
how we compute the normal density and give a general criterion for its vanishing at zero
temperature in section 3. We illustrate our criterion on various numerical examples in
section 4. We comment on the relevance of our results to previous literature in section 5.
Finally, we present our conclusion and discuss our results in a broader context in section 6.
An extended appendix is devoted to deriving the hydrodynamic equations (appendix A)
as well as details of a technical proof (appendix B), extending our results to theories with
a hyperscaling violating exponent θ (appendix C), the case of weakly broken translations
(appendix D), semi-local quantum critical geometries with Lifshitz exponent z = +∞
(appendix E), and geometries with non-vanishing horizon charge density but vanishing
normal density (appendix F).

An abridged version of our results can be found in [19].

2 Holographic superfluid model, generalities

The class of holographic superfluids that interests us can be described by the following
bulk action, [25–27, 41, 42],

S = 1
16πG

∫
dd+2x

√
−g

{
R− 1

4FMNF
MN − |Dη|2 − V (|η|)

}
. (2.1)

Here AM is a U(1) gauge field with field strength, FMN = ∂MAN − ∂NAM . We choose to
source only a time component of the gauge potential which breaks the charge-conjugation
symmetry of the boundary fluid. The complex scalar field η has charge q under the U(1)
symmetry and covariant derivative DM ≡ ∂M − iqAM . For the rest of the paper, we work
in units in where 16πG = 1.

A general ansatz for the metric and matter fields consistent with translation and ro-
tation symmetry that only breaks the charge-conjugation symmetry is

ds2 = −D(r)dt2 +B(r)dr2 + C(r)d~x2
d, A = At(r)dt, η = η∗ = η(r). (2.2)

The equations of motion arising from this ansatz are given in appendix C.3 Importantly,
3There, we include an extra neutral scalar ψ. For the main text, ψ = 0 and ZF = MF = 1.
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these equations can be combined into the conservation equation

d

dr


√
Cd

BD

[
C

(
D

C

)′
−AtA′t

] = 0, (2.3)

which follows from an invariance under certain rescalings in the bulk, [41], or more recently
as the Noether charge following from one of the bulk Killing vectors, [56]. In the UV, we
are interested in solutions that have an asymptotic form (r → 0+),

ds2 → dr2 − dt2 + d~x2
d

r2 . (2.4)

For simplicity, we will chose a potential that satisfies

V (|η|) = −d(d+ 1)− d |η|2 + . . . (2.5)

This choice of potential enforces that the matter fields have an asymptotic fall-off

η ' η(1)r + η(2)rd + . . . , At ' µ−
ρ

(d− 1)r
d−1 + . . . , B ∼ r−2 + . . .

D ' r−2 −

(
η(1)

)2

2d − ε

d+ 1 rd−1 + . . . , C ' r−2 −

(
η(1)

)2

2d + P

d+ 1 rd−1 + . . . . (2.6)

Here the dots indicate terms subleading in the limit r → 0+. µ is the chemical potential
of the system and ρ the total charge density. P is the pressure and ε the energy density. As
is well-known, in the conventional quantization scheme, η(1) and µ act as sources for the
expectation values η(2) and ρ. In particular, the choice µ 6= 0 gives rise to a finite charge
density and breaks the background charge-conjugation symmetry. With the choice η(1) = 0,
a non-zero η(2) indicates spontaneous breaking of the U(1) symmetry and characterizes a
holographic superfluid.

The bulk action (2.1) leads to an RG flow from a conformally invariant UV fixed point
to a quantum critical phase in the IR, characterized by a Lifshitz dynamical exponent
z ≥ 1, [41]. If z = 1, the RG flow connects two scale-invariant Anti de Sitter spacetimes,
described in section 2.1, whereas if z > 1, the IR is described by a Lifshitz geometry, see
section 2.2.

2.1 IR geometries with emergent conformal invariance

The condensation of the a scalar condensate in the action (2.1) leads to an RG flow either
to an emergent conformally invariant IR (z = 1) or to a Lifshitz symmetric IR (z > 1)
depending on the IR behavior of the complex scalar and the relevance of the Maxwell
field. Specifically, if the scalar field η minimizes the scalar potential in the IR, ∂V (η0,η0)

∂η∗ =
∂V (η0,η0)

∂η = 0, the RG flow is a domain wall solution interpolating between two conformally
invariant fixed points with z = 1 [41]. We may write the metric in the IR as

ds2 = −L
2

r̂2 L
2
t dt

2 + L̃2 dr̂
2

r̂2 + L2

r̂2 L
2
x d~x

2
d. (2.7)
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r̂ is an appropriately chosen IR coordinate that does not extend all the way to the UV
region. Instead, r̂ � L, where L is a scale that defines the region of spacetime where the
metric takes the form (2.7). L̃ is the IR AdS radius, given by

L̃2 V (η0, η0) = −d(d+ 1) . (2.8)

In this solution, the gauge field is irrelevant. In particular, it does not support the IR
geometry and we need to work out its leading behavior by solving the Maxwell equation
in the background (2.7). By backreacting the solution on the metric and iterating the pro-
cedure, we can develop a consistent perturbative series that approximates the IR solution.
We find

At ' LtcA
(
r̂

L

)∆̃A0−1
(

1 + #c2
A

(
r̂

L

)2∆̃A0
+ . . .

)
,

∆̃A0 = d− νA, νA = d− 1
2

(
1 +

√
1 + 8

(d− 1)2 L̃
2q2η2

0

)
. (2.9)

For the perturbation to be irrelevant, ∆̃A0 < 0. Clearly this requires a non-vanishing
condensate, η0 6= 0, and so, in the context of the RG flow, both At and η drive the system
away from the IR fixed point towards the UV.

There is also a deformation associated with the charged scalar,

η ' η0 + cη

(
r̂

L

)∆̃η
[
1 + #c2

η

(
r̂

L

)2∆̃η

+ . . .

]

∆̃η = d+ 1
2

(
1−

√
1 + 4

(d+ 1)2 L̃
2M2

IR

)
, M2

IR = ∂2V

∂η∂η∗
+ ∂2V

∂η∗2

∣∣∣∣
η=η∗=η0

(2.10)

We note that, because η0 minimizes the scalar potential, M2
IR is always positive and real,

and hence ∆̃η < 0 so that the perturbation is always irrelevant. Both of these perturbations
contribute to the RG flow from the IR fixed point to the conformally invariant UV. We
write this schematically as

ds2 ' ds2
0

[
1 + #c2

A

(
r̂

L

)2∆̃A0
+ #c2

η

(
r̂

L

)2∆̃η

+ . . .

]
. (2.11)

We also note that this agrees with [41] for the case d = 2 when the scalar potential is quartic.

2.2 Lifshitz symmetric IR geometries

While ∆̃η < 0 always, the perturbation associated with At can become relevant when
∆̃A0 > 0 [41]. When this occurs, the Maxwell field strongly backreacts on the IR geometry
and forces the scalar field to minimize the effective potential, ∂Veff(η0,η0)

∂η∗ = ∂V (η0,η0)
∂η∗ +

2q2A2
t η0 = 0. In this case, the RG flow is from a conformally invariant UV fixed point to

a Lifshitz symmetric quantum critical phase in the IR with z > 1 that is determined in
terms of q and parameters in V :

ds2 = −L
2z

r̂2z L
2
tdt

2 + L̃2dr̂
2

r̂2 + L2

r̂2 L
2
xd~x

2
d . (2.12)

– 6 –
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We can rescale r̂ → (L/L̃)r̂ so that we see only the scale L̃ appears in the IR metric. The
dynamical critical exponent is

z = 2
d
q2L̃2η2

0. (2.13)

A consistent solution also requires

V (η0, η0) = −d
2 + (d− 1)z + z2

L̃2 ,
∂V

∂η∗
(η0, η0) = d (z − 1)

L̃2η0
. (2.14)

These criteria can be used to find q, η0 and L̃ for a given value of z. The gauge field now
behaves as

A = Lt

√
2− 2

z

(
r̂

L

)−z
dt. (2.15)

A boundary case to the superfluid Lifshitz geometries is z → ∞, leading to an AdS2×Rd

superfluid geometry (also sometimes called a semi-local quantum critical geometry [57]).
Under a rescaling, (

r̂

L

)
→
(
r̃

L

)−1/z
(2.16)

and taking the z →∞ limit, the metric (2.12) becomes

ds2 =
(
r̃

L

)−2
(−L2

tdt
2 + dr̃2) + L2

xd~x
2
d, At =

√
2Lt

(
r̃

L

)−1
(2.17)

To find a consistent holographic RG flow to such a phase with a superfluid requires a
modified action. We detail this in appendix E.

As before, we investigate the irrelevant deformations about the IR Lifshitz fixed point
(we leave the z → ∞ details to appendix E). For d = 2 and a quartic potential, this was
done in [41]. We are interested in a particular set of deformations which connect the IR
fixed point to the UV. Writing ~X = {D,B,C,At},

η = η∗ ' η0 + cη

(
L

r̂

)νη
+ . . . , ~X ' ~Xcη=0

[
1 + c ~X

(
L

r̂

)νη
+ . . .

]
. (2.18)

We omit writing the details of ci since they are not particularly enlightening. The expo-
nent is

νη(σ1, σ2) = −d+ z

2 + σ1
2η0

√
D1 + 2σ2

√
D2 (2.19)

where

D1 = 2d(1− z) +
(
5z2 + 2M2

IRL̃
2 + d(4 + d)− 2(2 + d)z

)
η2

0 (2.20)

D2 =
[(
z2 − (d+ 1)z + d− M2

IRL̃
2

2

)
η2

0 + d(z − 1)
2

]2

− 4d
[
z2 + (d− 2)z − (d− 1)

]
η2

0

– 7 –
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and σi = ±1. MIR is defined as in (2.10). It is worth noting that these deformations depend
on the form of the scalar potential and can be complex for certain choices of parameters.
Nevertheless, there should always exist a parameter range with real deformations for any
choice of z. In this paper, we will fix the form of the scalar potential and choose z such that
the deformations are real. It is clear that νη(−1, σ2) will always be a relevant perturbation,
so this deformation does not participate in the RG flow. The least irrelevant perturbation
will have ν̃η ≡ νη(+1,−1). For the semi-local phase, the irrelevant deformations will
depend on our choice of action. This is detailed in appendix E.

2.3 Nonzero temperature

The solutions just described always possess a relevant deformation of the IR critical phase
that introduces a temperature. In the language of the previous section, the finite temper-
ature deformation of the background fields has a radial dependence νη = d + z. Unfor-
tunately, since η0 6= 0, we cannot write the finite temperature in closed form. This is in
contrast to the solutions we discuss in appendix C whose finite temperature metric can
be written in closed form for η = 0. There, we see that when we set the hyperscaling
violation parameter θ = 0, the finite temperature deformation also carries the same radial
dependence, captured by an emblackening factor in the metric: gtt = gtt,0[1 − (r̂/r̂h)d+z].
Semi-classical gravity tells us to interpret the area of the black hole horizon as the entropy
density of the boundary superfluid and regularity of the Euclidean solution at the horizon
gives us the superfluid temperature. For solutions that we can write in closed form, we find

T = cT

(
r̂h
L

)−z
, s = 4πLdx

(
r̂

L

)−d
(2.21)

where cT is some constant which can be found in terms of the parameters in the IR metric.
In particular, we find that s ∼ T d/z which is the expected temperature dependence of the
entropy following from dimensional analysis. For the Lifshitz solutions we describe in the
main text, though we have no closed form expression for cT , to leading order, T carries the
same dependence on r̂h. Furthermore, the expression for s does not change.

Despite the lack of a closed form expression for the finite temperature metric, suffi-
ciently close to the horizon we may write the metric as

ds2 → −4πT (rh − r)dt2 + dr2

4πT (rh − r)
+ s

4πd~x
2
d , (2.22)

where rh ∼ r̂
−1/z
h . Furthermore, At must vanish at the horizon, so in the near horizon

region we may write

At = Ah(rh − r) + . . . (2.23)

From this expansion, it is clear that by integrating (2.3) we obtain the identity√
Cd

BD

[
C

(
D

C

)′
−AtA′t

]
= −sT . (2.24)

– 8 –



J
H
E
P
1
1
(
2
0
2
0
)
0
9
1

Moreover, by evaluating the left hand side at the UV boundary, we recover the Smarr
relation

ε+ P = sT + µρ . (2.25)

It is important to note that the deformation that leads to a temperature also con-
tributes to a variation in the charge density which likewise contributes universal deforma-
tions of the normal and superfluid densities. This deformation can be the leading deforma-
tion but for certain critical phases we will see that the universal deformation is subleading
to non-universal deformations that are sourced by the condensate.

2.4 Horizon fluxes

Next, because horizons have a finite, large N2
c entropy, they are naturally associated with

deconfined degrees of freedom in the system, or in our hydrodynamic interpretation, degrees
of freedom that have dissipated into the thermal bath, see [48]. We interpret the low-
temperature horizon flux as a measure of the charge of these degrees of freedom. Upon
condensation, we will see that this charge may be less than the total charge of the system,
indicating the presence of charged degrees of freedom that are isolated from the thermal
bath. These charged degrees of freedom sit instead in the condensate. They can be thought
of as the analogue of the condensed degrees of freedom. When there is no horizon flux at
T = 0, all the charge is in the condensed degrees of freedom. This phase has previously
been referred to as “cohesive” following the condensed matter literature; however, we feel
that fully condensed is a more faithful reflection of the holographic picture. Any residual
horizon flux at T = 0 will indicate a phase that is not fully condensed. In the holographic
literature, this has been called “fractionalized.” Here, we will refer to this as partially
condensed if there is a condensate or uncondensed if there is no condensate. As an example,
an AdS Reissner-Nordstrom black hole is an uncondensed phase (our semi-local geometries
share the same IR). In the main text, we only consider fully condensed phases, though in
appendix C we will also consider partially condensed phases (see also [19]).

The horizon flux is defined as

ρin(rh) ≡ − Cd/2√
BD

A′t

∣∣∣∣
r=rh

(2.26)

While we do not have closed form expressions for the finite temperature fields, we can use
the near horizon metric to find

ρin(rh) = C
d/2
h Ah (2.27)

where we have defined Ch = C(rh). Given that At = Ah(rh − r) + . . . near the horizon,
and that limT→0A

′
t(r) = A′t,0(r), we can approximate Ah by the zero temperature metric

at the finite temperature horizon −A′t,0(rh). Then, for scale invariant geometries, we have

ρin = cinT
d−∆̃A0 + . . . (2.28)

while for the Lifshitz solutions, we have

ρin = cinT
−d/z + . . . (2.29)
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In these expressions, cin is a temperature-independent prefactor which depends on the
precise form of the finite temperature metric through the relation between the temperature
and r̂h, (2.21). In both the scale invariant and Lifshitz cases, limT→0 ρin = 0 and hence are
both fully condensed. On the other hand, semi-local quantum critical phases have

ρin = cinT
0 + . . . (2.30)

and hence are partially condensed. The subleading temperature behavior depends on the
precise form of the action.

3 Transport

The long-wavelength, low frequency fluctuations of our holographic system are well-
described by the two-fluid hydrodynamical model of Landau and Tisza [1, 2]. As we detail
in appendix A, for a slowly fluctuating electric field in the x̂ direction, the longitudinal
conductivity4 can be written as

σ(ω) = i

ω
GRJx̂Jx̂(ω, 0) =

(
i

ω
+ δ(ω)

)[
ρ2
n

µρn + sT
+ ρs
µ

]
+ σ0 (3.1)

Here, σ0 is the incoherent conductivity which describes the dissipative part of trans-
port, which we discuss in section 3.1. The other terms stem from translation invariance
and spontaneous breaking of the U(1) global symmetry in the boundary, and we discuss
them in section 3.2. Before doing so, it is useful to review the general strategy to compute
the longitudinal conductivity holographically.

To do this, we solve for the linearized fluctuations sourced by δAx̂ = ax̂(r)e−iωt. The
only other field sourced by this fluctuation is δgtx̂. The two equations of motion are

f
1

Cd/2−1
d

dr

Cd/2−1

√
D

B
a′x̂

−
√
B

D

(
2q2Dη2 + (A′t)2

B
− ω2

)
ax̂ = 0

d

dr

[
gtx̂
C

]
+ ax̂A

′
t

C
= 0 (3.2)

The UV expansion of the fluctuations are (where as before r → 0+ is the boundary)

ax̂(r) = a
(0)
x̂ + a

(1)
x̂

d− 1r
d−1 + . . .

gtx̂(r) = u2g
(0)
tx̂ −

〈Ttx̂〉
(d+ 1)r

d−1 + . . . (3.3)

4In the absence of a background superfluid velocity, the transverse conductivity does not feel the effects
of the superfluid and is written σ⊥(ω) = i

ω

(
GRJŷJŷ

(ω, 0)−GRJŷJŷ
(ω = 0, k → 0)

)
=
(
i
ω

+ δ(ω)
)

ρ2
n

µρn+sT +σ0,
where the second term is a static susceptibility that needs to be subtracted out. In this term, the ω = 0
limit is taken first, and the zero wavector limit second, where k is the component of the wavevector along
the x̂ direction.
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Following standard holographic renormalization, a(0)
x̂ = Ex̂/(iω) and if there is no temper-

ature gradient g(0)
tx̂ = 0. Then

σ(ω) = a
(1)
x̂

iωa
(0)
x̂

. (3.4)

3.1 Incoherent conductivity

The incoherent conductivity measures the transport of charged operators that do not have
overlap with the momentum [58–61]. As a consequence, it only carries diffusive excitations,
hence the name ‘incoherent’. In particular, even in translation invariant phases, like the
ones we discuss here, its DC limit is non-divergent. It can be defined as:

σ0 ≡ lim
ω→0

Re[σ(ω)] (3.5)

and as we now review, can be obtained through a near-horizon analysis, [59, 62]. Since (3.2)
is a second order ordinary differential equation, it admits two independent solutions. It is
helpful to distinguish between the solution regular at the horizon and the singular solution.
Given knowledge of the regular solution, areg

x̂ (r), to the zero frequency limit of (3.2), the
singular solution can be obtained using the Wronskian method,

asing
x̂ (r) = areg

x̂ (r)
∫ r

0

Cd/2−1

√
B

D
areg
x̂ (r′)2

−1

dr′. (3.6)

Near the horizon, we use the fact that at finite temperature areg
x̂ (rh) 6= 0 and we verify that

asing
x̂ (r)→ − 1

4πTareg
x̂ (rh) ln(r − rh) + finite (3.7)

is indeed singular as r → rh.
Finally, we note that the general solution to (3.2) must satisfy ingoing boundary con-

ditions in order to correspond to the calculation of retarded Green’s functions [63],

∂rax̂(r)→ − iω

4π(r − rh)ax̂(r). (3.8)

Expanding ax̂(r) slightly away from the horizon, we find

ax̂(r) ≈ areg
x̂ (rh)

[
1− iω

4πT ln(r − rh) + . . .

]
, (3.9)

and so must be a specific combination of the regular and singular solution. The subleading
pieces in this expansion come from the smooth parts of ax̂(r) near the horizon and do not
contribute to σ0. This reflects the fact that dissipation in the dual field theory is intimately
connected with the presence of an event horizon in the bulk geometry.

At small frequencies, one can expand the general solution ax(r) to (3.2) as

ax̂(r) = areg
x̂ (r) + iωãx̂(r) +O(ω2). (3.10)
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The first term must be the regular solution areg
x̂ (r) to (3.2) with ω → 0. The second term

is identified by requiring that the frequency dependence of (3.10) and (3.9) match near
the horizon

ãx̂(r) = (areg
x̂ (rh))2asing

x̂ (r). (3.11)

Away from the horizon there may be extra terms, but these do not contribute to the leading
low frequency behaviour of the conductivity. Hence the solution to (3.2) valid in the entire
spacetime in the limit of low frequencies is

ax̂(r) = areg
x̂ (r) + iω(areg

x̂ (rh))2asing
x̂ (r) +O(ω2). (3.12)

We can now expand this expression near the boundary

ax̂(r → 0+)→ a
reg,(0)
x̂ + a

reg,(1)
x̂

(d− 1)r
d−1 + iωa

reg,(0)
x̂ (areg

x̂ (rh))2

(d− 1) rd−1 +O(ω2), (3.13)

where we used that asing
x̂ (r) vanishes at the boundary (3.6).

Finally, we use that areg,(1)
x̂ must be real together with the definitions (3.4), (3.5), to

deduce that the incoherent conductivity is given by

σ0 ≡ lim
ω→0

Re[σ] = (areg
x̂ (rh))2. (3.14)

The incoherent conductivity is always given by this horizon quantity. However, as we
have seen, we generally do not know areg

x̂ (rh). For small temperatures, however, we show in

section 3.2 that areg
x̂ (r) ≈ a

(0)
x̂
µ At,0(r) plus terms which are subleading in the temperature.

The zero temperature gauge field At,0 does not vanish on the (finite temperature) horizon,
and we have

σ0 = (a(0)
x̂ )2

µ2 At,0(rh)2 ∼

#
(
T
µ

)2−2∆̃A0 z = 1

#
(
T
µ

)2
z > 1 .

(3.15)

3.2 Normal and superfluid densities

The normal and superfluid densities can be found from looking at

Z ≡ lim
ω→0

ωIm[σ(ω)] = ρ2
n

sT + µρn
+ ρs
µ

⇒ ρn = sT (ρ− µZ)
sT − µ(ρ− µZ) (3.16)

where we used ρ = ρn + ρs. Importantly, limT→0 Z = ρ
µ . It is a separate question whether

or not limT→0 ρn = 0.
In a recent paper [19], we showed that there are no inconsistencies in the two-fluid

hydrodynamic model when ρ
(0)
n 6= 0 and illustrated this behavior with a holographic ex-

ample. Here we establish the criteria for this behavior in quantum critical phases with
scale-invariant (z = 1) or Lifshitz (z > 1) symmetries for the specific action (2.1). In
appendix C, we will generalize this result to more general quantum critical phases with
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nonzero hyperscaling violation exponent θ 6= 0 as well as novel superfluid actions in ap-
pendix F. For the purpose of the main text, we find that

d+ 2− z < 0⇒ ρ(0)
n 6= 0. (3.17)

As explained in the previous section 3.1, the equation for ax̂ has two independent solutions,
one of which is regular at the black hole horizon and another of which is singular. At low
frequencies, it is easily seen that the singular part does not contribute to the imaginary
conductivity, though it does contribute to the dissipative part, σ0. Thus, to find the pole in
the imaginary conductivity (and from there the normal density through (3.16)), one needs
only find the regular solution to (3.2) at ω = 0,

Z = −a
reg,(1)
x̂

a
reg,(0)
x̂

. (3.18)

Since the normal density is a thermodynamic property of the system, it is not surprising
that it is enough to work at ω = 0 to determine it, as was done in e.g. [10, 11, 38–40].

We now explain in detail how we arrive at (3.15) and (3.17).
Due to the presence of the condensate, (3.2) cannot be solved exactly. However, it does

allow for a perturbative solution at small temperature. It will be useful throughout the
derivation to keep in mind a few approximations we will make. The first is that everywhere
in the derivation, we will use the radial coordinate r that aligns with appendix C. In
particular, r → 0 corresponds to u → ∞ for the UV coordinate defined in (2.4). In
addition, r → rh corresponds to r̂ → r̂h for the IR coordinate defined in (2.12).

To begin, we note that we can use (2.3) to rewrite the ω → 0 limit of (3.2) in the
simple form

d

dr

Cd/2−1

√
D

B
A2
t

(
ax̂
At

)′ = −(sT )A
′
t

C
ax̂, (3.19)

where primes denote derivatives with respect to the radial coordinate r.
From here, it is clear that at T = 0, the regular solution is

ax̂ = a
(0)
x̂

µ
At,0 (3.20)

where At,0 is the zero temperature solution to (C.2).
While this equation is very simple, it slightly obscures the role of the complex scalar η.

To restore this dependence, we introduce a function

R = −C
d/2A′t√
BD

, R′ = −2q2

√
BCd

D
η2At (3.21)

which has the property that at the horizon R(rh) = ρin and at the UV boundary R(r =
0) = ρ. Using (2.3) and integrating by parts, we may write a slightly messier but more
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convenient equationCd/2−1

√
D

B
A2
t

(
1 + sT

AtR

)(
ax̂
At

)′
− sT D

C

(
ax̂
At

)′ = (sT )2q2η2Cd−1A2
t

R2

(
ax̂
At

)′
(3.22)

As an aside, setting the condensate to zero η = 0, R = ρ and using the bulk identity (2.24),
the regular solution for any T is [59]

areg
x̂ = a

reg,(0)
x̂

sT + ρAt(r)
sT + µρ

(3.23)

from which we immediately get

Z = ρ2

sT + µρ
∼ ρ

µ
− sT

µ2 + (sT )2

µ3ρ
+ . . . (3.24)

as expected for a normal fluid.
Returning to (3.22), we treat sT as an expansion parameter. To clean up our expres-

sions, we define A = µ

a
(0)
x̂

ax̂
At
, and our expansion reads

A = A0 + (sT )A1 + (sT )2A2 + . . . (3.25)

Notably,

r2−ddA
dr

∣∣∣∣
r→0+

= ρ

µ
− Z. (3.26)

We can then find ρn from (3.16).
In this expansion, we must be careful to distinguish between explicit temperature

dependence in sT and implicit dependence in the background metric and matter functions.
We start by writing the expansion in terms of the finite temperature background metric
and matter field.

The functions Ai can be found in terms of the lower order functions A(i−1),Cd/2−1

√
D

B
A2
tA′i

′ =
D

C
Ai−1 − Cd/2−1

√
D

B

At
R
A′i−1

′ + 2q2η2Cd−1A2
t

R2 A′i−1

 .
(3.27)

The first few terms are

A0 = 1

A1 =
∫ r

0

√
BD

Cd/2A2
t

dr′

A2 =
∫ r

0

√
BD

Cd/2A2
t

dr′
∫ r′

0

√
BD

Cd/2A2
t

dr̃ −
∫ r

0

√
BD

Cd/2A3
tR

dr′

−
∫ r

0

√
B

D

1
Cd/2−1A2

t

dr′
∫ rh

r′

2q2η2√BDCd/2−1

R2 dr̃ . (3.28)
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In writing this solution, we have fixed that ax̂ = a
(0)
x̂ at the UV boundary always. Notably,

because At ' Ah(rh − r) + O
(
(rh − r)2), the integrals diverge as r → rh. Nevertheless,

because limr→rh ax̂ is finite, limr→rh AtA cannot diverge. It is easily seen that

lim
r→rh

AtA0 = 0, lim
r→rh

AtA1 = 1
ρin

. (3.29)

For A2, the first and second terms in (3.28) seem to diverge as A−2
t . However, the first

term is

lim
r→rh

∫ r

0

√
BD

Cd/2A2
t

dr′
∫ r′

0

√
BD

Cd/2A2
t

dr̃ ≈ −
∫ rh

√
BD

Cd/2A3
tρin

dr′ + . . . (3.30)

so that the potential divergences cancel against each other. The remaining terms diverge
no faster than A−1

t so that limr→rh AtA2 is finite.
As we stated earlier, our expansion contains explicit temperature dependence in the

form of sT as well as implicit temperature dependence from the metric and matter fields.
If our expansion is well-behaved, then the implicit temperature dependence should be
subleading to the explicit dependence. In particular, to leading order in the temperature,
the explicit dependence is dominant when the metric and matter fields appearing in Ai
can be approximated by their zero temperature limit. Here we run into an issue. Noting
that T → 0 is rh →∞, we find that the term arising from the condensate behaves as

lim
rh→∞

∫ rh

0

2q2η2
0
√
B0D0C

d/2−1
0

R2
0

dr′ ∼ 2q2η2
h

ρ2
in(rh)

r−z−d+2
h . (3.31)

Recalling the behavior of ρin in (2.28) and (2.29), we find that for z < d + 2, the integral
diverges as rh →∞. This indicates that our expansion breaks down as T → 0.

We thus need to distinguish between two cases, z < d+ 2 and z > d+ 2.

3.2.1 Vanishing ρ(0)
n

For z < d+2, the integral (3.31) diverges and contributes to the low temperature expansion
at subleading order to (sT )2. We now extract the precise temperature dependence and the
associated prefactor.

In the integral (3.31), we unfortunately cannot simply replace the metric and matter
fields with their zero temperature limits. This is because the finite temperature versions
of the zero temperature AdS (2.7) and Lifshitz (2.12) metrics cannot be found in closed
form. While simply substituting the zero temperature forms of the background fields in the
integrand and introducing temperature through the upper bound rh would get the correct
scaling with T , the prefactor would not be reliable. Nevertheless, we can still evaluate the
integral in the following way. Let us first note that∫ rh

0
dr̃

2q2η2√BDCd/2−1

R2 =
∫ rh

0
dr̃

{
−
(
D

CR

)′ 1
At

+ 1
RAt

(
D

C

)′}
(3.32)

The last term in the integral is∫ rh

0
dr̃

1
RAt

(
D

C

)′
=
∫ rh

0
dr̃

√
BD

Cd/2+1 + (sT )
∫ rh

0
dr̃

BD

Cd+1A′tAt
(3.33)
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In the limit rh →∞, we show in appendix B that the first term gives

∫ rh

0
dr̃

√
BD

Cd/2+1 = c2
ir

sT
+ . . . (3.34)

where the . . . indicate subleading terms and where we have defined

c2
ir = L2

t

L2
x

(
rh
L

)2−2z
∼ T 2−2/z. (3.35)

To leading order, the second piece gives

(sT )
∫ rh

0
dr̃

BD

Cd+1A′tAt
∼ sT

Chρ
2
in

+ . . . (3.36)

Returning to the first term in (3.32), the leading order temperature dependence is

∫ rh

0
dr̃

(
D

CR

)′ 1
At
∼ − sT

Chρ
2
in

+ . . . (3.37)

which cancels (3.36). Thus, the temperature dependence left after this cancelation is
subleading to (3.34) so that

lim
rh�L

∫ rh

0
dr̃

2q2η2√BDCd/2−1

R2 ≈ c2
ir

sT
+ . . . (3.38)

for z < d+ 2.
From (3.35), c2

ir ∼ T 2−2/z. This is more relevant than sT ∼ T 1+ d
z for this range of z

and hence must be considered before subleading sT terms. Then, (3.26) leads to

Z − ρ

µ
= −sT

µ2 (1− c2
ir) + . . . (3.39)

Using (3.16), we find that the leading temperature dependence is

ρn = sT

µ

1− c2
ir

c2
ir

+ . . . (3.40)

where cir can be temperature dependent as indicated in (3.35).
This result is exactly the same as found using the EFT for relativistic superfluids at

low temperatures [17, 46]. Here, we see that it also holds when 1 < z < d + 2, away from
the relativistic limit z = 1.

If we attempt to use this expression for z > d + 2, something bizarre seems to occur.
Including the explicit temperature dependence of cir, ρn ∼ T

d+2
z
−1 naively diverges for

z > d + 2. However, for this range of exponents c2
ir is now less relevant than sT . Instead

of ρn vanishing as T → 0, we find a finite limit, as we shall now explain.
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3.2.2 Non-vanishing ρ(0)
n

For z > d+2, all the integrals in (3.28) converge so that the expansion (3.25) is well-defined.
Then, combining with (3.26), we find

Z − ρ

µ
= −sT

µ2 + (sT )2

µ3ρ
(0)
n

+ . . . (3.41)

where

ρ(0)
n = ρ(0) ×

[
1 + µρ(0)

∫ ∞
0

2q2η2√B0D0C
d/2−1
0

R2
0

dr′
]−1

. (3.42)

The functions appearing in the integral are the zero-temperature functions of (2.12).
From (3.42), we conclude that for z > d + 2, ρn does not vanish at T = 0, in stark

constrast to z < d + 2. The subleading temperature dependence to the leading non-
vanishing constant arises from the same integral with a finite upper bound of rh or from
explicit sT dependence. We write this schematically as

ρn ∼ ρ(0)
n + #T

z−d−2
z + #T

d+z
z + . . . (3.43)

For the examples in the main text, the first subleading temperature is always dominant.
On the other hand, in appendix F we give an example where this integral has a temperature
scaling subleading to the sT .

3.2.3 Competing broken symmetries

The criteria z > d+ 2 for ρ(0)
n 6= 0 can be considered to arise from a competition between

sT and c2
ir. These quantities naturally arise in other transport observables, specifically the

low-energy sound and diffusion modes, which we discuss in [19]. We have seen that the
convergence of limT→0 sT/c

2
ir gives ρ(0)

n = 0 and its divergence signals ρ(0)
n 6= 0. Unfortu-

nately, this is not a sufficient condition. Instead, the necessary and sufficient condition for
the existence of a non-zero ρ(0)

n is the convergence of the integral

lim
rh→∞

∫ rh

0

2q2η2
0
√
B0D0C

d/2−1
0

R2
0

dr′ , (3.44)

which appeared in our low temperature expansion, see (3.28) and (3.30). When this di-
verges, ρ(0)

n = 0, and when it converges, ρ(0)
n 6= 0.

We can unpack the integral a little by looking at the fluctuation equation

1
Cd/2−1

d

dr

Cd/2−1

√
D

B
a′x̂

−
√
B

D

(
2q2Dη2 + (A′t)2

B

)
ax̂ = 0. (3.45)

Here, we see that there are two mass-like terms. The first arises from the breaking of
the U(1) symmetry and a non-trivial condensate η. The second arises from the non-zero
density ρ. The ratio of the two terms is

2q2BDη2

(A′t)2 = C1+d/2
√
BD

×
[

2q2η2√BDCd/2−1

R2

]
(3.46)
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Figure 1. z = 1: σ0 ∼ #T 3.46, ρin ∼ #T 2.73, ρn ∼ #T 3.

In terms of the zero temperature fields, we write

2q2B0D0η
2
0

(A′t,0)2 |r=rh ∼
(
r̂h
L

)α
(3.47)

we must have

α− z + d+ 2 < 0 (3.48)

for the integral to converge and ρ
(0)
n 6= 0. If this criteria is not met, then ρ

(0)
n = 0. We

note that α = d + 1 − 2∆̃A0 for conformal phases and α = 0 for Lifshitz phases so that
this reproduces our earlier results. In appendix F, we will show that modified superfluid
actions can give non-trivial α which in turn give rise to ρ(0)

n 6= 0 for spacetimes with any z
by guaranteeing the convergence of (3.44) and vice-versa.

4 Numerical examples

To demonstrate our results, we choose a specific scalar potential following [41] in d = 2
and set L = 1,

V (|η|) = −6− 2η∗η + g2
η(η∗η)2 (4.1)

where gη = 3/2. We must solve for q, η0, L̃ for a given value of z. For z = 1, we chose
q = 2. We show results for z = 1 in figure 1, z = 2 in figure 2, z = 12 in figure 3, and
z →∞ in figure 4. In these plots, numerical results are plotted in open circles wheras solid
lines denote fits to the appropriate temperature scaling.

To accurately compute ρn for z > 1, we needed to use very high precision numerics. We
used a Newton-Raphson method with double floating point precision and up to N = 1000
points. Even with this level of precision, it was difficult to observe strong ρn ∼ T behavior
for z = 2 since the a large region of the IR is well-approximated by (2.12) only below
(T/µ) ∼ 10−6. In figure 2, we fit to ρn ∼ b1T

(
1 + b2T

ν+
η /2 + b3T

ν−η /2
)
for constants b1,

b2, b3 and ν±η = νη(−1,±1). In order to clearly observe a single temperature scaling, we
can also break translation invariance by adding an extra term to the action as was done
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Figure 2. z = 2: σ0 ∼ #T 2, ρin ∼ #T , ρn ∼ b1T (1 + b2T
.36 + b3T

.62).
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Figure 3. z = 12: σ0 ∼ #T 2, ρin ∼ #T 1/6, ρn ∼ ρ(0)
n + #T 2/3.

in [19]. Then extracting ρn requires lower precision and we can reach lower temperatures,
allowing us to further confirm that to leading order ρn ∼ #T . We discuss this in detail in
appendix D.

As we mentioned earlier, the z →∞ case requires a slightly modified action, the details
of which we relegate to appendix E. In the notation of this appendix, we choose a = 2 for
the plot in figure 4 that shows an example with z → +∞. For this choice of the parameter
a, we find an irrelevant deformation with ν̃η = −1 and that other choices of a lead to
ν̃η 6= −1. Nevertheless, for any choice of a, we find that ρn−ρ(0)

n is always linear for phases
with z →∞.

Other cases will be discussed further in appendix E.
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Figure 4. z →∞: σ0 ∼ #T 2, ρin ∼ ρ(0)
in + #T , ρn ∼ ρ(0)

n + #T .

5 Connection to previous literature

In this work, we discuss transport in clean, quantum critical, holographic superfluids. Our
main object of interest is the normal charge density which controls dissipative transport.
In these systems, we establish the criteria for limT→0 ρn 6= 0. Our conclusion is that this
is possible for quantum critical systems described by Lifshitz symmetries with dynamical
critical exponent z > d + 2. In appendix C, we generalize this to systems that exhibit
hyperscaling and find new criteria which depend on the spectrum of irrelevant deformations.

With this result, we are able to explain some previously mysterious results in the
holographic literature. The first result is from [38] who looked at various sound modes in
a system with action (2.1) in d = 3. The superfluid second sound is given by

c2
2 =

(
s

ρ

)2 ρs
(sT + µρn)(∂[s/ρ]/∂T )µ

'


z
3c

2
ir z < d+ 2,

z
3
ρ

(0)
s

ρ(0)
sT

µρ
(0)
n

z > d+ 2.
(5.1)

while the fourth sound is given by

c2
4 = ρs

µ
(
∂ρ
∂µ

)
s

' 1
3

[
1− ρn

ρ

]
. (5.2)

In both equations above, we obtain the last relation by substituting the scalings following
from the critical scaling of the holographic groundstate, allowing for z ≥ 1. In figure 2 of
their paper, for large enough q, c2

2 → 1
3 . On the other hand, for sufficiently small q, c2 → 0.
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As we have seen, for large q, ∆̃A0 is sufficiently negative to allow for an emergent z = 1
IR geometry. Hence, limT→0 cir is a constant in this limit. On the other hand, for small
q, the system flows to a geometry with z > 1 which has limT→0 cir = 0. In figure 3, the
behavior of c4 mirrors this analysis. For sufficiently small q, c2

4 6= 1
3 indicating ρ(0)

n 6= 0. It
is interesting to look at the upper right panel of figure 2 and the right panel of figure 3 for
q = 1 and q = 2. The first of these has z = 18.3 while the second has z = 1.22. Both are
Lifshitz phases so that limT→0 c2 = 0. However, for q = 1, z > 5 so we expect ρ(0)

n 6= 0 and
c2

4 6= 1
3 . This is exactly what we see.
In [39], the authors considered the holographic superconductor of Hartnoll, Herzog, and

Horowitz [26, 27]. Importantly, the IR of this system is not quantum critical. Nevertheless,
our analysis can explain their results as well. For q2 > |m2|/6, the authors of [42] found
that in the IR,

ds2 = −L2
t

(
L

r̂

)2
dt2 + L̃2 dr̂2

r̂2(ln[r̂/L]) + L2
x

(
L

r̂

)2
d~x2 (5.3)

and

η = η0

[
ln
(
r̂

L

)]1/2
, At = A

(0)
t

(
r̂

L

)−β [
ln
(
r̂

L

)]1/2
, β = 1

2 + 1
2

√
1 + 48q2

|m2|
. (5.4)

From this scaling, we find

2q2BDη2

(A′t)2 ∼ #
(
r̂

L

)α
×
[
ln
(
r̂

L

)]−1
, α = −3 +

√
1 + 48q2

|m2|
> 0, (5.5)

and

lim
r→∞

√
BD

C2 ∼ #
(
r̂

L

)2
×
[
ln
(
r̂

L

)]−1/2
. (5.6)

Hence, the integral (3.44) will diverge and ρ(0)
n = 0. This solution has a finite cir and we

expect ρn = 1−cir2

c2ir
sT . We checked numerically, using (3.16), that this is true for q = 1,

extending the results of [39].
On the other hand, [39] also considered backgrounds with a finite superfluid current.

They observed that ρ(0)
n = 0 for any value of the superfluid current (below the Landau

critical velocity at which superfluid disappears), and q > 1 in d = 2. However, for q = 1,
the authors found that ρ(0)

n does not vanish, at least for the superfluid velocities they
considered. We have checked that in this case, the ground state is not well-described
by (5.3), but we leave the full analysis for this case to later work. In [32], superfluid flows
in a top-down Type IIb embedding were considered and similar results obtained: above a
certain value of the superfluid velocity, the infrared geometry ceases to be another copy
of Anti de Sitter spacetime. It would be interesting to further study these systems and
determine the relation, if any, to the formation of Bogoliubov Fermi surfaces in weakly-
coupled superfluids at large superfluid velocities, [55].
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6 Discussion

From a physical perspective, our criteria points to an interesting competition between two
competing phenomena at low energies — the spontaneous breaking of the U(1) associated
with superfluidity and the breaking of charge-conjugation symmetry that gives rise to a
finite charge density. Both effects contribute to a zero frequency pole in the imaginary
part of the optical conductivity. When the effects of spontaneous symmetry breaking are
weaker than the charge-conjugation symmetry breaking, ρ(0)

n 6= 0. Otherwise, ρ(0)
n vanishes.

For holographic superfluids, the degree to which spontaneous symmetry breaking must be
weaker is established by the convergence of an integral in the deep IR of the spacetime.
Nevertheless, we can understand a strong charge-conjugation symmetry breaking as indi-
cating strong charge renormalization effects. Our work suggest that it may not be suprising
to see ρ(0)

n = 0 in systems like 4He and in BCS superconductors which are considered weakly
interacting. On the other hand, in systems which exhibit strong electron interactions, our
work suggests that it is possible for ρ(0)

n 6= 0. The relevance of this property to recent
experiments on cuprate high Tc superconductors was discussed in [19].

The normal density is the relevant quantity to discuss dissipative effects at low energies
and low temperatures. In this work, we demonstrate that in this limit, its behavior depends
only on properties of the underlying quantum critical groundstate and the spectrum of
irrelevant deformations. Much of the literature to date has worked explicitly with z = 1
phases and assumed that the low temperature spectrum is dominated by linearly dispersing
superfluid phonons [13, 14, 18, 64]. With this starting point, the result ρn ' sT/c2

ir is easily
obtained. On the other hand, the results of this work suggest that, at least for Lifshitz
theories with z > d+2, we must include other low energy contributions. Fortunately, given
the universal dependence on the underlying quantum critical phase, it seems possible that
quantum critical superfluids are amenable to an effective field theory treatment in the vein
of [15, 17]. In particular, for Lifshitz phases, we expect at sufficiently low temperatures the
linear dispersion is modified to ω ∼ kz. Hence, higher order derivative contributions must
be included in a quantum effective action treatment analogous to [15] as well as a modified
equation of state. We are currently at work on including these terms.

An interesting question to ponder is whether our results could be an artifact of the
large N limit which underlies the gauge/gravity duality, especially when taking the zero
temperature limit. Unfortunately, a precise answer would require a detailed account of
finite N corrections, which is difficult. However, it is straightforward to observe that
the normal density in (1.2), which we have shown holds also for Lifshitz-invariant fixed
points, diverges when z > d + 2. Clearly, we expect that the assumptions underlying
the superfluid EFT, i.e. that the zero temperature groundstate can be treated as a gas of
superfluid phonons, must break down. A possible resolution, as we argue here, is that new
degrees of freedom must be taken into account, leading to a non-vanishing normal density.

The careful reader might be concerned that, even in the strict large N limit, since
we are extracting the normal and superfluid densities by taking a very low temperature
limit instead of working at exactly T = 0, some dramatic drop of the normal density
could occur such that ρ(0)

n would be exactly zero at T = 0 for all cases. Investigating
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T = 0 geometries presents challenges, as it is in general difficult to numerically ascertain
that the solution is at zero temperature, rather than simply being probed in the region of
spacetime where temperature effects are negligible. Spacetimes where an AdS2×R2 factor
arises in the IR behave more nicely, as the timelike Killing vector has double zero and the
extremal horizon remains finite. This double zero can be analytically implemented using
pseudospectral methods. We construct such flows in appendix E.1 and demonstrate that
the zero temperature values for the normal and superfluid densities agree with the values
inferred by taking the low temperature limit.

Another interesting aspect of holographic superfluids is that, for Lifshitz-invariant fixed
points, the superfluid phase itself is critical, while conventional condensed matter treat-
ments usually find that quantum criticality is hidden by a non-critical superfluid phase.
For the IR geometries with emergent conformal invariance, as well as the scale-covariant,
hyperscaling-violating geometries studied in [19] and in appendix C, the superfluid conden-
sate acts instead as an irrelevant deformation of the underlying quantum critical, normal
phase. Hence, as we have described in some detail, the scaling of a number of thermo-
dynamic or transport observables remains controlled by the normal phase. On the other
hand, there also exist critical superfluid phases where the superfluid condensate strongly
deforms the normal phase, examples of which can be found in [43, 44].

It is worth contrasting our results with those obtained in a qualitatively different
large N limit, where the effects of a gapless boson (a proxy for critical order parameter
fluctuations) on a Fermi surface are investigated, [65–68]. There, the fermions transform
in the fundamental representation of some internal flavor symmetry group SU(N) while
the bosons transform in the adjoint. N is taken to be very large, together with ε � 1
where ε = 3− d. What these authors find is that for sufficiently large Nε, naked metallic
quantum critical points with finite BCS couplings appear in the phase diagram, but Tc = 0
and there is no finite condensate. Instead, for smaller values of Nε, the BCS couplings
diverge in the IR, triggering a BCS instability which hides the quantum critical point
under a superconducting dome, as in more conventional scenarios.

By contrast, in the scale-covariant geometries studied in [19] and in appendix C, there is
a nonzero Tc with a finite condensate. This condensate only sources an irrelevant deforma-
tion of the IR geometry, which retains the same scaling properties as the underlying normal
phase — and hence is not a naked metallic quantum critical point in the sense of [65–68].
As we have described in some detail, the scaling of a number of thermodynamic or transport
observables in the superfluid phase remain controlled by the normal phase. On the other
hand, there also exist critical superfluid IR geometries where the superfluid condensate
strongly deforms the normal phase, examples of which can be found in [43, 44]. These ge-
ometries all have in common that they are supported by a logarithmically running scalar in
the IR. In the very deep IR, quantum or stringy corrections are expected to become impor-
tant and can lead to a different fixed point, see eg [69]. However, we should re-emphasize
that our result on the non-vanishing of the normal density at zero temperature also applies
to scale-invariant Lifshitz fixed points, which do not suffer from such instabilities.5

5The Lifshitz metric does sport a null singularity, which was argued in [70] to lead to uncontrolled prolif-
eration of test strings. It was later shown in [71] that scattering of these strings with the matter supporting
the Lifshitz metric slows down their proliferation, this circumventing the divergent tidal forces in [70].
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A Landau-Tisza hydrodynamics

In [19], we cover relativistic two-fluid hydrodynamics in detail. To keep the discussion
self-contained, we reproduce that discussion here.

A.1 Conservation equations and constitutive relations for small superfluid
velocities

We follow [40] to study linear response in conformal, relativistic superfluid hydrodynamics.
Compared to the usual relativistic hydrodynamics, the U(1) symmetry is spontaneously
broken, which we model by explicitly introducing the resulting Goldstone boson ξµ ≡
∂µϕ − Aµ. This expression is gauge invariant, though for simplicity we will fix a gauge
in which Aµ = 0. In equilibrium, ξµ acquires a constant value, which can be large and
is related to the superfluid velocity. It should be counted at zeroth order in the gradient
expansion. The authors of [40] work in the simplifying limit where the gradient of the
Goldstone boson is small, which is justified by the presence of instabilities in superfluid
flows with large velocities.

To first order in the gradient expansion, the constitutive relations of the superfluid are

Tµν = (ε+ P )uµuν + Pηµν + 2ρsµsn(µuν) + ζρsµsnµnν − ησµν − ηsσsµν

Jµ = ρuµ + ζρsn
µ − σ0TP

µν∂ν

(
µ

T

)
uµξµ = −µ+ ζ3∂ν (ρsvν)

(A.1)

Here ζ = µs/µ is the superfluid fraction. The last equation is the Josephson condition for
the superfluid. uµ is the velocity of the normal fluid, while vµ is the superfluid velocity
defined by

µsnµ = P νµ ξν , Pµν = ηµν + uµuν (A.2)

From this definition, ζnµ = ξµ
µ − uµ. Writing things in terms of ξµ and uµ, we find

Tµν = (ε− µρs + P )uµuν + Pηµν + ρs
µ
ξµξν − ησµν − ηsσsµν (A.3)

Jµ = ρnu
µ + ρs

µ
ξµ − σ0TP

µν∂ν

(
µ

T

)
(A.4)

so that the superfluid fraction drops out of the equations. The thermodynamic quantities
obey the Smarr relation

ε+ P = sT + µρ , ρ = ρn + ρs , (A.5)
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where ρ is the total charge density, as well as the first law

dP = sdT + ρdµ− ρs
2µd

(
ξνξ

ν + µ2
)

(A.6)

This means that contrarily to the usual hydrodynamics of normal fluids, the thermody-
namic quantities like the pressure are functions of say µ and T , but also of ξiξi, the spatial
superfluid velocity squared. However, working in the limit of small superfluid velocities,
we can rewrite

dµ = −s
ρ
dT + dP

ρ
− ρs
µρ
ξidξ

i (A.7)

which shows that
µ(P, T, |ξi|) = µ(P, T )− ρs

2µρξiξ
i + . . . (A.8)

We see that in this limit µ(P, T, |ξi|) is the usual chemical potential up to terms quadratic
in the superfluid velocity. By differentiating with respect to temperature and pressure, the
entropy and the density are obtained as:

s(P, T, |ξi|) = s(P, T ) + ρξiξ
i∂T

(
ρs

2µρ

)
+ . . . (A.9)

ρ(P, T, |ξi|) = ρ(P, T ) + ρ2ξiξ
i∂P

(
ρs

2µρ

)
+ . . . (A.10)

When substituting in the constitutive relations, we neglect terms cubic in |ξi|. As we are
ultimately interested in linear response, our task is even more simple: terms quadratic in
|ξi| make no contributions to the linearized equations, so we can drop all the quadratic
corrections to the thermodynamic quantities. There will be non-zero contributions to J i

and T 0i, though.
Imposing positivity of the divergence of the entropy current Jµs = suµ + µσ0∂µ(µ/T )

together with conformal invariance implies ηs = 0.

A.2 Linear response a la Kadanoff-Martin

Starting in the rest frame of the fluid with no background superfluid velocity, we linearize
around equilibrium

T (t, xi) = T + δT , µ(t, xi) = µ+ δµ , uµ = (1, δui) , nµ = ζ−1(0, ξi/µ− δui) (A.11)

and write the corresponding linearized expressions for the stress-tensor and current

δT 00 = δε

δT 0i = (µρn + sT )δui + ρsξ
i

δT ij =
(
δP + η∂kδu

k
)
δij − 2η∂(iδuj)

δJ0 = δρ

δJ i = ρnδu
i + ρs

µ
ξi − σ0

(
∂iµ− µ

T
∂iT

)
ξ0 = −µ+ ζ3ρs

(
∂iξ

i

µ
− ∂iui

)
(A.12)
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We can now write linearized equations for the longitudinal fluctuation of conserved
charges (δε, πx = δT 0x, δρ, ξx) choosing a wavector in the x̂-direction k = (k, 0):

− iωδε+ ikπx = 0

− iωπx + ik (β1δε+ β2δρ) + η

h
k2πx − k2 ρs

h
η ξx = 0

− iωδρ+ ik
ρn
h
πx + σ0k

2 (α1δε+ α2δρ) + ik
ρssT

µh
ξx = 0

δξ0 + ∂µ

∂ε

∣∣∣∣
ρ
δε+ ∂µ

∂ρ

∣∣∣∣
ε

δρ− ikρs
h
ζ3δπ

x + ik
h+ µρs
µh

ρsζ3ξ
x = 0

(A.13)

where h = µρn + sT and

α1 =
(
∂µ

∂ε

)
ρ
− µ

T

(
∂T

∂ε

)
ρ
, α2 =

(
∂µ

∂ρ

)
ε

− µ

T

(
∂T

∂ρ

)
ε

β1 =
(
∂p

∂ε

)
ρ
, β2 =

(
∂p

∂ρ

)
ε

(A.14)

We note that with no background field strength, ∂µξν = −∂νξµ using commutivity of the
partial trace. Using

ξx = µ(nx + δux) , πx = (h+ µρs)δux + µρsn
x (A.15)

The matrix of static susceptibilities is [72] is

χ =


T
(
∂ε
∂T

)
µ/T

0
(
∂ε
∂µ

)
T

0

0 w 0 µ

T
(
∂ρ
∂T

)
µ/T

0
(
∂ρ
∂µ

)
T

0

0 µ 0 µ
ρs

 (A.16)

with w = h+µρs = ε+P . The sources for (δε, πx, δρ) are (δT/T, δux, T δ[ µT ]) as per usual.
The susceptibility matrix is consistent with the following source for the Goldstone:

sξ = ρsn (A.17)

and comes from the following Hamiltonian deformation

δHAt = −
∫
d3x ρsn · ξ(x, t) = −

∫
d3x n · πξ(x, t) (A.18)

with
π = π̃ + πξ , πξ = ρsξ (A.19)

so that πξ is the momentum along the superfluid.
As expected, the susceptibility matrix is symmetric (Onsager relations). This can be

shown using the first law of thermodynamics in the grand-canonical ensemble. We can also
derive the following relations

β1χ11 + β2χ31 = w , β1χ13 + β2χ33 = ρ

α1χ11 + α2χ31 = 0 , α1χ13 + α2χ33 = 1
∂µ

∂ε

∣∣∣∣
ρ
χ13 + ∂µ

∂ρ

∣∣∣∣
ε

χ33 = 1
(A.20)
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If we make use of conformal symmetry (which means that for instance p = T 3f(µ/T )),
we can further obtain

χ11 = 2w , χ31 = χ13 = 2ρ , β1 = 1
2 , β2 = 0

α1 = ρ

2ρ2 − wχ33
, α2 = −w

2ρ2 − wχ33
∂µ

∂ε

∣∣∣∣
ρ

= 1
2

2ρ− µχ33
2ρ2 − wχ33

,
∂µ

∂ρ

∣∣∣∣
ε

= −sT
2ρ2 − wχ33

(A.21)

This can be obtained by manipulations involving the Jacobian. For instance, if we define

∂(X,Y )
∂(U, V ) =

∣∣∣∣∣∣
(
∂X
∂U

)
V

(
∂X
∂V

)
U(

∂Y
∂U

)
V

(
∂Y
∂V

)
U

∣∣∣∣∣∣ (A.22)

then we have

∂(X,Y )
∂(S, T ) = ∂(X,Y )

∂(U, V )
∂(U, V )
∂(S, T ) ,

∂(X,Y )
∂(S, T ) = −∂(Y,X)

∂(S, T ) (A.23)

and also (
∂(X,Y )
∂(S, T )

)−1
= ∂(S, T )
∂(X,Y ) ,

∂(X,Y )
∂(U, Y ) = ∂X

∂U

∣∣∣∣
Y

(A.24)

We can now obtain the retarded Green’s functions following the method of Kadanoff and
Martin, [72, 73]. We will denote by

〈AB(ω, k)〉 = GRAB(ω, k)−GRAB(ω = 0, k) (A.25)

the correlator from which the static susceptibility has been subtracted (GRAB(ω = 0, k) =
−χAB).

Then, the thermoelectric conductivities read

σ = i

ω
〈JxJx(ω, 0)〉 = σ0 + iρ2

n

hω
+ iρs
µω

(A.26)

α = i

ωT

(
〈JxT 0x(ω, 0)〉 − µ〈JxJx(ω, 0)〉

)
= −µ

T
σ0 + iρns

hω
(A.27)

κ̄ = i

ωT

(
〈T 0xT 0x(ω, 0)〉 − µ〈T 0xJx(ω, 0)〉 − µ〈JxT 0x(ω, 0)〉+ µ2〈JxJx(ω, 0)〉

)
= µ2

T
σ0 + is2T

hω
(A.28)

Note that the delta function due to the presence of a superfluid only appears in the electric
conductivity σ. Moreover the following Ward identities are obeyed

αT + µσ − iρ

ω
= 0 , κ̄+ µα− is

ω
= 0 (A.29)

which take the same form as without a superfluid.
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B Proof of (3.34)

In this appendix, we prove the equation (3.34), which we recall here for convenience∫ rh

0

√
BD

Cd/2+1dr̃ ≈
c2
ir

sT
+ . . . (B.1)

First, we note that the behavior of (2.12) in the deep IR implies∫ rh

0

√
B0D0

C
d/2+1
0

dr̃ ∼ b
(
rh
L

)2+d−z
+ . . . (B.2)

which diverges when z < d + 2 and converges otherwise. Thus, it is only when z < d + 2
that this integral can be reliably approximated using only the near-extremal part of the
spacetime.

To prove this equation, we must distinguish between when the IR metric is AdS (2.7)
with z = 1 and when it is Lifshitz (2.12) with 1 < z < d+2. This is because of the presence
of the irrelevant deformation sourced by the gauge field in the IR AdS case.

We first consider z = 1, and follow closely the logic in section III.B.1 of [61]. We
rewrite (B.1) using (2.24):∫ rh

0

√
BD

Cd/2+1dr̃ = −
∫ rh

0

(
D

C

)′ 1
sT +RA

= −
[
D

C

1
sT +RA

]rh
0

+
∫ rh

0

D

C

( 1
sT +RA

)′
(B.3)

Using that D(rh) = 0 and A(0) = µ, R(0) = ρ, the first term simplifies to 1/(sT +µρ) and
can be neglected at low T , as we will shortly see that the second term diverges as T → 0.
We now restrict the integration domain of the second term to L � ruv < r < rir � rh.
We will soon fix rir and ruv such that the form of the metric (2.7) and gauge field (2.9)
are valid in this region. In this region, we thus have D/C ' L2

t /L
2
x ≡ c2

ir and can pull this
constant factor out of the integral:∫ rh

0

√
BD

Cd/2+1dr̃ ' c
2
ir

∫ rir

ruv

( 1
sT +RA

)′
' c2

ir

(
R(ruv)A(ruv)−R(rir)A(rir)

(sT +R(rir)A(rir))(sT +R(ruv)A(ruv))

)
(B.4)

We now define rir = εirrh and ruv = L/εUV such that given our assumptions the UV
and IR cutoffs are very small εir, εuv � 1. In the region of integration R(r)A(r) ∼
c2
A(r/L)2∆̃A0−d−1. This leads to

RrirA(rir)� sT � R(ruv)A(ruv) (B.5)

provided

c2
AT
−2∆̃A0 � ε

d+1−2∆̃A0
ir , c−2

A T d+1 � ε
d+1−2∆̃A0
uv (B.6)

which can always be achieved for small enough T , recalling that ∆̃A0 < 0. Neglecting
subleading terms, we then obtain ∫ rh

0

√
BD

Cd/2+1dr̃ '
c2
ir

sT
(B.7)

as desired.
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Ultimately, this derivation is rooted in the fact that there is a non-trivial competition
between corrections to the metric (2.7) due to the irrelevant deformation sourced by the
gauge field and due to nonzero temperature through the factor sT +R(r)A(r).

For Lifshitz solutions with 1 < z < d+ 2, the derivation is different, as can be quickly
seen by noticing that in this case ∆̃A0 = 0 so the condition (B.6) cannot consistently be
imposed. On the other hand, contrarily to cases without a condensate, a non-perturbative
finite temperature solution cannot be found analytically, so we may not simply evalu-
ate (B.1) on the IR T = 0 metric (2.12), introducing the temperature through the upper
bound. More precisely, as can be checked numerically,

lim
rh�L

∫ rh

0

√
BD

Cd/2+1dr̃ 6= lim
rh�L

∫ rh

0

√
B0D0

C
d/2+1
0

dr̃ ' d+ z

d+ 2− z
c2
ir

sT
(B.8)

where 0 subscripts indicate we are using the T = 0 IR metric (2.12).
Instead, consider integrating (2.24) between r = 0 and r = rh:∫ r

0

AtA
′
t

C
dr̃ = D(r)

C(r) − 1 + (sT )
∫ r

0

√
BD

Cd/2+1dr̃ (B.9)

Evaluating this at r = rh gives∫ rh

0

AtA
′
t

C
dr̃ = −1 + (sT )

∫ rh

0

√
BD

Cd/2+1dr̃. (B.10)

Now, set T � 1 in (B.9). Since we want to compare to the zero temperature solutions,
we choose a gauge in which r → r̂ in the IR, so that the horizon is at r = r̂h � L. In other
words, we identify the zero temperature and finite temperature radial coordinates outside
the black hole horizon. When η 6= 0 and T � 1, finite temperature effects are relevant
only in a region L� r̂ir < r̂ < r̂h where At,0 −At ∼ At,0(r̂h).6

We can then write∫ r̂h

0

AtA
′
t

C
dr̃ −

∫ r̂h

0

At,0A
′
t,0

C0
dr̃ = (sT )

∫ r̂h

0

√
BD

Cd/2+1dr̃ − c
2
ir '

∫ r̂h

r̂ir

AtA
′
t

C
dr̃ −

∫ r̂h

r̂ir

At,0A
′
t,0

C0
dr̃

(B.11)

which is regular in the limit r̂ir → r̂h (the integrands on the right are non-divergent as
r → r̂h). To fully justify the approximation in (B.1), we must show that the right hand
side of (B.11) vanishes as T → 0 fast enough compared to T 2− 2

z .
In the region r̂ir < r < r̂h, we can use the near-horizon expansion of the background

fields

At(r) ' Ah(rh − r) +A2(r − rh)2 +O((rh − r)3) (B.12)

B(r) ' 1
4πT (rh − r)

+B2 +O((rh − r)1) (B.13)

D(r) ' 4πT (rh − r) +D2(rh − r)2 +O((rh − r)3) (B.14)
C(r) ' Ch + C2(rh − r) +O((rh − r)2). (B.15)

Notably, in this gauge, rh ∼ r̂−zh ∼ T .
6This is as opposed to geometries with η = 0 which have At = At,0 −At,0(r̂h).
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To justify the use of this expansion in the region rir < r < rh, we must have rir =
rh(1 − ε), 0 < ε � 1 with ε chosen such that we may neglect the subleading terms
(A2, B2, C2, D2) in the expansion. In particular, this requires that the contributions from
subleading terms must vanish at rir as T → 0 parametrically faster than the leading terms.
Importantly, plugging the near -horizon expansion (B.12) in the Maxwell equation tells
us that

F2|r=rir ∼ 2q2η2
0
Ah

4πT (B.16)

where F2 is a linear combination of A2, B2, D2 and C2. In the near horizon gauge, Ah ∼ T 0.
Hence, when η 6= 0, in order for the contribution from these terms to vanish parametrically
quickly in (B.12), we must have ε ∼ Tα for α > 0.

Next, in this near horizon region, we can write

At,0(r) ' At,0(rh)−A′t,0(rh)(rh − r) +O((rh − r)2), (B.17)

and we have A′t,0(rh) ≈ −Ah. This approximation follows from the fact that, once we
identify the zero temperature radial coordinate with the finite temperature radial coordi-
nate, then at any radial position outside of the horizon limT→0A

′
t(r) = A′t,0(r) since this

limit is non-vanishing. Importantly, this is not the case for At, since we are required to
have At(rh) = 0 6= At,0(rh).7 Hence, for T � 1, at leading order in the temperature
Ah = −A′t,0(rh), which is the same approximation we used for ρin. Importantly, this tells
us that

At ≈ At,0 −At,0(rh) (B.18)

in the regions rir < r < rh. This justifies our earlier statement that the near horion region
can be defined as the location where the finite temperature solution differs from the zero
temperature approximately by a constant.

Finally, given this approximation, we can write∫ rh

rir

AtA
′
t

C
dr̃ −

∫ rh

rir

At,0A
′
t,0

C
dr̃ ≈ At,0(rh)

∫ rh

rir

A′t,0
Ch
∼ εT 2−2/z, (B.19)

where we used Ch ∼ T 2/z and rh ∼ T . Because ε ∼ Tα, the right hand side of (B.11)
vanishes parametrically faster than c2

ir ∼ T 2−2/z as T → 0 and we have (B.1).8

C Scale-covariant geometries

A more general class of solutions can be described by the action

S =
∫
dd+2x

√
−g

{
R− ZF (ψ)

4 FMNF
MN −MF (ψ)|Dη|2 − 1

2(∇ψ)2 − V (ψ, |η|)
}
. (C.1)

7In fact, this approximation also implies A′t(rir) ≈ A′t,0(rir) ≈ A′t,0(rh). If the near horizon expansion
is justifed, then At(rh) ≈ At(rir)−A′t,0(rh)ε = 0, which implies At,0(rir)−At(rir) ≈ At,0(rh).

8For z > d + 2, we know that the left hand side of (B.11) scales as sT . Then, using (B.19), we would
find ε ∼ T−1+(d+2)/z which diverges as T → 0. This divergence indicates a breakdown in the use of the
near horizon approximation to evaluate the integral. This is expected, since the integral on the right hand
side of (B.10) is only dominated by the IR region for z < d+ 2.
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As before, η is a complex scalar charged under a U(1) gauge field AM . In addition, there
is a neutral scalar, the dilaton ψ. The main text is a sub-class of this action where we set
ψ = 0 and ZF (ψ) = 1.

The equations of motion are:MF

√
DCd

B
η′

′ + q2MF

√
BCd

D
A2
t η −

√
BDCd

∂V

∂η∗
= 0

√DCd

B
ψ′

′ + Z ′F (ψ)
2

√
Cd

BD
(A′t)2 −

√
BDCd

∂V

∂ψ
+

√
BCd

D

(
q2A2

t η
2 − D

B
(η′)2

)
M ′F = 0

√ Cd

BD
A′t

′ − 2q2MF

√
BCd

D
η2At = 0

d

√ Cd

BD
D′

′ + 2
√
BDCdV − (d− 1)ZF

√
Cd

BD
(A′t)2 − 2dq2MF

√
BCd

D
η2A2

t = 0

d

2

[
C ′√
BDC

]′
+MF

√
C

BD
(η′)2 + 1

2

√
C

BD
(ψ′)2 + q2MF

√
BC

D3 η
2A2

t = 0

2MF (η′)2 − (ψ′)2 − d

2
C ′

C

(
2D
′

D
+ (d− 1)C

′

C

)
− ZF

D
(A′t)2 − 2BV + 2q2MF

B

D
η2A2

t = 0.

(C.2)

The conservation equation for the background geometry now reads

d

dr


√
Cd

BD

[
C

(
D

C

)′
− ZF (ψ)AtA′t

] = 0 (C.3)

In the UV, we are interested in solutions that have an asymptotic form (r → 0+),

ds2 → dr2 − dt2 + d~x2
d

r2 . (C.4)

For simplicity, we will chose a potential that satisfies

V (|η|) = −d(d+ 1)− d |η|2 − d

2ψ
2 + . . . , ZF = 1 +O(ψ2), MF = 1 +O(ψ2). (C.5)

This choice of potential enforces that the matter fields have an asymptotic fall-off

η ∼ η(1)r + η(2)rd + . . .

ψ ∼ ψ(1)r + ψ(2)rd + . . .

At ∼ µ−
ρ

(d− 1)r
d−1 + . . .

D ∼ r−2 −

(
η(1)

)2

2d − ε

d+ 1 rd−1 + . . .

C ∼ r−2 −

(
η(1)

)2

2d + P

d+ 1 rd−1 + . . .

B ∼ r−2 + . . . (C.6)
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As is well-known, in the conventional quantization scheme, η(1) and µ act as sources
for the expectation values η(2) and ρ. In particular, the choice µ 6= 0 gives rise to a
finite charge density and breaks the background charge-conjugation symmetry. With the
choice η(1) = 0, a non-zero η(2) indicates spontaneous breaking of the U(1) symmetry and
characterizes a holographic superfluid.

Following the holographic renormalization procedure, we define the counterterm action

Sct = 2
∫
∂Σ

√
−γ

(
K − d− 1

2 |η|
2 − ψ2

4

)
(C.7)

so that the full renormalized action is Sren = S + Sct. Here γab is the boundary metric
along a constant radial hypersurface with unit normal nr = B−1/2(r). This can be used
to find the extrinsic curvature and its trace K = γabKab. The full renormalized action
allows us to identify ε and P as the thermodynamic pressure and energy density via the
stress tensor

Tab = 2 [Kab −Kγab − dγab]−
(
|η|2 + ψ2

2

)
γab (C.8)

Furthermore, the use of the conservation equation (2.3) and the UV asymptotics of the
metric and matter fields give the thermodynamic relations

ε+ P = sT + µρ (C.9)

where P is the Gibbs potential

P = ε

d
− η(1)η(2) − ψ(1)ψ(2)

2 . (C.10)

When ψ(1) 6= 0, boundary conformal invariance is broken. On the other hand, when
ψ(1) = 0 and when the U(1) symmetry is spontaneously broken, as in the main text, the
boundary fluid maintains conformal invariance.

The derivation of transport coefficients follow the same logic as in the main text,
subject to including the new impact of the dilaton. In particular,

ρin = − Cd/2√
BD

ZF (ψ)A′t
∣∣∣∣
r=rh

,

σ0 = (a(0)
x̂ )2

µ2 ZhAt,0(rh)2 (C.11)

where Zh = ZF [ψ(rh)].
The derivation of ρn is also similar. The relevant equation of motion is

d

dr

Cd/2−1

√
D

B
ZFA

2
t

(
1+ sT

AtR

)(
ax̂
At

)′
−sT D

C

(
ax̂
At

)= (sT )2q2η2Cd−1MFZFA
2
t

R2

(
ax̂
At

)′
(C.12)
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where

R = − Cd/2√
BD

ZFA
′
t . (C.13)

From this, we find

Z − ρ

µ
= −sT

µ2 + (sT )2

µ3ρ
+ (sT )2

µ2

∫ rh

0

2q2η2√BDMFC
d/2−1

R2 dr′ + . . . (C.14)

as before.

C.1 IR geometries

When the scalar ψ is non-zero, it will generically have runaway behavior towards the IR.
In these cases, we choose the IR behavior of the functions to be

V (ψ) ∼ V0e
−δψ, ZF (ψ) ∼ Z0e

γψ. (C.15)

For now, we set MF = 1. The charged scalar field is chosen to obtain a finite value as the
temperature vanishes, η0. This can be generalized, as in [42], though for simplicity we will
avoid these cases. This choice of potentials leads to an effective action in the IR,

SIR =
∫
dd+2x

√
−g

(
R− 1

2(∂ψ)2 − V0e
−δψ − Z0

4 eγψF 2
)
. (C.16)

This RG flow will be between a conformally invariant UV and a quantum critical phase
with scaling exponents z and θ which are determined in terms of δ, γ and the behavior
of ψ.

The behavior of the IR critical phase can be captured by the gravitational metric

ds2 =
(
r̂

L

) 2θ
d

[
−L

2z

r̂2z fL
2
tdt

2 + L̃2 dr̂
2

f r̂2 + L2

r̂2 L
2
xd~x

2
d

]
, f = 1−

(
r̂

r̂h

)d+z−θ
(C.17)

As before, the coordinate r̂ is in general distinct from the radial coordinate r which governs
the UV. For θ < d (θ > d), this metric will accurately capture the IR geometry for r̂ � L

(r̂ � L) and tell us that the UV is at r̂ → 0 (r̂ →∞). The entropy and temperature are

s = 4πLdx
(
r̂h
L

)θ−d
, T = d+ z − θ

4πL̃
Lt

(
r̂h
L

)−z
(C.18)

so that

r̂h
L

=
(
T

r0

)− 1
z

, s = 4πLdx
(
T

r0

) d−θ
z

. (C.19)

When the scalar ψ runs in the IR, the IR exponents are determined as follows,

ψ = κ ln
(
r̂

L

)
, κ2 = (d− θ)(2z − 2− 2θ/d), κδ = 2θ/d. (C.20)

Instead, when the scalar ψ vanishes, θ = 0, as in the main text.
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Our holographic superfluids can only have z and θ that satisfy the inequalities

d− θ
z
≥ 0, (2− θ)(2z − 2− θ) ≥ 0, (z − 1)(d+ z − θ) ≥ 0. (C.21)

As we will see below, the first inequality is the requirement that the entropy density
increase with temperature, i.e. that the system posesses a positive specific heat. The
second two inequalities are imposed by the null energy condition along the radial and
transverse directions.

C.1.1 Marginal deformations, z 6= 1

In these solutions, the gauge field A can behave as a marginal or relevant deformation
depending on the value of z and θ. If z 6= 1 and θ 6= 0, the gauge field is a marginal
deformation that renormalizes parameters in the IR metric but does not change the overall
scaling with r̂/L,

A = A0Lt

(
r̂

L

)θ−d−z
dt, A2

0 = 2(z − 1)
Z0[d+ z − θ] ,

κγ = 2d− 2d− 1
d

θ, L̃2 = (d+ z − θ)(d+ z − θ − 1)
−V0

. (C.22)

There are irrelevant deformations around these solutions [43], but they only source
subleading temperature dependencies in the observables we are interested in.

These solutions are partially condensed with

lim
T→0

ρin = (d+ z − θ) L
d
x

LL̃
A0 (C.23)

The subleading temperature scaling arises from either the integral

ρin − ρ(0)
in ∼

∫ ∞
rh

dr

√
B0
D0

2q2C
d/2
0 η2

0At,0 ∼ #T
2
z

(d−θ) (C.24)

or from sT , whichever is least irrelevant. Similarly, for these solutions, ρ(0)
n 6= 0. The

subleading temperature dependence is from the integral

ρn − ρ(0)
n ∼

∫ ∞
rh

dr
2q2η2

0
√
B0D0C

d/2−1
0

R2
0

∼ #T 1+ d−θ−2
z (C.25)

which is always less irrelevant than sT . Hence, the transport observables have temperature
dependence

ρin = ρ
(0)
in +

#T
2
z

(d−θ) z > d− θ,
#T 1+ d−θ

z z < d− θ.
(C.26)

ρn = ρ(0)
n + #T 1+ d−θ−2

z

σ0 = #T 2− 2θ
dz (C.27)
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C.1.2 Irrelevant deformations, z = 1

On the other hand, if z = 1, the gauge field is irrelevant. Here

θ = d2δ2

dδ2 − 2 , L̃2 = 1
−V0

(d− θ) (1 + d− θ) (C.28)

The IR phase can then be thought of as a “CFT” in d−θ dimensions in the presence of
an irrelevant deformation with coupling A0. This irrelevant deformation grows toward the
IR drives the RG flow to the UV conformal fixed point. The behavior of A ≡ A0φ(r̂)dt can
be determined from solving the Maxwell equation on the background (2.12) in the presence
of a constant condensate η0. This is then backreacted on the metric to give an IR solution
which can be solved order-by-order in A0. For instance, as recently discussed in [60, 61],
for η = 0, At(r) behaves as a power-law. For instance,

At = LtA0

(
r̂

L

)θ−d−1+2∆A0
(

1 + #A2
0

(
r̂

L

)2∆A0
+O

(
r̂4∆A0

))
,

2∆A0 = 2(d− θ)− κγ + 2
d
θ < 0. (C.29)

This gives a metric deformation,

ds2 = ds2
A0=0

(
1 + #A2

0

(
r̂

L

)2∆A0
+O

(
r̂4∆A0

))
,

ψ(r) = ψA0=0 + #A2
0

(
r̂

L

)2∆A0
+O

(
r̂4∆A0

)
. (C.30)

When η 6= 0, the range of γ is extended to a regime where ∆A0 would be positive
and we must be more careful. When γ = δ, the deformation still behaves as a power law,
though the power is different,

At = LtA0

(
r̂

L

)∆̃A0−1
(

1 + #A2
0

(
r̂

L

)2∆̃A0
+ . . .

)
,

2∆̃A0 = d+ 1− θ + (d− 1− θ)
√

1 + 8L̃2q2η2
0

Z2
0 (d− 1− θ)2 . (C.31)

In order for this perturbation to be well-defined, we must have ∆̃A0 < 0 which constrains
the value of the condensate,

η2
0 >

Z2
0

8L̃2q2

[
(d+ 1− θ)2 − (d− 1− θ)2

]
> 0 (C.32)

and hence this does not smoothly connect to the η0 → 0 case.
Interestingly, for γ 6= δ, At(r) instead decays exponentially. Define ξ = γ/δ. For ξ > 1,

there exists a normalizeable solution which to leading order in (r̂/L) has the form

At = LtA0

(
r̂

L

)∆1

× exp
[
−cθ

(
r̂

L

)∆2
]

+ . . . ,

∆1 = (d− 1)(d− θ)− θξ
2d , ∆2 = (1− ξ)θ

d
, c2

θ = 2d2q2η2
0L̃

2

Z0θ2(ξ − 1)2 . (C.33)

– 35 –



J
H
E
P
1
1
(
2
0
2
0
)
0
9
1

There is no normalizeable solution for ξ < 1. Notably, ∆1 > 0 and ∆2 > 0 for θ < 0. The
exponential decay is indicative of a gapped system. In particular, the exponential decay
in At leads to low frequency conductivities that decay exponentially with temperature,
reminiscent of s-wave BCS superconductors.

We now find the temperature dependence of the various transport coefficients of inter-
est. We will not find the coefficient of the temperature scaling since this depends on the UV
parameters through A0, rather we just look at the overall scaling. Recalling that ξ = γ/δ,

ρin =

#T d−θ−∆̃A0 + . . . ξ = 1
#T∆1 × exp

[
−c̃θ (T )−∆2

]
+ . . . ξ > 1

(C.34)

Here, we have rescaled c̃θ = cθr
∆2
0 . Despite the fact that ∆1 > 0, we also have ∆2 > 0 so

ρ
(0)
in always vanishes. To derive this temperature scaling, we used the fact that for ξ > 1,

∆1 + ∆2 − 1− d− 2
d

(d− θ)− 2ξ
d
θ = −∆1. (C.35)

Next, the conductivities are

σ0 =

#T 2(1− θ
d
−∆̃A0 ) + . . . ξ = 1,

#T∆2−1 × exp
[
−2c̃θ T−∆2

]
+ . . . ξ > 1.

(C.36)

Finally, these solutions have z = 1 and have, for any ξ,

µρn = 1− c2
ir

c2
ir

(sT ) + . . . (C.37)

C.2 Specific example

As a specific example, we will use the model of [36] in d = 2,

ZF (ψ) = Z0e
aψ/
√

3, V (ψ, |η|) = −6 cosh(ψ/
√

3)− 2|η|2 + |η|4 (C.38)

which gives

z = 12 + (a− 3)(a+ 1)
a2 − 1 , θ = 4

1− a (C.39)

for partially condensed phases and

z = 1, θ = −1 (C.40)

for fully condensed phases. By turning on a source for the dilaton, ψ(1) 6= 0, one can
flow to either the partially condensed or full condensed phases in the IR. A qualitative
understanding of this behavior is that ZF (ψ) controls the effective U(1) charge of the
complex scalar in the IR. If ZF → 0, the charge diverges and it becomes easier for the
scalar to condense. On the other hand, if ZF → ∞, the charge vanishes and it is more
difficult for the scalar to condense. In fact, there is a special value of ψ(1) above which it
is not possible to condense the scalar at T = 0 and this model will flow to an uncondensed

– 36 –



J
H
E
P
1
1
(
2
0
2
0
)
0
9
1

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦

◦◦◦◦◦◦◦◦◦◦◦◦◦

10-5 10-4 0.001 0.010 0.100

10-9

10-5

0.1

T/μ

σ0

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦
◦

0.001 0.01

0.001

0.01

0.1

T/μ

(ρ
in
-
ρ
in
0
)
/
μ
2

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

0.001 0.01

0.001

0.01

0.1

1

T/μ

(ρ
n
-
ρ
n

0
)/
μ
2

ρin
ρT
ρn
ρT

0.000 0.005 0.010 0.015 0.020

0.4

0.6

0.8

1.0

T/μ

Figure 5. a = 1(z →∞, θ → −∞, z/θ = −1): σ0 ∼ #T 3, ρin ∼ ρ(0)
in + #T 2, ρn ∼ ρ(0)

n + #T 2.

phase. Since η is an irrelevant deformation of the IR, the uncondensed and partially
condensed phases are characterized by the same z, θ. We do not consider uncondensed
phases in this work.

In [19], we show how this source controls the magnitude of ρ(0)
n for a = b = 1. Here,

we care only about the temperature scaling, so we choose a value of ψ(1) that leads either
to a partially condensed phase in figures 5 and 6 or to a fully condensed phase in figures 7
and 8.

D Translation breaking

While we will not go into detail, we note that we can extract the normal and superfluid scal-
ing more straightforwardly by explicitly breaking translations. This is done by modifying
the action (C.1)

S′ = S +
∫
dd+2x

√
−gY (ψ)

2

d∑
i=1

∂µχi∂
µχi (D.1)

with

Y (ψ) = Y0 exp(λψ), χi = mxi. (D.2)

This deformation of the action breaks translations homogeneously and allows for the equa-
tions of motion to maintain dependence only on the bulk radial coordinate [74]. We choose
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Figure 6. a = 2(z = 3, θ = −4): σ0 ∼ #T 10
3 , ρin ∼ ρ(0)

in + #T 3, ρn ∼ ρ(0)
n + #T 7
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Figure 7. a = 1(z = 1, θ = −1, ξ = 1): σ0 ∼ #T 5.83, ρin ∼ #T 4.42, ρn ∼ #T 4.

the parameter λ such that this is an irrelevant deformation of the IR critical phase. Hence,
our earlier analysis of the IR geometries does not change.

In the hydrodynamic model, this choice of translation breaking is reflected in the intro-
duction of a dissipation timescale, τ , that only couples to the momentum. The timescale
will depend on the function Y (ψ) and the parameter m, but we will leave its derivation to
later work. For our purposes, the effect of this dissipation is to broaden the normal con-
tribution to the zero frequency pole in the imaginary conductivity, so that the remaining
weight only depends on the superfluid.

σ(ω) = i

ω

[
ρs
µ

]
+ σ0

1− iω/τ (D.3)
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Figure 8. a = 2 (z = 1, θ = −1, ξ = 2): σ0 ∼ #T− 1
2×exp

[
−2c̃θT− 1

2

]
, ρin ∼ #T 5

4×exp
[
−c̃θT− 1

2

]
,

ρn ∼ #T 4, ρ2
in/σ0 ∼ #T 3.
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Figure 9. Breaking translations allows for lower precision computing and we can find ρn to lower
temperature. Here, for z = 2, we plot our result with m/µ = 0 in gray and for m/µ = 10−3 in
black. The points exactly overlap and we confirm ρn ∼ #T .
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When breaking translations, care must be taken to work in terms of gauge invariant
contributions of the fluctuating fields. Some details are outlined in [74] and in [19]. After
carefully accounting for these, we can holographically compute the optical conductivity
and extract the superfluid density. We confirm that the hydrodynamic expression holds.
Furthermore, we find that our earlier analysis of the normal and superfluid densities does
not change; that is, the leading temperature dependence of these quantities is fully de-
termined by the IR geometries. For clean holographic superfluids, numerically extracting
the normal and superfluid densities requires high numerical precision and accuracy due to
subtle cancellations in (3.16). Translation breaking allows for lower precision computing
and nicely confirms our results in clean superfluids.

E Semi-local quantum critical geometries

In the main text, we stated that z → ∞ is a boundary case of the Lifshitz spacetimes. It
is clear from our general results for z > 1 that the z →∞ limit is well behaved for ρin and
ρn. However, if one looks closely at the conditions for existence of a Lifshitz IR, one finds
that z →∞ implies q = 0. Hence, no superfluid can exist for this case.

Instead, start with a more general action that has a canonically normalized scalar
kinetic term but a modified mass for the gauge field.

S = 1
16πG

∫
dd+2x

√
−g

{
R− 1

2(∂η)2 − V (η)− W (η)
2 A2 − Z(η)

4 F 2
}
. (E.1)

Here η is a real scalar field, analogous to the modulus we chose in the main text. For
η → η0 in the IR, if we have W (η0) = W ′(η∗) = 0, an AdS2 ×Rd solution is possible. For
simplicity, we will choose V ′(η0) = 0.

A simple class of functions W (η) that at lowest order in η resembles a superfluid
action is

W (η) = q2η2
(

1− η2

η2
0

)a
(E.2)

with a > 1. It will turn out that perturbations are best behaved for a ≥ 2. We would
like this action to arise from a U(1) invariant effective holographic action for a complex
scalar ζ = χeiθ,

G(|ζ|)
2 |Dζ|2 = G(χ)

2
[
(∂χ)2 + χ2(∂µθ + qAµ)2

]
. (E.3)

We want χ and η to be related, so

G(χ)(∂χ)2 = (∂η)2 and q2G(χ)χ2 = W (η) (E.4)

For a = 2, which we use for figure 4,

χ = aη
η√

η2
0 − η2

, η = η0
χ√

χ2 + a2
η

, G(χ) = η2
0

a4
η

(χ2 + a2
η)3 . (E.5)

If we want η ≈ χ and G(χ)→ 1 as χ→ 0, then we can choose aη = η0.
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We now look at solutions to the Einstein equations with this action. We choose Z(η) =
1 for simplicity. As we said before, there is a solution which is AdS2 ×Rd,

ds2 = L2

r̃2

[
−L2

tdt
2 + dr̃2

V0

]
+ L2

xd~x
2
d (E.6)

where V0 = L2V (η0) and V ′(η0) = 0. The gauge field is

A = Lt
√

21
r̃
dt. (E.7)

Here, r̃ →∞ is the IR boundary.
Denoting ~X = {D,B,C,At}, the perturbations all have the form

η =∼ η0 + cη

(
r̃

L

)ν̃η
+ . . . , ~X = ~Xcη=0

[
1 + c ~X

(
r̃

L

)ν̃η
+ . . .

]
(E.8)

There exist four solutions to these equations with the following exponents

ν̃η1 = 0 ν̃η2 = 2, ν̃±η = 1
2
[
1±
√

1− 4λ
]

(E.9)

with

λ = −V
′′(η0) +W ′′(η0)
−V (η0) (E.10)

If λ > 0, there is only one real irrelevant perturbation, ν̃η1 . If λ > 1
4 then there is a set

of complex perturbations, indicating a potential instability. Finally, if λ < 0, then there
are two irrelevant perturbations. The least irrelevant of these perturbations is always ν̃η1

though this will not introduce any new temperature dependence. The perturbation with
ν̃η2 is associated with introducing a finite temperature horizon and requires cη = 0.

Following the main text, we can choose a potential in d = 2,

V (η) = − 6
L2 − η

2 +
g2
η

4 η
4, η0 = ±

√
2
gη
. (E.11)

Then,

V (η0) = − 6
L2 −

1
g2
η

, V ′′(η0) = 4. (E.12)

For a = 2,

W ′′∗ = 8q2. (E.13)

Using L = 1 and gη =
√

3
2 to align with the treatment of Lifshitz phases in the main text,

λ = −3
5(1− 2q2) (E.14)
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and we have a complex perturbation for q >
√

3
2 . For smaller q, there is an extra irrelevant

perturbation which is always less relevant than the universal irrelevant deformation, ν̃η1 .
For a > 2, W ′′(η0) = 0 and λ < 0 so we have two irrelevant perturbations. Finally, for
a < 2, W ′′(η0) diverges.

The temperature dependence of the transport coefficients are then

σ0 = #T 2

ρin = ρ
(0)
in + #T−ν̃

−
η + . . .

ρn = ρ(0)
n + #T + . . . (E.15)

E.1 Zero temperature solution

A nice feature of the semi-local quantum critical geometries is that they readily allow for
constructing numerical solutions at exactly zero temperature since the zeroes of the metric
are only second order. Using pseudospectral methods, this double zero can be analytically
implemented. To motivate the necessity for developing a zero temperature effective field
theory for Lifshitz superfluids, we would like to confirm that the zero temperature limit
thermodynamic quantities derived in the main text, for instance ρ(0)

n , agree with what we
find at exactly zero temperature. But there is a subtlety. From the translation invariant
hydrodynamics discussed in appendix A, the weight of the pole in the imaginary conduc-
tivity is always ρ(0)/µ independent of the critical exponents. A physical rationale for this
is that, directly at zero temperature, the translation invariant system has no dissipation
and no way to distinguish ρ(0)

n from ρ
(0)
s . To distinguish the two, we can introduce a finite

superfluid velocity as in [11] or break translations as in [19]. We choose that latter and
introduce neutral translation breaking scalars as in appendix D. Effectively, this changes
the conductivity

σ(ω) = i

ω

ρ(0)

µ
→ i

ω

ρ
(0)
s

µ
+ σ

(0)
DC

1− iω/Γ (E.16)

Furthermore, since σ0 ∼ T 2, the incoherent conductivity does not contribute. Notably,
the normal density contributes only to the real part of the conductivity after translation
breaking, though there may be extra contributions to the coherent sector [58]. These
will in general be subleading in the strength of translation breaking. In general, at finite
temperatures Γ ∝ (m2s)−1 for the translation breaking parameter m of appendix D. For
1 ≤ z < ∞, this diverges as T → 0. For semi-local quantum critical states, s → s(0)

and Γ(0) remains finite and nonzero, which lets us access a zero temperature regime where
Γ(0) � µ provided m � µ. In this regime, m-dependent corrections to the values of ρ(0)

n,s

should be negligible, and we expect to be able to confirm that their zero temperature values
agree with their low temperature limit in the translation-invariant case. In addition, we
should see a measurable transfer of spectral weight to the real part of the conductivity at
T = 0 if ρ(0)

n 6= 0. This was used in z →∞, θ → −∞ geometries in [19].
As a first step, we note that with no complex scalar, we may obtain a semi-local

quantum critical geometry by investigating the zero temperature limit of an AdS-Reissner-
Nordstrom black hole. If we break translations with neutral scalars, such a system was
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Figure 10. Complete depletion of spectral weight in the T = 0 AdS-RN conductivity from trans-
lation breaking. (Left) Weight of the T = 0 imaginary pole with m/µ = 1/

√
10 showing complete

depletion of spectral weight. (Right) Weight of the T = 0 imaginary pole with m = 0 showing no
depletion of spectral weight.
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Figure 11. The normal density for a = 4 semi-local quantum critical superfluids. (Left) Finite
temperature ρn from equation (3.16). (Center) Weight of the T = 0 imaginary pole withm/µ = .315
showing partial depletion of spectral weight and ρ(0)

n = ρ(0)− ρ(0)
s 6= 0. The dashed line is the value

we find as T → 0 from equation (3.16). (Right) Weight of the T = 0 imaginary pole with m = 0
showing no depletion of spectral weight.

investigated in [58, 74]. Given the absence of a complex scalar, there is no spontaneous sym-
metry breaking and we expect breaking translations will completely remove the pole in the
imaginary conductivity. In figure 10, we confirm this result. This is in contrast to the semi-
local geometries with a superfluid. In figure 11, we confirm that there is residual spectral
weight in the imaginary pole, and hence ρ(0)

n 6= 0. In fact, we confirm that this ρ(0)
n agrees

with the result we obtained with our translation invariant finite temperature solutions.

F Vanishing ρ(0)
n but finite ρ(0)

in

Up to this point, the necessary conditions for a non-vanishing ρ(0)
n are either a non-vanishing

ρ
(0)
in and any values of z, θ or a vanishing ρ(0)

in with d + 2 − z − θ > 0. Recalling that ρ(0)
in

captures, in some sense, the degree to which charged degrees of freedom are uncondensed
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at zero temperature, these criteria seem not to apply to systems like 4He, which have ρ(0)
n

vanishing but not all 4He atoms are in the superfluid state at zero temperature. We would
like to have a holographic model that can describe such a state. In order to do so, let’s
recall the basic criteria for the vanishing of ρ(0)

n .
We can expand

ax̂(r) = ax̂
µ
At(r)

[
1 + (sT )A1(r) + (sT )2A2(r) + . . .

]
(F.1)

so long as the functions Ai(r) are sufficiently well-behaved. The expansion is guaranteed
to be well-behaved if

lim
rh→∞

∫ rh

0
dr

2q2MF

√
BDCd/2−1η2

R2 (F.2)

converges, at least up to order (sT )2. This allows a non-vanishing ρ(0)
n for certain Lifshitz

phases. Now, let’s ask what happens if we naively impose z = 1 and ρ
(0)
in 6= 0. Such a

solution requires θ 6= 0. Using our original action, we must conclude that since both criteria
for convergence are met, ρ(0)

n 6= 0. Hence z = 1 does not imply ρ(0)
n = 0.

A slight technical point is that for z = 1 partially condensed phases, the gauge field
completely decouples from the equations of motion at T = 0 as can be seen from equa-
tion (C.22). Nevertheless, one can solve the Maxwell equation in the IR background and
find that At is still given by equation (C.22) except that A0 is not fixed by the IR pa-
rameters and its value must be determined by the full RG flow. Fortunately, this leads to
ρ

(0)
in 6= 0 as desired.

To find a ρ(0)
n = 0 we need the expansion for ax to break down. Unfortunately, there

is not a nice way to affect A1. On the other hand, we can affect A2 by modifying the mass
term for the U(1) gauge field. Taking

MF (ψ)→M0 exp(d2 ιδψ) ∼M0

(
r̂

L

)ιθ
(F.3)

in the IR, we find that∫ rh
dr

2q2MF

√
BDCd/2−1η2

R2 ∼ #LtL̃

L2
x

sq2η2
h

2πρ2
in

(
rh
L

)2−z+ιθ
∼ #T 1− 2−d+(1+ι)θ

z (F.4)

In our earlier language of (3.47), this means that

α = 2z − (1 + ι)θ − 4 (F.5)

Hence, if 2− z − d+ (1 + ι)θ > 0, the integral diverges. If |ι| is too large, this can disrupt
the IR. We will only present results where this does not happen.

Following our earlier discussion of (3.47)

µρn ∼



µρ
(0)
n + #(sT ) 2 + ιθ < 0 ,

µρ
(0)
n + #T

z−2+d−(1+ι)θ
z 2− d− z + (ι+ 1)θ < 0 < 2 + ιθ ,

#T
2−d+(1+ι)θ−z

z 2(1− d− z + θ) + ιθ < 0 < 2− d− z + (ι+ 1)θ ,
#(sT ) 2(1− d− z + θ) + ιθ = 0 .

(F.6)
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Figure 12. An example using the potential in (C.38) with a = 5 so that z = 1, θ = −1 but ρ(0)
in 6= 0

(left). For ι = −4, we find that ρn ∼ #T 2 whereas for ι = 0, we find ρn ∼ ρ
(0)
n + #T 2 (middle

and right).

We demonstrate this scaling in figure 12. In systems like 4He, µρn ∼ sT , and hence is
satisfied by the last case. Of course, this analysis required an additional field, the dilaton,
which is likely not present in systems like 4He. This simplified our analysis but is not
necessary. We can modify the action in different ways, for instance by setting ψ = 0 but
letting η run in the IR. The analysis for these cases is nearly identical to that with the
dilaton since η is irrelevant when ψ 6= 0, so we omit writing them here. In such a system,
we also found solutions with ρ(0)

in 6= 0 and µρn ∼ sT .
We note that this behavior only depends on the behavior of potentials in the IR.

Hence, from an RG perspective, ρn can have an anomalous dimension from a non-trivial
ι. Nevertheless, since everything is determined from IR quantities, the analysis suggests
that quantum critical superfluids with general critical exponents may be amenable to an
effective field theory treatment.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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